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Abstract. The United Nation’s Sustainable Development Goals encourage countries to solve many social problems.
One of these problems is homelessness. We consider those goals which are most pertinent to homelessness according
to [13]. We rank countries with respect to the achievement of these goals. We use fuzzy similarity measures to
determine the degree of similarity between these rankings. We use three methods to rank the counties, namely, the
Analytic Hierarchy Process, the Guiasu method, and the Yen method. Overall scores of categories in some basic
research papers pertaining to Sustainable Development Goals were obtained by using multiplication of the scores
of the category’s targets. Multiplication was used to agree with the philosophy that in order for a high score to be
obtained, all targets must have a high score. To support this philosophy in the decision process, we use the t-norms
bounded difference, algebraic product, and standard intersection as experts. We also suggest a way the techniques
used here can be extended to nonstandard analysis.

AMS Subject Classification 2020: 94D05; 03E72
Keywords and Phrases: Homelessness, Sustainable development goals, Analytic hierarchy process, Fuzzy simi-
larity measures, Country rankings.

1 Introduction

The United Nation’s Sustainable Development Goals provide a mechanism for encouraging nations to make
progress towards shared goals. They generate collaboration, funding, definition, targeting, and measurement
for many social problems such as poverty and sanitation for all, [15]. However, homelessness is not explicitly
mentioned in the Sustainable Development Goals, [1]. The United Nations Human Settlement Program
estimates that 1.6 billion people live in inadequate housing, and the best data available suggest that more
than 100 million people have no housing at all. Related works can be seen in [2], [3] and [14].

In this paper, we consider four SDGs as seen by [13] as pertinent to homelessness. We rank countries with
respect to their achievement of these goals. We then use fuzzy similarity measures to determine the degree
of similarity between these rankings and the ranking of countries with respect to the number of people, per
10,000 who are homeless, [5]. We determine measures of similarity of these rankings using the techniques of
fuzzy similarity relations developed in [8]. For the similarity measure M, if the value is between 0 and 0.2, we
say the similarity is very low, between 0.2 and 0.4, we say the similarity is low, between 0.4 and 0.6 medium,
between 0.6 and 0.8 high, between 0.8 and 1 very high. We find that the similarity of the four rankings is
medium. A similar interpretation can be made for the similarity relation S. The rankings and similarity
measures are done for various regions of the world. We find that the similarity measures are very high. The
results can be found in detail in Sections 4, 5, and 6. We also determine the similarity measure between a
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ranking of a country’s number of homelessness and the ranking of countries according to their achievement
of the SDGs. We found that similarity ranged from medium to high depending on the region involved.

We use three methods to rank countries with respect to their achievement of the SDGs pertinent to
homelessness. The Analytic Hierarchy Process (AHP ) is a multicriteria decision method introduced in [11]
and [12]. We consider a factor to be studied by the examination of subfactors of the factor. In our case, each
expert Ej , j = 1, ..., n, assigns a number wij to each subfactor, i = 1, ...,m, of the factor, as to its importance
with respect to the overarching goal. The row average, wi, of each row of the matrix [wij ] is determined to
form a matrix R whose ij-th element is wi/wj . The columns of R are then normalized in order to form the
m × n matrix N whose ij-th element is (wi/wj)/

∑m
i=1wi/wj = wi/

∑m
i=1wi, i = 1, ...,m. The row vector

yields the weights for the subfactors for the linear equation of the overarching goal, the dependent variable,
in terms of the subfactors, the independent variables.

If the matrix W already has its columns normalized, then wi =
∑n

j=1wij/n, i = 1, ...,m. Since
∑m

=1wij =
1, j = 1, ..., n, it follows that

∑m
i=1wi = 1. Hence wi/

∑m
i=1wi = wi, i.e., wi is the weight for the i-th subfactor

in the linear equation, i = 1, ...,m. It thus follows that if the columns of W are already normal, then the
Guiasu method (with probabilistic assignments) and the analytic hierarchy process yield the same weights.
However, in general, the Guiasu weights and the AHP weights can have quite different weights [9].

Yen’s method addresses the issue of managing imprecise and vague information in evidential reasoning
by combining the Dempster-Shafer theory with fuzzy set theory, [16]. Several researchers have extended the
Dempster-Shafer theory to deal with vague information, but their extensions did not preserve an important
principle that the belief and plausibility measures are lower and upper probabilities. Yen’s method preserves
this principle. Nevertheless, we use various measures of subsethood to determine belief functions. We do this
to compare the results of the beliefs with Yen’s method.

Yen’s method is developed under the assumption that the focal elements are normalized. If the focal
elements are not normal, he normalizes them.

We let N denote the positive integers. If X is a set, we let FP(X) denote the set of all fuzzy subsets of
X. We let ∨ denote supremum or maximum and ∧ denote infimum or minimum.

2 Preliminary Results

Proposition 2.1. Let T denote an m × n matrix whose entries are from the closed interval [0, 1]. Let Cj

denote the sum of the entries from column j, j = 1, ..., n. If C1 = ... = Cn, then the AHP and the Guiasu
weights are the same.

Proof. Let C = C1 = ... = Cn. Let Ri denote the sum of the elements in row i, i = 1, ...,m. Then
in the AHP matrix, the row averages are Ri/n, i = 1, ...,m. Hence the coefficients for the AHP equation
are (Ri/n)/(R1 + ... + Rm)/n = Ri/(R1 + ... + Rm), i = 1, ...,m. The Guiasu matrix is obtained from the
AHP matrix by dividing each entry in its column by that column sum which by assumption is C. Thus
the row average of the i-th row is Ri/nC, i = 1, ...,m. Hence the coefficients of the Guiasu equation is are
(Ri/nC)/(R1 + ...+Rm)/nC) = Ri/(R1 + ...+Rn), i = 1, ...,m. □

Proposition 2.2. Let M denote the m × n Guiasu matrix. Let m∗j denote the maximum entry in column
j, j = 1, ..., n. Suppose there exists m∗ such that m∗1 = ... = m∗n = m∗. Then the Guiasu and the Yen weights
are the same.

Proof. The entries of the columns of M add to 1. It follows that the row average column entries are
1
nRi, i = 1, ...,m, and so the Guiasu weights are Ri

R1+...+Rm
, i = 1, ...,m. The entries of the Yen matrix are

aij
m∗ i = i, ...,m; j = 1, ..., n. Hence the entries of the Yen row average column are 1

n
Ri
m∗ , i = 1, ..., n. Hence the

Yen weights are ( 1
n

Ri
m∗ )/( 1

n
R1+...+Rm

m∗ ) = Ri
R1+...+Rn

, i = 1, ...,m. □
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Proposition 2.1 suggests that if the column sums are nearly equal, then the AHP and Guiasu weights will
be nearly equal. We examine this in a nonstandard analysis setting. This examination suggests a possible
extension of the paper to nonstandard analysis, [7]. First, we review some basic concepts from nonstandard
analysis. Let R denote the real numbers. Let R∗ denote the field of hyperreals which includes infinitesimal
numbers and infinite numbers. Let Rfin denote the set of those elements of R∗ which are not infinite. Then
Rfin is a local ring with unique maximal ideal M, where M denotes the set of all infinitesimal elements, [7].
It follows that the relation ≈ defined on Rfin by for all x, y ∈ Rfin, x ≈ y if and only if x − y ∈ M is an
equivalence relation.

Proposition 2.3. Let a, c ∈ Rfin\M (set difference) and b, d ∈ Rfin be such that a ≈ b and c ≈ d. Then
a
c ≈ b

d .

Proof. Since a ≈ b and c ≈ d, there exists m,m′ ∈ M such that b = a + m and d = c + m′. Thus
a(c + m′) − c(a + m) = m′ −m ∈ M . Since a, c /∈ M and Rfinis a local ring,1c ∈ Rfin. Since M is an ideal
in Rfin,

a
c (c + m′) − (a + m) ∈ M . Now 1

c+m′ ∈ Rfin since Rfin is a local ring. Thus a
c − a+m

c+m′ ∈ M. Hence
a
c −

b
d ∈M. That is, a

c ≈ b
d . □

To see how this applies to our situation, consider the situation where the m × n matrix has entries
aij from Rfin and are positive. Let Cj denote the sum of the aij in column j, j = 1, ..., n. Suppose there
exists C ∈ Rfin and ∈j∈ M, such that Cj = C+ ∈j , j = 1, ..., n. Then the weights of the AHP equa-
tion are

∑n
j=1 aij/

∑m
i=1

∑n
j=1 aij . The weights of the corresponding Guiasu equation are (

∑n
j=1 aij/(C+ ∈j

))/(
∑m

i=1

∑n
j=1 aij/(C+ ∈j)) ≈ (

∑n
j=1 aij/(C))/(

∑m
i=1

∑n
j=1 aij/(C)) =

∑n
j=1 aij/

∑m
i=1

∑n
j=1 aij ., where we

have ≈ holding by Proposition 2.3 and by noting that C+ ∈j≈ C.
Similar comments concerning Proposition 2.2 can be made.

3 SDGs and Homelessness

In the following table, theGi denote a particular Sustainable Development Goal. HereG1 denotes End poverty
in all its forms everywhere, G8 denotes Promote sustained, inclusive and sustainable economic growth, full and
productive employment and decent work for all, G10 denotes Reduce inequality within and among countries,
and G11 denotes Make cities and human settlements inclusive, safe, resilient, and sustainable. The scores of
the assessors were used to obtain an average for each category. Then these category averages were multiplied
to obtain an overall average score for each target. Multiplication was used to agree with the philosophy
that in order for a high score, all categories must have a high score. To support this philosophy, we use
the t-norms bounded difference, algebraic product, and standard intersection. These t-norms are considered
as experts when we apply the methods known as AHP , Guiasu and Yen. The entries of the Target values
are taken from [10] and then divided by 2 so that the values will be in the closed interval [0, 1]. The Goal
values are obtained by averaging the Target values. Applicability: In the opinion of the assessor is the target
relevant, suitable and/or appropriate to developed countries; Implementable: In the opinion of the assessor
will a reasonable allocation of resources result in the achievement of the goal/target in developed countries;
Transformationalism: In the opinion of the assessor will the achievement of the goal/target require significant
and additional policy action beyond what is currently in place and/or planned.

Table 1: t-norms as Decision Makers

Goal/Target Applicable Implementable Transformative

G1 0.575 0.85 0.325
1.4 0.5 0.85 0.15
1.5 0.65 0.85 0.5
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Table 1: t-norms as Decision Makers (cont.)

Goal/Target Applicable Implementable Transformative

G8 0.85 0.85 0.65
8.5 0.85 0.85 0.65
G10 0.667 0.9 0.617
10.2 0.5 0.85 0.5
10.3 0.5 0.85 0.5
10.4 1.0 1.0 0.85
G11 0.5 0.85 0.5
11.1 0.5 0.85 0.5

The equations determined below are used to determine how well countries are doing in achieving the SDGs
pertinent to homelessness. The entries in Table 2 below are obtained from Table 1. Recall that bounded
difference is defined as 0 ∨ (a + b − 1) for all a, b ∈ [0, 1], see [4]. Consider G1. For Bounded Difference, we
get 0∨(0.575+0.85−1) = 0.425 and 0∨(0.425+0.325−1) = 0 or equivalently 0∨(0.425+0.85+0.325−2) = 0.

Table 2: AHP Method

AHP
Bounded Algebraic Standard Row
Difference Product Intersection Average

G1 0 0.159 0.325 0.161
G8 0.350 0.470 0.650 0.490
G10 0.184 0.370 0.617 0.390
G11 0 0.213 0.500 0.238

Col Sum 0.534 1.212 2.092 1.279

H1 = 0.126G1 + 0.383G8 + 0.305G10 + 0.186G11.

Table 3: Guiasu Method

Guiasu
Bounded Algebraic Standard Row
Difference Product Intersection Average

G1 0 0.130 0.155 0.095
G8 0.655 0.388 0.311 0.451
G10 0.345 0.306 0.295 0.315
G11 0 0.176 0.239 0.138

Col Sum 0.999

H2 = 0.095G1 + 0.451G8 + 0.315G10 + 0.138G11.

Table 4 below is determined from Table 3 by dividing each entry in the column by the maximum entry
of that column.

Table 4: Yen Method

Yen
Bounded Algebraic Standard Row
Difference Product Intersection Average

G1 0 0.335 0.498 0.278
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Table 4: Yen Method(cont.)

Yen
Bounded Algebraic Standard Row
Difference Product Intersection Average

G8 1.000 1.000 1.000 1.000
G10 0.527 0.789 0.949 0.755
G11 0 0.454 0.768 0.407

Col Sum 2.440

H3 = 0.114G1 + 0.410G8 + 0.309G10 + 0.167G11.

4 Country Rankings

The values that state how well a country is achieving the SDGs are given in [15]. We do not present them
here. These values are substituted into the variables G1, G8, G10, and G11 in the above equations to determine
the values provided in Tables 5-10.

OECD

Table 5: OECD Ranks

Country AHP / rank Guiasu / rank Yen / rank

Australia 0.820 / 24 0.814 / 25 0.818 / 25
Austria 0.865 / 13 0.859 / 13 0.863 / 13
Belgium 0.875 / 10 0.870 / 10 0.873 / 10
Canada 0.837 / 23 0.833 / 19 0.835 / 20
Chile 0.667 / 33 0.656 / 33 0.663 / 34
Czech Rep. 0.899 / 7 0.893 / 7 0.897 / 7
Denmark 0.909 / 4 0.902 / 4 0.906 / 4
Estonia 0.839 / 20 0.830 / 21 0.835 / 21
Finland 0.905 / 5 0.899 / 5 0.902 / 5
France 0.847 / 15 0.837 / 17 0.843 / 15
Germany 0.872 / 11 0.864 / 12 0.869 / 11
Greece 0.671 / 32 0.650 / 35 0.663 / 33
Hungary 0.830 / 23 0.822 / 23 0.827 / 24
Iceland 0.913 / 2 0.906 / 3 0.911 / 3
Ireland 0.877 / 9 0.875 / 9 0.876 / 9
Israel 0.753 / 29 0.747 / 30 0.750 / 30
Italy 0.775 / 26 0.770 / 27 0.773 / 27
Japan 0.838 / 21 0.840 / 15 0.839 / 17
Korea Rep. 0.868 / 12 0.867 / 11 0.868 / 12
Latvia 0.837 / 22 0.830 / 20 0.835 / 22
Lithuania 0.738 / 31 0.720 / 32 0.734 / 32
Luxembourg 0.839 / 19 0.820 / 24 0.831 / 23
Mexico 0.585 / 36 0.571 / 36 0.580 / 36
Netherlands 0.902 / 6 0.894 / 6 0.899 / 6
N. Zealand 0.841 / 17 0.839 / 16 0.840 / 16
Norway 0.891 / 8 0.883 / 8 0.888 / 8
Poland 0.759 / 28 0.754 / 29 0.757 / 29
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Table 5: OECD Ranks (cont.)

Country AHP / rank Guiasu / rank Yen / rank

Portugal 0.771 / 27 0.763 / 28 0.768 / 28
Slovak Rep. 0.840 / 18 0.834 / 18 0.838 / 19
Slovenia 0.913 / 3 0.911 / 2 0.913 / 2
Spain 0.788 / 25 0.774 / 26 0.783 / 26
Sweden 0.918 / 1 0.911 / 1 0.915 / 1
Switzerland 0.858 / 14 0.843 / 14 0.852 / 14
Turkey 0.665 / 35 0.655 / 34 0.661 / 35
U. K. 0.843 / 16 0.830 / 22 0.838 / 18
U. S. 0.750 / 30 0.743 / 31 0.747 / 31

Some countries in the following are not ranked due to insufficient data.
East and South Asia

Table 6: East and South Asia Ranks

Country AHP / rank Guiasu / rank Yen / rank

Bangladesh 0.698 / 11 0.716 / 8 0.705 / 11
Bhutan 0.745 / 6 0.735 / 6 0.742 / 6
Brunei Dar
Cambodia 0.770 / 4 0.757 / 5 0.765 / 4
China 0.779 / 3 0.779 / 3 0.779 / 3
India 0.653 / 14 0.669 / 13 0.659 / 14
Indonesia 0.616 / 16 0.616 / 16 0.616/ 16
Korean Dem. Rep.
Lao PDR 0.709 / 9 0.713 / 9 0.710 / 9
Malaysia 0.717 / 8 0.706 / 11 0.713 / 8
Maldives 0.809 / 1 0.796 / 1 0.804 / 1
Mongolia 0.725 / 7 0.732 / 7 0.727 / 7
Myanmar 0.708 / 10 0.706 / 12 0.708 / 10
Nepal 0.695 / 12 0.712 / 10 0.702 / 12
Pakistan 0.621 / 15 0.623 / 15 0.622 / 15
Philippines 0.614 / 17 0.610 / 17 0.612 / 17
Singapore
Sri Lanka 0.693 / 13 0.687 / 14 0.691 / 13
Thailand 0.767 / 5 0.758 / 4 0.763 / 5
Timor Leste
Vietnam 0.787 / 2 0.780 / 2 0.784 / 2

Eastern Europe and Central Asia

Table 7: Eastern Europe and Central Asia Ranks

Country AHP / rank Guiasu / rank Yen / rank

Afghanistan
Albania 0.689 / 17 0.670 / 17 0.682 / 17
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Table 7: Eastern Europe and Central Asia Ranks(cont.)

Country AHP / rank Guiasu / rank Yen / rank

Andorra
Armenia 0.635 / 21 0.623 / 21 0.630 / 21
Azerbaijan 0.750 / 12 0.733 / 13 0.743 / 12
Belarus 0.834 / 3 0.827 / 3 0.831 / 3
Bosnia & Herzegovina 0.748 / 13 0.734 / 12 0.743 / 13
Bulgaria 0.770 / 8 0.762 / 8 0.767 / 8
Croatia 0.778 / 6 0.762 / 7 0.775 / 6
Cyprus 0.792 / 5 0.783 / 5 0.787 / 5
Georgia 0.646 / 19 0.632 / 19 0.640 / 19
Kazakhstan 0.755 / 10 0.745 / 10 0.751 / 10
Kyrgz Rep. 0.778 / 7 0.766 / 6 0.773 / 7
Liecheristan
Malta 0.903 / 1 0.902 / 1 0.903 / 1
Moldova 0.840 / 2 0.831 / 2 0.836 / 2
Monaco
Montenegro 0.701 / 16 0.690 / 16 0.697 / 16
North Macedonia 0.643 / 20 0.629 / 20 0.638 / 20
Romania 0.675 / 18 0.664 / 18 0.67 / 18
Russian Federation 0.733 / 14 0.720 / 15 0.728 / 14
San Marino
Serbia 0.753 / 11 0.745 / 11 0.750 / 11
Tajikistan 0.730 / 15 0.720 / 14 0.726 / 15
Turkmenistan
Ukraine 0.831 / 4 0.821 / 4 0.827 / 4
Uzbekistan 0.770 / 9 0.762 / 9 0.767 / 9

Latin America and the Caribbean

Table 8: Latin America and Caribbean Ranks

Country AHP / rank Guiasu / rank Yen / rank

Antigua & Barbuda
Argentina 0.675 / 7 0.659 / 10 0.669 / 7
Bahamas
Barbados
Belize
Bolivia 0.713 / 2 0.732 / 1 0.710 / 2
Brazil 0.610 / 13 0.599 / 13 0.606 / 13
Columbia 0.601 / 14 0.587 / 15 0.596 / 14
Costa Rica 0.695 / 4 0.679 / 5 0.689 / 4
Cuba
Dominica
Dominican Rep. 0.670 / 9 0.659 / 9 0.666 / 9
Ecuador 0.676 / 6 0.661 / 6 0.670 / 6
El Salvador 0.668 / 10 0.650 / 11 0.661 / 11
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Table 8: Latin America and Caribbean Ranks(cont.)

Country AHP / rank Guiasu / rank Yen / rank

Grenada
Guatemala 0.599 / 15 0.589 / 14 0.595 / 15
Guyana
Haiti 0.540 / 18 0.555 / 18 0.546 / 18
Honduras 0.584 / 16 0.580 / 16 0.582 / 16
Jamacia 0.708 / 3 0.695 / 3 0.703 / 3
Nicaragua 0.670 / 8 0.661 / 7 0.666 / 8
Panama 0.657 / 12 0.641 / 12 0.651 / 12
Paraguay 0.690 / 5 0.682 / 4 0.687 / 5
Peru 0.666 / 11 0.660 / 8 0.664 / 10
St Kitts and Nevis
St. Lucia
St Vincent and the Grenadines
Suriname
Uruguay 0.734 / 1 0.721 / 2 0.729 / 1
Venezuela 0.541 / 17 0.556 / 17 0.547 / 17

Middle East and North Africa

Table 9: Middle East and North Africa Ranks

Country AHP / rank Guiasu / rank Yen / rank

Algeria 0.785 / 1 0.779 / 1 0.783 / 1
Bahrain
Egypt 0.583 / 7 0.573 / 7 0.579 / 7
Iran 0.722 / 3 0.710 / 3 0.717 / 3
Iraq 0.740 / 2 0.738 / 2 0.739 / 2
Jordan 0.659 / 6 0.645 / 6 0.654 / 6
Kuwait
Lebanon 0.707 / 4 0.701 / 4 0.705 / 4
Libya
Morocco 0.700 / 5 0.688 / 5 0.695 / 5
Oman
Qatar
Saudi Arabia
Syria
Tunisia
UAE
Yemen

Sub-Saharan Africa

Table 10: Sub-Saharan Africa Ranks

Country AHP / rank Guiasu / rank Yen / rank

Angola 0.546 / 20 0.557 / 20 0.551 / 20
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Table 10: Sub-Saharan Africa Ranks(cont.)

Country AHP / rank Guiasu / rank Yen / rank

Benin 0.502 / 25 0.523 / 25 0.510 / 25
Botswana 0.468 / 33 0.455 / 35 0.463 / 33
Burkino Faso 0.641 / 5 0.662 / 4 0.649 / 5
Burundi 0.482 / 30 0.491 / 31 0.485 / 31
Cabo Verde 0.612 / 9 0.611 / 12 0.612 / 10
Cameroon 0.526 / 23 0.543 / 22 0.533 / 23
Central African Rep. 0.254 / 42 0.269 / 42 0.260 / 42
Chad 0.473 / 32 0.490 / 32 0.480 / 32
Comoros 0.544 / 21 0.530 / 24 0.538 / 21
Congo Dem. Rep. 0.494 / 28 0.517 / 26 0.503 / 26
Congo Rep. 0.427 / 38 0.438 / 38 0.431 / 38
Cote d’lvoire 0.594 / 14 0.609 / 13 0.560 / 19
Djibouti 0.601 / 12 0.599 / 17 0.600 / 12
Equatorial Guinea
Eritrea
Eswatini 0.357 / 40 0.342 / 41 0.351 / 40
Ethiopia 0.632 / 6 0.649 / 6 0.639 / 6
Gabon 0.592 / 15 0.588 / 19 0.591 / 17
Gambia 0.599 / 13 0.601 / 16 0.600 / 13
Ghana 0.652 / 3 0.665 / 5 0.657 / 3
Guinea 0.651 / 4 0.667 / 3 0.657 / 4
Guinea-Bissau
Kenya 0.533 / 22 0.546 / 21 0.538 / 22
Lesotho 0.345 / 41 0.344 / 40 0.345 / 41
Liberia 0.584 / 18 0.617 / 10 0.597 / 14
Madagascar 0.453 / 35 0.470 / 33 0.460 / 34
Malawi 0.496 / 26 0.512 / 28 0.502 / 27
Mali 0.624 / 7 0.642 / 7 0.631 / 7
Mauritania 0.609 / 10 0.606 / 14 0.608 / 11
Mauritius 0.700 / 2 0.682 / 2 0.693 / 2
Mozambique 0.495 / 27 0.501 / 29 0.497 / 29
Namibia 0.460 / 34 0.450 / 36 0.456 / 35
Niger 0.606 / 11 0.630 / 9 0.616 / 9
Nigeria 0.358 / 39 0.382 / 39 0.367 / 39
Rwanda 0.481 / 31 0.498 / 30 0.488 / 30
Sao Tome & Principe 0.736 / 1 0.740 / 1 0.738 / 1
Senegal 0.586 / 17 0.604 / 15 0.593 / 16
Seychelles
Sierra Leone 0.568 / 19 0.588 / 18 0.576 / 18
Somalia
South Africa 0.442 / 37 0.431 / 37 0.438 / 37
South Sudan
Sudan 0.523 / 24 0.535 / 23 0.528 / 24
Tanzania 0.616 / 8 0.635 / 8 0.624 / 8
Togo 0.490 / 29 0.519 / 27 0.501 / 28
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Table 10: Sub-Saharan Africa Ranks(cont.)

Country AHP / rank Guiasu / rank Yen / rank

Uganda 0.587 / 16 0.612 / 11 0.597 / 15
Zambia 0.443 / 36 0.456 / 34 0.448 / 36
Zimbabwe

5 Fuzzy Similarity Measures and Conclusions

In this section, we briefly consider the fuzzy similarity measures we will be using.

Definition 5.1. Let S be a function of FP(X) × FP(X) into [0, 1]. Then S is called a fuzzy similarity
measure on FP(X) if the following properties hold ∀µ, ν, ρ ∈ FP(X) :

(1) S(µ, ν) = S(ν, µ);
(2) S(µ, ν) = 1 if and only if µ = ν;
(3) If µ ⊆ ν ⊆ ρ, then S(µ, ρ) ≤ S(µ, ν) ∧ S(ν, ρ);
(4) If S(µ, ν) = 0, then ∀x ∈ X,µ(x) ∧ ν(x) = 0.

We apply fuzzy similarity measures to rankings of a finite set. Suppose that X is a finite set with n
elements. Let A be a one-to-0ne function of X into {1, 2, ..., n}. Then A is called a ranking of X. Define the
fuzzy subset µA of X as follows: ∀x ∈ X,µA(x) = A(x)/n. We wish to consider the similarity of two rankings
of X by using fuzzy similarity measures. We use the two fuzzy similarity measures provided in the following
Example.

Example 5.2. Let µA and µB be the fuzzy subsets of X associated with two rankings A and B, respectively.
Then M and S below are fuzzy similarity measures.

M(µA, µB) =

∑
x∈X µA(x) ∧ µB(x)∑
x∈X µA(x) ∨ µB(x)

;

S(µA, µB) = 1 −
∑

x∈X |µA(x) − µB(x)|∑
x∈X(µA(x) + µB(x))

.

Theorem 5.3. (See [6]) Let n ∈ N and
(1) Let n be even. Then the smallest value M(µA, µB) can be is n+2

3n+2 .

(2) Let n be odd. Then the smallest value M(µA, µB) can be is n+1
3n−1 .

(3) Let n be even. Then the smallest value S(µA, µB) can be is n/2+1
n+1 .

(4) Let n be odd. Then the smallest value S(µA, µB) can be is 1
2 + 1

2n .

It follows that the quantity, the value of M minus the smallest value it can be, divided by the quantity 1
minus the smallest value M can be, is the percentage of the way M is from 0 to 1.

Let n ∈ N, n ≥ 2, and let X be a set. Let FPn(X) = {(µ1, ..., µn)|µi ∈ FP(X), i = 1, ..., n}.

Definition 5.4. (See [8]) Let Ŝ be a function of FPn(X) into [0, 1]. Then Ŝ is called an n-dimensional
fuzzy similarity measure on FP(X) if the following properties hold:

(1) Ŝ(µ1, ..., µn) = Ŝ(µπ(1), ...µπ(n)) for any permutation π of {1, ..., n};

(2) Ŝ(µ1, ..., µn) = 1 if and only if µ1 = ... = µn;
(3) If µi1 ⊆ µi2 ⊆ µi3 , then Ŝ(..., µi1 , ..., µi3 , ...) ≤ Ŝ(..., µi1 , ..., µi2 , ...) ∧ Ŝ(..., µi2 , ..., µi3 , ...);
(4) If Ŝ(µ1, ..., µn) = 0, then for all x ∈ X, there exists i ∈ {1, ..., n} such that µi(x) = 0.
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Example 5.5. (See [8]) Let µ1, ..., µn be fuzzy subsets of X. Then M̂ and Ŝ are n-similarity fuzzy similarity
measures, where

M̂(µ1, ..., µn) =

∑
x∈X µ1(x) ∧ ... ∧ µn(x)∑
x∈X µ1(x) ∨ ... ∨ µn(x)

;

Ŝ(µ1, ..., µn) = 1 −
∑

x∈X(∨{µj(x)|j = 1, ..., n} − ∧{µj(x)|j = 1, ..., n})∑
x∈X(∨{µj(x)|j = 1, ..., n} + ∧{µj(x)|j = 1, ..., n})

.

Suppose we consider n elements and that they have been ranked twice 1 through n with no ties. We wish
to consider their rankings using the above similarity operations. We can accomplish this by mapping the
elements to their rank divided by n. For example, let X denote a set of n elements and if x is ranked i, then
we define the fuzzy subset µ of X by µ(x) = i

n . Let µ and ν be two such fuzzy subsets of X. Then

M̂(µ, ν) =

∑
µ(xi) ∧ ν(xi)∑
µ(xi) ∨ ν(xi)

=

∑
nµ(xi) ∧ nν(xi)∑
nµ(xi) ∨ nν(xi)

.

Consequently, there is no loss in generality in assuming that we are measuring the similarity of two
rankings using the integers, 1, ..., n. The notion can be extended from 2 rankings to any finite number of
rankings.

Let m and n be positive integers such that 2 ≤ m ≤ n. Then there exist positive integers q and r such
that n = qm+ r, where 0 ≤ r < m.

Theorem 5.6. (See [8]) The smallest value M̂ can be is
m(

(q+1)q
2

)+r(q+1)

m 2qn+q−q2

2
+r(n−q)

.

Theorem 5.7. (See [8]) Ŝ = 2M̂

1+M̂
.

Corollary 5.8. (See [8]) The smallest value Ŝ can be is 2a
1+a , where a is the smallest value M̂ can be.

Let m̂ = 3. It is shown in [8] that the values for M̂ and Ŝ can be converted to the case where m = 2 by
the following formulas

M =
5

6
M̂ +

1

6
,

S =
3

4
Ŝ +

1

4
.

We next provide the similarity measures for the regions.µ1, µ2,and µ3 denote AHP, Guiasu, and Yen,
respectively.

For OECD, M̂(µ1, µ2, µ3) = 639
686 = 0.931 and Ŝ(µ1, µ2, µ3) = 1− 47

1325 = 0.965. Here n = 36,m = 3, q = 12,

and r = 0. The smallest M̂ can be is [m(q+1)q
2 + r(q + 1)]/[m(2qn+q−q2)

2 + r(n − q)] = (13)(12)
2(12)(36)+12−144 =

156
732 = 0.213. The smallest Ŝ can be is 2(0.213)

1+0.213 = 0.351. Now M̂−0.213
1−0.213 = 0.931−0.213

1−0.213 = 0.718
0.787 = 0.912 and

Ŝ−0.351
1−0.351 = 0.965−0.351

1−0.351 = 0.614
0.649 = 0.946.

For East and South Asia, M̂(µ1, µ2, µ3) = 146
160 = 0.9125 and Ŝ(µ1, µ2, µ3) = 1 − 14

306 = 0.954. Here

n = 17,m = 3, q = 5, and r = 2. The smallest M̂ can be is [m(q+1)q
2 + r(q + 1)]/[m(2qn+q−q2)

2 + r(n − q)] =
45+12
225+24 = 0.229. The smallest Ŝ can be is 2(0.229)

1+0.229 = 0.373. Now M̂−0.229
1−0.229 = 0.912−0.229

1−0.229 = 0.683
0.771 = 0.886 and

Ŝ−0.373
1−0.373 = 0.954−0.373

1−0.373 = 0.581
0.627 = 0.927.
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For Eastern Europe and Central Asia, M̂(µ1, µ2, µ3) = 228
234 = 0.974 and Ŝ(µ1, µ2, µ3) = 1 − 6

462 = 0.987.

Here n = 21,m = 3, q = 7, and r = 0. The smallest M̂ can be is [m(q+1)q
2 +r(q+1)]/[m(2qn+q−q2)

2 +r(n−q)] =
8(7)

14(21)+7−49 = 56
252 = 0.222. The smallest Ŝ can be is 2(0.222)

1+0.222 = 0.363. Now M̂−0.222
1−0.222 = 0.974−0.222

1−0.222 = 0.752
0.778 =

0.967 and Ŝ−0.363
1−0.363 = 0.987−0.363

1−0.363 = 0.624
0.637 = 0.980.

For Latin America and the Caribbean, M̂(µ1, µ2, µ3) = 164
178 = 0.921 and Ŝ(µ1, µ2, µ3) = 1 − 14

342 = 0.959.

Here n = 18,m = 3, q = 6, and r = 0. The smallest M̂ can be is [m(q+1)q
2 +r(q+1)]/[m(2qn+q−q2)

2 +r(n−q)] =
7(6)

216−30 = 0.226. The smallest Ŝ can be is 2(0.226)
1+0.226 = 0.367. Now M̂−0.226

1−0.266 = 0.921−0.226
1−0.226 = 0.695

0.774 = 0.898 and
Ŝ−0.367
1−0.367 = 0.959−0.367

1−0.367 = 0.592
0.633 = 0.935.

For Middle East and North Africa, there wasn’t sufficient data available.

For Sub-Sahran Africa, M̂(µ1, µ2, µ3) = 869
942 = 0.923 and Ŝ(µ1, µ2, µ3) = 1 − 73

1811 = 0.960. Here n =

42,m = 3, q = 13, and r = 0. The smallest M̂ can be is [m(q+1)q
2 + r(q + 1)]/[m(2qn+q−q2)

2 + r(n − q)] =
15(14)

1176−182 = 210
994 = 0.211. The smallest Ŝ can be is 2(0.211)

1+0.221 = 0.346. Now M̂−0.211
1−0.211 = 0.923−0.211

1−0.211 = 0.712
0.789 = 0.902

and Ŝ−0.346
1−0.346 = 0.960−0.346

1−0.346 = 0.614
0.654 = 0.939.

6 SDG Achievement vs Number of Homeless

In [5], the number of homeless people per country was given. We ranked the countries according to homeless
per 10, 000. The fewer the homeless the higher the rank. We do not present the rankings here. We then found
the similarity between this ranking and the ranking of countries according to their achievement of the SDGs
given in the above tables.

For OECD, M(SDG,H) = 398
724 = 0.550 and S(SDG,H) = 1 − 328

1122 = 0.708. Here n = 33. The smallest
M can be is n+1

3n−1 = 34
98 = 0.347 and the smallest S can be is 1

2 + 1
2n = 1

2 + 1
66 = 0.515. Now M−0.347

1−0.347 =
0.550−0.347
1−0.347 = 0.203

0.653 = 0.311 and S−0.515
1−0515 = 0.708−0.515

1−0.515 = 0.193
0.485 = 0.398.

For East and South Asia, M(SDG,H) = 34
56 = 0.607 and S(SDG,H) = 1 − 22

90 = 0.756. Here n = 9.
The smallest M can be is n+1

3n−1 = 10
28 = 0.357 and the smallest S can be is 1

2 + 1
2n = 1

2 + 1
18 = 0.556. Now

M−0.357
1−0.357 = 0.607−0.357

1−0.357 = 0.250
0.643 = 0.389 and S−0.556

1−0.556 = 0.756−0.556
1−0.556 = 0.200

0.444 = 0.450.

For Eastern Europe and Central Asia, M(SDG,H) = 26
46 = 0.565 and S(SDG,H) = 1− 18

72 = 0.750. Here

n = 8. The smallest M can be is n+2
3n+2 = 10

26 = 0.385 and the smallest S can be is n/2+1
n+1 = 5

9 = 0.556. Now
M−0.385
1−0.385 = 0.565−0.385

1−0.385 = 0.180
0.615 = 0.293 and S−0.556

1−0.556 = 0.750−556
1−0.556 = 0.194

0.444 = 0.437.

For Latin America and the Caribbean, M(SDG,H) = 19
23 = 0.828 and S(SDG,H) = 1 − 4

42 = 0.901.

Here n = 6. The smallest M can be is n+2
3n+2 = 8

20 = 0.400 and the smallest S can be is n/2+1
n+1 = 4

7 = 0.571.

Now M−0.400
1−0.400 = 0.828−0.400

1−0.400 = 0.428
0.600 = 0.713 and S−0.571

1−0.571 = 0.901−0.571
1−0.571 = 0.330

0.430 = 0.767.

For the Middle East and North Africa, there wasn’t sufficient data available.

For Sub-Saharan Africa, M(SDG,H) = 106
166 = 0.639 and S(SDG,H) = 1 − 60

272 = 0.779. Here n = 16.

The smallest M can be is n+2
3n+2 = 18

50 = 0.360 and the smallest S can be is n/2+1
n+1 = 9

17 = 0.529. Now
M−0.360
1−0.360 = 0.639−0.360

1−0.360 = 0.279
0.640 = 0.436 and S−0.529

1−0.529 = 0.779−0.529
1−0.529 = 0.250

0.471 = 0.531.
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7 Conclusion

In this paper, we considered those Sustainable Development Goals which are most pertinent to homelessness.
We ranked countries with respect to the achievement of these goals. We used fuzzy similarity measures to
determine the degree of similarity between these rankings. We used three methods to rank the counties,
namely, the Analytic Hierarchy Process, the Guiasu method, and the Yen method. We found that the
similarity measures were very high. We also determined the similarity measure between a ranking of a
country’s number of homelessness and the ranking of countries according to their achievement of the SDGs.
We found that similarity ranged from medium to high depending on the region involved.
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Abstract. Here we research the univariate fuzzy ordinary and fractional quantitative approximation of fuzzy
real valued functions on a compact interval by quasi-interpolation general sigmoid activation function relied on
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1 Introduction

The author in [1] and [2], see chapters 2-5, was the first to derive quantitative neural network approximations
to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-
Euvrard and ”Squashing” types, by employing the modulus of continuity of the engaged function or its high
order derivative, and producing very tight Jackson type inequalities. He studied there both the univariate
and multivariate cases. The defining of these operators ”bell-shaped” and ”squashing” functions are assumed
to be of compact support.

The author inspired by [23], continued his studies on neural networks approximation by introducing and
using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted in
[10], [13] - [22], by treating both the univariate and multivariate cases.

Continuation of the author’s works ([17], [18] and [19], Chapter 20) is this article where fuzzy neural
network approximation based on a general sigmoid activation function is taken at the fractional and ordinary
levels resulting in higher rates of approximation. We involve the fuzzy ordinary derivatives and the right
and left Caputo fuzzy fractional derivatives of the fuzzy function under approximation and we establish tight
fuzzy Jackson type inequalities. An extensive background is given on fuzzyness, fractional calculus and neural
networks, all needed to present our work.

Our fuzzy feed-forward neural networks (FFNNs) are with one hidden layer. About neural networks in
general study [29], [32], [33].
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2 Fuzzy Fractional Mathematical Analysis Basics

(see also [19], pp. 432-444)
We need the following basic background

Definition 2.1. (see [36]) Let µ : R → [0, 1] with the following properties:
(i) is normal, i.e., ∃ x0 ∈ R; µ (x0) = 1.
(ii) µ (λx+ (1 − λ) y) ≥ min{µ (x) , µ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (µ is called a convex fuzzy subset).
(iii) µ is upper semicontinuous on R, i.e. ∀ x0 ∈ R and ∀ ε > 0, ∃ neighborhood V (x0) : µ (x) ≤ µ (x0)+ε,

∀ x ∈ V (x0) .
(iv) The set supp (µ) is compact in R (where supp(µ) := {x ∈ R : µ (x) > 0}).
We call µ a fuzzy real number. Denote the set of all µ with RF .
E.g. χ{x0} ∈ RF , for any x0 ∈ R, where χ{x0} is the characteristic function at x0.
For 0 < r ≤ 1 and µ ∈ RF define

[µ]r := {x ∈ R : µ (x) ≥ r}
and

[µ]0 := {x ∈ R : µ (x) ≥ 0}.
Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded interval on R ([28]).

For u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and the product λ⊙ u by

[u⊕ v]r = [u]r + [v]r , [λ⊙ u]r = λ [u]r , ∀ r ∈ [0, 1] ,

where
[u]r + [v]r means the usual addition of two intervals (as substes of R) and
λ [u]r means the usual product between a scalar and a subset of R (see, e.g. [36]).
Notice 1 ⊙ u = u and it holds

u⊕ v = v ⊕ u, λ⊙ u = u⊙ λ.

If 0 ≤ r1 ≤ r2 ≤ 1 then
[u]r2 ⊆ [u]r1 .

Actually [u]r =
[
u
(r)
− , u

(r)
+

]
, where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀ r ∈ [0, 1].

For λ > 0 one has λu
(r)
± = (λ⊙ u)

(r)
± , respectively.

Define D : RF × RF → RF by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)− − v

(r)
−

∣∣∣ , ∣∣∣u(r)+ − v
(r)
+

∣∣∣} ,
where

[v]r =
[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF .

We have that D is a metric on RF .
Then (RF , D) is a complete metric space, see [36], [37].

Here
∗∑

stands for fuzzy summation and õ := χ{0} ∈ RF is the neutral element with respect to ⊕, i.e.,

u⊕ 0̃ = 0̃ ⊕ u = u, ∀ u ∈ RF .

Denote
D∗ (f, g) = sup

x∈X⊆R
D (f, g) ,

where f, g : X → RF .
We mention
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Definition 2.2. Let f : X ⊆ R → RF , X interval, we define the (first) fuzzy modulus of continuity of f by

ω
(F)
1 (f, δ)X = sup

x,y∈X, |x−y|≤δ
D (f (x) , f (y)) , δ > 0.

When g : X ⊆ R → R, we define

ω1 (g, δ) = ω1 (g, δ)X = sup
x,y∈X, |x−y|≤δ

|g (x) − g (y)| .

We define by CU
F (R) the space of fuzzy uniformly continuous functions from R → RF , also CF (R) is the

space of fuzzy continuous functions on R, and Cb (R,RF ) is the fuzzy continuous and bounded functions.
We mention

Proposition 2.3. ([5]) Let f ∈ CU
F (X) . Then ω

(F)
1 (f, δ)X <∞, for any δ > 0.

By [9], p. 129 we have that CU
F ([a, b]) = CF ([a, b]), fuzzy continuous functions on [a, b] ⊂ R.

Proposition 2.4. ([5]) It holds

lim
δ→0

ω
(F)
1 (f, δ)X = ω

(F)
1 (f, 0)X = 0,

iff f ∈ CU
F (X), where X is a compact interval.

Proposition 2.5. ([5]) Here [f ]r =
[
f
(r)
− , f

(r)
+

]
, r ∈ [0, 1] . Let f ∈ CF (R). Then f

(r)
± are equicontinuous

with respect to r ∈ [0, 1] over R, respectively in ±.

Note 2.6. It is clear by Propositions 2.4, 2.5, that if f ∈ CU
F (R), then f

(r)
± ∈ CU (R) (uniformly continuous

on R). Also if f ∈ Cb (R,RF ) implies f
(r)
± ∈ Cb (R) (continuous and bounded functions on R).

Proposition 2.7. Let f : R → RF . Assume that ωF1 (f, δ)X , ω1

(
f
(r)
− , δ

)
X

, ω1

(
f
(r)
+ , δ

)
X

are finite for any

δ > 0, r ∈ [0, 1] , where X any interval of R.
Then

ω
(F)
1 (f, δ)X = sup

r∈[0,1]
max

{
ω1

(
f
(r)
− , δ

)
X
, ω1

(
f
(r)
+ , δ

)
X

}
.

Proof. Similar to Proposition 14.15, p. 246 of [9]. □
We need

Remark 2.8. ([3]). Here r ∈ [0, 1], x
(r)
i , y

(r)
i ∈ R, i = 1, ...,m ∈ N. Suppose that

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
∈ R, for i = 1, ...,m.

Then one sees easily that

sup
r∈[0,1]

max

(
m∑
i=1

x
(r)
i ,

m∑
i=1

y
(r)
i

)
≤

m∑
i=1

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
. (1)

We need

Definition 2.9. Let x, y ∈ RF . If there exists z ∈ RF : x = y ⊕ z, then we call z the H-difference on x and
y, denoted x− y.
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Definition 2.10. ([35]) Let T := [x0, x0 + β] ⊂ R, with β > 0. A function f : T → RF is H-differentiable at
x ∈ T if there exists an f ′ (x) ∈ RF such that the limits (with respect to D)

lim
h→0+

f (x+ h) − f (x)

h
, lim

h→0+

f (x) − f (x− h)

h
(2)

exist and are equal to f ′ (x) .
We call f ′ the H-derivative or fuzzy derivative of f at x.

Above is assumed that the H-differences f (x+ h)−f (x), f (x)−f (x− h) exists in RF in a neighborhood
of x.

Higher order H-fuzzy derivatives are defined the obvious way, like in the real case.
We denote by CN

F (R), N ≥ 1, the space of all N -times continuously H-fuzzy differentiable functions from
R into RF , similarly is defined CN

F ([a, b]), [a, b] ⊂ R.
We mention

Theorem 2.11. ([30]) Let f : R → RF be H-fuzzy differentiable. Let t ∈ R, 0 ≤ r ≤ 1. Clearly

[f (t)]r =
[
f (t)

(r)
− , f (t)

(r)
+

]
⊆ R.

Then (f (t))
(r)
± are differentiable and[

f ′ (t)
]r

=

[(
f (t)

(r)
−

)′
,
(
f (t)

(r)
+

)′]
.

I.e. (
f ′
)(r)
± =

(
f
(r)
±

)′
, ∀ r ∈ [0, 1] .

Remark 2.12. ([4]) Let f ∈ CN
F (R), N ≥ 1. Then by Theorem 2.11 we obtain[

f (i) (t)
]r

=

[(
f (t)

(r)
−

)(i)
,
(
f (t)

(r)
+

)(i)]
,

for i = 0, 1, 2, ..., N, and in particular we have that(
f (i)
)(r)
±

=
(
f
(r)
±

)(i)
,

for any r ∈ [0, 1] , all i = 0, 1, 2, ..., N.

Note 2.13. ([4]) Let f ∈ CN
F (R), N ≥ 1. Then by Theorem 2.11 we have f

(r)
± ∈ CN (R), for any r ∈ [0, 1] .

Items 11-13 are valid also on [a, b].
By [9], p. 131, if f ∈ CF ([a, b]), then f is a fuzzy bounded function.
We need also a particular case of the Fuzzy Henstock integral (δ (x) = δ

2), see [36].

Definition 2.14. ([27], p. 644) Let f : [a, b] → RF . We say that f is Fuzzy-Riemann integrable to I ∈ RF if
for any ε > 0, there exists δ > 0 such that for any division P = {[u, v] ; ξ} of [a, b] with the norms ∆ (P ) < δ,
we have

D

( ∗∑
P

(v − u) ⊙ f (ξ) , I

)
< ε.

We write

I := (FR)

∫ b

a
f (x) dx. (3)
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We mention

Theorem 2.15. ([28]) Let f : [a, b] → RF be fuzzy continuous. Then

(FR)

∫ b

a
f (x) dx

exists and belongs to RF , furthermore it holds[
(FR)

∫ b

a
f (x) dx

]r
=

[∫ b

a
(f)

(r)
− (x) dx,

∫ b

a
(f)

(r)
+ (x) dx

]
,

∀ r ∈ [0, 1] .

For the definition of general fuzzy integral we follow [31] next.

Definition 2.16. Let (Ω,Σ, µ) be a complete σ-finite measure space. We call F : Ω → RF measurable iff ∀
closed B ⊆ R the function F−1 (B) : Ω → [0, 1] defined by

F−1 (B) (w) := sup
x∈B

F (w) (x) , all w ∈ Ω

is measurable, see [31].

Theorem 2.17. ([31]) For F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
,

the following are equivalent
(1) F is measurable,

(2) ∀ r ∈ [0, 1], F
(r)
− , F

(r)
+ are measurable.

Following [31], given that for each r ∈ [0, 1], F
(r)
− , F

(r)
+ are integrable we have that the parametrized

representation {(∫
A
F

(r)
− dµ,

∫
A
F

(r)
+ dµ

)
|0 ≤ r ≤ 1

}
(4)

is a fuzzy real number for each A ∈ Σ.
The last fact leads to

Definition 2.18. ([31]) A measurable function F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
is integrable if for each r ∈ [0, 1], F

(r)
± is integrable, or equivalently, if F

(0)
± is integrable.

In this case, the fuzzy integral of F over A ∈ Σ is defined by∫
A
Fdµ :=

{(∫
A
F

(r)
− dµ,

∫
A
F

(r)
+ dµ

)
|0 ≤ r ≤ 1

}
.

By [31], F is integrable iff w → ∥F (w)∥F is real-valued integrable.
Here denote

∥u∥F := D
(
u, 0̃
)

, ∀ u ∈ RF .

We need also
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Theorem 2.19. ([31]) Let F,G : Ω → RF be integrable. Then
(1) Let a, b ∈ R, then aF + bG is integrable and for each A ∈ Σ,∫

A
(aF + bG) dµ = a

∫
A
Fdµ+ b

∫
A
Gdµ;

(2) D (F,G) is a real- valued integrable function and for each A ∈ Σ,

D

(∫
A
Fdµ,

∫
A
Gdµ

)
≤
∫
A
D (F,G) dµ.

In particular, ∥∥∥∥∫
A
Fdµ

∥∥∥∥
F
≤
∫
A
∥F∥F dµ.

Above µ could be the Lebesgue measure, with all the basic properties valid here too.
Basically here we have [∫

A
Fdµ

]r
=

[∫
A
F

(r)
− dµ,

∫
A
F

(r)
+ dµ

]
, (5)

i.e. (∫
A
Fdµ

)(r)

±
=

∫
A
F

(r)
± dµ, ∀ r ∈ [0, 1] .

We need

Definition 2.20. Let ν ≥ 0, n = ⌈ν⌉ (⌈·⌉ is the ceiling of the number), f ∈ ACn ([a, b]) (space of functions
f with f (n−1) ∈ AC ([a, b]), absolutely continuous functions). We call left Caputo fractional derivative (see
[24], pp. 49-52, [26], [34]) the function

Dν
∗af (x) =

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1 f (n) (t) dt, (6)

∀ x ∈ [a, b], where Γ is the gamma function Γ (ν) =
∫∞
0 e−ttν−1dt, ν > 0.

Notice Dν
∗af ∈ L1 ([a, b]) and Dν

∗af exists a.e. on [a, b].
We set D0

∗af (x) = f (x), ∀ x ∈ [a, b] .

Lemma 2.21. ([8]) Let ν > 0, ν /∈ N, n = ⌈ν⌉, f ∈ Cn−1 ([a, b]) and f (n) ∈ L∞ ([a, b]) . Then Dν
∗af (a) = 0.

Definition 2.22. (see also [6], [25], [26]) Let f ∈ ACm ([a, b]), m = ⌈β⌉, β > 0. The right Caputo fractional
derivative of order β > 0 is given by

Dβ
b−f (x) =

(−1)m

Γ (m− β)

∫ b

x
(ζ − x)m−β−1 f (m) (ζ) dζ, (7)

∀ x ∈ [a, b]. We set D0
b−f (x) = f (x) . Notice that Dβ

b−f ∈ L1 ([a, b]) and Dβ
b−f exists a.e. on [a, b] .

Lemma 2.23. ([8]) Let f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]), m = ⌈β⌉, β > 0, β /∈ N. Then Dβ
b−f (b) = 0.

Convention 2.24. We assume that

Dβ
∗x0
f (x) = 0, for x < x0, (8)

and
Dβ

x0−f (x) = 0, for x > x0, (9)

for all x, x0 ∈ [a, b].
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We mention

Proposition 2.25. ([8]) Let f ∈ Cn ([a, b]), n = ⌈ν⌉, ν > 0. Then Dν
∗af (x) is continuous in x ∈ [a, b] .

Also we have

Proposition 2.26. ([8]) Let f ∈ Cm ([a, b]), m = ⌈β⌉, β > 0. Then Dβ
b−f (x) is continuous in x ∈ [a, b] .

We further mention

Proposition 2.27. ([8]) Let f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]), m = ⌈β⌉, β > 0 and

Dβ
∗x0
f (x) =

1

Γ (m− β)

∫ x

x0

(x− t)m−β−1 f (m) (t) dt, (10)

for all x, x0 ∈ [a, b] : x ≥ x0.

Then Dβ
∗x0f (x) is continuous in x0.

Proposition 2.28. ([8]) Let f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]) , m = ⌈β⌉, β > 0 and

Dβ
x0−f (x) =

(−1)m

Γ (m− β)

∫ x0

x
(ζ − x)m−β−1 f (m) (ζ) dζ, (11)

for all x, x0 ∈ [a, b] : x ≤ x0.

Then Dβ
x0−f (x) is continuous in x0.

We need

Proposition 2.29. ([8]) Let g ∈ C ([a, b]), 0 < c < 1, x, x0 ∈ [a, b]. Define

L (x, x0) =

∫ x

x0

(x− t)c−1 g (t) dt, for x ≥ x0, (12)

and L (x, x0) = 0, for x < x0.

Then L is jointly continuous in (x, x0) on [a, b]2 .

We mention

Proposition 2.30. ([8]) Let g ∈ C ([a, b]), 0 < c < 1, x, x0 ∈ [a, b]. Define

K (x, x0) =

∫ x

x0

(ζ − x)c−1 g (ζ) dζ, for x ≤ x0, (13)

and K (x, x0) = 0, for x > x0.

Then K (x, x0) is jointly continuous from [a, b]2 into R.

Based on Propositions 2.29, 2.30 we derive

Corollary 2.31. ([8]) Let f ∈ Cm ([a, b]), m = ⌈β⌉, β > 0, β /∈ N, x, x0 ∈ [a, b] . Then Dβ
∗x0f (x), Dβ

x0−f (x)

are jointly continuous functions in (x, x0) from [a, b]2 into R.

We need
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Theorem 2.32. ([8]) Let f : [a, b]2 → R be jointly continous. Consider

G (x) = ω1 (f (·, x) , δ)[x,b] , (14)

δ > 0, x ∈ [a, b] .
Then G is continuous in x ∈ [a, b] .

Also it holds

Theorem 2.33. ([8]) Let f : [a, b]2 → R be jointly continous. Then

H (x) = ω1 (f (·, x) , δ)[a,x] , (15)

x ∈ [a, b], is continuous in x ∈ [a, b], δ > 0.

So that for f ∈ Cm ([a, b]), m = ⌈β⌉, β > 0, β /∈ N, x, x0 ∈ [a, b], we have that ω1

(
Dβ
∗xf, h

)
[x,b]

,

ω1

(
Dβ

x−f, h
)
[a,x]

are continuous functions in x ∈ [a, b], h > 0 is fixed.

We make

Remark 2.34. ([8]) Let f ∈ Cn−1 ([a, b]), f (n) ∈ L∞ ([a, b]) , n = ⌈ν⌉, ν > 0, ν /∈ N. Then we have

|Dν
∗af (x)| ≤

∥∥f (n)∥∥∞
Γ (n− ν + 1)

(x− a)n−ν , ∀ x ∈ [a, b] . (16)

Thus we observe
ω1 (Dν

∗af, δ) = sup
x,y∈[a,b]
|x−y|≤δ

|Dν
∗af (x) −Dν

∗af (y)| (17)

≤ sup
x,y∈[a,b]
|x−y|≤δ

( ∥∥f (n)∥∥∞
Γ (n− ν + 1)

(x− a)n−ν +

∥∥f (n)∥∥∞
Γ (n− ν + 1)

(y − a)n−ν
)

≤
2
∥∥f (n)∥∥∞

Γ (n− ν + 1)
(b− a)n−ν . (18)

Consequently

ω1 (Dν
∗af, δ) ≤

2
∥∥f (n)∥∥∞

Γ (n− ν + 1)
(b− a)n−ν . (19)

Similarly, let f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]) , m = ⌈β⌉, β > 0, β /∈ N, then

ω1

(
Dβ

b−f, δ
)
≤

2
∥∥f (m)

∥∥
∞

Γ (m− β + 1)
(b− a)m−β . (20)

So for f ∈ Cm−1 ([a, b]), f (m) ∈ L∞ ([a, b]) , m = ⌈β⌉, β > 0, β /∈ N, we find

sup
x0∈[a,b]

ω1

(
Dβ
∗x0
f, δ
)
[x0,b]

≤
2
∥∥f (m)

∥∥
∞

Γ (m− β + 1)
(b− a)m−β , (21)

and

sup
x0∈[a,b]

ω1

(
Dβ

x0−f, δ
)
[a,x0]

≤
2
∥∥f (m)

∥∥
∞

Γ (m− β + 1)
(b− a)m−β . (22)

By Proposition 15.114, p. 388 of [7], we get here that Dβ
∗x0f ∈ C ([x0, b]), and by [12] we obtain that

Dβ
x0−f ∈ C ([a, x0]).



Fuzzy Ordinary and Fractional General
Sigmoid Function Activated Neural Network Approximation. Trans. Fuzzy Sets Syst. 2023; 2(2) 23

We need

Definition 2.35. ([11]) Let f ∈ CF ([a, b]) (fuzzy continuous on [a, b] ⊂ R), ν > 0.
We define the Fuzzy Fractional left Riemann-Liouville operator as

Jν
a f (x) :=

1

Γ (ν)
⊙
∫ x

a
(x− t)ν−1 ⊙ f (t) dt, x ∈ [a, b] , (23)

J0
af := f.

Also, we define the Fuzzy Fractional right Riemann-Liouville operator as

Iνb−f (x) :=
1

Γ (ν)
⊙
∫ b

x
(t− x)ν−1 ⊙ f (t) dt, x ∈ [a, b] , (24)

I0b−f := f.

We mention

Definition 2.36. ([11]) Let f : [a, b] → RF is called fuzzy absolutely continuous iff ∀ ϵ > 0, ∃ δ > 0 for every
finite, pairwise disjoint, family

(ck, dk)nk=1 ⊆ (a, b) with
n∑

k=1

(dk − ck) < δ

we get
n∑

k=1

D (f (dk) , f (ck)) < ϵ. (25)

We denote the related space of functions by ACF ([a, b]) .
If f ∈ ACF ([a, b]), then f ∈ CF ([a, b]) .

It holds

Proposition 2.37. ([11]) f ∈ ACF ([a, b]) ⇔ f
(r)
± ∈ AEC ([a, b]), ∀ r ∈ [0, 1] (absolutely equicontinuous).

We need

Definition 2.38. ([11]) We define the Fuzzy Fractional left Caputo derivative, x ∈ [a, b].
Let f ∈ Cn

F ([a, b]), n = ⌈ν⌉, ν > 0 (⌈·⌉ denotes the ceiling). We define

DνF
∗a f (x) :=

1

Γ (n− ν)
⊙
∫ x

a
(x− t)n−ν−1 ⊙ f (n) (t) dt (26)

=

{(
1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f (n)

)(r)
−

(t) dt,

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f (n)

)(r)
+

(t) dt

)
|0 ≤ r ≤ 1

}
=

=

{(
1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f
(r)
−

)(n)
(t) dt,

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f
(r)
+

)(n)
(t) dt

)
|0 ≤ r ≤ 1

}
. (27)
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So, we get [
DνF
∗a f (x)

]r
=

[(
1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f
(r)
−

)(n)
(t) dt,

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f
(r)
+

)(n)
(t) dt

)]
, 0 ≤ r ≤ 1. (28)

That is (
DνF
∗a f (x)

)(r)
± =

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1

(
f
(r)
±

)(n)
(t) dt =

(
Dν
∗a

(
f
(r)
±

))
(x) ,

see [7], [24].

I.e. we get that (
DνF
∗a f (x)

)(r)
± =

(
Dν
∗a

(
f
(r)
±

))
(x) , (29)

∀ x ∈ [a, b], in short (
DνF
∗a f

)(r)
± = Dν

∗a

(
f
(r)
±

)
, ∀ r ∈ [0, 1] . (30)

We need

Lemma 2.39. ([11]) DνF
∗a f (x) is fuzzy continuous in x ∈ [a, b].

We need

Definition 2.40. ([11]) We define the Fuzzy Fractional right Caputo derivative, x ∈ [a, b].

Let f ∈ Cn
F ([a, b]), n = ⌈ν⌉, ν > 0. We define

DνF
b− f (x) :=

(−1)n

Γ (n− ν)
⊙
∫ b

x
(t− x)n−ν−1 ⊙ f (n) (t) dt

=

{(
(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f (n)

)(r)
−

(t) dt,

(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f (n)

)(r)
+

(t) dt

)
|0 ≤ r ≤ 1

}
(31)

=

{(
(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f
(r)
−

)(n)
(t) dt,

(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f
(r)
+

)(n)
(t) dt

)
|0 ≤ r ≤ 1

}
.

We get [
DνF

b− f (x)
]r

=

[(
(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f
(r)
−

)(n)
(t) dt,

(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f
(r)
+

)(n)
(t) dt

)]
, 0 ≤ r ≤ 1.

That is (
DνF

b− f (x)
)(r)
± =

(−1)n

Γ (n− ν)

∫ b

x
(t− x)n−ν−1

(
f
(r)
±

)(n)
(t) dt =

(
Dν

b−

(
f
(r)
±

))
(x) ,

see [6].
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I.e. we get that (
DνF

b− f (x)
)(r)
± =

(
Dν

b−

(
f
(r)
±

))
(x) , (32)

∀ x ∈ [a, b], in short (
DνF

b− f
)(r)
± = Dν

b−

(
f
(r)
±

)
, ∀ r ∈ [0, 1] . (33)

Clearly,

Dν
b−

(
f
(r)
−

)
≤ Dν

b−

(
f
(r)
+

)
, ∀ r ∈ [0, 1] .

We need

Lemma 2.41. ([11]) DνF
b− f (x) is fuzzy continuous in x ∈ [a, b].

3 Real Neural Network Approximation

Here we follow [22].

Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly increasing, h (0) = 0, h (−x) =
−h (x), h (+∞) = 1, h (−∞) = −1. Also h is strictly convex over (−∞, 0] and strictly concave over [0,+∞),
with h(2) ∈ C (R).

We consider the activation function

ψ (x) :=
1

4
(h (x+ 1) − h (x− 1)) , x ∈ R, (34)

As in [21], p. 45, we get that ψ (−x) = ψ (x) , thus ψ is an even function. Since x + 1 > x − 1, then
h (x+ 1) > h (x− 1), and ψ (x) > 0, all x ∈ R.

We see that

ψ (0) =
h (1)

2
. (35)

Let x > 1, we have that

ψ′ (x) =
1

4

(
h′ (x+ 1) − h′ (x− 1)

)
< 0,

by h′ being strictly decreasing over [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds h′ (x− 1) = h′ (1 − x) > h′ (x+ 1), so
that again ψ′ (x) < 0. Consequently ψ is stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.

See that

lim
x→+∞

ψ (x) =
1

4
(h (+∞) − h (+∞)) = 0, (36)

and

lim
x→−∞

ψ (x) =
1

4
(h (−∞) − h (−∞)) = 0. (37)

That is the x-axis is the horizontal asymptote on ψ.

Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
h (1)

2
.

We need
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Theorem 3.1. ([22]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (38)

Theorem 3.2. ([22]) It holds ∫ ∞
−∞

ψ (x) dx = 1. (39)

Thus ψ (x) is a density function on R.
We give

Theorem 3.3. ([22]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 k = −∞

: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1 − h

(
n1−α − 2

))
2

. (40)

Notice that

lim
n→+∞

(
1 − h

(
n1−α − 2

))
2

= 0.

Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the number.
We further give

Theorem 3.4. ([22]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

<
1

ψ (1)
, ∀ x ∈ [a, b] . (41)

Remark 3.5. ([22]) i) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ̸= 1, (42)

for at least some x ∈ [a, b] .
ii) For large enough n ∈ N we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k

n ≤ b, iff ⌈na⌉ ≤ k ≤ ⌊nb⌋.
In general, by Theorem 3.1, it holds

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ≤ 1. (43)

We give

Definition 3.6. ([22]) Let f ∈ C ([a, b]) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define the linear neural
network operator

An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
ψ (nx− k)∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
, x ∈ [a, b] . (44)
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Clearly here An (f, x) ∈ C ([a, b]). We present results for the pointwise and uniform convergence of
An (f, x) to f (x) with rates.

We first give

Theorem 3.7. ([22]) Let f ∈ C ([a, b]), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] . Then

i)

|An (f, x) − f (x)| ≤ 1

ψ (1)

[
ω1

(
f,

1

nα

)
+
(
1 − h

(
n1−α − 2

))
∥f∥∞

]
=: ρ, (45)

and

ii)

∥An (f) − f∥∞ ≤ ρ. (46)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(
1 − h

(
n1−α − 2

)))
.

In the next we discuss high order neural network approximation by using the smoothness of f .

Theorem 3.8. ([22]) Let f ∈ CN ([a, b]), n,N ∈ N, 0 < α < 1, x ∈ [a, b] and n1−α > 2. Then

i)

|An (f, x) − f (x)| ≤ 1

ψ (1)


N∑
j=1

∥∥f (j) (x)
∥∥

j!

[
1

nαj
+

(
1 − h

(
n1−α − 2

))
2

(b− a)j
]

+ (47)

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1 − h

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)N

N !

]}

ii) assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

|An (f, x0) − f (x0)| ≤
1

ψ (1){
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1 − h

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)N

N !

}
, (48)

and

iii)

∥An (f) − f∥∞ ≤ 1

ψ (1)


N∑
j=1

∥∥f (j)∥∥∞
j!

[
1

nαj
+

(
1 − h

(
n1−α − 2

))
2

(b− a)j
]

+

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1 − h

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)N

N !

]}
. (49)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.

We present the following fractional approximation result by neural networks.

Theorem 3.9. ([22]) Let α > 0, N = ⌈α⌉, α /∈ N, f ∈ CN ([a, b]), 0 < β < 1, x ∈ [a, b], n ∈ N : n1−β > 2.
Then
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i) ∣∣∣∣∣∣An (f, x) −
N−1∑
j=1

f (j) (x)

j!
An

(
(· − x)j

)
(x) − f (x)

∣∣∣∣∣∣ ≤
(ψ (1))−1

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1 − h

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}
, (50)

ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

|An (f, x) − f (x)| ≤ (ψ (1))−1

Γ (α+ 1)
(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1 − h

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}
, (51)

iii)

|An (f, x) − f (x)| ≤ (ψ (1))−1
N−1∑
j=1

∥∥f (j) (x)
∥∥

j!

{
1

nβj
+ (b− a)j

(
1 − h

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1 − h

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}}
, (52)

∀ x ∈ [a, b] ,
and

iv)

∥Anf − f∥∞ ≤ (ψ (1))−1
N−1∑
j=1

∥∥f (j)∥∥∞
j!

{
1

nβj
+ (b− a)j

(
1 − h

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)



(
sup

x∈[a,b]
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+
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1 − h
(
n1−β − 2

)
2

)
(b− a)α

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}}
. (53)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.
As we see here we obtain fractionally type pointwise and uniform convergence with rates of An → I the

unit operator, as n→ ∞.

4 Main Results: Approximation by General Fuzzy Neural Network Op-
erators

Let f ∈ CF ([a, b]) (fuzzy continuous functions on [a, b] ⊂ R), n ∈ N. We define the following Fuzzy Quasi-
Interpolation Neural Network operator

AFn (f, x) =

⌊nb⌋∗∑
k=⌈na⌉

f

(
k

n

)
⊙ ψ (nx− k)

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k)

, (54)

∀ x ∈ [a, b], see also (44).
The fuzzy sum in (54) is finite.
Let r ∈ [0, 1], we observe that

[
AFn (f, x)

]r
=

⌊nb⌋∑
k=⌈na⌉

[
f

(
k

n

)]r
 ψ (nx− k)
⌊nb⌋∑

k=⌈na⌉
ψ (nx− k)

 =

⌊nb⌋∑
k=⌈na⌉

[
f
(r)
−

(
k

n

)
, f

(r)
+

(
k

n

)] ψ (nx− k)
⌊nb⌋∑

k=⌈na⌉
ψ (nx− k)

 =


⌊nb⌋∑

k=⌈na⌉

f
(r)
−

(
k

n

) ψ (nx− k)
⌊nb⌋∑

k=⌈na⌉
ψ (nx− k)

 ,

⌊nb⌋∑
k=⌈na⌉

f
(r)
+

(
k

n

) ψ (nx− k)
⌊nb⌋∑

k=⌈na⌉
ψ (nx− k)


 (55)

=
[
An

(
f
(r)
− , x

)
, An

(
f
(r)
+ , x

)]
.

We have proved that (
AFn (f, x)

)(r)
± = An

(
f
(r)
± , x

)
, (56)

respectively, ∀ r ∈ [0, 1], ∀ x ∈ [a, b] .
Therefore we get

D
(
AFn (f, x) , f (x)

)
=

sup
r∈[0,1]

max
{∣∣∣An

(
f
(r)
− , x

)
− f

(r)
− (x)

∣∣∣ , ∣∣∣An

(
f
(r)
+ , x

)
− f

(r)
+ (x)

∣∣∣} , (57)



30 Anastassiou GA. Trans. Fuzzy Sets Syst. 2023; 2(2)

∀ x ∈ [a, b] .

We present our first fuzzy neural network approximation result.

Theorem 4.1. Let f ∈ CF ([a, b]) , 0 < α < 1, x ∈ [a, b] , n ∈ N with n1−α > 2. Then

1)

D
(
AFn (f, x) , f (x)

)
≤ 1

ψ (1)

[
ω
(F)
1

(
f,

1

nα

)
+
(
1 − h

(
n1−α − 2

))
D∗ (f, õ)

]
=: Tn, (58)

and

2)

D∗
(
AFn (f) , f

)
≤ Tn. (59)

We notice that lim
n→∞

(
AFn (f)

)
(x)

D→ f (x) , lim
n→∞

AFn (f)
D∗
→ f , pointwise and uniformly.

Proof. We have that f
(r)
± ∈ C ([a, b]), ∀ r ∈ [0, 1]. Hence by (45), we obtain∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ 1

ψ (1)

[
ω1

(
f
(r)
± ,

1

nα

)
+
(
1 − h

(
n1−α − 2

)) ∥∥∥f (r)± ∥∥∥∞
]

(60)

(by Proposition 2.7 and
∥∥∥f (r)± ∥∥∥∞ ≤ D∗ (f, õ))

≤ 1

ψ (1)

[
ω
(F)
1

(
f,

1

nα

)
+
(
1 − h

(
n1−α − 2

))
D∗ (f, õ)

]
. (61)

Taking into account (57) the theorem is proved. □
We also give

Theorem 4.2. Let f ∈ CN
F ([a, b]), N ∈ N, 0 < α < 1, x ∈ [a, b] , n ∈ N with n1−α > 2. Then

1)

D
(
AFn (f, x) , f (x)

)
≤ 1

ψ (1)
N∑

j∗=1

D
(
f (j∗) (x) , õ

)
j∗!

[
1

nαj∗
+

(
1 − h

(
n1−α − 2

)
2

)
(b− a)j∗

]
+

[
ω
(F)
1

(
f (N),

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

))
D∗
(
f (N), õ

) (b− a)N

N !

]}
, (62)

2) assume further that f (j∗) (x0) = õ, j∗ = 1, ..., N , for some x0 ∈ [a, b], it holds

D
(
AFn (f, x0) , f (x0)

)
≤

1

ψ (1)

[
ω
(F)
1

(
f (N),

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

))
D∗
(
f (N), õ

) (b− a)N

N !

]
, (63)

notice here the extremely high rate of convergence n−(N+1)α,

3)

D∗
(
AFn (f) , f

)
≤ 1

ψ (1)
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N∑
j∗=1

D∗
(
f (j∗), õ

)
j∗!

[
1

nαj∗
+

(
1 − h

(
n1−α − 2

)
2

)
(b− a)j∗

]
+

[
ω
(F)
1

(
f (N),

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

))
D∗
(
f (N), õ

) (b− a)N

N !

]}
. (64)

Proof. Since f ∈ CN
F ([a, b]), N ≥ 1, we have that f

(r)
± ∈ CN ([a, b]), ∀ r ∈ [0, 1]. Using (47), we get∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ 1

ψ (1)
(65)


N∑

j∗=1

∣∣∣∣(f (r)± )(j∗) (x)

∣∣∣∣
j∗!

[
1

nαj∗
+

(
1 − h

(
n1−α − 2

)
2

)
(b− a)j∗

]
+

[
ω1

((
f
(r)
±

)(N)
,

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

)) ∥∥∥∥(f (r)± )(N)
∥∥∥∥
∞

(b− a)N

N !

]}
(66)

(by Remark 2.12)

=
1

ψ (1)


N∑

j∗=1

∣∣∣(f (j∗))(r)± (x)
∣∣∣

j∗!

[
1

nαj∗
+

(
1 − h

(
n1−α − 2

)
2

)
(b− a)j∗

]
+

[
ω1

((
f (N)

)(r)
±
,

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

)) ∥∥∥∥(f (N)
)(r)
±

∥∥∥∥
∞

(b− a)N

N !

]}
≤

1

ψ (1)


N∑

j∗=1

D
(
f (j∗) (x) , õ

)
j∗!

[
1

nαj∗
+

(
1 − h

(
n1−α − 2

)
2

)
(b− a)j∗

]
+

[
ω
(F)
1

(
f (N),

1

nα

)
1

nαNN !
+
(
1 − h

(
n1−α − 2

))
D∗
(
f (N), õ

) (b− a)N

N !

]}
, (67)

by Proposition 2.7,
∥∥∥(f (N)

)(r)
±

∥∥∥
∞

≤ D∗
(
f (N), õ

)
and apply (57).

The theorem is proved. □
Next we present

Theorem 4.3. Let α > 0, N = ⌈α⌉, α /∈ N, f ∈ CN
F ([a, b]), 0 < β < 1, x ∈ [a, b], n ∈ N, n1−β > 2. Then

i)

D
(
AFn (f, x) , f (x)

)
≤ 1

ψ (1)
N−1∑
j∗=1

D
(
f (j∗) (x) , õ

)
j∗!

[
1

nβj∗
+

(
1 − h

(
n1−β − 2

)
2

)
(b− a)j∗

]
+

1

Γ (α+ 1)


[
ω
(F)
1

((
DαF

x− f
)
, 1
nβ

)
[a,x]

+ ω
(F)
1

((
DαF
∗x f

)
, 1
nβ

)
[x,b]

]
nαβ

+ (68)
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(
1 − h

(
n1−β − 2

)
2

)[
D∗
((
DαF

x− f
)
, õ
)
[a,x]

(x− a)α +D∗
((
DαF
∗x f

)
, õ
)
[x,b]

(b− x)α
]}}

,

ii) if f (j) (x0) = 0, j = 1, ..., N − 1, for some x0 ∈ [a, b] , we have

D
(
AFn (f, x0) , f (x0)

)
≤

(ψ (1))−1

Γ (α+ 1)


[
ω
(F)
1

((
DαF

x0−f
)
, 1
nβ

)
[a,x0]

+ ω
(F)
1

((
DαF
∗x0
f
)
, 1
nβ

)
[x0,b]

]
nαβ

+ (69)

(
1 − h

(
n1−β − 2

)
2

)[
D∗
((
DαF

x0−f
)
, õ
)
[a,x0]

(x0 − a)α +D∗
((
DαF
∗x0
f
)
, õ
)
[x0,b]

(b− x0)
α
]}

,

when α > 1 notice here the extremely high rate of convergence at n−(α+1)β,
and
iii)

D∗
(
AFn (f) , f

)
≤

1

ψ (1)


N−1∑
j∗=1

D∗
(
f (j∗), õ

)
j∗!

[
1

nβj∗
+

(
1 − h

(
n1−β − 2

)
2

)
(b− a)j∗

]
+

1

Γ (α+ 1)



[
sup

x∈[a,b]
ω
(F)
1

((
DαF

x− f
)
, 1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω
(F)
1

((
DαF
∗x f

)
, 1
nβ

)
[x,b]

]
nαβ

+ (70)

(
1 − h

(
n1−β − 2

)
2

)
(b− a)α

[
sup

x∈[a,b]
D∗
((
DαF

x− f
)
, õ
)
[a,x]

+ sup
x∈[a,b]

D∗
((
DαF
∗x f

)
, õ
)
[x,b]

]}}
,

above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain fractionally the fuzzy pointwise and uniform convergence with rates of AFn → I
the unit operator, as n→ ∞.

Proof. Here f
(r)
± ∈ CN ([a, b]), ∀ r ∈ [0, 1], and DαF

x− f , DαF
∗x f are fuzzy continuous over [a, b], ∀ x ∈ [a, b], so

that
(
DαF

x− f
)(r)
± ,

(
DαF
∗x f

)(r)
± ∈ C ([a, b]), ∀ r ∈ [0, 1], ∀ x ∈ [a, b] .

We observe by (52), ∀ x ∈ [a, b], that (respectively in ±)∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ 1

ψ (1)
N−1∑
j∗=1

∣∣∣∣(f (r)± )(j∗) (x)

∣∣∣∣
j∗!

{
1

nβj∗
+

(
1 − h

(
n1−β − 2

)
2

)
(b− a)j∗

}
+ (71)

1

Γ (α+ 1)


(
ω1

(
Dα

x−

(
f
(r)
±

)
, 1
nβ

)
[a,x]

+ ω1

(
Dα
∗x

(
f
(r)
±

)
, 1
nβ

)
[x,b]

)
nαβ

+
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1 − h
(
n1−β − 2

)
2

)(∥∥∥Dα
x−

(
f
(r)
±

)∥∥∥
∞,[a,x]

(x− a)α +
∥∥∥Dα
∗x

(
f
(r)
±

)∥∥∥
∞,[x,b]

(b− x)α
)}}

=

(by Remark 2.12, (30), (33))

1

ψ (1)


N−1∑
j∗=1

∣∣∣(f (j∗) (x)
)(r)
±

∣∣∣
j∗!

{
1

nβj∗
+

(
1 − h

(
n1−β − 2

)
2

)
(b− a)j∗

}
+

1

Γ (α+ 1)


(
ω1

((
DαF

x− f
)(r)
± , 1

nβ

)
[a,x]

+ ω1

((
DαF
∗x f

)(r)
± , 1

nβ

)
[x,b]

)
nαβ

+ (72)

(
1 − h

(
n1−β − 2

)
2

)(∥∥∥(DαF
x− f

)(r)
±

∥∥∥
∞,[a,x]

(x− a)α +
∥∥∥(DαF

∗x f
)(r)
±

∥∥∥
∞,[x,b]

(b− x)α
)}}

≤

1

ψ (1)


N−1∑
j∗=1

D
(
f (j∗) (x) , õ

)
j∗!

{
1

nβj∗
+

(
1 − h

(
n1−β − 2

)
2

)
(b− a)j∗

}
+

1

Γ (α+ 1)


[
ω
(F)
1

((
DαF

x− f
)
, 1
nβ

)
[a,x]

+ ω
(F)
1

((
DαF
∗x f

)
, 1
nβ

)
[x,b]

]
nαβ

+ (73)

(
1 − h

(
n1−β − 2

)
2

)[
D∗
((
DαF

x− f
)
, õ
)
[a,x]

(x− a)α +D∗
((
DαF
∗x f

)
, õ
)
[x,b]

(b− x)α
]}}

,

along with (57) proving all inequalities of theorem.

Here we notice that (
DαF

x− f
)(r)
± (t) =

(
Dα

x−

(
f
(r)
±

))
(t)

=
(−1)N

Γ (N − α)

∫ x

t
(s− t)N−α−1

(
f
(r)
±

)(N)
(s) ds,

where a ≤ t ≤ x.

Hence ∣∣∣(DαF
x− f

)(r)
± (t)

∣∣∣ ≤ 1

Γ (N − α)

∫ x

t
(s− t)N−α−1

∣∣∣∣(f (r)± )(N)
(s)

∣∣∣∣ ds
≤

∥∥∥(f (N)
)(r)
±

∥∥∥
∞

Γ (N − α+ 1)
(b− a)N−α ≤

D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α .

So we have ∣∣∣(DαF
x− f

)(r)
± (t)

∣∣∣ ≤ D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α ,

all a ≤ t ≤ x.

And it holds ∥∥∥(DαF
x− f

)(r)
±

∥∥∥
∞,[a,x]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α , (74)
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that is

D∗
((
DαF

x− f
)
, õ
)
[a,x]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α ,

and

sup
x∈[a,b]

D∗
((
DαF

x− f
)
, õ
)
[a,x]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α <∞. (75)

Similarly we have (
DαF
∗x f

)(r)
± (t) =

(
Dα
∗x

(
f
(r)
±

))
(t)

=
1

Γ (N − α)

∫ t

x
(t− s)N−α−1

(
f
(r)
±

)(N)
(s) ds,

where x ≤ t ≤ b.

Hence ∣∣∣(DαF
∗x f

)(r)
± (t)

∣∣∣ ≤ 1

Γ (N − α)

∫ t

x
(t− s)N−α−1

∣∣∣∣(f (N)
)(r)
±

(s)

∣∣∣∣ ds ≤∥∥∥(f (N)
)(r)
±

∥∥∥
∞

Γ (N − α+ 1)
(b− a)N−α ≤

D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α ,

x ≤ t ≤ b.

So we have ∥∥∥(DαF
∗x f

)(r)
±

∥∥∥
∞,[x,b]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α , (76)

that is

D∗
((
DαF
∗x f

)
, õ
)
[x,b]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α ,

and

sup
x∈[a,b]

D∗
((
DαF
∗x f

)
, õ
)
[x,b]

≤
D∗
(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α < +∞. (77)

Furthermore we notice

ω
(F)
1

((
DαF

x− f
)
,

1

nβ

)
[a,x]

= sup
s,t∈[a,x]
|s−t|≤ 1

nβ

D
((
DαF

x− f
)

(s) ,
(
DαF

x− f
)

(t)
)
≤

sup
s,t∈[a,x]
|s−t|≤ 1

nβ

{
D
((
DαF

x− f
)

(s) , õ
)

+D
((
DαF

x− f
)

(t) , õ
)}

≤ 2D∗
((
DαF

x− f
)
, õ
)
[a,x]

≤
2D∗

(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α .

Therefore it holds

sup
x∈[a,b]

ω
(F)
1

((
DαF

x− f
)
,

1

nβ

)
[a,x]

≤
2D∗

(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α < +∞. (78)
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Similarly we observe

ω
(F)
1

((
DαF
∗x f

)
,

1

nβ

)
[x,b]

= sup
s,t∈[x,b]
|s−t|≤ 1

nβ

D
((
DαF
∗x f

)
(s) ,

(
DαF
∗x f

)
(t)
)
≤

2D∗
((
DαF
∗x f

)
, õ
)
[x,b]

≤
2D∗

(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α .

Consequently it holds

sup
x∈[a,b]

ω
(F)
1

((
DαF
∗x f

)
,

1

nβ

)
[x,b]

≤
2D∗

(
f (N), õ

)
Γ (N − α+ 1)

(b− a)N−α < +∞. (79)

So everything in the statements of the theorem makes sense.
The proof of the theorem is now completed. □

Corollary 4.4. (to Theorem 4.3, N = 1 case) Let 0 < α, β < 1, f ∈ C1
F ([a, b]), n ∈ N, n1−β > 2. Then

D∗
(
AFn (f) , f

)
≤

(ψ (1))−1

Γ (α+ 1)



[
sup

x∈[a,b]
ω
(F)
1

((
DαF

x− f
)
, 1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω
(F)
1

((
DαF
∗x f

)
, 1
nβ

)
[x,b]

]
nαβ

+ (80)

(
1 − h

(
n1−β − 2

)
2

)
(b− a)α

[
sup

x∈[a,b]
D∗
((
DαF

x− f
)
, õ
)
[a,x]

+ sup
x∈[a,b]

D∗
((
DαF
∗x f

)
, õ
)
[x,b]

]}
.

Proof. By (70). □
Finally we specialize to α = 1

2 .

Corollary 4.5. (to Theorem 4.3) Let 0 < β < 1, f ∈ C1
F ([a, b]), n ∈ N, n1−β > 2. Then

D∗
(
AFn (f) , f

)
≤

2 (ψ (1))−1√
π



[
sup

x∈[a,b]
ω
(F)
1

((
D

1
2
F

x− f

)
, 1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω
(F)
1

((
D

1
2
F
∗x f

)
, 1
nβ

)
[x,b]

]
n

β
2

+ (81)

(
1 − h

(
n1−β − 2

)
2

)
√
b− a

[
sup

x∈[a,b]
D∗
((

D
1
2
F

x− f

)
, õ

)
[a,x]

+ sup
x∈[a,b]

D∗
((

D
1
2
F
∗x f

)
, õ

)
[x,b]

]}
.

Proof. By (80). □

5 Conclusion

We have extended to the fuzzy setting all the main approximation theorems of Section 3.
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technique dedicatedly for linear, exponential, and hyperbolic types of membership and non-membership functions.
Some theoretical development based on these functions has been discussed. A numerical illustration is given to
justify the effectiveness and efficiency of the proposed method in comparison with fuzzy multi-objective nonlinear
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1 Introduction

In structural and civil engineering, structural optimization is a key idea. Although the concept of structural
optimization is well-established.It is frequently treated in a single objective form, with the objective being
(the weight function). In addition to the minimization of the weight function, this optimization also involves
satisfying one or more constants consequently. But in the real world, there are multiple competing objec-
tives. The Multiple objective structural optimizations (MOSOs) methodology was used to address multiple
competing objectives. Due to the growing technological demand for structural optimization, the MOSO is
becoming a more and more important research area in the last ten years.
The development of fuzzy optimum structural design methods was required because the input data and the
parameters in structural design problems are frequently/imprecise. The fuzzy set (FS) theory was first de-
veloped by Zadeh [17] to deal with erroneous and imperfect data. The decision-making problem was later
addressed by Zadeh [29] and Bellman and Zadel [6] using the fuzzy set theory. Later on, Zimmermann [30]
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proposed a fuzzy programming approach (FPA) for several objective optimization problems. The FS theory
is also used in the structural model. Many researchers (see [27, 12, 11, 23]) have given remarkable contri-
butions in the field of structural optimization under fuzzy environments. Also Dey et.al. [15] developed a
methodology using different norm( Yager, Hamacher, Dombi) under the fuzzy environment in the context
of structural design. Here they have optimized three objective functions simultaneously in three bar truss
structural model. Numerous extensions of fuzzy sets emerged as a result of the growing use of FS in structural
problems when the available information is ambiguous.

1.1 Literature Review

The intuitionistic fuzzy set (IFS), one of the generalizations of FS theory, was introduced by professor
Atanassov [4] in 1986.IFS plays an important role when imprecise information cannot be expressed by con-
ventional fuzzy sets. It is a more advanced version of FS. In IFS, we usually consider the degree of acceptance,
degree of rejection and hesitancy such that the sum of degrees of membership should be less than or equal to
one, whereas we consider the degree of acceptance only in FS. P. P. Angelov [3] introduced optimization for
the first time in a widespread intuitionistic fuzzy environment(IFEv) in 1997. The field of intuitionistic fuzzy
optimization (IFO) is still unexplored. There has been little research work done on IFO in terms of structural
optimization. The methodology of Multi-objective linear programming(MOLP) under IFEv was developed
by Jana and Roy [18] to find an optimal solution to the transportation problem. Luo et. al.[19] had discussed
multi-criteria decision making (MCDM) problems based on the inclusion degree of IFS in 2008. In 2015, Dey
et al. [13] used multi-objective intuitionistic fuzzy optimization approach to solve three bar truss structural
model. Farther, M. Sarkar et al. [21] proposed a new computational algorithm based on t-norm and t-conorm
in the intuitionistic fuzzy environment to solve a welded beam design problem. Ahmadini et al. [1] proposed
intuitionistic fuzzy goal programming with preference relations to solve a multi-objective problem in 2021.M.
Akram, et al.[2] introduced interval-valued Fermatean fuzzy set(IVFFS) which is the extension of Fermatean
fuzzy sets(FFSs) and applied IVFFS in the fractional transportation problem. Further, M.K. Sharma, et
al.[22] originally solved multi-objective transportation problem (MOTP) in Fermatean fuzzy environment.
They also anticipated a new score function to convert the Fermatean fuzzy data into Crisp data to solve
MOTP.In an IFS, the degree of acceptance, degree of rejection, and degree of hesitation of an element may
not be a specific number in some situations. As a result, it has been extended to interval-valued intuitionistic
fuzzy sets [5].
The concept of hesitant fuzzy set (HFS), which is an extension of regular FS, was first introduced by Torra [25]
and Torra and Narukawa [24]. This is a useful tool because it allows for more possible degrees of an element
to be in a set which is a sub-interval of [0,1]. In the literature survey, we have seen Meany researchers have
implemented the concept of HFS in different fields of research. In 2016, Xu et al. [26] developed a compu-
tational programming technique based on HFS for a hybrid multi-criteria group decision making (MCGDM)
model. L. Dymova [16] created a user-friendly computer application using a fuzzy multiple-criteria decision-
making (MCDM) technique. In 2018, Bharati [7] developed a multi-objective hesitant fuzzy optimization
technique. He also published some research articles on interval-valued intuitionistic hesitant fuzzy sets (see
[8, 9]), and hesitant intuitionistic fuzzy sets [10] between 2021 and 2022. Xia et. al. [28] introduced hesitant
fuzzy on decision making. In 2022, M. Ranjbar et al. [20] introduced the ranking of hesitant fuzzy numbers
and new arithmetic operations based on the extension principle.

1.2 Motivation for that research

According to the literature review, numerous methods have been developed to solve multi-objective opti-
mization problems (MOOPs) in fuzzy and intuitionistic fuzzy environments. Dey et al. [14] used fuzzy and
intuitionistic fuzzy approaches to solve multi-objective three-bar truss structural model. This method can
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satisfy the objective(s) with a bigger degree than the analogous fuzzy optimization problem and the crisp
one, but there is no space for the decision maker’s point of view. In real life, the decision makers priority
plays an important role in any decision-making. Therefore, it is necessary to develop a new decision-making
method based on IHF decision-making set that assigns a set of potential values for each objective functions
membership and non-membership in IHF environment.

1.3 Contribution of the work

Many scholars are working continuously to find the best solution to multi objective structural optimization
problems (MOSOPs). A large amount of the literature is composed of fuzzy-based optimization approaches
that use the generalized concept of a FS to solve MOSOPs. Many researchers optimize the MOSOPs using
an intuitionistic fuzzy-based optimization technique. The study focused on IHFS under different membership
and non-membership functions. After that, MOSOP can be solved by using the proposed IHF approach.
However, the following are the few major aspects that guarantee a significant contribution to the field of
multi objective optimization techniques.

• The intuitionistic hesitant fuzzy (IHF) is a recent extension of fuzzy sets that are explained in a
structural model of three bar truss.

• In this paper, we present an IHF set theory that provides an opportunity for the decision-maker to
select the best result or reject the worse result in comparison to others.

• Instead of a single fixed degree, a set of possible degrees of acceptance and degrees of rejection are
defined to address the uncertainty and hesitancy of MONLPP.

• The intuitionistic hesitant Pareto optimal is also introduced in this paper.

• We have developed a multi-objective structural model under an intuitionistic hesitant fuzzy environ-
ment. A computational algorithm for intuitionistic hesitant fuzzy optimization has been developed to
solve multi-objective structural models.

• The HIFS might be a useful tool to deal with any real-life situation in the context of uncertainty and
hesitation.

1.4 Framework of the article

The rest of the manuscript is organized as follows: Sect. 2, we have explained the multi-objective structural
optimization model. In Sect. 3 recalls some basic concepts of FS, IFS, IHFS. For the practical perspective,
a computational algorithm was proposed to solve MOOP using the intuitionistic hesitant fuzzy optimization
technique (IHFOT) in Sect. 4. In Sect. 5, stepwise solution procedures are described for the solution of
multi-objective structural model using IHFOT. An illustrative example is examined in Sect. 6 that shows the
applicability and validity of the proposed algorithm efficiently. Finally, conclusions are highlighted based on
the present work in Sect. 7.

2 Mathematical form of Multi-Objective Structural Problem (MOSP)

In the structural model, the basic parameters of a bar truss structure system (such as elastic modulus,
material density, height possible stress etc.) are identified, and the goal is to find the optimum cross section
area of the bar truss so that we can find the lightest weight of the structure and smallest node displacement
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under loading condition.
The multi-objective problem in structure model is written as follows:

Minimize WG(C)

Minimize d(C)

Such that T [C] ≤ [T0]

C ∈ [Cmin, Cmax]

(1)

Where n number design parameters C = [C1, C2, C3, ....., Cn]T are considered.The design parameters are
the cross section of the truss bar,the total structural weight is WG(C) =

∑n
i=1 δiCiLi, d(C) is the deflection

of loaded joint, Li, Ci and δi were the lengths of the bar, cross section area and density of the ithgroup bars
respectively. Under different conditions, the stress constraint=T (C)and maximum possible stress of the group
bars=[T0] , cross section area (minimum)= Cmin and cross section area (maximum) = Cmax respectively.

3 Preliminaries

In this section, we talked about several fundamental ideas related to intuitionistic fuzzy logic.

Definition 3.1. (see [4]) (Intuitionistic Fuzzy Set(IFS)) Let E = {x1, x2, ..., xn} be the collection of finite
objects then the IFS Y in E is defined as: Y = {(xj , γY (xj)

, λY (xj)
) : xj ∈ E}, where the function γA(xj)

:

E → [0, 1]define the degree of membership function and λY (xj)
: xj : E → [0, 1] define the degree of non-

membership function of an element xj ∈ E respectively, with the condition 0 ≤ γY (xj) + λY (xj))
≤ 1 ∀xj ∈

E.For each Y ∈ E the amount πY (xj) = 1 − γA(xj)
− λY (xj)

is called Atanassovs intuitionistic index of the

element xj ∈ E or degree of indeterminacy (uncertainty) of xj of the measure of hesitation.

Definition 3.2. (see [4]) ((α, β)-cut) A subset (α, β)-cut of E generated by an IFS, where (α, β)are fixed
numbers such that α + β ≤ 1 is defined by Y α,β(xj) = {xj∈ E : γY (xj)

≥ α, λY (xj))
≤ β} .Thus (α, β) of an

IFS to be denoted by {Y α,β(xj) as a crisp set of the element xj which belong to Y α,β(xj) at least to the degree
α and at most to the degree β.

Definition 3.3. (see [25, 24]) (Hesitant Fuzzy Set(HFS)) Torra in 2009 and Torra and Narukawa in 2010,
created a new tool called hesitant fuzzy sets (HFSs) and which allow the membership degree to the set of
various possible values. The HFS can be stated as follows:
Let E be the fixed set then a HFS on E is expressed as Y = {(xj , hh(xj)

) : xj ∈ E}, where is set of possible

membership degrees of the element xj ∈ E in [0,1].Also, we call hY (xj), a hesitant fuzzy element. Further,
Xia and Xu [?] applied it in their works of research.

Definition 3.4. [10] (Intuitionistic Hesitant Fuzzy Set) When making a decision, a decision-maker may
hesitate to determine the exact degrees of membership and non-membership between 0 and 1. In such a
scenario, the IHFS, which is a generalized version of FS where the membership and nonmember ship degrees
of an element to a specific set can be represented by multiple distinct values between 0 and 1. The IHFS is
perfect at dealing with circumstances in which decision maker disagreement or hesitate to make a decision.
Let there be a fixed setE ; a IHFS Y on E is represented as Y = {(xj , hh(xj)

: xj ∈ E} where hY (xj) is set of

some values of IHFSs in [0,1] , denoting the possible membership degree and non-membership degree of the
element xj ∈ E . Let Ih1 , Ih2 be two IHFSs and h1 ∈ Ih1 , h2 ∈ Ih2.Then the complement of IHFS Ih, union
and intersection of Ih1 , Ih2 are defined as follows respectively.

• Ich = {hc : h ∈ Ih}
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• Ih1 ∪ Ih2 = {max(h1, h2) : h1 ∈ Ih1 , h2 ∈ Ih2 where h1 ∪ h2 = {max(γh1 , γh2),min(λh1 , λh1)}}

• Ih1 ∩ Ih2 = {min(h1, h2) : h1 ∈ Ih1 , h2 ∈ Ih2 where h1 ∩ h2 = {min(γh1 , γh2),max(λh1 , λh1)}}

Definition 3.5. [8] (Pareto-optimal solution) An ideal solution derived from a single objective may or may
not satisfy all of the conflicting objectives at the same time. However, it is difficult to find Pareto-optimal
solutions, which optimize all objectives while satisfying all constraints. Mathematically, SupposeΛ be the
collection of feasible solution for (1) of MOSOP. Then a point x∗ is considered to be a Pareto optimal or
efficient solution of (1) iff there exists no x ∈ Λ such that Θσ(x∗) ≥ Θσ(x) for all σ and Θσ(x∗) > Θσ(x)
for at least one σ. And a point x∗ ∈ Λ is called a weak Pareto optimal solution of (1). iff there exists no
x ∈ Λ such that Θσ(x∗) ≥ Θσ(x) for all σ

Definition 3.6. [10] (Pareto-optimal solutions of IHF) The Pareto-optimal solutions for the IHF optimization
can be defined as follows:
A solution X0 ∈ Ω is said to be Pareto-optimal solution for (1) if there does not exist another X ∈ Ω such
that Θσ(X) ≥ Θσ(X0) with γIFσ Θσ(X) ≥ γIFσ Θσ(X0), λ

IF
σ Θσ(X) ≤ λIFσ (Θσ(X0)) , and Θσ0(X) > Θσ0(X0)

with γIFσ0
(Θσ0(X)) > γIFσ0

(Θσ0(X0)) and λIFσ0
(Θσ0(X)) < λIFσ0

(Θσ0(X0)) for at least one σ0 = {1, 2, ....,Σ}.

Definition 3.7. (Intuitionistic Hesitant fuzzy Non Linear Programming (IHFNLP)) Most real-world prob-
lems involve the optimization of more than one objectives at the same time. The best compromise solution
is the most promising solution set that efficiently satisfies each objective. Therefore, a Multi-Objective Non-
Linear Programming (MONLP) with P objectives should be greater than or equal to some value ≲ g0p(x), p =
1, 2, ..., P may be taken in the following form:

Minimize Θ(x) = [Θ1,Θ2, .....,Θσ]T

subject to Θσ(x) ≲ g0σ(x), σ = 1, 2, ...,Σ

gj(x) ≤ 0, xj ≥ 0forj = 1, 2, ..,m

x = {x1, x2, ..., xn}

(2)

Where g0σ(x) is goal for σth objective and ≲ is uncertain form of ≤.

4 Problem formulation and solution algorithm

4.1 Intuitionistic Hesitant Fuzzy algorithm to Solve MONLPP

A MONLP with σ objective may be taken in the following form:

Minimize Θ(x) = [Θ1(x),Θ2(x), .....,Θσ(x)]T

subject to {x ∈ Rn : gj(x) ≤ or = or ≥ bj for j = 1, 2, ...,m}
Li ≤ xi ≤ Ui (i = 1, 2, ..., n)

(3)

Zimmermann [30] showed that fuzzy programmin technique (FPT) can be used to solve the MOOP. To solve
MONLPP, following steps are used.
Step 1 Solve the MONLP (3) as a single objective function from the set of σ objectives and solve it as a
single objective subject to the given constrains and ignoring the others objective function. Determine the
value of objective functions and basic feasible solutions.
Step 2 Calculate the values of the remaining (σ−1) objectives at the basic feasible solutions that are obtained
from Step 1.
Step 3 Repeat the Step 1 and Step 2 for the remaining (σ − 1) objective functions.
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Table 1: Please write your table caption here

Minimum Θ1 Θ2 Θ3 —– Θσ X

Minimum Θ1 Θ∗1 —– X1

Minimum Θ2 Θ∗2 —– X2

Minimum Θ3 Θ∗3 —– X2

—– —– —– —– —– —– —–
Minimum ΘΣ —– Θ∗σ Xσ

Maximum Θ′1 Θ′2 Θ′3 —– Θ′σ X ′σ

Step 4 From the result of Step 1, Step 2 and Step 3, obtained the corresponding tabulated values of
objective functions from a Table 1. and these are known as positive ideal solution.
Step 5 From Step 4, obtain the lower bounds and upper bounds for each objective functions, where Θ∗σ and
Θ

′
σ are maximum, minimum values of ΘΣ respectively.

Step 6 Here, we denote and define upper and lower bounds by Uγ
σ = max{ZpXp} and p = 1, 2, 3, ..., P for

respectively for each uncertain and imprecise objective functions of MONLPPs
Step 7 Set upper bound or upper tolerance level and lower bound or lower tolerance limit for the σth objective
function Θσ for hesitant degree of acceptance and rejection based on the set of solutions obtained in Step 4.
For hesitant membership function: Upper and lower tolerance level for hesitant membership functions are

Uγ
σ = max{Θσ(Xp)} and Lγ

σ = min{Θσ(Xp)}, 1 ≤ p ≤ P , σ = 1, 2, ...,Σ

For hesitant non-membership function: Upper and lower tolerance level for hesitant membership functions
are

Uλ
σ = Uγ

σ , L
λ
σ = Lγ

σ + ϵσ

where 0 ≤ ϵσ ≤ (Uσ − Lσ) is predetermined real numbers prescribed by decision-makers.
Step 8 In this step, we can define uncertainty and imprecise objectives of different hesitant membership
functions as linear, exponential and hyperbolic more elaborately under IHF environment. Each of them
is defined for the hesitant membership and a hesitant non-membership functions, which seems to be more
realistic.

4.1.1 Linear-type intuitionistic hesitant membership functions approach (LTIHMFA)

The truth membership function of linear type γLfiσ (Θσ(x)) and a falsity membership function of linear type

λLf1σ (Θσ(x)) functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γLf1σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γLf2σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ
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.....

γLfnσ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λLf1σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λLf2σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λLfnσ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

The mathematical expression for objective functions defined as follows

Max minσ=1,2,...,Σγ
Lfi
σ (Θσ(x))†)

Min maxσ=1,2,...,Σλ
Lfi
σ (Θσ(x))†)

i = 1, 2, ...., n

(4)

Subject to all constraints of (3).

Also assume that γLfiσ (Θσ(x))†) ≥ νi and λLfir (Θσ(x))†) ≤ ηi i = 1, 2, ...., n for all σ. Where the parameter
† > 0
Using auxiliary parameters νi and ηi, the problem (4) can be transformed into the following problem (5)
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LTIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

(Θσ(x))† +
ν1
ϕ1

(
(Uγ

σ )† − (Lγ
σ)†
)
≤ (Uγ

σ )†,

(Θσ(x))† +
ν2
ϕ2

(
(Uγ

σ )† − (Lγ
σ)†
)
≤ (Uγ

σ )†,

.........,

(Θσ(x))† +
ν3
ϕ3

(
(Uγ

σ )† − (Lγ
σ)†
)
≤ (Uγ

σ )†;

(Θσ(x))† − η1
ζ1

(
(Uλ

σ )† − (Lλ
σ)†
)
≤ (Lσλ)†,

(Θσ(x))† − η2
ζ2

(
(Uλ

σ )† − (Lλ
σ)†
)
≤ (Lλ

σ)†,

.........,

(Θσ(x))† − η3
ζ3

(
(Uλ

σ )† − (Lλ
σ)†
)
≤ (Lλ

σ)†;

(5)

νi ≥ ηi; νi + ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., nall the constraints of (3).

Theorem 4.1. There is only one optimal solution (x∗, ν∗, η∗) of (5) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ....., ν

∗
n) and η∗ = (η∗1, η

∗
2, ....., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (5) that it is an inefficient solution
to the problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that
Θσ(x∗) ≤ Θσ (x′)∀σ = 1, 2, ....,Σ and Θσ(x∗) < Θσ (x′) for at least one σ .

Therefore, we have ϕ
(Uγ

σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†
≤ ϕ

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†
∀ σ = 1, 2, ....,Σ

and ϕ
(Uγ

σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†
< ϕ

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†
for atleast one σ,

where 0 ≤ ϕ ≤ 1

Thus, Max∀σ

(
ϕ

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − ((Lγ

σ)†

)
≤Max∀σ

(
ϕ

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†

)
and Maxσ

(
ϕ

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†

)
< Maxσ

(
ϕ

(Uγ
σ )† − (Θσ(x′))†

(Uσ)† − (Lσ)†

)
for at least one σ.

Similarly, Min∀σ

(
ζ

(Θσ(x∗))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
≥Min∀σ

(
ζ

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
and Minσ

(
ζ

(Θσ(x∗))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
> Minσ

(
ζ

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
for at least one σ.

where 0 ≤ ζ ≤ 1
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Now suppose that,

ν ′ = Maxσ

(
ϕ

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†

)
, ν∗ = Maxσ

(
ϕ

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†

)
,

η′ = Minσ

(
ζ

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
, and η∗ = Minσ

(
ζ

(Θσ(x∗))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗ − η∗) < (ν ′ − η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (5). Hence, it is an effective solution
of (5). Hence the proof is now complete. □

4.1.2 Exponential-type intuitionistic hesitant membership functions approach (ETIHMFA)

The truth membership function of exponential type γEfi
σ (Θσ(x)) and a falsity membership function of expo-

nential type λEfi
σ (Θσ(x)) functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γEf1
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

[
1 − exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γEf2
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

[
1 − exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

.....

γEfn
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

[
1 − exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λEf1
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

[
1 − exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λEf2
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

[
1 − exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λEfn
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

[
1 − exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ
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Where ψ denotes the ambiguity degree or shape parameter assigned by the decision-maker.
Using by problem (4), we consider that γEfi

σ (Θσ(x)) ≥ νi and λEfi
σ (Θσ(x)) ≤ ηi for i = 1, 2, ...., n and ∀σ,

where the parameter † > 0.
The auxiliary parameters νi and ηi allow the problem (4) to be changed into (6)

ETIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

ϕ1

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x))†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ ν1,

ϕ2

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x))†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ ν2,

.........,

ϕn

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x))†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ νn;

ζ1

[
1 − exp

{
−ψ
(

(Θσ(x))† − (Lγ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
≤ η1,

ζ2

[
1 − exp

{
−ψ
(

(Θσ(x))† − (Lγ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
≤ η2,

.........,

ζn

[
1 − exp

{
−ψ
(

(Θσ(x))† − (Lγ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
≤ ηn;

(6)

νi ≥ ηi; νi + ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., nall the constraints of (3).

Theorem 4.2. There is only one optimal solution (x∗, ν∗, η∗) of (6) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ....., ν

∗
n) and η∗ = (η∗1, η

∗
2, ...., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (6) that it is an inefficient solution
to the problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that
Θσ (x∗) ≤ Θσ(x′)∀σ = 1, 2, ....,Σ and Θσ (x∗) < Θσ(x′) for at least one σ

Therefore, we have
(Uγ

σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†
≤ (Uγ

σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†
∀ σ = 1, 2, ....,Σ

and
(Uγ

σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†
<

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†
for atleast one σ,

Now, 1 − exp

{
−ψ
(

(Θσ(x∗))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
≤ 1 − exp

{
−ψ
(

(Θσ(x′))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
∀ σ = 1, 2, ....,Σ

and 1 − exp

{
−ψ
(

(Θσ(x∗))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
< 1 − exp

{
−ψ
(

(Θσ(x′))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
for atleast one σ,
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Thus,

Max∀σϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
≤Max∀σϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
and Maxσϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
< Maxσϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
for at least one σ, 0 ≤ ϕ ≤ 1

Min∀σζ

[
1 − exp

{
−ψ
(

(Θσ(x∗))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
≥Min∀σζ

[
1 − exp

{
−ψ
(

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
)

and Minσζ

[
1 − exp

{
−ψ
(

(Θσ(x∗))† − (Lγ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
> Minσζ

[
1 − exp

{
−ψ
(

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
for at least one σ, 0 ≤ ζ ≤ 1

Now suppose that,

ν ′ = Maxσϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
),

ν∗ = Maxσϕ

[
1 − exp

{
−ψ
(

(Uγ
σ )† − (Θσ(x∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
),

η′ = Minσζ

[
1 − exp

{
−ψ
(

(Θσ(x′))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
,

and η∗ = Minσζ

[
1 − exp

{
−ψ
(

(Θσ(x∗))† − (Lλ
σ)†

(Uλ
σ )† − (Lλ

σ)†

)}]
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗−η∗) < (ν ′−η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (6). Hence, it is an effective solution
of (6). Hence the proof is now complete. □

4.1.3 Hyperbolic type intuitionistic hesitant membership functions approach
(HTIHMFA)

The truth membership function of hyperbolic type γHfi
σ (Θσ(x)) and a falsity membership function of hyper-

bolic type λHfi
σ (Θσ(x)) membership functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γHf1
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γHf2
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

.....
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γHfn
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λHf1
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λHf2
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λHfn
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

Where τσ =
6

Uσ − Lσ
denotes the ambiguity degree or shape parameter assigned by the decision-maker.

Assume that γHfi
σ (Θσ(x)) ≥ νi and λHfi

σ (Θσ(x)) ≤ ηi for i = 1, 2, ...., n and ∀σ, where the parameter † > 0.
The auxiliary parameters νi and ηi allow the problem (4) to be changed into (7)

HTIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

ϕ1

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
≥ ν1,

ϕ2

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
≥ ν2,

.........,

ϕn

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))†

)
τσ

}]
≥ νn;

ζ1

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
≤ η1,

ζ2

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
≤ η2,

.........,

ζn

[
1

2
+

1

2
tanh

{(
(Θσ(x))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
≤ ηn;

(7)
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νi ≥ ηi; νi + ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., n Where τσ =
6

Uσ − Lσ
all the constraints of (3).

Theorem 4.3. There is only one optimal solution (x∗, ν∗, η∗) of (7) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ..., ν

∗
n) and η∗ = (η∗1, η

∗
2, ....., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (7) that it is an inefficient solution to the
problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that Θσ(x∗) ≤
Θσ(x′) ∀σ = 1, 2, ....,Σ and Θσ(x∗) < Θσ(x′) for at least one σ .
Therefore, we have

tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x∗))†

)
τσ

}
≤ tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x′))†

)
τσ

}
∀

σ = 1, 2, ....,Σ

and tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x∗))†

)
τσ

}
< tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x′))†

)
τσ

}
for atleast one σ,

Max∀σϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x∗))†

)
τσ

}]
≤Max∀σϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x′))†

)
τσ

}]
and Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x∗))†

)
τσ

}]
< Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x′))†

)
τσ

}]
for at least one σ, 0 ≤ ϕ ≤ 1

Similarly,

Min∀σζ

[
1

2
+

1

2
tanh

{(
(Θσ(x∗))† − (Uσ)† + (Lσ)†

2

)
τσ

}]
≥Min∀σζ

[
1

2
+

1

2
tanh

{(
(Θσ(x′))† − (Uσ)† + (Lσ)†

2

)
τσ

}]
and Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x∗))† − (Uσ)† + (Lσ)†

2

)
τσ

}]
> Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x′))† − (Uσ)† + (Lσ)†

2

)
τσ

}]
for at least one σ, 0 ≤ ζ ≤ 1
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Table 2: Tabulation value of objective functions

WG (C1, C2) d (C1, C2)

C1 WG(C1) d(C1)
C2 WG(C2) d(C2)

Now suppose that,

ν ′ = Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uλ

σ )† + (Lλ
σ)†

2
− (Θσ(x′))†

)
τσ

}]
,

ν∗ = Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uλ

σ )† + (Lλ
σ)†

2
− (Θσ(x∗))†

)
τσ

}]
,

η′ = Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x′))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
,

and η∗ = Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x∗))† − (Uλ

σ )† + (Lλ
σ)†

2

)
τσ

}]
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗ − η∗) < (ν ′ − η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (7). Hence, it is an effective solution
of (7). Hence the proof is now complete. □

5 Proposed Algorithm

5.1 Computation Algorithm for MOSP using IHF programming technique

Step 1 Solve the first goal function in the collection of objectives, (1) treating it as a single objective while
taking into account the specified constraints. Evaluate the values of the objective functions and decision
variables.
Step 2 Calculate the values of the remaining objectives based on the values of these decision variables.
Step 3 For the remaining objective functions, repeat Step 1 and Step 2.
Step 4 As per the Step 3, obtained the corresponding tabulated values of objective functions from a Table
2 as follows:
Step 5 The upper and lower limits are U1 = max

{
WG(C1),WG(C2)

}
,

L1 = min
{
WG(C1),WG(C2)

}
for weight function WG(C), where WG(C) ∈ [L1, U1] and the upper limit

and lower limit of objective are U2 = max
{
d(C1), d(C2)

}
, L2 = min

{
d(C1), d(C2)

}
for deflection function

d(C), where d(C) ∈ [L1, U1] are identified.
Step 6 Now the IHF programming approach for MOSOP with linear (or exponential or hyperbolic) truth
intuitionistic membership and falsity intuitionistic membership functions gives equivalent nonlinear program-
ming problem as

Max
(
minγIfiσ (WG(C))

)
;Max

(
minγIfiσ (d(C))

)
;

Min
(
maxλIfiσ (WG(C))

)
;Min

(
maxλIfiσ (d(C))

)
Subject to, [T (C)] = [T0]

C ∈ [Cmin, Cmax], Ifi = Lfi, Efi,Hfi; i = 1, 2, .., n]

where x ∈ E = {x ∈ ℜ : gj ≤ or ≥ bj j = 1, 2, ...m} and Li ≤ xi ≤ Ui

(8)
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bar truss.png bar truss.bb

Figure 1: The three-bar planar truss’s design

Now, using arithmetic aggregation operator the above equation (8) can be formulated as follows:

Maxℑ =
ν1 + ν2 + .....+ νn

n
− η1 + η2 + .....+ ηn

n

Subject to, γIf1σ (WG(C)) ≥ ν1, γ
If2
σ (WG(C)) ≥ ν2, ..., γ

Ifn
σ (WG(C)) ≥ νn;

λIf1σ (WG(C)) ≤ η1, λ
If2
σ (WG(C)) ≤ η2, ..., λ

Ifn
σ (WG(C)) ≤ ηn;

γIf1σ (d(C)) ≥ ν1, γ
If2
σ (d(C)) ≥ ν2, ..., γ

Ifn
σ (d(C)) ≥ νn;

λIf1σ (d(C)) ≤ η1, λ
If2
σ (d(C)) ≤ η2, ..., λ

Ifn
σ (d(C)) ≤ ηn

[T (C)] = [T0];C ∈ [Cmin, Cmax], Ifi = Lfi, Efi,Hfi;C ≥ 0;

νi, ηi ∈ [0, 1]; νi + ηi ≤ 1‘ i = 1, 2, .., n

(9)

Step 8 An appropriate mathematical programming algorithm can easily solve the above non-linear program-
ming problem (9).

6 Numerical solution of a three-bar truss MOSOP

In Figure (1), a well-known three-bar planar truss structure is taken into consideration to minimize vertical
deflection d (C1, C2) along x and y axes at the loading point of a statistically loaded three-bar planar truss
subjected to stress Ti (C1, C2) constraints on each of the truss members i = 1, 2, 3 and reduce structural
weight WG (C1, C2). The MOSOP can be stated in the following manner:
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Table 3: Tabulation value of objective functions

WG (C1, C2) dx (C1, C2) dx (C1, C2)

C1 2.187673 20 5.8578664
C2 15 3 1
C3 10.1 3.960784 0.03921569

Minimize WG (C1, C2) = δL
(

2
√

2C1 + C2

)
,

Minimize dx (C1, C2) =
PL (2C1 + C2)

E
(
2C2

1 + 2C1C2

) ,
Minimize dy (C1, C2) =

PLC2

E
(
2C2

1 + 2C1C2

) ,
subject to, T1 (C1, C2) =

PL (2C1 + C2)(
2C2

1 + 2C1C2

) ≤
[
T T
1

]
,

T2 (C1, C2) =
P(√

2C1 + C2

) ≤
[
T T
2

]
,

T3 (C1, C2) =
PC2(

2C2
1 + 2C1C2

) ≤
[
TC
3

]
, Cmin

i ≤ Ci ≤ Cmax
i i = 1, 2

(10)

Where, applied load=P ;material density= δ,L = Length of each bar, maximum limit of tensile stress for bar
1 and 2 = T T

i for i = 1, 2,maximum limit of compressive stress for bar 3=TC
3 , Youngs modulus =E ,C1 =Bar

1 and Bar 3 cross sections and C2 = Bar 2 cross section. dx and dy are the deflection of loaded along x and
yaxes respectively.
The input data for MOSOP (10) is given as follows:
P = 20KN, δ = 100KN/m3, L = 1m,

[
T T
1

]
= 20KN/m2,

[
T T
2

]
= 10KN/m2

and
[
TC
3

]
= 20KN/m2, E = 2 × 108KN/m2, 0.1 × 10−4m2 ≤ C1, C2 ≤ 0.5 × 10−4m2

Solution According to step 2 the corresponding tabulated values of objective functions obtained from Table
3 as follows:

Here, WGγ
U = WGλ

U = 15, WGγ
L = 2.187673,WGλ

L = WGγ
L + ϵ1,where 0 ≤ ϵ1 ≤ (15 − 2.187673),

(dx)γU = (dx)λU = 20, (dx)γL = 3, (dx)λL + ϵ2, where 0 ≤ ϵ2 ≤ (20 − 3), (dy)γU = (dy)λU = 5.857864, (dy)γL =
0.03921569, (dy)λL + ϵ3,where 0 ≤ ϵ3 ≤ (5.857864− 0.03921569) Using the Linear type hesitant membership
functions approach (LTHMFA) (5) the problem (10)
equivalent to the following (11)

Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective
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(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν1

0.98
≤ (15)†,

(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν2

0.99
≤ (15)†,

(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν3 ≤ (15)†

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
× η1

0.98
,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
× η2

0.99
,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
× η3

For 2nd objective (
20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(

(20)† − (3)†
)
× ν1

0.98
≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(

(20)† − (3)†
)
× ν2

0.99
≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(

(20)† − (3)†
)
× ν3 ≤ (20)†,

(11)

(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
× η1

0.98
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
× η2

0.99
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
× η3

For 3rd objective(
20C2

2C2
1 + 2C1C2

)†
+
(

(5.857864)† − (0.03921569)†
)
× ν1

0.98
≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
+
(

(5.857864)† − (0.03921569)†
)
× ν2

0.99
≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
+
(

(5.857864)† − (0.03921569)†
)
× ν3 ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)
× η1

0.98
,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)
× η2

0.99
,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)
× η3,

νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Using the Exponential type hesitant membership functions approach (ETHMFA) (6) the problem (10)
equivalent to the following (12)
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Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln

(
1 − ν1

0.98

)
/ψ ≤ (15)†,

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln

(
1 − ν2

0.99

)
/ψ ≤ (15)†,

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln (1 − ν3) /ψ ≤ (15)†

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
×
{
−ln

(
1 − η1

0.98

)}
/ψ,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
×
{
−ln

(
1 − η2

0.99

)}
/ψ,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(

(15)† − (2.187673)† − (ϵ1)
†
)
× {−ln (1 − η3)}/ψ

For 2nd objective

(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(

(20)† − (3)†
)
× ln

(
1 − ν1

0.98

)
/ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(

(20)† − (3)†
)
× ln

(
1 − ν2

0.99

)
/ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(

(20)† − (3)†
)
× ln (1 − ν3) /ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
×
{
−ln

(
1 − η1

0.98

)}
/ψ,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
×
{
−ln

(
1 − η2

0.99

)}
/ψ,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(

(20)† − (3)† − (ϵ2)
†
)
× {−ln (1 − η3)}/ψ

(12)

For 3rd objective

(
20C2

2C2
1 + 2C1C2

)†
−
(

(5.857864)† − (0.03921569)†
)
× ln

(
1 − ν1

0.98

)
/ψ ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
−
(

(5.857864)† − (0.03921569)†
)
× ln

(
1 − ν2

0.99

)
/ψ ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
−
(

(5.857864)† − (0.03921569)†
)
× ln (1 − ν3) /ψ ≤ (5.857864)†,
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20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)

×
{
−ln

(
1 − η1

0.98

)}
/ψ,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)

×
{
−ln

(
1 − η2

0.99

)}
/ψ,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(

(5.857864)† − (0.03921569)† − (ϵ3)
†
)

× {−ln (1 − η3)}/ψ,
νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Using the Hyperbolic type hesitant membership functions approach (HTHMFA) (7) the problem (10) equiv-
alent to the following (13)
For 1st objective

Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective

(2C1 + C2)
† τWG(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) + tanh−1(2ν3 − 1) ≤

τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
,

(2C1 + C2)
† τWG(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
,

(2C1 + C2)
† τWG(C) − tanh−1 (2η3 − 1) ≤

τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
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Table 4: The input values for MOSOP (10)

P δ L(m)
[
T T
1

] [
T T
2

] [
TC
3

]
E Cmin

i .Cmax
i

(KN) (KN/m3) (KN/m2) (KN/m2) (KN/m2) (KN/m2) (10−4m2)

20 100 1 20 10 20 2 × 107 Cmin
1 = 0.1, Cmax

1 = 5.0,
Cmin
2 = 0.1, Cmax

2 = 5.0

For 2nd objective(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1 (2ν3 − 1) ≤

τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1 (2η3 − 1) ≤

τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)

(13)

For 3rd objective(
20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1 (2ν3 − 1) ≤

τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,

(
20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1 (2η3 − 1) ≤

τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)

where τWG(C) =
6

15 − 2.187673
τdx(C) =

6

20 − 3
and τdy(C) =

6

5.857864 − 0.03921569
,

νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Comparison of optimal solution of MOSOP (10) using several methods.
The Pareto optimal solution of MOSOP model (10) using fuzzy, intuitionistic fuzzy, and intuitionistic

hesitant fuzzy multi-objective nonlinear programming techniques is given in Table 5. Here we get the best
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Table 5: Optimal values on Structural Weight and Deflections for † = 1

Membership Various
function algorithm C1×10−4m2 C2×10−4m2 WG(C1, C2) dx(C1, C2) dy(C1, C2)

MONLP

Fuzzy multi-objective
Linear-type nonlinear 2.677489 0.1000000 5.454979 7.335216 0.1344683

programming[14]

Intuitionistic fuzzy
multi-objective

Linear-type nonlinear programming 2.613073 0.1000000 5.326147 7.512768 0.1410545
ϵ1 = 0.76873962,
ϵ2 = 1.7,
ϵ3 = 0.2480392 [14]

Proposed Method
Linear type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.576483 0.1000000 5.252965 7.617507 0.1450135
ϵ3 = 0.2480392

Exponential Proposed Method
-type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.677490 0.1000000 5.454980 7.335215 0.1344682
ϵ3 = 0.2480392

Hyperbolic Proposed Method
-type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.471704 0.1000000 5.043407 7.934265 0.13573195
ϵ3 = 0.2480392
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solution for different tolerances ϵ1, ϵ2, ϵ3 for non-membership function of objective functions. The Table 5
shows that the proposed intuitionistic hesitant fuzzy optimization technique gives a better Pareto optimal
solution from the perspective of structural optimization.

7 Conclusion and Future Implication

To demonstrate the performance of the stated algorithm, a numerical example is given and compare their
results with the existing studies[14]. It is concluded from this study that the proposed work gives more
reasonable ways to handle the hesitant fuzzy information to solve practical problems.
In the future, we shall lengthen the methodology of intuitionistic hesitant fuzzy optimization technique to
the diverse fuzzy environment as well as different fields of application such as transportation, networking,
portfolio management, and emerging decision problems.
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Abstract. This paper has a twofold goal: The first is to study how the inferential zigzag can be activated, even
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be activated since without all this it can just seem a metaphysical idea. The second, not so deeply different - as
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1 Introduction

The present paper is written with a very specific target: the clarification of some aspects of the inferential
zigzag introduced in [14, 19, 16] previously not analysed in detail. However, in order to make explicit and
clear the motivations behind the technical results, the paper contains also a few general conceptual remarks as
well as a final Section in which some considerations expressed by the Renaissance logician Nicolaus Cusanus
are briefly surveyed in connection with what is presented in the technical side of the paper. The aim is
to reach a better understanding of what the inferential zigzag seems to consist of, and of how it can be
practically, specifically produced. That is, to explain how, at each statement p, a mixed inferential chain can
start; to explain how the zigzag proceeds by inflexions either forward or backward and leading, finally, to
another statement q, such that either p < q, or q < p (with the symbol < as a shorthand for the conditional
statement If p, then q). In [14, 19, 16] attention was focused more on the concepts behind the proposal,
than the practicality of the algorithmic path that could be followed. Without the clarifications in the present
paper, the zigzag can be seen just as a more or less interesting, but purely theoretical idea. Let us clarify,
however, that it is (and it always was) manifest from the beginning that the idea is constructive in nature,
inherently lending itself to subsequent implementations. This is witnessed by the fact that a number of
considerations on how to reduce the complexity of its possible implementations, which without any specific
strategy appears to be exponential in time, were discussed [19]. So, the point in question has not to do
with this general aspect, but with the possibility of suggesting a specific path to be followed that seems
from a conceptual point of view peculiarly in synch with the theoretical aspects discussed in [14] and [19].
This opens the way for a further examination of possible strategies for implementation, based on already
established mathematical and computational intelligence models that can be suitably matched to the essence
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of the problem at hand. Detailed implementation procedures will not be discussed here, and left for a more
technical paper to follow and currently under preparation. Let us, moreover, observe that our proposed path,
the zigzag, in itself is quite unusual in the field of Logic, not only among the standard approaches but also
in those (occasionally called deviant, but far more common than it seems at first) cases in which uncertainty
and imprecision are taken into account, in the same vein of other concepts that preceded its introduction,
e.g. conjecturing and linked notions. This is the true reason why some clarifying conceptual remarks appear
in the paper. A few general epistemological and historical comments seem necessary to understand the way
the idea has developed and how it is connected to its historical antecedents. May the zigzag be a non classic
approach, it is nonetheless well routed in the history of Logic, or, perhaps better, the study of reasoning. The
paper is structured in the following way. The present Introduction is followed by three Sections all devoted
to purely theoretical analyses which, respectively, present a model of commonsense reasoning, introduce
the Zigzag, and develop its first properties. Section 5 provides some preliminary considerations about the
computational costs of the process considered; finally, Section 6 surveys some remarks on Conjectures done
by Nicolaus Cusanus, that are connected with the inferential zigzag.

2 Around a Model of Commonsense Reasoning

Let us remark that the language or, at least, the wording used in the following, is not the usual one found
in the majority of logic papers. In fact, we are here trying just to approach some specific aspects of what we
called Language at Work [19] without referring to the general setting of mathematical logic, of which we are
in fact out. We shall then present a very simple model of Commonsense Reasoning, another name for the
language at work, where the zigzag idea was born, and that has a very soft mathematical structure in which
usual laws like those of Duality are often not valid. In this setting, in fact, some laws are not universal, but
have only a local validity. Few laws seem to warrant the typical flexibility shown by both natural language and
commonsense reasoning. It may be worth noting that since thinking is a natural phenomenon as breathing
is, reasoning should also be seen and considered as a natural phenomenon.

2.1 Reasoning from a premise

The natural phenomenon of reasoning tries, departing from a given information, linguistically compacted in
a statement p called the premise, to reach a previously unknown conclusion (concerning what is described by
p), also compacted in a linguistic statement q, such that either the existing knowledge on p results increased,
or diminished. In the first case, symbolized by p < q, q is a consequence of p, in the second symbolized by
q < p, q is a hypothesis or explanation for p. In general, reasoning is seen, and defined, as the action of
refuting or conjecturing q from p, under which p and q are linked by p < q′ in the first case, and by p < /q′

in the second. That is, q is a conjecture from p whenever not− q(q′) is not a consequence of p; it cannot be
stated p < q′, not− q cant be deduced from p. In different words, q is not a refutation of p, q does not refute
or contradict p[17].

In short, reasoning from a premise p is but finding either a refutation, or a conjecture. The only condition
the premise p is supposed to verify is: p < /p′; p is not self-refuting, self-contradictory or, in Aristotles
ancient words of wisdom, p is an inferentially impossible statement. The premise should indicate something
not impossible but possible, something sensate. Notice that for these first concepts only relation < and
negation not (′) are needed.

The (inferential) binary relation < between any two statements such as p and q. p < q, translates the
conditional statement If p, then q that, as it is well known, in language is not always understood in the same
form. The conditional statement p < q is sometimes taken as one of the unconditional statements not p or q,
or not p or (p and q), or p and q, etc.
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Understanding the conditional statement p < q by an unconditional one like it is, for instance, p and q,
is for describing it in a form that, in principle, can be submitted to some kind of verification. Reasoning is a
kingdom in which the density of conditional statements is remarkable; reasoning requires a good management
of conditional statements.

It is such non-uniqueness a motive to consider < as a primitive, undefined relation, only submitted to be
reflexive to be sure that it is never empty and that, at each situation and/or context, should be represented
by translating how the conditional If/then is there understood; for instance, and respectively, representing
p < q, by p′ + q, p′ + p · q, p · q, q + p′ · q′, etc., shortening and by a point (), and or by a cross (+), like not
is shortened by a comma (’). It should be noticed that such operators are not supposed to be endowed with
(usual) properties like idempotence (p+p = p), commutativity (p ·q = q ·p),associativity(p · (q ·r) = (p ·q) ·r),
etc., considered, if existing, local properties that is, not holding in all the universe of statements but only in
some part, or parts, of it.

2.2 Inferential situations for a conclusion

It should come to notice that between whatsoever statements p and q, it can just exist one of the four
inferential situations:

1. p < q; I, e., q is a consequence of p.

2. q < p; I, e., q is a hypothesis or explanation for p.

3. Both p < q and q < p, written p ∼ q or q ∼ p, i.e., p and q are inferentially equivalent.

4. Neither p < q, nor q < p, written p ⊥ q or q ⊥ p, i.e., p and q are inferentially not comparable, or
orthogonal.

Observe that relation ∼ is not necessarily an algebraic equivalence since it is just reflexive and symmetric,
but its transitivity is not always warranted unless < enjoys it.

A forward chain of inference like p < u, u < v, v < w, w < q, usually written p < u < v < w < q is called
a deductive process, or a deduction, and a backward chain like p > u > v > w > q, or q < w < v < u < p,
is called an abductive process, or an abduction. Of course, for concluding p < q in the deductive chain, and
q < p in the abductive chain, < has to be a transitive relation at least locally for the involved terms.

Hence, and with the exception of (3) allowing the indistinguishability of p and q from the inferential point
of view, and then accepting substitution of p by q, or q by p anywhere, a conclusion q of p, a conjecture q of p,
only can be either a consequence, or a hypotheses, or an orthogonal element to the premise, in which case it
is said that q is a speculation, or guess, from p, and, depending on how it is p < /q′ verified, the speculation
is weak (if q′ < p), or strong (if q′ ⊥ p) [17].

Thus, reasoning just consists in refuting, deducing, abducing and speculating or guessing, i.e. obtaining
orthogonal conjectures from the premise, a process that can also be understood as inducing. Thus: induction
can be identified with speculation, guessing with obtaining conjectures, statements inferentially orthogonal
to p.

It is interesting to observe that, under local transitivity of <, if r is not self-contradictory (r < /r′) and
refutes p (p < r′), it is p ⊥ r. In fact, were it p < r, since it is r′ < p′, then p < r′ and the corresponding
local transitivity, forces the contradictory p < p′. Analogously, were r < p it will follow r < r′ and, hence, p
and r are not comparable under <, are othogonal.

If, under transitivity, consequences can be obtained by going forwards with <, and hypotheses by going
backwards with <, how can speculations be obtained? If deduction corresponds to the first, and abduction
to the second, to which inferential mechanism can speculation, induction, correspond?
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3 On the Inferential Zigzag

Notice that a consequence q of p, p < q, is not always obtained by just an immediate first step ahead but by,
at least, two different possibilities:

- The first is when q is at the end of a chain of steps such as p < u, u < v, v < w, and w < q, requiring the
transitivity of < to conclude p < q.

- The second is through the property p < p+pa, with pa brings any opposite statement of p, allowing to define
q = p+ pa, without requiring whatsoever additional property of <, and if this q is not self-contradictory.

It is obvious that instead of pa it serves any statement q, and even the same p, but combining p and
one of its opposites pa helps to cover more knowledge than that offered by only p, or by a q that is totally
disconnected from p. Notice that the statement p+p′ has the risk of being too large (remember that (p+p′)′

is self-contradictory and, thus, in some lattices with maximum p+ p′ can easily be such maximum).

It analogously happens with hypotheses, h < p or p > h, reachable either by some steps p > u, u > v,
v > w, w > h, allowing to conclude p > h if > is transitive in the set p, u, v, w, h, or through the property
p · pa < p, allowing to define h = p · pa and without requiring additional properties for <, and provided p · pa
is not self-contradictory.

It should be noticed that the first ways correspond to what is usually done for proving that a conjecture
is either a consequence, or a hypothesis; and the second to what is done for finding either a still unknown
consequence or an explanation. They serve, respectively, for proving and for finding; if the first can be seen
as a technical way, the second is a dialectical way.

A reason for considering pa instead of p′ lies in the fact that, under the transitivity of <, p · p′ is self-
contradictory; in fact:

p · p′ < p implies p′ < (p · p′)′ that p · p′ < p′ conducts to p · p′ < (p · p′)′, q.e.d.

This Non-contradiction theorem, obviously valid for all statement and, in particular, for those s such that
s < p′ , can be easily and directly extended to these statement s such that s < p′ -statements referred by
p - provided < is transitive where convenient, and the conjunction is monotonic that is, verifies, p < q =>
p · r < q · r and r · p < r · q for all r. In fact, starting from p < q => q′ < p′ and from the property s < p′,
by monotony follows s · p < p′ · p that, with p′ · p < (p′ · p)′ implies s · p < (p′ − p)′ ;but, since from the first
inequality follows (p · p′)′ < (s · p)′, it finally results s · p < (s · p)′. Thus also s · p is self-contradictory.

This theorem forces to avoid as s, when the two presumed laws do hold, all statements that are refuted
by p and, in particular, both the negation and whatsoever antonym of p. It suggests taking a statement
s = s(p) depending on the premise p but different from the negation and any opposite.

It should be noticed that given a premise p, neither refutations, nor consequences, nor hypotheses, nor
speculations, are unique. Usually, there are sets of them, not reducible to a singleton. Hence, either the same
person at different moments, or two different persons. will not conjecture the same from a given premise. In
the same vein, refutations do not usually coincide; different people can refuse the same statement by means
of different refutations. This non-uniqueness of conjectures and refutations is, of course and in fact, a matter
of common experience among people, and a testament to the power of human reasoning; what can be seen
of some relevance is that the current model gives a first explanation of it.

It is noteworthy that the non-uniqueness of conjectures comes directly from the non-uniqueness of those
statements s such that s < p′; from the possible hypotheses for p′. Actually and in particular, there are a
lot of words for which more than one opposite term is used in language. Analogously, it is not sure that
in a mixed chain of inference the inflections are always produced in the same places and in the same sense
(backwards, or forwards), and the obtained speculation at the end of a zigzag strongly depends on this.



On the Inferential Zigzag
and Its Activation Towards Clarifying What It Is Commonsense Reasoning. Trans. Fuzzy Sets Syst. 2023; 2(2) 67

3.1 The inferential ZigZag as a mechanism for reasoning

Basic references [14, 19, 16] have overlooked such a development, and are limited to a hinting on how the
inferential zigzag and, especially speculating, guessing or also inducing can be effectively done. This paper
tries to fill this gap by giving a first hint on how the zigzag can be actually developed. It can be said that
reasoning is done thanks to a mechanism consisting in activating an inferential zigzag.

4 Developing the Zigzag

Before continuing, lets see how weak speculations can be effectively reached. Since they are defined by p ⊥ q
and q′ < p, it is clear that not− q, q′ is a hypothesis for p. Hence, in principle q′ can be reached by abduction
i.e. going backward from p up to find it, and provided < is locally transitive around p. Thus, two questions
are posed; when to stop for finding q as the searched speculation (a question whose answer is here avoided
as it corresponds to looking for the meaning of a statement), and how, once q′ is given, q can be actually
reached; something that depends on the character the linguistic negation can show in q:

1. If negation is weak at q, or q < (q′)′ = q′′, q will be found by negating q and moving backwards from
q′′.

2. If negation is Intuitionistic at q, or q′′ < q, q will be found by negating q′ and moving forwards from q′′.

3. If negation is strong at q, or q′′ ∼ q, it suffices to negate q′ to obtain q.

4. If negation is wild at q, or q′′ ⊥ q, no one of the three former situations holds, and, since it is p ⊥ q, it
is not sure if one of them, previously unknown, will appear. Actually, a priori nothing can be said in
general.

Thus, with the exception of (4), a weak speculation is reached at the end of a forward or backward step
after negating q′.

Notice that if q is a strong speculation from p, or, it is p ⊥ q and p ⊥ q, no similar way to the formers can
be immediately inferred as we have q′ ⊥ p instead of q′ < p. In principle, it seems that there is no inferential
way of mixing deductive and abductive movements that can be foreseen to reach q. It seems that q cant
be reached by enchaining statements, and one can be tempted to hope in the help of some bizarre entity,
akin to the old muses, mysteriously imbuing q into the thinker. It will be seen how such suppositions are
unnecessary.

4.1 Advancing and retroceding

Nevertheless, it should be noticed that from p it is possible to advance inferentially by disjunction, and to
retrocede by conjunction. For instance, p · u < p < p + v for all statements u and v, shows a recoil by
conjunction, and an advancement by disjunction, both from p. In the same way it is possible to realize
alternate movements backwards/forwards or forwards/backwards, like, p > p · u < u < u+ w, etc.

In this last case, and not presuming more laws than those of the skeleton, if with q = u+w it is p ⊥ q, it
will depend on q′ if q is a speculation from p or, simply, an element inferentially orthogonal to p. It is obvious
that such inferentially mixed forms can be followed by u = p · pa and v = p+ pa; i.e. by only using what can
be known, or supposed, on p, and avoiding p · p′ and p+ p′ due to what was formerly stated concerning their
self-contradiction if < is transitive.
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4.2 An example of reasoning with speculations

Lets show a very simple example starting from p and arriving at a speculation by supposing that all the
statements come from the disjunction of five of them, a, b, c, d, e, expressing the available initial information
on something.

- Suppose p = a + e, is the premise and take q = a + b + d. Since it is p · q = a, lets focus our attention on
a. Then: p > a < a + b + d = q, with p ⊥ q and, since q′ = c + e, it is also q′ ⊥ p. In this example, and
provided p′ = b+ c+ d, since it is not q < p, is not possible to suppose the coincidence of q and pa. Thus,
what can be supposed is that, pivoting on a, q = a+ b+ d informs on p.

Analogously,

- if with the same premise is q = b+ d, it is p ⊥ q, and since q′ = a+ e = p means q′ < p, as < is reflexive, q
is a weak speculation from p.

Thus it seems that in all the cases in which the statements are constructed as the disjunction of some
pieces of basic information on something, or atoms of knowledge, as it happens frequently, both weak and
strong speculations can be obtained in ways like the former and through inferential chains mixing forwards
and backwards movements. That is, through the so called inferential zigzag under which reasoning from p
can be seen as a kind of Inferential Brownian Movement around the premise.

Summing up and with just the skeletons laws, deciding if the next movement in q should be either forwards,
or backwards, can be done by either considering the conjunction of opposites q · qa, or another conjunction
p · q if q informs on p, that is, by means of all the (available) knowledge on p. Always with care on not being
p · q self-contradictory.

5 The Cost of Zigzagging

We have already discussed in [19] the fact that in order to render the notion of the inferential zigzag com-
putable when using atoms of information, an exhaustive search of the problem space is necessary, to take into
account all possible combinations of the morsels themselves and determine their cumulative role in achieving
unlimited speculation. Such an approach would require exponential time O(2n) due to the necessity of
exploring the entire power set to be performed in full, and as such would be computationally unfeasible even
for a small number of atoms. This compounds with the fact that while examples are presented with atoms
in the unities for sake of clarity, it is to be expected that any meaningful reasoning will require orders of
magnitude more, rendering factual the worry about computational attainability.

In [19] a number of strategies that are directed toward limiting complexity by reducing the size of the
searching space have been already proposed, such as reducing the number of total clauses by a plausibility
selection and weighing and thresholding, where each movement in the zigzag has an associated cost, propor-
tional to parameters inferred by the reasoning structure itself, and exploration stops when a certain threshold
is passed. Here is presented a simpler strategy of reduction that preserves the polynomial complexity of search
depth and is easily applicable to the specific task of speculation.

The first pass of the strategy is to add to the simple system some information about the proximity between
atoms. This is necessary as without any added information there is no way of implementing a reduction of
the Hasse diagram representing the power set of atoms, which is necessary to lower complexity. This can be
done either by prior experience or by evaluation. In the case of prior experience, we consider a number of
tuples composed of atoms (such as a, b, e, a, c and so on) that are derived from previous knowledge, e.g.
instances where such atoms appeared together in a previous successful speculation or in some premise. In
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evaluation we have to provide such a database of tuples directly, either by directly asking a panel of humans
to evaluate the proximity of atoms, or by grading single atoms and then aggregating such information. Either
way, a database of atoms proximity tuples is obtained. Such a database is then used to calculate what is
called a frequent itemset, a set of items appearing together, listed in order of frequency. Such structure
can be stored in a DB, or structured in a Markov chain. By setting a threshold and keeping in mind the
necessity for polynomiality, the atoms that are frequently found together can be clustered, and the complexity
of exploring the resulting set be reduced to O(n), allowing effective computation for the generation of all
possible inferential zigzags.

Classical algorithms such as Apriori [1] and other members of the Apriori-like family could be used for
the task, but in order to compute a frequent itemset of order l, they must produce all the subsets, bringing
exponential complexity again to the table. A more suitable choice is Max-Miner [2], which obtains the same
information by computing at most l+1 passes over the original dataset. A number of newer algorithms claim
to improve on Max-Miner, but due to its simplicity and the fact that in this context a clear explanation is
worth more than fractional improvements in efficiency, the choice for a better implementation is left to a
more technical forthcoming paper. This approach has a number of advantages: first and foremost, it reduces
complexity allowing effective computation of the inferential zigzag; second, reduction in complexity does not
come at the cost of reducing the expressivity of the original idea in terms its of cognitive approach. As the
zigzag is a formal version of speculation, reducing by clustering has a cognitive resonance with analogy, a
process often employed in order to make effective reasoning in presence of an abundance of information. In
figure 1, an example of pruning a Hasse diagram for a five atoms reasoning search is shown.

(a,b,c)

(a,c) (b,c)

(b)(a) (c)

(a,b)

(a,b,c)

(b,c)

(c)

(a,b)

(i) (ii)

Figure 1: Example of pruning a Hasse diagram for a five atoms reasoning using Max-Miner, (i) the algorithms
take as input: the starting Hasse diagram of the power set of a, b, c, d, e, which is used in [19] to explore
all possible zigzag inferences when in possession of five atoms of information; a list of common atoms tuples,
derived e.g. from previous reasoning on the same atoms, or by experience. (ii) the most popular couples
of atoms are clumped together, and a new diagram with lower complexity is created. The threshold for
clumping is chosen appropriately in order to attain effective computability.

6 Zigzagging Along the Centuries

Inferential zigzagging is something that helps to complete and extend the use of notions such as conjecturing.
The general idea behind this paper without, of course, any reference to theorems was suggested to the
authors by works [3, 4] of 15th Century German philosopher Nicolaus Cusanus (aka Nicholas of Cusa, 1401-
1464). What specifically and concretely inspired this papers argumentation, in fact, is the continuous use
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made there of the methodology called unity of opposites (compositio oppositorum)2.
The original idea behind the present paper can thus be informally traced in a few six hundred years

old considerations. We already referred to old thinkers in a recent Essay [19]: what follows can be useful
for outlining a general conceptual setting in which this as well as others remarks can be more adequately
understood3.

In dealing from a conceptual point of view with a few pages of Nicolaus Cusanus we shall (literally) zigzag
a little around the XV Century. Since our eyes are turned to the foundational efforts done in mathematics
and logic in the XX Century, we will be zigzagging through Centuries. What follows aims at drawing
additional information for increasing the understanding of notions such as conjecturing4. These notions do
not seem to play an explicit role in the bulk of present day mathematical logic, more interested in precision
and accuracy. They are crucial instead in everyday language and reasoning, as well as in many facets of
scientific investigations when cognition comes into play, such as AI.

In what follows we shall present:

a) a few quotations from Cusanus writings, to highlight why, in our opinion, his ideas are relevant to present
day investigations

b) some remarks on the way in which the notion of conjecture is used by working mathematicians in the
context of their daily work, and not when thinking about foundational questions

c) a number of reflections on the use of the term mathematical logic

6.1 Cusanus and reasoning

We feel necessary to recall some general remarks presented by Cusanus in the opening of his volume [3, 4].
Behind the veil of an old language (and notwithstanding it), they point to interesting connections with present
day questions. We shall not scrutiny whether some other ideas and points of his analyses can be also and,
perhaps, more incisively - useful for the same aim. The early motivations offered by Cusanus for having
devoted space to a reflection precisely to the notion of conjecture are illuminating. As we shall see from the
brief excerpts that follow, two points are crucial:

i. impossibility of reaching the precision of truth, and

ii. limitations of the human mind are such to imply that the conjectures of each person will be different

Cusano begins with the following statement of intents: ”since a favourable opportunity to do so has now
presented itself to me, I would like to illustrate my conception of conjecture”. What follows is an interesting
but admittedly contort presentation, due perhaps to the desire to prize the greatness of the person to which
the book is sent:

In the preceding books of the Learned Ignorance you have seen, even more profoundly and more
clearly than I have done myself with all my efforts, that the accuracy of truth is unattainable.
From this it follows that every positive assertion of man concerning the true is conjecture.

2This notion in different terms (and in a completely different context from Cusanos) has been analyzed by the third author
in [18, 15].

3That the thought of Nicholas of Cusa can be useful for clarifying crucial aspects of problems and questions of present day
relevance is also witnessed by a relatively new book [20] which collect the contributions presented at the first Congress on Cusanus
to be held in Asia at the turn of the Millennium as well as a short monograph entirely devoted to the Art of Conjecture appeared
in 2021 [5]. We came across both volumes when the paper was, in fact, finished and we are, then, here, simply acknowledging
their existence. Their content will be very useful for further investigations along the present conceptual line, looking for stronger
and less episodic connections with Cusanus suggestions as done in the present paper. Just to provide an indication a paper in
the Conference volume explicitly deals with epistemology [6] and many others touch on topics of crucial present day interest.

4in the following we shall show how the conjunction of opposites can be connected to it
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He then proceeds with a statement not easily understandable at a quick reading, but which forces a reflection
in connection to present day questions of cognitive relevance: The unity of unattainable truth is therefore
known through the otherness of conjecture, and the conjecture of otherness is known in the absolutely simple
unity of truth. A sort of clarification follows:

A created intelligence, which is endowed with a finite actuality, cannot but exist in one way in one
individual and in another way in another individual, so that among all who formulate conjectures
there is always a difference; consequently, it will always be absolutely certain that, with respect to
the identity of the true which remains unattainable, the conjectures of different persons will differ
in degree and yet remain without proportion to each other, so that no one will ever be able to
understand perfectly what another means, although some may come closer to it than some other.

Subsequently he will explain his ways of approaching and defining conjectures, his secret being a careful and
guided use of examples in a sort of maieutic or Socratic approach.

For this reason, in order to make the secret of my conjectures clearer and easier to understand,
I will first make use of a rational numerical progression, which is well known to all, and I will
represent my thought by means of demonstrative examples, through which our discourse can
arrive at the general art of conjecture.

Despite being useful for our general discussion, a deeper analysis is out of context here. We want instead to
stress the general inspiration that can be offered by Cusanus to contemporary investigation in such new fields
as information and cognitive sciences by his vision of science and logic. It is clear that, presently, we live in a
very different cultural context. Not only Fregean revolution is more than one hundred and fifty years old, but
also Gdel results are approaching a whole Century of life. The way in which Cusanus see the problem of truth
is very different from ours, as we are acquainted with Tarksis approach. His comments about the subjectivity
of conjectures would be considered, if not immediately dismissed, as opening (very interesting, maybe, but)
general epistemological questions not something that could be of specific interest to a (traditional) working
logician of our time. We shall come back to this point in 6.3.

We conclude by briefly discussing a paradigmatic, practical example, having to do with the conjunction
of opposites, which could shed some light on this point.

With each statement p, one of its antonyms pa (in just the former sense of being before p′ respect to <,
that is, refuted by p), by means of the linguistic conjunction and (), to obtain the statement p and pa (p · pa)
jointly considering what p refers to and also what is referred to by an antonym or opposite of p, or in general
by a statement refuted by p. A conjunction of opposites, in sum, with which to have a self-contradiction, an
inferential impossibility, is not so immediate if it is not taken a statement refuted by p.

Before Hegel, Marx, Lenin, and all the Marxian thinkers, the conjunctio oppositorum methodology, known
in English as the unity of opposites, was, formerly and systematically, managed for reasoning by a theologian
and philosopher Bishop.

Notice that the disjunction p + pa represents much of what, in the universe of discourse, is specifically
known on p, but without being all that is known, like with additional conditions p+ p′ tries to give and gives
effectively in Ortholattices for instance.

6.2 Cusanus as a contemporary thinker

And, however, it seems to us that from a suitable, although unusual, perspective Cusanus words are very
modern, contemporary: in the sense of being able to contribute to clarify the questions (of logical nature)
which are of crucial interest in topics of common sense reasoning and cognitive science and AI. More tuned,
epistemologically, to them many technical papers in mathematical logic appeared in the last decades One
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reason for that is that they seem very direct and fresh, not burdened by the important but heavy general
apparatus of mathematical logic as structured in the last century. An apparatus that, in many situations,
is not destined to provide clarifications, when we are interested to investigate and scrutiny very specific and
circumscribed problems. This induces us to go back to our original question. We asked if this reference to
old thinkers is only casual or whether there is some deeper reason for it. We favour the second hypothesis, a
position we will explain in the next subsection. Before that we shall briefly look at the question of how the
notion of conjecture has been treated in math.

While the term conjecture is and always has been informally used in mathematics and considered part of
the daily dialogue among mathematicians, it has very rarely been considered of crucial interest among (the
very tiny tribes of) logicians. The notion has been central in Poppers reflections on the scientific method and,
perhaps, this fact has contributed to consider it as important only from an epistemological point of view.
Supported in this by the distinction between a logic of discovery from a logic of confirmation. Lets dwell a
little bit more on this concept.

A conjecture is here understood as a proposition that is unproven (otherwise it would have been a theorem)
but about which there is a sort of common consensus in the context of the already established results in the
field. But there is also something else: an agreement that the conjecture could be experimentally tested and
checked, in order to arrive at a proof, inside the received conceptual context.

No one would call conjecture a proposition: this wording would strongly depart from that of a traditional
theorem. Many of Cantors ideas had not been considered conjectures. The same happened as well to
some of his proved propositions, at least at the beginning. Similarly, at the moment of the appearance and
presentation of a new conjecture, the common view is that its subsequent demonstration would not necessarily
imply or, even better, require a change in the overall architecture of mathematics (at least in the specific
chapter involved), especially for what regards the ontological assumptions.

It may, of course, happen (and, in fact, it does happen and did happen for the interesting ones) that
proving a conjecture would force to re-discuss many general assumptions and provide also conceptual changes.
In those instances, this happens along the way, not at the beginning. This is what happened with Hilberts
Entscheidungsproblem or with Fermats last theorem: two crucial conjectures, although they were not, for
exogenous reasons, called this way at the time of their formulation.

The former needed the creation of the completely new Theory of Computation, an ever-present notion in
math that in centuries had not been in need of formalisation. The latter needed three centuries of development
of new pieces of math. Both are historically akin to the inferential zigzag. The first looks like its deducting
part, and the second its abductive part. Conjectures play and have played a very important role, but they
have been seen as a sort of future theorems (when lucky) or statements to be refuted momentarily missing a
reason for refutation. Is there a reason to be interested in the form and specificity of the logical features of
conjectures? For decades starting with Frege and going on with the foundational debates at the beginning
of XX Century Logic had other goals and other crucial problems to afford. It seems that no space was
left for an autonomous investigation of such notions that have acquired visibility also in the development
of the logical brand of AI but this is no paradox at all: such subtle results could not be achieved without
sophisticated formal tools. An attitude that has only slightly modified over the decades [8], but abruptly
changed when the need for studying Commonsense Reasoning, Language at Work, emerged from AI.

6.3 A fresh way of looking at Logic

Some useful suggestion on commonsense logic paradoxically comes from the general vision of sophisticated
thinkers with much bigger aims, due to their theological and religious commitments. Despite that, it was
clear to them that global projects as the one that in a distant future would have been envisaged by by Hilbert
for math and by Lord Kelvin for physics at the end of the XIX Century were not tenable.

A general and usually tacit shared assumption in the received view of mathematical logic is that progress
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in the understanding of logical aspects of every facet (as well as in the nuances) of the empirical phenomenon
of reasoning cannot but descend and be derived by further developments of the central bulk of logic as
outlined in the Thirties of the last Century. If the subtleties and profundity of this approach successfully
tackled such seminal questions, so more so this powerful edifice should be able to deal with apparently trivial
matters. This can still be possible in principle, although what happened (and is happening) in AI5 suggests
some reflections.

This implicit assumption obscures and neglects the fact that many specific aspects of reasoning can be
afforded by mathematical tools, in many cases of great simplicity, in a sort of Galilean approach, without
referring to this magnificent but burdensome construction. We could also realize that the corpus of mathe-
matical logic, with all its well-deserved authority, determines what is crucial and important and, in a sense,
what is relevant, giving little space to what does not ontologically conform to its bases. Something that is
common to all disciplines and that, usually, does not impede due to the open mindedness of the scientific
way of approaching the questions that minor fields and topics are investigated and developed. Something
that may lack is informal ideas and motivations for specific features of these subfields.

For many decades Logic has had other goals to look at than specific aspects, leaving them to minor
applications of the big construction6. Due mainly to the profundity of its central results, the wonderful
edifice of 20th Century Logic has tended to neglect that its main target has substantially been to put it
bluntly the internal consistency of mathematics, and not a general theory of reasoning.

A more general way to express this is that classical logic has to do with specific properties of those
forms of reasoning that consider clear cut situations in a static world. These instances represent but a very
small percentage of human reasoning, which is dynamic par excellence, and more often than not based on
incomplete and imprecise information. Mathematical Logic owes its name not only to the fact that it uses
a mathematical language and mathematical tools but also to the fact that it is the logic of mathematical
reasoning, but not of Commonsense Reasoning.

We can, perhaps, also add something more. Logic, as acutely observed by Jean van Heijenoort in Frege
and Vagueness, excluded vagueness, from his horizon in its founding years (see [9]). This was a correct choice,
at the beginning. One cannot consider vagaries when trying to establish a new theory: Galileo did that by
forgetting friction, while constructing mechanics. But now, van Hejienoort states, some time has passed, and
we must consider vagaries. Looking at vagaries and admitting vagueness into the realm of Logic imposes to
look anew at many questions. Among them, the central notions of coherence and completeness. Vagueness
opens the way to new motivations and the subtle analyses of old logicians provide useful inspiration, since
they were thought in a period in which present day formal requirements were not required. This draws an
unusual parallel with the present situation, in which we are urged to construct systems and models in which
these same requirements are not strictly applicable.

When analysing questions and problems from Cognitive Science, for instance, not only the notion of
conjecture is essential (perhaps with different nomenclature), but it is an everyday experience that the
conjectures of each person will be different. And that is exactly what the model should consider and try to
explain.

Specific aspects of reasoning can be looked at in a fresh way and not as particular cases of the big
construction. In order to do so we need also to help ourselves with epistemological and conceptual reflections
tuned with this approach. In this direction we found that many general remarks done by Cusanus are very
stimulating and useful, which warrants the discussion of them in this paper.

5We refer to the well-known fact that the simpler facts affordable by humans looked the most difficult to tackle by automatic
means, and also to the big steps forward obtained by brute force methods.

6This neither means nor implies that the sophisticated and powerful tools forged in the core of the crucial questions are not
useful or cannot be applied to other conceptually very different questions [11]. The point is that they can be usefully applied
and creatively used when they are specifically relevant for the problems in question, which should be looked at in their complexity
and, in some cases, elusiveness.



74 Tabacchi ME, Termini S, Trillas E. Trans. Fuzzy Sets Syst. 2023; 2(2)

And we can now come back again to the starting question of this Section. We think that one can
affirm that the inspiration provided by ancient texts is not casual. It corresponds to a similarity (although,
paradoxically, both in a very specific and vague sense) with the general conceptual framework. Once vanished
the illusion of a unique, firm and stable foundation of the workings of scientific investigation along established
lines, to be pursued in an automatic way [12, 13, 10], the sophisticated conceptual analyses of middle age
and renaissance scholars can provide useful suggestions to be checked. Of course, through the language and
methods of contemporary investigation.

6.4 The zigzag is not unique

Let us, finally, observe that, in this Section, nothing has been explicitly said about zigzagging, as formally
described in Section 3. We will limit this here to a comment. Lets observe that since each person can follow
a different zigzag, that could be the reason why each one can find a different conjecture as well as different
proofs for either a consequence or a hypothesis. The idea of a personal, individual7 approach to reasoning,
that is so omnipresent in everyday life and often the cause of infinite discussions and diatribes and so
evidently missing in ordinary logic, should (and could) finally be reconciled with implementable procedures.

7 Conclusion

In [14, 19, 16] the so called Formal Skeleton of ordinary/commonsense reasoning, was presented, using which
actual reasoning can be developed through a sort of ’Brownian Movement’ around a premise, called the
inferential zigzag, with which refutations, consequences, hypotheses, and speculations are obtained. A process
that, within conditions, is effectively realizable (i.e. programmable) [19, 17], and that can be usefully employed
in a better implementation of cognitive reasoning [7]. Nevertheless a conceptual problem remained open: how
such zigzag can be effectively developed. That is, if a (theoretic) automatism acting without requiring the
help of any mysterious entity, but in a known and describable form, could be algorithmically implemented
in at least some specific and limited cases. By acquiring total certainty on the not metaphysical character of
induction through developing a mathematical theory on it, such a theoretical question is partially answered
in this paper. What is here presented contributes to dissolve the old worries concerning the mystery of
induction: induction, or guessing, was identified with speculation. Possibly such dissolution is not of great
practical relevance, but it has, of course, a conceptual, theoretical, importance since it means but a view
on how people themselves actually reason, and sometimes can quickly envisage an unexpected conjecture.
In some sense at least in the context of the conceptual setting defined in [19] the problem concerning the
scientific understanding of what is ordinary or commonsense reasoning has now one possible clarification.
The present paper, in fact, provides an indication of how this conceptual problem can be effectively and
practically solved. If reasoning is achieved by developing effectively inferential zigzags, we have shown how
the forward/backward inflexions at each point in an inferential chain are produced.

Conflict of Interest: The authors declare no conflict of interest.

7To avoid a wrong interpretation in the direction of a sort of non-objectivity of reasoning: we are referring to the individual
path that each person, in everyday reasoning, can follow and which can be very different from the one followed by other persons.
This variety is irrelevant in a standard setting (complete information, no vagueness, no approximations). Everything changes in
the setting of everyday life in which, moreover, also implicit (hidden) presuppositions play a role.
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Let BA denote the variety of Boolean algebras. It is well-known that BA = V(2) (i.e. the variety generated
by {2}). In what follows, the symbol 2 denotes a two-element Boolean algebra whose signature, though varies,
will be clear from the context where it appears. It is well-known that the Boolean complement has led to
several weaker notions; among them are the following three:

(1) the pseudocomplement ∗, (2) the dual pseudocomplement +, and (3) the De Morgan complement ′.

Algebras based on the 3-element chain:

It was only natural to consider the above-mentioned operations on a 3-element chain (viewed as a bounded
distributive lattice) denoted by 3. The three-element chain and the three operations mentioned above are
shown below in Figure 2.
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Figure 2

Let us, therefore, expand the language ⟨∨,∧, 0, 1⟩ of bounded distributive lattices to ⟨∨,∧, f, 0, 1⟩ by
adding one unary operation symbol f and interpret f , on the chain 3, as the operation ∗, +, or ′, with the
added restriction that f(0) := 1 and f(1) := 0. Then we get the following three algebras:

(1) 3st := ⟨3,∨,∧,∗ , 0, 1⟩,
(2) 3dst := ⟨3,∨,∧,+ , 0, 1⟩,
(3) 3kl = ⟨3,∨,∧,′ , 0, 1⟩.
The varieties generated by 3st, 3dst and 3kl are well-known, respectively, as those of Stone algebras, dual

Stone algebras and Kleene algebras. We will denote these varieties by St, DSt and KL, respectively. St and
KL have been researched well; as such, there is a fair amount of literature on them (see, for example, [7, 21].

In order to define Stone algebras, we need the notion of a pseudocomplemented lattice which was first
introduced by Skolem [66] (see also [70]). It is clear that the usual definition of pseudocomplement (namely,
a ∧ x = 0 iff x ≤ a∗) is not equational. However, in 1949, Ribenboim [41] proved that the class of pseudo-
complemented lattices is a variety. For our purpose here, the following axiomatization given in [49, Corollary
2.8] is more suitable.

An algebra A = ⟨A,∨,∧,∗ , 0, 1⟩ is a distributive pseudocomplemented lattice (p-algebra for short) if A
satisfies the following:

(1) ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice,

(2) the operation ∗ satisfies the identities:

(a) 0∗ ≈ 1,

(b) 1∗ ≈ 0,
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(c) (x ∨ y)∗ ≈ x∗ ∧ y∗,
(d) (x ∧ y)∗∗ ≈ x∗∗ ∧ y∗∗,
(e) x ≤ x∗∗,
(f) x∗ ∧ x∗∗ ≈ 0.

Note that the identity (f) can be replaced by the identity: x ∧ x∗ ≈ 0.
A p-algebra A is a Stone algebra if A satisfies the identity:
(3) x∗ ∨ x∗∗ ≈ 1 (Stone identity).

Stone algebras have an extensive literature (for example, see [7, 21, 22] and the references therein).
It is also well-known that the variety St = V(3st) (the variety generated by 3st). Dual Stone algebras

are, of course, defined dually.
Kleene algebras are well-known too. The variety of Kleene algebras is a subvariety of that of De Morgan

algebras, first introduced by Moisil [28] in 1935 (see also [29, 30]). They were further investigated later in
[8, 24, 44]. They are generalized to semi-De Morgan algebras in [49], and further studied in [23, 37, 35, 36,
38, 53, 55].

An algebra ⟨A,∨,∧,′ , 0, 1⟩ is a De Morgan algebra if
(1) ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice,
(2) 0′ ≈ 1 and 1′ ≈ 0,
(3) (x ∧ y)′ ≈ x′ ∨ y′ (∧-De Morgan law),
(4) x′′ ≈ x (Involution).

A De Morgan algebra is a Kleene algebra if it satisfies:
(5) x ∧ x′ ≤ y ∨ y′ (Kleene identity).

It is also well-known that the variety KL = V(3kl).

Algebras on the 3-element chain with two additional unary operations:

The next natural step in this development was to consider the expansion of the language ⟨∨,∧, 0, 1⟩
by adding two unary operation symbols corresponding to two of the above three unary operations on the
3-element chain, leading to the following three algebras on the 3-element chain:

(a) 3dblst = ⟨3,∨,∧,∗ ,+ , 0, 1⟩: This is known as a “double Stone algebra.” It was observed in [68] and
[25] that 3dblst also satisfies an additional identity, called a “regular identity”:

(R) x ∧ x+ ≤ y ∨ y∗.
So, 3dblst is a “regular double Stone algebra.”
(b) 3klst = ⟨3,∨,∧,∗ ,′ , 0, 1⟩: This is a Kleene Stone algebra (see [43] and [48]). This algebra also satisfies

an interesting identity (see [48]), also called “regular identity”:
(R1) x ∧ x′∗′ ≤ y ∨ y∗

So, 3klst is a “regular Kleene Stone algebra”.
(c) 3klst = ⟨3,∨,∧,+ ,′ , 0, 1⟩: This, being the dual of (b), would not be of much interest to us in this

paper. Thus, (a) and (b) yield the well-known varieties of regular double Stone algebras and regular Kleene
Stone algebras, respectively.

An algebra A = ⟨A,∨,∧,∗ ,+ , 0, 1⟩ is a regular double Stone algebra if
(1) ⟨A,∨,∧,∗ , 0, 1⟩ is a Stone algebra,
(2) ⟨A,∨,∧,+ , 0, 1⟩ is a dual Stone algebra,
(3) A satisfies the identity:

(R) x ∧ x+ ≤ y ∨ y∗.
The variety of regular double Stone algebras is denoted by RDBLSt. For the more general variety of

double p-algebras, of which RDBLSt is a subvariety, see, for example, [68, 25, 45, 54, 58, 64, 5, 12, 17] and
references therein.
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We now pause briefly to recall some universal algebraic notions (see, for example, [10, 72]).

Definition 1.1. Let A be an algebra. An n-ary function f : An → A is representable by a term if there is
a term p such that f(a1, . . . , an) = pA(a1, . . . , an), for a1, . . . , an ∈ A. A finite algebra A is primal if every
n-ary function on A, for every n ≥ 1, is representable by a term.
The discrimination function on a set A is the function t : A3 → A defined by

t(a, b, c) :=

{
a, if a ̸= b

c, if a = b.

A ternary term t(x, y, z) representing the discriminator on A is called a discriminator term for the algebra
A. If a class K of algebras has a common discriminator term t(x, y, z), then V(K) is called a discriminator
variety. A finite algebra A with a discriminator term is called quasiprimal.

Discriminator varieties have been of great interest for a few decades now. For readers interested in this
area, we recommend the books [72] and [10].

Returning to regular double Stone algebras, the following theorem is also well-known.

Theorem 1.2.

(i) 2 and 3dblst, up to isomorphism, are the only subdirectly irreducible (equiv. simple) algebras in RDBLSt

(ii) The variety RDBLSt = V(3dblst),

(iii) The variety RDBLSt is a discriminator variety ([45]),

(iv) 3dblst is quasiprimal ([45]),

(v) BA is the only nontrivial proper subvariety of RDBLSt.

Regular Kleene Stone algebras are also well-known.

An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is a regular Kleene Stone algebra if

(1) ⟨A,∨,∧,∗ , 0, 1⟩ is a Stone algebra,

(2) ⟨A,∨,∧,′ , 0, 1⟩ is a Kleene algebra,

(3) A satisfies the identity:

(R1) x ∧ x′∗′ ≤ y ∨ y∗ (Regularity).

The variety of regular Kleene Stone algebras is denoted by RKLSt. For the more general variety of
pseudocomplemented De Morgan and Ockham algebras, of which RKLSt is a subvariety, see [43, 48, 50, 46,
56, 58, 65, 6] and references therein.

The following theorem lists some of the known properties of the variety RKLSt.

Theorem 1.3. [58]

(i) 2 and 3klst, up to isomorphism, are the only subdirectly irreducible (equiv. simple) algebras in RKLSt.

(ii) The variety RKLSt = V(3klst),

(iii) The variety RKLSt is a discriminator variety,

(iv) 3klst is quasiprimal,

(v) BA is the only nontrivial proper subvariety of RKLSt.
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Remark 1.4. It is easy to verify that the algebra 3dblst also satisfies the identity (R1) and hence the variety
RDBLSt also satisfies (R1).

In view of the amazing similarities of RDBLSt and RKLSt, as seen in their definitions, as well as in
Theorem 1.2 and in Theorem 1.3, it was only natural to ask for a common generalization of RDBLSt and
RKLSt. To find such a common generalization, it was essential, first, to have a common generalization of
dually Stone algebras and Kleene algebras, which luckily was already present since 1987, as the notion of a
“dually quasi-De Morgan algebra.” In 1987, the second author had introduced the variety of “upper quasi-De
Morgan algebras,” as a subvariety of the variety of semi-De Morgan algebras in [49]. (We drop the word
“upper.” here.) Actually, for our purpose here, we need the dual notion of “dually quasi-De Morgan algebra.”

Definition 1.5. An algebra A = ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra if the following condi-
tions hold:

(a) ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice,
(b) The operation ′ is a dual quasi-De Morgan operation; that is, ′ satisfies:

(i) 0′ ≈ 1 and 1′ ≈ 0,

(ii) (x ∧ y)′ ≈ x′ ∨ y′,

(iii) (x ∨ y)′′ ≈ x′′ ∨ y′′,

(iv) x′′ ≤ x.

The variety of dually quasi-De Morgan algebras is denoted by DQD.

THE VARIETY OF GAUTAMA ALGEBRAS

The problem of finding a common generalization of RDBLSt and RKLSt, mentioned above, led the second
author, to define, in [64], the variety of Gautama algebras, named in honor and memory of Medhatithi
Gautama and Aksapada Gautama, the founders of Indian Logic.

Definition 1.6. An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is a Gautama algebra if the following conditions hold:
(a) ⟨A,∨,∧,∗ , 0, 1⟩ is a Stone algebra,
(b) ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra,
(c) A is regular; i.e., A satisfies the identity:

(R1) x ∧ x′∗′ ≤ y ∨ y∗,
(d) A is star-regular; i.e., A satisfies the identity:

(*) x∗′ ≈ x∗∗.

Let G denote the variety of Gautama algebras.
Clearly, 2, 3dblst, 3klst are algebras in G; and so, the varieties BA, RDBLSt, and RKLSt are subvarieties

of the variety G.

The following theorem, proved in [64], gives a concrete description of the subdirectly irreducible algebras
in the variety G.

Theorem 1.7. [64] Let A ∈ G. Then the following are equivalent:
(1) A is simple;
(2) A is subdirectly irreducible;
(3) A is directly indecomposable;
(4) For every x ∈ A, x ∨ x∗ = 1 implies x = 0 or x = 1;
(5) A ∈ {2,3dblst,3klst}, up to isomorphism.
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In this paper, we introduce and investigate a generalization of Gautam algebras, called “Almost Gautama
algebras” (AG for short). We describe the subdirectly irreducible algebras in AG and then give several
consequences, including the description of the lattice of subvarieties of AG and equational bases for all the
subvarieties of AG. It is also shown that the variety AG is a discriminator variety. Next, we consider the
problem of logicizing the varety AG, Unfortunately, AG lacks an implication operation. So, we introduce
another variety called “Almost Gautama Heyting algebras (AGH for short) such that the language of AGH
contains an implication operation symbol → and AGH is term-equivalent to AG. We then consider AG from
a logical point of view, via AGH. More explicitly, we define a new propositional logic called AG (or AGH) as
an axiomatic extension of the logic DHMH which was introduced in [15] and show that AG is algebraizable
with AGH as its equivalent algebraic semantics. Since AGH is term-equivalent to AG, it can be viewed that
the logic AG is the logic corresponding to AG. It is also shown that the logic AG is decidable. Finally, all
axiomatic extensions of the logic AG, corresponding to all subvarieties of AG are determined. They include
the axiomatic extensions RDBLSt, RKLSt and G of the logic AG corresponding to the varieties RDBLSt,
RKLSt and G, respectively. It is also deduced that none of the axiomatic extensions of AG has the Disjunction
Property. The paper concludes with a few open problems for further research and with a fairly extensive
(though not complete) bibliography.

It is assumed that the reader has had some familiarity with lattice theory and universal algebra (see
[7, 21, 10], for example). As such, for notions, notations and results assumed here, the reader can refer to
these or other relevant books.

2 The variety of Almost Gautama algebras

The purpose of this section is to introduce and investigate a new variety of algebras, called “Almost Gautama
algebras” which, as mentioned earlier, is a generalization of Gautama algebras. The following lemma offers
a hint for such a generalization.

Lemma 2.1. Let G be the variety of Gautama algebras. Then

(1) G |= x∗′′ ≈ x∗ (Weak Star-Regular Identity),

(2) G |= (x ∧ x′∗)′∗ ≈ x ∧ x′∗ (L1).

Proof. Let A ∈ G. Let a ∈ A. Then, a∗′′ = a∗∗′ = a∗∗∗ = a∗, proving (1), while it is routine to verify that
(2) holds in 3dblst and 3klst. □

We are now ready to define the variety of Almost Gautama algebras.

Definition 2.2. An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is an Almost Gautama algebra if the following conditions
hold:

(a) ⟨A,∨,∧,∗ , 0, 1⟩ is a Stone algebra,

(b) ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra,

(c) A is regular. That is, A satisfies the identity:

(R1) x ∧ x′∗′ ≤ y ∨ y∗ (Regularity),

(d) A is Weak Star-Regular. That is, A satisfies the identity:

(∗)w x∗′′ ≈ x∗, (weak star-regularity),

(e) A satisfies the identity:

(x ∧ x′∗)′∗ ≈ x ∧ x′∗ (L1).
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Let AG denote the variety of Almost Gautama algebras.

Clearly, in view of Lemma 2.1, every Gautama algebra is an Almost Gautama algebra. Hence, the
varieties BA of Boolean algebras, RDBLSt of regular double Stone algebras, and RKLSt of regular Kleene
Stone algebras and the variety G of Gautama algebras are all subvarieties of the variety AG of Almost
Gautama algebras.

Consider the following 4-element algebra 4dmba := ⟨{0, a, b, 0, 1},∨,∧,∗ ,′ , 0, 1⟩ (see Figure 3), where ∗ is
the Boolean complement with a∗ = b, b∗ = a; and 0′ = 1, 1′ = 0, a′ = a and b′ = b. It is easy to see that
4dmba is an Almost Gautama algebra. Observe that 4dmba is not a Gautama algebra (e.g., take x := a in
(∗)w). s

s s
s
0

a b
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Figure 3

We close this section with a few concepts needed later in this paper.

The notion of “hemimorphic algebra” was implicit in [49] and was made explicit later in [58] (in its dual
form).

Definition 2.3. An algebra A = ⟨A,∨,∧,′ , 0, 1⟩ is a dually hemimorphic algebra if A satisfies the following
conditions:

(H1) ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice,

(H2) 0′ ≈ 1,

(H3) 1′ ≈ 0,

(H4) (x ∧ y)′ ≈ x′ ∨ y′ (∧-De Morgan law).

The variety of dually hemimorphic algebras is denoted by DHM.

We can recast the definition of a dually quasi-De Morgan algebra (see Definition 1.5) as follows:

A ∈ DHM is a dually quasi-De Morgan algebra if it satisfies:

(H5) (x ∨ y)′′ ≈ x′′ ∨ y′′,

(H6) x′′ ≤ x.

The variety of dually quasi-De Morgan algebras is denoted by DQD.

We will now introduce a far-reaching generalization of Gautama algebras.

Definition 2.4. An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is a dually hemimorphic p-algebra if it satisfies:

(a) ⟨A,∨,∧,∗ , 0, 1⟩ is a p-algebra,

(b) ⟨A,∨,∧,′ , 0, 1⟩ is a dually hemimorphic algebra.

The variety of dually hemimorphic p-algebras is denoted by DHMP.

An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is a dually quasi-De Morgan p-algebra if :

(a) ⟨A,∨,∧,∗ , 0, 1⟩ is a p-algebra,

(b) ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra.
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The variety of dually quasi-De Morgan p-algebras is denoted by DQDP. In fact, dually hemimorphic
p-algebras are a common generalization of double p-algebras and pseudocomplemented Ockham algebras,
which have been investigated in several papers, some of which are: [50, 51, 52, 54, 56, 65].

A ∈ DHMP is regular if it satisfies (R1): x ∧ x′∗′ ≤ y ∨ y∗. The variety of regular dually hemimorphic
p-algebras is denoted by RDHMP.

Clearly, G ⊂ AG ⊂ RDBLP ⊂ RDQDP ⊂ DQDP ⊂ DHMP. Also, G ⊂ AG ⊂ RDMP ⊂ RDQDP ⊂
DQDP ⊂ DHMP.

3 Subdirectly irreducible Almost Gautama Algebras

We now wish to characterize the subdirectly irreducible Almost Gautama algebras. To achieve this, we
need some preliminary results. Recall the well-known fact (see [7, 21]) that if A is a p-algebra then A |=
x ∧ (x ∧ y)∗ ≈ x ∧ y∗.

Let A ∈ DQDP, a ∈ A and let (a] := {x ∈ A : x ≤ a}. Define the algebra (a] as follows:
(a] := ⟨(a],∨,∧,∗a ,′a , 0, a⟩ ∈ DQDP, where x∗a := x∗ ∧ a and x′a := x′ ∧ a, for x ∈ (a]. Similarly, the algebra
(a∗] is defined.

Lemma 3.1. Let A ∈ DQDP satisfying (L1): (x ∧ x′∗)′∗ ≈ x ∧ x′∗ and let a ∈ A such that a ∧ a′ = 0. Then

(i) (a] ∈ DQDP,

(ii) a∗ ∧ a∗′ = 0,

(iii) (a∗] ∈ DQDP.

Proof. Let x, y ∈ (a]. Then x ∧ (x ∧ y)∗a = x ∧ (x ∧ y)∗ ∧ a = x ∧ y∗ ∧ a = x ∧ y∗a, since ∗ is the
pseudocomplement. Also, a∗a = a∗ ∧ a = 0, and 0∗a = 0∗ ∧ a = 1 ∧ a = a. So, x∗a is the pseudocomplement
of x ∈ (a]. Now,

(x ∧ y)′a = (x ∧ y)′ ∧ a
= (x′ ∨ y′) ∧ a
= (x′ ∧ a) ∨ (y′ ∧ a)
= x′a ∨ y′a.

Next,
(x ∨ y)′a′a = [(x ∨ y)′ ∧ a]′ ∧ a

= [(x ∨ y)′′ ∨ a′] ∧ a
= [x′′ ∨ y′′ ∨ a′] ∧ a
= (x′′ ∧ a) ∨ (y′′ ∧ a) ∨ (a′ ∧ a)
= (x′′ ∧ a) ∨ (a′ ∧ a) ∨ (y′′ ∧ a) ∨ (a′ ∧ a), as a′ ∧ a = 0
= [(x′′ ∨ a′) ∧ a)] ∨ [(y′′ ∨ a′) ∧ a]
= [(x′ ∧ a)′ ∧ a)] ∨ [(y′ ∧ a)′ ∧ a]
= x′a′a ∨ y′a′a.

Also,
x′a′a ∨ x = (x′ ∧ a)′ ∧ a) ∨ x

= (x′′ ∨ a′) ∧ a) ∨ x
= [(x′′ ∧ a) ∨ (a′ ∧ a)] ∨ x
= (x′′ ∧ a) ∨ x
= (x′′ ∨ x) ∧ (a ∨ x)
= x as x′′ ≤ x ≤ a.
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Finally, 0′a = 0′ ∧ a = 1 ∧ a = a, and a′a = a′ ∧ a = 0.
Thus, dual quasi-De Mogan identities hold in (a], proving (i).

For (ii), from a ∧ a′ = 0, we get a′ ∨ a′′ = 1 which implies (a ∧ a′) ∨ (a ∧ a′′) = a. Hence a ≤ a′′ as a ∧ a′ = 0.
Thus we have

a′′ = a. (1)

From a′′ ∧ a′′∗ = 0, we have (a′ ∨ a′′) ∧ (a′ ∨ a′′∗) = a′, whence (a′ ∨ a∗) = a′ as a′′ = a and a ∧ a′ = 0; thus
we have

a∗ ≤ a′. (2)

Now, a∗ ∧ a∗′∗ = a′′∗ ∧ a′′∗′∗ = (a′ ∧ a′′∗)′∗ = a′ ∧ a′′∗ = a′ ∧ a∗ = a∗ by (1), (L1) and (2). Hence,

a∗ ≤ a∗′∗. (3)

So, in view of (3), we get a∗ ∧ a∗′ ≤ a∗′∗ ∧ a∗′ = 0, implying a∗ ∧ a∗′ = 0, which proves (ii). (iii) follows from
(i) and (ii). □

Recall the well-known result (see [7, 21]) that if A is a Stone algebra then A |= (x ∧ y)∗ ≈ x∗ ∨ y∗.

Lemma 3.2. Let A ∈ AG and let a ∈ A such that a ∧ a′ = 0 Then

(i) (a] = ⟨(a],∨,∧,∗a ,′a , 0, a⟩ ∈ AG.

(ii) (a∗] = ⟨(a∗],∨,∧,∗a∗ ,′a∗ , 0, a∗⟩ ∈ AG.

Proof. By Lemma 3.1, we already know that (a] ∈ DQDP. So, it suffices to prove (St), (R1), (∗)w and (L1).
Toward this end, let x, y ∈ A such that x ≤ a and y ≤ a.

Since A is a Stone algebra, we have
x∗a∨x∗a∗a = (x∗∧a)∨[(x∗∧a)∗∧a] = (x∗∧a)∨[(x∗∗∨a∗)∧a] = (x∗∧a)∨(x∗∗∧a) = (x∗∨x∗∗)∧a = 1∧a = a.
So, Stone identity holds in (a].

Now,

(x ∧ x′a∗a′a) = x ∧ [(x′ ∧ a)∗ ∧ a]′ ∧ a
= x ∧ [(x′ ∧ a)∗ ∧ a]′, as x ≤ a
= x ∧ [(x′ ∧ a)∗′ ∨ a′]
= [x ∧ (x′ ∧ a)∗′] ∨ (x ∧ a′),
= x ∧ (x′ ∧ a)∗′, since x ≤ a and a ∧ a′ = 0.

Thus we have

x ∧ x′a∗a′a = x ∧ (x′ ∧ a)∗′. (4)

Since (x′ ∧ a)∗′ ≤ x′∗′, we have x ∧ (x′ ∧ a)∗′ ≤ x ∧ x′∗′ ≤ y ∨ y∗. Also, observe that x ∧ (x′ ∧ a)∗′ ≤ x ≤ a.
Hence, it follows that x ∧ (x′ ∧ a)∗′ ≤ (y ∨ y∗) ∧ a. Therefore, from (4) we get

(x ∧ x′a∗a′a) ∨ (y ∨ y∗a) = (y ∨ y∗) ∧ a,
= (y ∧ a) ∨ (y∗ ∧ a),
= y ∨ (y∗ ∧ a),
= y ∨ y∗a.
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Hence (R1) holds in (a].
Next,

x∗a′a′a = [(x∗ ∧ a)′ ∧ a]′ ∧ a
= [(x∗′ ∨ a′) ∧ a]′ ∧ a
= [(x∗′ ∧ a) ∨ (a′ ∧ a)]′ ∧ a
= (x∗′ ∧ a)′ ∧ a
= (x∗′′ ∨ a′) ∧ a
= x∗′′ ∧ a
= x∗ ∧ a, by the identity (∗)w
= x∗a.

Hence the weak star regular identity (∗)w holds in (a].
Finally,

(x ∧ x′a∗a)′a∗a = [x ∧ (x′ ∧ a)∗ ∧ a]′a∗a

= [x ∧ (x′ ∧ a)∗]′a∗a as x ≤ a
= [{x ∧ (x′ ∧ a)∗}′ ∧ a]∗ ∧ a
= [{x ∧ (x′ ∧ a)∗}′∗ ∨ a∗] ∧ a as A is a Stone algebra
= [x ∧ (x′ ∧ a)∗]′∗ ∧ a
= [x ∧ (x′∗ ∨ a∗)]′∗ ∧ a as A is a Stone algebra
= [(x ∧ x′∗) ∨ (x ∧ a∗)]′∗ ∧ a
= (x ∧ x′∗)′∗ ∧ a since x ∧ a∗ = 0 as x ≤ a
= x ∧ x′∗ ∧ a by (L1)
= x ∧ [(x′∗ ∧ a) ∨ (a∗ ∧ a)]
= x ∧ [(x′∗ ∨ a∗) ∧ a]
= x ∧ (x′ ∧ a)∗ ∧ a as A is a Stone algebra
= x ∧ x′a∗a.

So, (L1) holds in (a], proving (i). The proof of (ii) is similar to (i). □
Lemma 3.3. Let A ∈ DQDP satisfy (L1) and let a ∈ A such that a ∨ a∗ = 1 and a ∧ a′ = 0. Let
g : A → (a] × (a∗] be defined by g(x) = ⟨x ∧ a, x ∧ a∗⟩. Then g is an isomorphism from A onto (a] × (a∗].

Proof. It is easy to see that g is a lattice-homomorhism. Now,

(g(x))∗ = (⟨x ∧ a, x ∧ a∗⟩)∗
= ⟨(x ∧ a)∗a, (x ∧ a∗)∗(a∗)⟩
= ⟨(x ∧ a)∗ ∧ a, (x ∧ a∗)∗ ∧ a∗⟩
= ⟨x∗ ∧ a, x∗ ∧ a∗⟩ since ∗ is a pseudocomplement
= g(x∗).

Next,
(g(x))′ = (⟨x ∧ a, x ∧ a∗⟩)′

= ⟨(x ∧ a)′a, (x ∧ a∗)′a∗⟩
= ⟨(x ∧ a′)′ ∧ a, (x ∧ a∗)′ ∧ a∗⟩
= ⟨(x′ ∨ a′) ∧ a, (x′ ∨ a∗′) ∧ a∗⟩
= ⟨x′ ∧ a, (x′ ∧ a∗) ∨ (a∗′ ∧ a∗)⟩ since a ∧ a′ = 0
= ⟨x′ ∧ a, x′ ∧ a∗⟩ since a∗′ ∧ a∗ = 0 by (ii) of Lemma 3.1
= g(x′).

Next, suppose g(x) = g(y). Then, ⟨x∧a, x∧a∗⟩ = ⟨y∧a, y∧a∗⟩, whence x∧a = y∧a and x∧a∗ = y∧a∗.
Thus, in view of the hypothesis, x = x ∧ (a ∨ a∗) = (x ∧ a) ∨ (x ∧ a∗) = (y ∧ a) ∨ (y ∧ a∗) = y ∧ (a ∨ a∗) = y,
implying g is one-one. It is clear that g is onto. □
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Lemma 3.4. Let A ∈ AG. If a = a′∗, then a′ = a∗.

Proof. From a = a′∗, we get a′′ = a′∗′′ = a′∗ = a, in view of the axiom (∗)w. Thus we have the following:

a′′ = a. (5)

Next, we have a′ ≤ a′∗∗ = a∗, since a′∗ = a. Thus,

a′ ≤ a∗. (6)

Hence, we get
a′ = a′ ∧ a∗ by (6)

= a′ ∧ a′′∗ by (5)
= (a′ ∧ a′′∗)′∗ by (L1)
= (a′′ ∨ a′′∗′)∗
= a′′∗ ∧ a′′∗′∗
= a∗ ∧ a∗′∗, by (5).

Thus,
a′ = a∗ ∧ a∗′∗. (7)

By (6), we have a′ = a′ ∧ a∗, whence a′′ = a′′ ∨ a∗′, implying a = a ∨ a∗′ in view of (5). Hence we get
a∗ = a∗′∗ ∧ a∗. Hence, in view of (7), we conclude a′ = a∗. □

Lemma 3.5. Let A ∈ DHMP satisfying x′′ ≤ x and let a ∈ A such that a′ = a∗. Then a ∨ a∗ = 1.

Proof. From a ∧ a∗ = 0, we get a′ ∨ a∗′ = 1, implying a′ ∨ a′′ = 1 as a′ = a∗. Hence a′ ∨ a = 1 since a′′ ≤ a,
whence a ∨ a∗ = 1, as a′ = a∗. □

Corollary 3.6. Let A ∈ AG and let a ∈ A such that a′ = a∗. Then A ∼= (a] × (a∗].

Proof. Let A and a be as in the hypothesis. Then by Lemma 3.5 we have a∨ a∗ = 1. Also, since a′ = a∗ by
hypothesis, it is clear that a ∧ a′ = 0. Hence, in view of Lemmma 3.3 we conclude that A ∼= (a] × (a∗]. □

Lemma 3.7. Let A ∈ DHMP such that
(1) A |= x′′ ≤ x and
(2) A |= x ∧ x′∗ ≈ (x ∧ x′∗)′∗ (L1).

Let y ∈ A. Then (y ∧ y′∗) ∨ (y ∧ y′∗)∗ = 1.

Proof. Observe y ∨ (y ∧ y′∗)∗ ≥ y′′ ∨ (y ∧ y′∗)∗ = y′′ ∨ (y ∧ y′∗)′∗∗ = y′′ ∨ (y′ ∨ y′∗′)∗∗ = y′′ ∨ (y′∗ ∧ y′∗′∗)∗ ≥
y′′ ∨ y′∗′∗∗ ≥ y′′ ∨ y′∗′ = (y′ ∧ y′∗)′ = 0′ = 1, Thus,

y ∨ (y ∧ y′∗)∗ ≈ 1, . (8)

Now
(y ∧ y′∗) ∨ (y ∧ y′∗)∗ = [y ∨ (y ∧ y′∗)∗] ∧ [y′∗ ∨ (y ∧ y′∗)∗]

= 1 ∧ [y′∗ ∨ (y ∧ y′∗)∗] by (8)
= [y′∗ ∨ (y ∧ y′∗)∗]
= [y′∗ ∨ (y ∧ y′∗)′∗∗] by (L1)
= [y′∗ ∨ (y′∗ ∧ y′∗′∗)∗]
= 1, by (8),

which completes the proof. □
Now we will introduce a condition for an algebra A ∈ AG that will be used in the rest of the paper.

(SC) x ̸= 1 then x ∧ x′∗ = 0.
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Lemma 3.8. Let A ∈ AG be directly indecomposable. Then A satisfies (SC).

Proof. Suppose A does not satisfy (SC). Then there exists a b ∈ A such that b ̸= 1 and b ∧ b′∗ ̸= 0. Since
b ∧ b′∗ = (b ∧ b′∗)′∗ by (L1), we have (b ∧ b′∗)∗ = (b ∧ b′∗)′ by Lemma 3.4, which, in view of Lemma 3.7 (b)
implies (b∧b′∗)∨ (b∧b′∗)∗ = 1. Hence by Corollary 3.6, we get A ∼= (b∧b′∗]× ((b∧b′∗)∗]. Since b∧b′∗ ̸∈ {0, 1},
A is expressed as a nontrivial direct product, completing the proof. □

Lemma 3.9. Let A ∈ AG satisfying (SC) and a ∈ A \ {0}. Then a ∨ a∗′ = 1.

Proof. Let x ∈ A. Then, since x′ ≤ x ∨ x′, we get x ≥ x′′ ≥ (x′ ∨ x)′. Hence, x ∨ (x′ ∨ x)′ = x, implying
x∗ ∧ (x′ ∨ x)′∗ = x∗. Thus, we have

For x ∈ A, x∗ ≤ (x ∨ x′)′∗. (9)

Replacing x by x∗ in (9), we get x ≤ x∗∗ ≤ (x ∨ x∗′)′∗. Thus,

For x ∈ A, x ≤ (x ∨ x∗′)′∗. (10)

Now, suppose the conclusion of the lemma is false. Then a∨ a∗′ ̸= 1. Therefore, (a∨ a∗′)∧ (a∨ a∗′)′∗ = 0 by
(SC), from which we get a ∧ (a ∨ a∗′) ∧ (a ∨ a∗′)′∗ = 0, which simplifies to a ∧ (a ∨ a∗′)′∗ = 0. It follows, in
view of (10), that a = 0, which is a contradiction to a ̸= 0., proving the lemma. □

Lemma 3.10. Let A ∈ AG and a, b ∈ A such that

(i) A satisfies (SC);

(ii) 0 < a < b < 1.
Then, a∗∗ = 1.

Proof. Assume A and a, b satisfy the hypothesis, and further suppose a∗∗ ̸= 1. We wish to arrive at a
contradiction.

CLAIM 1: a∗∗ = a.
For, from the supposition that a∗∗ ̸= 1, it is clear that a∗ ̸= 0 and so, a∗′ ̸= 1, in view of the axiom (∗)w.
Hence, a∗′ ∧ a∗′′∗ = 0 by (SC). So,

a = a ∨ (a∗′ ∧ a∗′′∗)
= (a ∨ a∗′) ∧ (a ∨ a∗′′∗)
= a ∨ a∗′′∗, since a ∨ a∗′ = 1 by Lemma 3.9
= a ∨ a∗∗ since a∗′′ = a∗ by the axiom (∗)w
= a∗∗, as a ≤ a∗∗,

proving the claim.

CLAIM 2: a′′ = a.
For,

a′′ = a∗∗′′ by CLAIM 1
= a∗∗ by the axiom (∗)w
= a by CLAIM 1.

CLAIM 3: b ≤ a′.
From (R1) we have b∧ (a′ ∨ a′∗) = b∧ [(b∧ b′∗′)∨ (a′ ∨ a′∗)] = (b∧ b′∗′)∨ [b∧ (a′ ∨ a′∗)] = b∧ [b′∗′ ∨ (a′ ∨ a′∗)].
Thus we have

b ∧ (a′ ∨ a′∗) = b ∧ [b′∗′ ∨ a′ ∨ a′∗]. (11)
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As b ̸= 1, we have b∧b′∗ = 0 by (SC). Also, as a ≤ b, we have a′∗ ≤ b′∗ implying b∧a′∗ = 0. So a′ = a′∨(b∧a′∗),
which implies a′ = (a′∨b)∧(a′∨a′∗), whence, b∧a′ = b∧(a′∨a′∗). But we know b∧(a′∨a′∗) = b∧[b′∗′∨(a′∨a′∗)]
from (11), whence we have the following:

b ∧ a′ = b ∧ (b′∗′ ∨ a′ ∨ a′∗). (12)

In view of (SC), as b ̸= 1, we get b ∧ b′∗ = 0. So, b′ ∨ b′∗′ = 1, implying a′ ∨ b′∗′ = 1, as a ≤ b. Hence, from
(12) we have b ∧ a′ = b ∧ (1 ∨ a′∗). Thus we get b ∧ a′ = b.

CLAIM 4: a′ = 1.
For, suppose a′ ̸= 1. Then a′ ∧ a′∗ = 0. Hence (a′ ∧ a′∗) ∨ (a′ ∧ a′′∗∗) = a′ ∧ a′′∗∗, implying a′ ∧ (a′∗ ∨ a′′∗∗) =
a′ ∧ a′′∗∗. Since a′∗ ∨ a′′∗∗ = 1, we have a′ = a′ ∧ a′′∗∗. Hence b ∧ a′ = b ∧ a′′∗∗. But, from CLAIM 3, we have
b = b ∧ a′. Hence, we get b ≤ a′′∗∗ ≤ a∗∗.

But a”=a by CLAIM 2. Hence we have b ≤ a∗∗. Also we know a∗∗ = a by CLAIM 1. Thus b ≤ a, which
is a contradiction to a < b. Hence we conclude a′ = 1, proving the claim.

Now, in view of CLAIM 2 and CLAIM 4, we get a = a′′ = 0, which is a contradiction to the hypothesis
that a > 0. This contradiction proves that our initial supposition is false. Thus the conclusion a∗∗ = 1 holds,
proving the lemma. □

Let h(A) denote the height of A ∈ AG.

Lemma 3.11. Let A ∈ AG satisfy (SC). Then h(A) ≤ 2.

Proof. Suppose h(A) > 2. Hence, there exist elements a, b ∈ A such that 0 < a < b < 1. Since b ̸= 1, we
have b∧ b′∗ = 0 by (SC), implying that a∧ b′∗ = 0 since a < b. So, a∗∗ ∧ b′∗∗∗ = 0 which implies b′∗ = 0, since
a∗∗ = 1 by Lemma 3.10. Thus we have

b′∗ = 0. (13)

From regularity it follows that b ∧ b′∗′ ≤ a ∨ a∗, which implies b ≤ a in view of (13) and Lemma 3.10. Hence
we have arrived at a contradiction, proving the lemma. □

The following theorem gives an explicit description of subdirectly irreducible Almost Gautama algebras.

Theorem 3.12. Let A ∈ AG. Then the following are equivalent:
(1) A is simple;
(2) A is subdirectly irreducible;
(3) A is directly indecomposable;
(4) A satisfies (SC);
(5) A ∈ {2,3dblst,3dmst,4dmba}, where 4dmba is the algebra in Figure 3.

Proof. It is well-known that (1) ⇒ (2) ⇒ (3). (3) ⇒ (4) is proved in Lemma 3.8. We now prove (4) ⇒ (5);
so, we assume (4). We know from Lemma 3.11 that the height of the lattice reduct of A is ≤ 2. Now it is
easy to see that the only nontrivial algebras in AG of height ≤ 2, up to isomorphism, are 2, 3dblst, 3klst,
4dmba and 2× 2. But, it is easily seen that the algebra 2× 2 does not satisfy (4); thus, (5) holds. Finally,
it is routine to verify that 2, 3dblst, 3klst, and 4dmba are indeed simple, thus, (5) ⇒ (1). Hence, the proof of
the theorem is complete. □

In the rest of this section we present several consequences of Theorem 3.12.

Corollary 3.13. The variety AG is generated by {3dblst,3dmst,4dmba}. Hence, every algebra A ∈ AG is a
subdirect product of 2, 3dblst, 3dmst, and 4dmba.

Corollary 3.13 will be improved further in Corollary 5.4.
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3.1 Equational Bases for subvarieties of AG

We now give equational bases for all subvarieties of the variety AG. In view of Theorem 3.12, the proofs of
the following theorems are easy and hence are left to the reader.

Corollary 3.14. The variety V(2)(= BA) is defined, modulo AG, by
the identity: x∗ ≈ x′.

Corollary 3.15. The variety V(3dblst) is defined, modulo AG, by
(i) the identity: x ∨ x′ ≈ 1
or by
(ii) the identity: x′ ∧ x′′ ≈ 0,
or by
(iii) the identity: x′∗′ ≈ x′.

Corollary 3.16. The variety V(3klst) is defined, modulo AG, by the identities: x∗′ ≈ x∗∗, and x′′ ≈ x.

Corollary 3.17. The variety V(4dmba) is defined, modulo AG, by
(i) the identity: x ∨ x∗ ≈ 1.
or by
(ii) the identity: x∗∗ ≈ x,
or by
(iii) the identity: x′∗′ ≈ x∗.
or by
(iv) x∗∗ ≈ x′′.

Corollary 3.18. The variety V({3dblst,3klst}) is defined, modulo AG, by:
x∗′ ≈ x∗∗.

Since 3dblst and 3klst are Gautama algebras and 4dmba is not, the following corollary, which was first
proved in [64], is immediate.

Corollary 3.19. [64] The variety G of Gautama algebras is generated by {3dblst,3klst} (i.e., G = V(3dblst,3klst)).

Corollary 3.20. The variety V({3dblst,4dmba}) is defined, modulo AG, by the identity:

x′ ∨ (y∗ ∨ z) ≈ (x′ ∨ y)∗ ∨ (x′ ∨ z) (A version of (JID),

or by the identity:

(x′ ∨ y)∗ ∨ x′ ≈ x′ ∨ y∗.

Corollary 3.21. The variety V({3klst,4dmba}) is defined, modulo AG, by the identity: x′′ ≈ x.

3.2 The Lattice of Subvarieties of AG

We give more applications of Theorem 3.12. The proof of the following corollary of Theorem 3.12 is easy.

Corollary 3.22.

(1) The lattice of nontrivial subvarieties of AG is isomorphic to the 8-element Boolean lattice with V(2)
(i.e., the variety of Boolean allgebras) as the least element. The Hasse diagram of this lattice is given
in Figure 4.
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Figure 4

(2) The lattice of nontrivial subvarieties of G is isomorphic to the 4-element Boolean lattice with V(2) as
the least element.

Since the variety AG is finitely generated, the following corollary is immediate.

Corollary 3.23. The equational theories of AG and all its subvarieties are decidable.

In fact, a much stronger result is true (see Corollary 5.5).
In passing, we mention two new axiomatizations for the variety G, whose proofs are left to the reader.

The variety of regular dually quasi-De Morgan p-algebras of level 1 (i.e., satisfying x ∧ x′∗ ∧ x′∗′∗ ≈ x ∧ x′∗)
is denoted by RDQDP1.

Theorem 3.24. The variety G is also defined, modulo RDQDP1, by
x∗′∗ = x∗.

Theorem 3.25. The variety G is also defined, modulo RDQDP1, by
x′∗′∗ = x′∗ and x∗ ∨ x∗∗ ≈ 1.

4 The Variety of Almost Gautama Heyting Algebras (AGH)

Observe that the implication connective is missing in algebras in AG. Let us, therefore, consider the language
L = ⟨∨,∧,→,′ , 0, 1⟩. We will now define a new variety of algebras, namely the variety AGH of Almost
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Gautama Heyting algebras of type L and show that it is term-equivalent to the variety AG of Almost
Gautama algebras. This fact will play a crucial role later in “logicizing” the variety AG.

Actually, AGH turns out, to our surprise, to coincide with the variety RDQDStH1, already introduced in
[60], which is a subvariety of DHMSH of dually hemimorphic semi-Heyting algebras. The variety DHMSH
and its many subvarieties have been investigated in a series of papers, some of which are: [4, 32, 45, 48, 46,
58, 59, 60, 61, 62, 63, 15, 16, 64, 17]. We, therefore, need to recall some preliminaries.

Semi-Heyting algebras were introduced in [47]; but the first results about them were published in [57].
For further results on semi-Heyting algebras, see, for example, [1, 2, 3, 14, 13].

Definition 4.1. An algebra A = ⟨A,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra if A satisfies the following
conditions:

(i) ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice,

(ii) x ∧ (x→ y) ≈ x ∧ y,

(iii) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],

(iv) x→ x ≈ 1.

The variety of semi-Heyting algebras is denoted by SH.
A ∈ SH is a Heyting algebra if it satisfies:

(H) (x ∧ y) → x ≈ 1.
The variety of Heyting algebras is denoted by H.

We can now define the crucial notion of a dually hemimorphic semi-Heyting algebra fundamental to the
rest of this paper.

Definition 4.2. An algebra A = ⟨A,∨,∧,→,′ , 0, 1⟩ is a dually hemimorphic semi-Heyting algebra (see [58]).
if A satisfies the following conditions:

(E1) ⟨A,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra,

(E2) ⟨A,∨,∧,′ , 0, 1⟩ is a dually hemimorphic algebra (see Definition 2.3).

The variety of dually hemimorphic semi-Heyting algebras will be denoted by DHMSH.
A ∈ DHMSH is a dually hemimorphic Heyting algebra if it satisfies:

(H) (x ∧ y) → x ≈ 1.
DHMH denotes the variety of dually hemimorphic Heyting algebras. A ∈ DHMSH is a dually quasi-De
Morgan semi-Heyting algebra if its reduct ⟨A,∨,∧,′ , 0, 1⟩ is in DQD.

The varieties of dually quasi-De Morgan semi-Heyting algebras and of dually quasi-De Morgan Heyting
algebras are, respectively, denoted by DQDSH and DQDH.

A ∈ DHMSH is regular if L satisfies:

(R1) x ∧ x+ ≤ y ∨ y∗, where x∗ := x→ 0 and x+ := x′∗′.

The variety of regular dually hemimorphic [quasi-De Morgan] Heyting algebras is denoted by RDHMH
[RDQDH].

A ∈ RDQDH is a regular dually quasi-De Morgan Stone Heyting algebra if A satisfies:

(St) x∗ ∨ x∗∗ ≈ 1.

Let RDQDStH denote the variety of regular dually quasi De Morgan Stone Heyting algebras.
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Remark 4.3. The reader is cautioned here not to confuse the notion of regularity given in the above definition
with the one given in [58].

The varieties DHMSH, DHMH, DQDH, RDQDH, RDQDStH and many of their subvarieties are examined,
in [58, 59, 60, 61]. The logics associated with those subvarieties of the variety DHMSH are investigated in
[16].

The notion of “level n” has played an important role in the classification of subvarieties of DHMSH in
[58], although this name was not explicitly used there. We only need the definition of “level 1” here.

Definition 4.4. An algebra A ∈ DHMSH is of level 1 if it satisfies the identity:

x ∧ x′∗ ≈ x ∧ x′∗ ∧ x′∗′∗ (Level 1).

Let DHMSH1 denote the subvariety of DHMSH of level 1. For a subvariety V of DHMSH, we let V1 :=
V ∩ DHMSH1. Thus, RDQDStH1 denotes the subvariety of RDQDStH of level 1.

We are ready to define the variety of Almost Gautama Heyting algebras.

Definition 4.5. An algebra A = ⟨A,∨,∧,→,′ , 0, 1⟩ is an Almost Gautama Heyting algebra if A ∈ DHMSH
and satisfies the following additional axioms:

(1) (x ∧ y) → x ≈ 1 (H),

(2) x∗ ∨ x∗∗ ≈ 1 (St), where x∗ := x→ 0,

(3) (x ∨ y)′′ ≈ x′′ ∨ y′′,

(4) x′′ ≤ x,

(5) x ∧ x′∗′ ≤ y ∨ y∗ (R1),

(6) x∗′′ ≈ x∗ (∗)w,

(7) (x ∧ x′∗)′∗ ≈ x ∧ x′∗ (L1).

The variety of Almost Gautama Heyting algebras will be denoted by AGH.

Remark 4.6. It is clear that AGH ⊆ DQDH. Hence, it follows from Lemma 2.4 (5) of [59] that the identity
(Level 1) is equivalent to the following identity in GH:

(L1) (x ∧ x′∗)′∗ ≈ x ∧ x′∗.

Proposition 4.7. AGH ⊆ RDQDStH1 ⊂ DQDH1 ⊂ DHMSH1.

Proof. Axioms (1) –(5) of AGH imply that AGH ⊆ RDQDStH. Also, the variety AGH is of level 1 by
definition and Remark 4.6, whence AGH ⊆ RDQDStH1. The rest of the inclusions are also immediate from
the relevant definitions. □

Remark 4.8.

(1) Let 3dsth := ⟨3,∨,∧,→,+ , 0, 1} be the algebra, where 3 is the 3-element chain, 0 < a < 1 (viewed as
a bounded distributive lattice), the operation + is defined as: 0+ = 1, a+ = 1 and 1+ = 0, and → is
defined as follows:
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→ 0 a 1

0 1 1 1

a 0 1 1

1 0 a 1

Clearly, 3dsth is an algebra in AGH.

(2) Let 3klh := ⟨3,∨,∧,→,′ , 0, 1⟩ be the algebra, where 3 is the 3-element chain, 0 < a < 1 (viewed as a
bounded distributive lattice), the operation ′ is defined as: 0′ = 1, a′ = a and 1′ = 0, and → is defined
as in (1). Note that 3klh is also an algebra in AGH.

(3) Let 4dmh := ⟨4,∨,∧,→,′ , 0, 1⟩ be the De Morgan Heyting (Boolean) algebra, where 4, is the 4-element
Boolean lattice shown below and the operation ′ is defined as: 0′ = 1, a′ = a, b′ = b and 1′ = 0; and →
is the Boolean implication: s

s s
s
0

a = a′ b = b′

1
4dmh :
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Figure 4

It is easy to see that 4dmh ∈ AGH.

We, now, wish to give an explicit description of the subdirectly irreducible algebras in AGH. To achieve
this goal, we need some definitions and results from [59].

The following lemma is a special case of Lemma 4.8 of [59], when the underlying semi-Heyting algebra is
actually a Heyting algebra.

Lemma 4.9. Let A ∈ RDQDStH1 satisfy the simplicity condition:
(SC) For every x ∈ L, if x ̸= 1, then x ∧ x′∗ = 0.

Then A is of height at most 2.

Corollary 4.10. Let A ∈ AGH. If A satisfies (SC), then A is of height at most 2.

Proof. We know AGH ⊆ RDQDStH1 by Proposition 4.7. Now apply Lemma 4.9. □
The following lemma is a special case of Corollary 4.1 of [59].

Lemma 4.11. Let A ∈ RDQDStH1 with |A| ≥ 2. Then TFAE:

(1) A is simple,

(2) A is subdirectly irreducible,

(3) For every x ∈ A, if x ̸= 1, then x ∧ x′∗ = 0.

We are now ready to give a concrete description of the subdirectly irreducible algebras in AGH.

Theorem 4.12. Let L ∈ AGH with |L| ≥ 2. Then TFAE:
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(1) L is simple,

(2) L is subdirectly irreducible,

(3) For every x ∈ L, if x ̸= 1, then x ∧ x′∗ = 0,

(4) L ∈ {2, 3dsth, 3klh,4dmh, }, up to isomorphism.

Proof. (1) ⇒ (2) is well-known, while (2) ⇒ (3) by Lemma 4.11. Suppose (3) holds. Then A is of height
at most 2 by Corollary 4.10. Then it is easy to see that the algebras of height at most 2 in AGH are, up
to isomorphism, precisely 2, 3dsth, 3klh, 4dmh, and 2× 2. It is also clear that the algebra 2× 2 does not
satisfy the hypothesis (3), implying that (4) holds. Thus (3) implies (4), while it is routine to verify that (4)
implies (1), proving the theorem. □

Corollary 4.13.

(i) The smallest non-trivial subvariety of AGH is BA.

(ii) The lattice of nontrivial subvarieties of AGH has exactly 3 atoms: V(3dsth), V(3klh), and V(4dmh).

(iii) The lattice of nontrivial subvarieties of AGH is isomorphic to 8-element Boolean algebra.

Let GH denote the variety V(3dsth),3klh). We will call its elements Gautama Heyting algebras.

Corollary 4.14. Let A := ⟨A,∨,∧,→A, ′, 0, 1⟩ ∈ AGH. Define →k on A by

x→k y := (x∗ ∨ y∗∗)∗∗ ∧ [(x ∨ x∗)′∗′ ∨ x∗ ∨ y ∨ y∗],

where x∗ := x→A 0. Then, →A = →k.

Proof. It suffices to show that the equality holds on the (non-trivial) subdirectly irreducible algebras in
AGH, which, in view of Theorem 4.12, are 2,3dsth, and 3klh, and 4dmh, up to isomorphism. Now it is
routine to verify the equality of →A and →k on these four algebras. □

Corollary 4.15. AGH = RDQDStH1.

Proof. It is clear from Theorem 4.12 and Theorem 4.9 of [59] that both the varieties have the same subdirectly
irreducible algebras. □

5 Applications

5.1 Term-Equivalence between Almost Gautama algebras and AGH-algebras

The following theorem will play a crucial role in describing the logic associated with the variety of Almost
Gautama algebras.

Theorem 5.1. The varieties AG and AGH are term-equivalent. More explicitly,

(a) For A := ⟨A,∨,∧,∗ ,′ , 0, 1⟩ ∈ AG, let Aagh := ⟨A,∨,∧,→k,
′ , 0, 1⟩, where →k is defined by:

x→k y := (x∗ ∨ y∗∗)∗∗ ∧ [(x ∨ x∗)′∗′ ∨ x∗ ∨ y ∨ y∗].

Then Aagh ∈ AGH.
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(b) For A := ⟨A,∨,∧,→A, ′, 0, 1⟩ ∈ AGH, let Aag := ⟨A,∨,∧,◦ ,′ , 0, 1⟩, where ◦ is defined by x◦ := x →A

0. Then Aag ∈ AG.

(c) If A ∈ AG, then (Aagh)ag = A.

(d) If A ∈ AGH, then (Aag)agh = A.

Proof. (a): Observe that it suffices to verify that (a) holds for subdirectly irreducible members of AG. So,
let A be a nontrivial subdirectly irreducible algebra in AG. Then A ∈ {2,3dblst,3klst,4dmbl} by Theorem
3.12. It is obvious that Aagh ∈ {2,3dsth,3klh,4dmh}. It is now routine to verify that Aagh ∈ AGH, whence
(a) is proved.

(b): The proof of (b) is similar to that of (a), in view of Theorem 4.12.
(c): Let A := ⟨A,∨,∧, ∗,′ , 0, 1⟩ ∈ AG. Then Aagh ∈ AGH by (a). Now, let A1 := (Aagh)gh :=

⟨A,∨,∧,◦ , ′, 0, 1⟩, where x◦ := x→k 0. It is clear that x→k 0 = x∗. Then it follows that x◦ = x∗, implying
A1 = A.

(d): Let A := ⟨A,∨,∧,→A, ′, 0, 1⟩ ∈ AGH. Then Aag ∈ AG by (b). Now, let A1 := (Agh)agh :=
⟨A,∨,∧,→k, 0, 1⟩, Observe that →k= →A by Corollary 4.14. Hence, A1 = A, completing the proof. □

5.2 Discriminator Subvarieties of AGH

Recall that the notions of a discriminator term, a discriminator variety and a quasiprimal algebra were defined
in Section 1. Discriminator varieties have been a popular topic with a considerable amount of research (see
for example, [10, 72]).

Theorem 5.2.

(i) The variety AGH is a discriminator variety with the discriminator term

t(x, y, z) := [z ∧ d((x ∨ y) → (x ∧ y))] ∨ [x ∧ (d((x ∨ y) → (x ∧ y)))∗], where d(x) = x ∧ x′∗.

(ii) The algebras 3dblst, 3klst and 4dmbl are quasiprimal.

Proof. From Theorem 4.12 (3), it is clear that x ̸= 1 ⇒ d(x) = 0 and x = 1 ⇒ d(x) = 1 on simple algebras.
Hence, in view of Theorem 4.12 (4), if L ∈ {2, 3dsth, 3klh,4dmh, }, then it is easy to verify the following
two conditions: (a) x ̸= y ⇒ t(x, y, z) = x and (b) x = y ⇒ t(x, y, z) = z. Hence t(x, y, z) is a discriminator
term and hence, AGH is a discriminator variety. □

Since AG and AGH are term-equivalent by Theorem 5.1, the following corollary is immediate.

Corollary 5.3. The varieties AG, G, RDBLSt, RKLSt and the remaining subvarieties of AG are discrimi-
nator varieties.

The algebras in AG have a nice representation as mentioned in the next corollary which is a considerable
improvement of Corollary 3.13.

Corollary 5.4. If V ∈ {AG,G,RDBLSt,RKLSt}, then every algebra in V is isomorphic to a Boolean Product
of simple algebras in V.

Proof. Apply [10, Chapter IV, Theorem 9.4] and Corollary 5.3. □
The following corollary is a considerable improvement of Corollary 3.23.

Corollary 5.5.
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(a) The first-order theory of AGH is decidable,.

(b) The first-order theories of AG, G, RDBLSt, RKLSt and the remaining subvarieties of AG are all
decidable.

Proof. The corollary follows from a well known result (see [11]) that a finitely generated discriminator
variety of finite type has a decidable first-order theory. (b) follows from (a), in view of Theorem 5.1. □

We close this section by mentioning two new axiomatizations for the variety AGH. The proofs of these
theorems are left to the reader.

Theorem 5.6. The variety AGH is also defined, modulo RDQDH1, by
x∗′′∗ = x∗∗.

Theorem 5.7. The variety AGH is also defined, modulo RDQDH1 by (x ∧ y)∗′ = x∗′ ∧ y∗′.

6 Classical Nelson algebras, RKLSt, RKLStH and 3-valued Lukasiewicz
algebras

Nelson [34], Markov [26] and Vorobév [71] were the early contributors to the constructive logic with strong
negation. Later, Rasiowa [39] introduced Nelson algebras (= quasi-pseudo-Boolean algebra) and used them to
prove that the constructive logic with strong negation is implicative (see also [19]). Soon thereafter, Vakarelov
[67] introduced the notion of classical Nelson algebras and proved that the variety of classical Nelson algebra
is term equivalent to that of 3-valued  Lukasiewicz algebras.

In this section we wish to prove this Vakarelov’s result by (universal) algebraic means and then derive
our main result of this section that the varieties of regular Kleene Stone algebras, of regular Kleene Stone
Heyting algebras, of 3-valued Lukasiewicz algebras and of classical Nelson algebra with strong negation are
all term-equivalent to one another. A logical consequence of this result will be presented in Section 8.1.

We will first recall the definition of Nelson algebras.

Definition 6.1. [33] A Nelson algebra is an algebra ⟨A,∨,∧,→,′ , 1⟩ such that the following conditions are
satisfied for all x, y, z in A:

(N1) x ∧ (x ∨ y) = x,

(N2) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x),

(N3) x′′ = x,

(N4) (x ∧ y)′ = x′ ∨ y′,

(N5) x ∧ x′ = (x ∧ x′) ∧ (y ∨ y′),

(N6) x→ x = 1,

(N7) x ∧ (x→ y) = x ∧ (x′ ∨ y),

(N8) (x ∧ y) → z = x→ (y → z).

The variety of Nelson algebras is denoted by N. Let 1′ := 0.
A complete proof of the following Theorem, which was first proved in [31], is available in [69, Corollary

2.5].
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Theorem 6.2. A nontrivial algebra A ∈ N is simple if and only if A ∈ {2,3N}, where 3N is the algebra
shown in Figure 5, with ′ defined as: 0′ = 1, a′ = a, 1′ = 0.

s
s
s

0

a

1

3N :

→ 0 a 1

0 1 1 1

a 1 1 1

1 0 a 1

The following definition is due to [67].

Definition 6.3. A Nelson algebra is a classical Nelson algebra if it satisfies:
(C) x ∨ x+ ≈ 1, where x+ := x→ 0.

We will denote by CN the variety of Classical Nelson algebras. Observe that 2,3N ∈ CN. In fact, we wish
to show that CN is generated by 3N.

The following theorem was proved in [69, Theorem 4.13].

Theorem 6.4. A ∈ CN is semisimple if and only if A |= x ∨ x+ ≈ 1.

Corollary 6.5. CN = V(3N).

Proof. The corollary is immediate from Theorem 6.2 and Theorem 6.4. □

Corollary 6.6. Let V be a subvariety of N. Then the following are equivalent:
(1) V is a discriminator variety,
(2) V is semisimple,
(3) V = V(3N).
(4) V = CN.

Corollary 6.7. Let A be a classical Nelson algebra. For x ∈ A, set x+ := x → 1. Then the reduct
⟨A,∨,∧,+ , 0, 1⟩ is a dually pseudocomplemented lattice.

Proof. Observe that for A = 3N the reduct in question is a dually pseudocomplemented lattice. Now apply
Corollary 6.5. □

Let 3L denote the 3-element  Lukasiewicz algebra.

Lemma 6.8. 3L and 3N are term-equivalent.

Proof. Given 3N = ⟨{0, a, 1},∨,∧,→,′ , 1⟩ ∈ CN, define a new operation ⇝ on {0, a, 1} by:
x⇝ y := (x→ y) ∧ (y′ → x′).

Then ⇝ and ∼, given by:
⇝ 0 a 1

0 1 1 1
a a 1 1
1 0 a 1

and

∼
0 1
a a
1 0
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are the well known operations of  Lukasiewicz’s three–valued algebra. Thus ⟨{0, a, 1},∨,∧,⇝,∼, 1⟩ is a 3-
valued  Lukasiewicz algebra isomorphic to 3L.

On the other hand, suppose 3L = ⟨{0, a, 1},∨,∧,⇝,∼, 1⟩ is the three-valued  Lukasiewicz algebra. Then,
consider the algebra 3̄L := ⟨{0, a, 1},∨,∧,→,′ , 1⟩, where the operations ′ and → are defined by:

x′ := x⇝ ∼ x,
x→ y = x⇝ (x⇝ y), for x ∈ {0, a, 1}.
(We could also define ∨ and ∧ as follows: x ∨ y := (x⇝ y)⇝ y, and x ∧ y :=∼ (∼ x ∨ ∼ y).)

Then it is easy to verify that 3̄L is a classical Nelson algebra isomorphic to 3N. The lemma follows. □
We are now ready to prove our main theorem of this section.

Theorem 6.9. The following varieties are term equivalent to one another:
(a) The variety RKLSt of regular Kleene Stone algebras,
(b) The variety RKLStH of regular Kleene Stone Heyting algebras,
(c) The variety of 3-valued Lukasiewicz algebras,
(d) The variety of classical Nelson algebras with strong negation.

Proof. The equivalence of (a) and (b) follows from [64, Corollary 10]. The equivalence of (b) and (c) is
proved in [15, Theorem 7.14]. It is well-known that the variety of 3-valued Lukasiewicz algebras is generated
by 3L, and we know from Theorem 6.5 that the variety of classical Nelson algebras is generated by 3N. So,
the equivalence of (c) and (d) follows from Lemma 6.8. □

We close this section by pointing out that Nelson algebras are recently generalized to semi-Nelson algebras
in [18] and to quasi-Nelson algebras in [42].

7 Logical Aspects of AG

The rest of the paper, for the most part, is concerned with defining and investigating a propositional logic,
in Hilbert-style, called AG (also known as AGH) from the point of view of Abstract Algebraic Logic, with
the ultimate goal of showing that the logic AG is algebraizable (in the sense of Blok and Pigozzi [9] with the
variety AG of Almost Gautama algebras as its equivalent algebraic semantics. Logics corresponding to the
subvarieties of AG are also defined and studied.

7.1 Abstract Algebraic Logic

In this subsection, we present the basic definitions and results of Abstract Algebraic Logic that will play
a crucial role later.

Languages, Formulas and Logics

A language L is a set of finitary operations (or connectives), each with a fixed arity n ≥ 0. In this
paper, we identify ⊥ and ⊤ with 0 and 1 respectively and thus consider the languages ⟨∨,∧,→,∼,⊥,⊤⟩ and
⟨∨,∧,→,′ , 0, 1⟩ as the same. For a countably infinite set Var of propositional variables, the formulas of the
language L are inductively defined as usual. The set of formulas in the language L will be denoted by FmL

The set of formulas FmL can be turned into an algebra of formulas, denoted by FmL, in the usual way. In
what follows, Γ denotes a set of formulas and lower case Greek letters denote formulas. The homomorphisms
from the formula algebra FmL into an L-algebra (i.e, an algebra of type L) A are called interpretations (or
valuations) in A. The set of all such interpretations is denoted by Hom(FmL,A). If h ∈ Hom(FmL,A)
then the interpretation of a formula α under h is its image hα ∈ A, while hΓ denotes the set {hϕ | ϕ ∈ Γ}.
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Consequence Relations:

A consequence relation on FmL is a binary relation ⊢ between sets of formulas and formulas that satisfies
the following conditions for all Γ, ∆ ⊆ FmL and ϕ ∈ FmL :

(i) ϕ ∈ Γ implies Γ ⊢ ϕ,
(ii) Γ ⊢ ϕ and Γ ⊆ ∆ imply ∆ ⊢ ϕ,
(iii) Γ ⊢ ϕ and ∆ ⊢ β for every β ∈ Γ imply ∆ ⊢ ϕ.
A consequence relation ⊢ is finitary if Γ ⊢ ϕ implies Γ′ ⊢ ϕ for some finite Γ′ ⊆ Γ.

Structural Consequence Relations:

A consequence relation ⊢ is structural if

Γ ⊢ ϕ implies σ(Γ) ⊢ σ(ϕ) for every substitution σ (∈ Hom(FmL,FmL)), where σ(Γ) := {σα : α ∈ Γ}.

Logics:

A logic (or deductive system) is a pair S := ⟨L,⊢S⟩, where L is a propositional language and ⊢S is a
finitary and structural consequence relation on FmL.

A rule of inference is a pair ⟨Γ, ϕ⟩, where Γ is a finite set of formulas (the premises of the rule) and ϕ is
a formula.

One way to present a logic S is by displaying it (syntactically) in Hilbert-style; that is, giving its axioms
and rules of inference which induce a consequence relation ⊢S as follows:

Γ ⊢S ϕ if there is a a proof (or, a derivation) of ϕ from Γ, where a proof is defined as a sequence of
formulas ϕ1, . . . , ϕn, n ∈ N, such that ϕn = ϕ, and for every i ≤ n, one of the following conditions holds:

(i) ϕi ∈ Γ,

(ii) there is an axiom ψ and a substitution σ such that ϕi = σψ,

(iii) there is a rule ⟨∆, ψ⟩ and a substitution σ such that ϕi = σψ and σ(∆) ⊆ {ϕj : j < i}.

Equational Consequence Relations

Let L denote a language. Identities in L are ordered pairs of L-formulas that will be written in the form
α ≈ β. An interpretation h in A satisfies an identity α ≈ β if hα = hβ. We denote this satisfaction relation
by the notation: A |=h α ≈ β. An algebra A satisfies the equation α ≈ β if all the interpretations in A
satisfy it; in symbols,

A |= α ≈ β if and only if A |=h α ≈ β, for all h ∈ Hom(FmL,A).

A class K of algebras satisfies the identity α ≈ β when all the algebras in K satisfy it; i.e.

K |= α ≈ β if and only if A |= α ≈ β, for all A ∈ K.

If x̄ is a sequence of variables and h is an interpretation in A, then we write ā for h(x̄). For a class K of
L-algebras, we define the relation |=K that holds between a set ∆ of identities and a single identity α ≈ β as
follows:

∆ |=K α ≈ β if and only if

for every A ∈ K and every interpretation ā of the variables of ∆ ∪ {α ≈ β} in A,

if ϕA(ā) = ψA(ā), for every ϕ ≈ ψ ∈ ∆, then αA(ā) = βA(ā).

In this case, we say that α ≈ β is a K-consequence of ∆. The relation |=K is called the semantic equational
consequence relation determined by K.

Algebraic Semantics for a logic

Let ⟨L,⊢L⟩ be a finitary logic (i.e., deductive system) and K a class of L-algebras. K is called an algebraic
semantics for ⟨L,⊢L⟩ if ⊢L can be interpreted in ⊢K in the following sense:

There exists a finite set δi(p) ≈ ϵi(p), for i ≤ n, of identities with a single variable p such that, for all
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Γ ∪ ϕ ⊆ Fm,

(A) Γ ⊢L ϕ⇔ {δi[ψ/p] ≈ ϵi[ψ/p], i ≤ n, ψ ∈ Γ} |=K δi[ϕ/p] ≈ ϵi[ϕ/p],

where δ[ψ/p] denotes the formula obtained by the substitution of ψ at every occurrence of p in δ.
The identities δi ≈ ϵi, for i ≤ n, are called defining identities for ⟨L,⊢L⟩ and K.

Equivalent Algebraic Semantics and Algebraizable Logics

Let S be a logic over a language L and K an algebraic semantics of S with defining equations δi(p) ≈ ϵi(p),
i ≤ n. Then, K is an equivalent algebraic semantics of S if there exists a finite set {∆j(p, q) : j ≤ m} of
formulas in two variables satisfying the condition:

For every ϕ ≈ ψ in the language L,

ϕ ≈ ψ |=K {δi(∆j(ϕ, ψ)) ≈ ϵi(∆j(ϕ, ψ)) : i ≤ n, j ≤ m}

and
{δi(∆j(ϕ, ψ)) ≈ ϵi(∆j(ϕ, ψ)) : i ≤ n, j ≤ m} |=K ϕ ≈ ψ.

The set {∆j(p, q) : j ≤ m} is called an equivalence system.
A logic is BP-algebraizable (in the sense of Blok and Pigozzi) if it has an equivalent algebraic

semantics.
Axiomatic Extensions of Algebraizable logics

A logic S ′ is an axiomatic extension of S if S ′ is obtained by adjoining new axioms but keeping the rules
of inference the same as in S . Let Ext(S ) denote the lattice of axiomatic extensions of a logic S and LV(K)
denote the lattice of subvarieties of a variety K of algebras.

The following important theorems, due to Blok and Pigozzi, were first proved in [9].

Theorem 7.1. [9] Let S be a BP-algebraizable logic whose equivalent algebraic semantics K is a variety.
Then Ext(S ) is dually isomorphic to LV(K).

Theorem 7.2. [9] Let S be a BP-algebraizable logic and S ′ be an axiomatic extension of S . Then Ext(S ′)
is also BP-algebraizable.

7.2 Dually Hemimorphic Intuitionistic Logic DHMH

The Logic DHMH, which was first defined in [15], is slightly simplified below.
The Logic DHMH is defined as follows:
LANGUAGE: ⟨∨,∧,→,∼,⊥,⊤⟩
AXIOMS:

(a) Axioms of the Intuitionistic Logic I (Rasiowa-Sikorski, p.379):

(Ax1) (α→ β) → ((β → γ) → (α→ γ)),
(Ax2) α→ (α ∨ β),
(Ax3) β → (α ∨ β),
(Ax4) (α→ γ) → ((β → γ) → ((α ∨ β) → γ)),
(Ax5) (α ∧ β) → α,
(Ax6) (α ∧ β) → β,
(Ax7) (γ → α) → ((γ → β) → (γ → (α ∧ β)),
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(Ax8) (α→ (β → γ)) → ((α ∧ β) → γ),
(Ax9) ((α ∧ β) → γ) → (α→ (β → γ)),
(Ax10) ((α ∧ ¬α) → β, where ¬α := α→ ⊥,
(Ax11) (α→ (α ∧ ¬α)) → ¬α.
(b) Additional axioms:

(Ax12) ⊤ → ∼ ⊥,
(Ax13) ∼ ⊤ → ⊥,
(Ax14) ∼ (α ∧ β) ↔ (∼ α ∨ ∼ β).

RULES OF INFERENCE:

(MP) From ϕ and ϕ→ γ, deduce γ (Modus Ponens),

(CP) From ϕ→ γ, deduce ∼ γ → ∼ ϕ (Contraposition ).
The following lemma is crucial in proving Lemma 7.9.

Lemma 7.3.

(i) If Γ ⊢I ψ, then Γ ⊢DHMH ψ,

(ii) If Γ ⊢DHMH ψ, then Γ ⊢DHMH α→ ψ,

(iii) Γ ⊢DHMH ⊥ → α.

Proof. We only prove (iii), for which it suffices to prove that ⊢I ⊥ → α. Then, in view of Completeness
Theorem of intuitionistic logic I, that is equivalent to proving that the identity 0 → x ≈ 1 holds in the
variety of Heyting algebras, which immediately follows from the axiom (H): (x ∧ y) → x ≈ 1. □

7.2.1 The logic DHMH as an implicative logic

We first recall the definition of implicative logics that was introduced by Rasiowa [40] in 1974 (see also [20]).

Definition 7.4. [40] Let S be a logic in a language L that includes a binary connective →, either primitive
or defined by a term in exactly two variables. Then S is called an implicative logic with respect to the binary
connective →, if the following conditions are satisfied:

(IL1) ⊢S α→ α,

(IL2) α→ β, β → γ ⊢S α→ γ,

(IL3) For each operation symbol f ∈ L of arity n ≥ 1,{
α1 → β1, . . . , αn → βn,
β1 → α1, . . . , βn → αn

}
⊢S f(α1, . . . , αn) → f(β1, . . . , βn),

(IL4) α, α→ β ⊢S β,

(IL5) α ⊢S β → α.

The following theorem is well-known.

Theorem 7.5. The intuitionistic logic I is implicative with respect to the connective →.

Theorem 7.6. The logic DHMH is implicative with respect to the connective →.

Proof. In view of Theorem 7.5, it only remains to prove (IL3) for the (unary) operation ′ which is fulfilled
by the rule CP. □

We also note here that Theorem 7.6 is a special case of [15, Theorem 3.7].
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7.2.2 Algebraic Completeness of DHMH

Definition 7.7. Rasiowa [40] Let S be an implicative logic in L with →.
An S -algebra is an algebra A in the language L that has an element 1 with the following properties:

(LALG1) For all Γ ∪ {ϕ} ⊆ Fm and all h ∈ Hom(FmL,A),
if Γ ⊢S ϕ and hΓ ⊆ {1} then hϕ = 1,

(LALG2) For all a, b ∈ A, if a→ b = 1 and b→ a = 1 then a = b.

The class of S -algebras is denoted by Alg∗(S ).

Since DHMH is an implicative logic we obtain the following result, in view of Rasiowa’s Theorem [40,
Theorem 7.1, pag 222].

Theorem 7.8. The logic DHMH is complete with respect to the class Alg∗(DHMH). In other words,
For all Γ ∪ {ϕ} ⊆ Fm, Γ ⊢DHMH ϕ if and only if Γ |=Alg∗(DHMH) ϕ.

The following lemma will help us improve the above theorem. Recall the definition of the variety DHMH
given in Definition 4.2.

Lemma 7.9. Alg∗(DHMH) = DHMH.

Proof. First of all, we note that this proof is an adaptation of the proof of [15, Lemma 4.4]. First, we wish
to prove that DHMH ⊆ Alg∗(DHMH).

Let A ∈ DHMH, Γ ∪ {ϕ} ⊆ Fm and h ∈ Hom(FmL,A) such that Γ ⊢Alg∗(DHMH) ϕ and hΓ ⊆ {1}. We
need to verify that hϕ = 1. We will proceed by induction on the length of the proof of Γ ⊢Alg∗(DHMH) ϕ.

• Assume that ϕ is an axiom.

If ϕ is one of the axioms (Ax1) to (Ax11) then ⊢I ϕ. Hence, |=DHMH ϕ and so, h(ϕ) = ⊤.

If ϕ is the axiom (Ax12) then, using (E2), we have h(ϕ) = h(⊤ → ∼ ⊥) = 1 → 0′ = 1.

If ϕ is the axiom (Ax13) then, using (E3), we get that h(ϕ) = h(∼ ⊤ → ⊥) = 0 → 0 = 1.

• If ϕ is the axiom (Ax14) then, using (E4), we obtain that h(ϕ) = h(∼ (α ∧ β) → ( ∼ α∨ ∼ β)) =
(h(α) ∧ h(β))′ → (h(α)′ ∨ h(β)′) = (h(α) ∧ h(β))′ → (h(α) ∧ h(β))′ = 1.

• If ϕ ∈ Γ then h(ϕ) = ⊤ by hypothesis.

• Assume now that Γ ⊢L ϕ is obtained from an application of (MP). Then there exists a formula ψ such
that Γ ⊢L ψ and Γ ⊢L ψ → ϕ. By induction, h(ψ) = 1 and h(ψ → ϕ) = 1. Then 1 = h(ψ) → h(ϕ) =
1 → h(ϕ) = h(ϕ).

• Assume that Γ ⊢L ϕ is the result of an application of the rule (CP). Then for α, β ∈ Fm, ϕ =∼ β →∼ α
and Γ ⊢L α → β. By induction, 1 = h(α → β) = h(α) → h(β) and, consequently h(α) ≤ h(β). Then,
using condition (E4), h(β)′ ≤ h(α)′. Hence h(β)′ → h(α)′ = 1. Therefore h(ϕ) = h(∼ β →∼ α) =
h(β)′ →H h(α)′ = 1.

Hence, the induction is complete and so, we conclude that A satisfies (LALG1). It is easy to see that the
condition (LALG2) also holds, implying A ∈ Alg∗(DHMH).

Next, we prove the other inclusion. Let A = ⟨A,∨,∧,→,′ , 0, 1⟩ ∈ Alg∗(DHMH). Notice that ⟨A,∨,∧,→
, 0, 1⟩ ∈ Alg∗(I ). So, ⟨A,∨,∧,→, 0, 1⟩ ∈ H. Now, it only remains to show that A satisfies the conditions (E2)
to (E4).
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In view of axiom (Ax12) and (LALG1), we have that A |= 1 → 0′ ≈ 1. Using (LALG1) and Lemma 7.3
(i), we get A |= 0′ → 1 ≈ 1. Then by (LALG2), A |= 1 ≈ 0′. In view of Lemma 7.3 (ii) and (Ax13), together
with (LALG1), we have that A |= 0 → 1′ ≈ 1 and A |= 1′ → 0 ≈ 1. Then by (LALG2), A |= 1′ ≈ 0.

Using (LALG1), it can be shown that A satisfies the identity (x′ ∨ y′) → (x ∧ y)′ ≈ 1 and the identity
(x ∧ y)′ → (x′ ∨ y′) ≈ 1. Then applying (LALG2), we see that the algebra satisfies (E4). Consequently
A ∈ DHMH. This completes the proof. □

We are now ready to present the algebraic completeness theorem for the logic DHMH.

Theorem 7.10. The logic DHMH is complete with respect to the variety DHMH.

Proof. We know Alg∗(DHMH) = DHMH by Lemma 7.9. So, the theorem follows from Theorem 7.8. □

7.2.3 The algebraizability of the logic DHMH, Ext(DHMH) and LV(DHMH)

The following theorem of Blok and Pigozzi shows that Rasiowa’s implicative logics provide a class of examples
of algebraizable logics and was proved in [9].

Theorem 7.11. [9, 20]
Every implicative logic L is algebraizable with respect to the class Alg∗(L) and the algebraizability is

witnessed by the set of defining identities E = {x ≈ x → x} and the set of equivalence formulas ∆ = {p →
q, q → p}.

Corollary 7.12. The logic DHMH is algebraizable, and the variety DHMH is the equivalent algebraic
semantics for DHMH with the set of defining identities E = {x ≈ x → x} (equivlently, x ≈ 1) and the set
of equivalence formulas ∆ = {p→ q, q → p}.

The following theorem is immediate from Theorem 7.1 and Corollary 7.12.

Theorem 7.13. The lattice Ext(DHMH) of axiomatic extensions of DHMH is dually isomorphic to the
lattice LV(DHMH) of subvarieties of the variety DHMH.

8 The logic AG
We will now present a new logic, AG (also known as AGH) and its axiomatic extensions.

The logic AG is defined as follows:
LANGUAGE: ⟨∨,∧,→ ,∼,⊥,⊤⟩, where ∨, ∧, and → are binary, ∼ is unary, and ⊥, ⊤ are constants.
Let ↔ be defined by: α↔ β := (α→ β) ∧ (β → α).
Define ¬ by ¬α := α→ ⊥.
AXIOMS:
(1), (2), . . . ,(14) of the logic DHMH, plus the following axioms:

(15) ∼∼ (α ∨ β) ↔ (∼∼ α∨ ∼∼ β),

(16) (α ∨ ∼∼ α) ↔ α,

(17) (α ∧ ∼ ¬ ∼ α) ∨ (β ∨ ¬β) ↔ (β ∨ ¬β) (Regularity),
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(18) ¬α ∨ ¬¬α (Stone or the Weak Law of Excluded Middle),

(19) ∼∼ ¬α↔ ¬α (week ∗-regular),

(20) ¬ ∼ (α ∧ ¬ ∼ α) ≈ α ∧ ¬ ∼ α (Level 1).

RULES OF INFERENCE:

(a) (MP) From ϕ and ϕ→ γ, deduce γ (Modus Ponens),

(b) (SCP) From ϕ→ γ, deduce ∼ γ → ∼ ϕ (contraposition rule).

Remark 8.1. The logic AG is an axiomatic extension of DHMH.

Definition 8.2.

(a) The logic G is the axiomatic extension of AG defined by the following axiom:

(G) ∼ ¬α↔ ¬¬α.

(b) The logic RDBLSt is the axiomatic extension of G defined by the following axiom:

(DSt) (∼ α∧ ∼∼ α) ↔ ⊥.

(c) The logic RKLSt is the axiomatic extension of G defined by the following axioms:

(1) [(α ∧ ∼ α) ∨ (β ∨ ∼ β)] ↔ (β ∨ ∼ β).

(2) ∼∼ α↔ α.

Let L be an algebraizable logic with K as its equivalent algebraic semantics and let K′ be a variety
term-equivalent to K. Then K′ can be considered as an equivalent algebraic semantics for the logic L.

Corollary 8.3. The logic AG is algebraizable with the variety AGH as its equivalent algebraic semantics,
and hence with the variety AG of Almost Gautama algebras as its equivalent algebraic semantics.

Corollary 8.4. The logic G is algebraizable with the variety GH as its equivalent algebraic semantics,, and
hence with the variety G of Gautama algebras as its equivalent algebraic semantics.

Since the logics RDBLSt and RKLSt are axiomatic extensions of the logic G, we have the following
corollaries.

Corollary 8.5. The logic RDBLSt is algebraizable with the variety RDBLSt of regular double Stone algebras
as its equivalent algebraic semantics.

Corollary 8.6. The logic RKLSt is algebraizable with the variety RKLSt of regular Kleene algebras as the
equivalent algebraic semantics.

In a similar fashion the logics corresponding to the remaining subvarieties of AG can be easily axiomatized
by translating the known equational bases of the corresponding subvarieties of AG.

Corollary 8.7. The logics AG, G, RDBLSt and RKLSt and the other axiomatic extensions of AG are
decidable.

We now consider the question as to whether AG or any of its axiomatic extensions have the Disjunction
Property.
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Definition 8.8. Let L be a language containing a binary connective ∨ and a constant 1 and let L be a logic
in L. We say L has the Disjunction Property if the following condition holds:

For any formulas α and β, ⊢L (α ∨ β) implies either ⊢L α or ⊢L β.

Since the Stone axiom holds in AG, the following corollary is immediate.

Corollary 8.9. The logics AG, G, RDBLSt and RKLSt and the other axiomatic extensions of AG do not
have the Disjunction Property.

Definition 8.10. Let L be an algebraizable logic. We say that L is a discriminator logic if its equivalent
algebraic semantics is a discriminator variety. Furthermore, L is a primal logic if its equivalent algebraic
semantics is a variety generated by a primal algebra. L is a quasiprimal logic if its equivalent algebraic
semantics is a variety generated by a quasiprimal algebra.

The classical logic is the first well-known example of a primal logic (as the Boolean algebra 2 is a primal
algebra).

Remark 8.11. It follows from Corollary 5.3 that AG and all its extensions are discriminator logics, while
RDBLSt and RKLSt are quasiprimal logics.

8.1 Classical Logic with Strong Negation

Here we will give logical applications of Corollary 6.5 and Theorem 6.9.
Vakarelov introduced the notion of classical logic with strong negation. As a consequence of a completeness

theorem he obtained the equivalence of this logic with the three-valued  Lukasiewicz logic. In this subsection,
using Corollary 6.5 and Theorem 6.9, we will show that the classical logic with strong negation is algebraizable
with CN as its algebraic semantics and that the logics RKLSt, RKLStH, 3-valued  Lukasivicz logic and the
classical logic with strong negation are all equivalent, thus strengthening Vakarelov’s results.

Definition 8.12. [67] The logic, in the language ⟨∨,∧,→,′ , 1⟩, which is obtained by adding the following
axioms (C1) – (C6) (for the “strong” negation) to the axioms of classical propositional calculus (also in the
lanuage ⟨∨,∧,→,′ , 1⟩), is called the classical logic with strong negation :

(C1) α′ → (α→ β),
(C2) (α→ β) ↔ (α ∧ β′),
(C3) (α ∧ β)′ ↔ (α′ ∨ β′),
(C4) (α ∨ β)′ ↔ (α′ ∧ β′),
(C5) α∗′ ↔ α, where α∗ := α→ 0,
(C6) α′′ ↔ α.

Let CN denote the classical logic with strong negation.
The following theorem is a strengthened version of Vakarelov’s completeness theorem for CN (with a

different proof).

Theorem 8.13. CN is BP-algebraizable with CN as its algebraic semantics.

Proof. It is well-known (see, for example, [20, Page 85] that the Nelson logic with strong negation is
implicative and hence is BP-algebraizable with N as its algebraic semantics. Hence, it is easy to see, in view
of Corollary 6.5, that CN is BP-algebraizable with CN as its algebraic semantics. □

The following corollary is immediate from Theorem 6.9.

Corollary 8.14. The logics RKLSt, RKLStH, 3-valued  Lukasivicz logic and the classical logic with strong
negation are all equivalent.
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9 Concluding Remarks

In a forthcoming paper [17], we completely describe the subvarieties of AG with the Amalgamation Property
and the ones without (AP).

Note that the variety DHM introduced in Definition 2.3 is a far-reaching–and a common– generalization
of both p-algebras–more generally, semi-De Morgan algebras– and Ockham algebras. Observe also that the
new variety DHMP that was introduced in Definition 2.4 is a sweeping generalization of the variety of Almost
Gautama algebras.

We now introduce a subvariety of the variety DHMP whose members are called “quasi-Gautama algebras.”
An algebra A = ⟨A,∨,∧,∗ ,′ , 0, 1⟩ is a quasi-Gautama algebra if A satisfies:

(1) ⟨A,∨,∧,∗ , 0, 1⟩ is a p-algebra,

(2) ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra,

(3) A is regular; that is, A satisfies the identity: (R1) x ∧ x′∗′ ≤ y ∨ y∗.

Let the variety of quasi-Gautama algebras be denoted by QG. Notice that G ⊂ AG ⊂ QG ⊂ RDHMP ⊂
DHMP, where RDHMP consists of DHMP-algbras satisfying (R1).

Similarly, we can generalize the variety AGH to a new variety whose members are called quasi-Gautama
semi-Heyting algebras as follows:

An algebra A = ⟨A,∨,∧,→,′ , 0, 1⟩ is a quasi-Gautama semi-Heyting algebra if A satisfies:

(1) ⟨A,∨,∧,∗ , 0, 1⟩ is a semi-Heyting algebra,

(2) ⟨A,∨,∧,′ , 0, 1⟩ is a dually quasi-De Morgan algebra,

(3) A is regular; that is, A satisfies the identity: (R1) x ∧ x′∗′ ≤ y ∨ y∗.

Let the variety of quasi-Gautama semi-Heyting algebras be denoted by QGSH, and QGH denotes the
subvariety of QGSH consisting of those algebras whose semi-Heyting reduct is a Heyting algebra. Note that
GH ⊂ AGH ⊂ QGH ⊂ QGSH ⊂ DHMSH.

We know that the cardinality of the lattice of subvarieties of QG is 2ω since QG contains each of the
varieties of regular double p-algebras and of regular Kleene p-algebras, each of whose lattice of subvarieties
is of cardinality 2ω (see [5, 6]). The results presented in the present paper only describe the “bottom” of the
lattices of subvarieties of QG and of QGH.

We conclude the paper with some open problems for further research.
OPEN PROBLEMS:

PROBLEM 1: Find a Priestley-type duality for the varieties AG and AGH. (One can ask the same
question for the varieties QG, QGH and QGSH.)

PROBLEM 2: There is a representation of regular double Stone algebras in terms of rough sets. Is their
a similar representation for the varieties AG and AGH?

PROBLEM 3: Katriňák has given a “triple” construction for regular double Stone algebras. Is their a
similar construction for the variety AG? The same question for AGH.

PROBLEM 4: Investigate the lattice of subvarieties of QG, and of QGSH of level 1 (i.e., satisfying
x ∧ x′∗ ∧ x′∗′∗ ≈ x ∧ x′∗.
PROBLEM 5: Investigate the lattice of subvarieties of the varieties QG and QGSH.
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Abstract. After the introduction of the concept of fuzzy sets by Zadeh, several researches were conducted on the
generalizations of the notion of fuzzy sets. There are many viewpoints on the notion of metric space in fuzzy topology.
One of the most important problems in fuzzy topology is obtaining an appropriate concept of fuzzy metric space.
This problem has been investigated by many authors from different points of view. Atanassov gives the concept of
the intuitionistic fuzzy set as a generalization of the fuzzy set. Park introduced the notion of intuitionistic fuzzy
metric space as a natural generalization of fuzzy metric spaces due to George and Veeramani. This paper introduces
the concept of intuitionistic fuzzy modular space. Afterward, a Hausdorff topology induced by a δ-homogeneous
intuitionistic fuzzy modular is defined and some related topological properties are also examined. After giving the
fundamental definitions and the necessary examples, we introduce the definitions of intuitionistic fuzzy boundedness,
intuitionistic fuzzy compactness, and intuitionistic fuzzy convergence, and obtain several preservation properties
and some characterizations concerning them. Also, we investigate the relationship between an intuitionistic fuzzy
modular and an intuitionistic fuzzy metric. Finally, we prove some known results of metric spaces including Baires
theorem and the Uniform limit theorem for intuitionistic fuzzy modular spaces.
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1 Introduction

The notion of fuzzy sets was introduced by Zadeh [20] in 1965 and there are many viewpoints on the notion
of metric space in fuzzy topology. The concept of fuzzy topology may have very important applications in
quantum particle physics, [3, 4]. One of the most important problems in fuzzy topology is obtaining an
appropriate concept of a fuzzy metric space. This problem has been investigated by many authors from
different points of view. Kramosil and Michálek [11] introduced the concept of a fuzzy metric space, which
can be regarded as a generalization of the probabilistic metric space. Afterward, Grabiec [5] defined the
fuzzy metric space’s completeness and extended the Banach contraction theorem to the complete fuzzy
metric spaces. Next, George and Veeramani [6] modified the definition of the Cauchy sequence introduced
by Grabiec. Atanassov [1] gave the concept of an intuitionistic fuzzy set as a generalization of a fuzzy set.
Park [17] introduced the notion of an intuitionistic fuzzy metric space as a natural generalization of a fuzzy
metric space due to George and Veeramani. He proved Baire’s theorem and the Uniform limit theorem for
these spaces. For more details on intuitionistic fuzzy metric space and related results, we refer the reader to
[2, 18].
The concept of a modular space was founded by Nakano [14] and developed by Luxemburg [12]. Then,
Musielak and Orlicz [13] redefined and generalized the notion of modular space. A real function ρ on an
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arbitrary vector space X is called a modular if for arbitrary x, y ∈ X the following conditions hold:
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all α, β ≥ 0 with α+ β = 1.
A modular space Xρ is defined as Xρ = {x ∈ X : ρ(λx) → 0 as λ→ 0}.

Based on the definition of modular space, Kozlowski [8, 9] introduced a modular function space. In the
sequel, Kozlowski and Lewicki [10] considered the problem of analytic extension of measurable functions
in modular function spaces and discussed some extension properties by means of polynomial approximation.
Afterward, Kilmer and Kozlowski [7] studied the existence of best approximations in modular function spaces
by elements of sublattices. Nourouzi [15] proposed probabilistic modular spaces based on the theory of
modular spaces and in [16] he extended the well-known Baire’s theorem to probabilistic modular spaces
by using a special condition. Shen and Chen [19] introduced the notion of fuzzy modular space by using
continuous t-norm and continuous t-conorm.

The concept of intuitionistic fuzzy modular space is first proposed in this paper. By using some ideas
of [17, 19] we introduce the concept of an intuitionistic fuzzy modular space and give a Hausdorff topology
in this space. We investigate some topological properties and the existence of a relationship between an
intuitionistic fuzzy modular and an intuitionistic fuzzy metric. The paper is organized as follows.
First, we recall the fundamental definitions and the necessary examples of an intuitionistic fuzzy metric
space. In section 2, following the idea of fuzzy modular spaces and the definition of an intuitionistic fuzzy
metric space, we give a new concept named intuitionistic fuzzy modular space and give two examples to show
that there does not exist a direct relationship between an intuitionistic fuzzy modular and an intuitionistic
fuzzy metric. In section 3, a Hausdorff topology induced by a δ-homogeneous intuitionistic fuzzy modular
is defined, and several theorems on µ-ν-completeness of the intuitionistic fuzzy modular space are given.
Finally, the well-known Baire’s theorem and the uniform limit theorem are extended to intuitionistic fuzzy
modular spaces.

Definition 1.1. [18] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if it satisfies
the following conditions:

1. ∗ is commutative and associative;

2. ∗ is continuous;

3. a ∗ 1 = a for every a ∈ [0, 1];

4. a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d, and a, b, c, d ∈ [0, 1].

The common examples of a t-norm are as follows:
(1) a ∗ b = ab (2) a ∗M b = min {a, b} (3) a ∗ b = max {0, a+ b− 1}.

Definition 1.2. [18] A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is called a continuous t-conorm if it satisfies
the following conditions:

1. ⋄ is commutative and associative;

2. ⋄ is continuous;

3. a ⋄ 0 = a for every a ∈ [0, 1];

4. a ⋄ b ≤ c ⋄ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].
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Some examples of a t-conorm are as follows.
(1) a ⋄ b = a+ b− ab (2) a ⋄M b = max {a, b} (3) a ⋄ b = min {1, a+ b}.
By properties of t-norm and t-conorm, we get the following lemma.

Lemma 1.3. [6] (i) If a, b ∈ (0, 1) with a > b, then there exist c, d ∈ (0, 1) such that a ∗ c ≤ b and a ≥ d ⋄ b.
(ii) If a ∈ (0, 1), then there exist c, d ∈ (0, 1) such that c ∗ c ≥ a and a ≥ d ⋄ d.

Now, we recall the definition of an intuitionistic fuzzy metric space.

Definition 1.4. [17] A 5-tuple (X ,M,N, ∗, ⋄) is said to be an intuitionistic fuzzy metric space if X is a real
or complex vector space, ∗ is a continuous t-norm, ⋄ is a continuous t-conorm and M , N are fuzzy sets on
X 2 × (0,∞) such that for all x, y, z ∈ X and s, t > 0 the followings hold:

1. M(x, y, t) +N(x, y, t) ≤ 1,

2. M(x, y, t) > 0,

3. M(x, , y, t) = 1 if and only if x = y,

4. M(x, y, t) = M(y, x, t),

5. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

6. M(x, y, .) : (0,∞) → (0, 1] is continuous,

7. N(x, y, t) > 0,

8. N(x, y, t) = 0 if and only if x = y,

9. N(x, y, t) = N(y, x, t),

10. N(x, y, t) ⋄N(y, z, s) ≥ N(x, z, t+ s),

11. N(x, y, .) : (0,∞) → (0, 1] is continuous.

(M,N) is called an intuitionistic fuzzy metric on X .

Example 1.5. [17, Example 2.8] Let (X , d) be a metric space. Denote a ∗ b = ab and a ⋄ b = min{1, a+ b}
for all a, b ∈ [0, 1] and let Md and Nd be fuzzy sets on X 2 × (0,∞) defined as follows:

Md(x, y, t) =
htn

htn +md(x, y)
, Nd(x, y, t) =

d(x, y)

ktn +md(x, y)

for all h, k,m, n ∈ R+. Then (X ,Md, Nd, ∗, ⋄) is an intuitionistic fuzzy metric space.

2 Intuitionistic Fuzzy Modular Spaces

In this section, we introduce the concept of an intuitionistic fuzzy modular space by using continuous t-norm
and continuous t-conorm. We investigate the relationship between an intuitionistic fuzzy modular and an
intuitionistic fuzzy metric.

Definition 2.1. A 5-tuple (X , µ, ν, ∗, ⋄) is said to be an intuitionistic fuzzy modular space if X is a real
or complex vector space, ∗ is a continuous t-norm, ⋄ is a continuous t-conorm and µ, ν are fuzzy sets on
X × (0,∞) such that for all x, y, z ∈ X , s, t > 0 and α, β ≥ 0 with α+ β = 1 followings hold:
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1. µ(x, t) + ν(x, t) ≤ 1,

2. µ(x, t) > 0,

3. µ(x, t) = 1 if and only if x = 0,

4. µ(x, t) = µ(−x, t),

5. µ(αx+ βy, s+ t) ≥ µ(x, s) ∗ µ(y, t),

6. µ(x, .) : (0,∞) → (0, 1] is continuous,

7. ν(x, t) > 0,

8. ν(x, t) = 0 if and only if x = 0,

9. ν(x, t) = ν(−x, t),

10. ν(αx+ βy, s+ t) ≤ ν(x, s) ⋄ ν(y, t),

11. ν(x, .) : (0,∞) → (0, 1] is continuous.

Then (µ, ν) is called an intuitionistic fuzzy modular or intuitionistic F-modular on X . The 5-tuple
(X , µ, ν, ∗, ⋄) is called δ-homogeneous, where δ ∈ (0, 1], if for each x ∈ X , t > 0 and λ ∈ R− {0},

µ(λx, t) = µ
(
x,

t

|λ|δ
)
, ν(λx, t) = ν

(
x,

t

|λ|δ
)
.

Remark 2.2. (i) If (X , µ, ∗) is a F-modular space, then (X , µ, 1−µ, ∗, ⋄) is an intuitionistic F-modular space
such that for any a, b ∈ [0, 1], a ⋄ b = 1 − ((1 − a) ∗ (1 − b)).
(ii) In intuitionistic F-modular space (X , µ, ν, ∗, ⋄), for all x, y ∈ X , µ(x, y, .) is non-decreasing and ν(x, y, .)
is non-increasing.

Example 2.3. Let (X , ρ) be a modular space. Take a ∗ b = ab and a ⋄ b = min {1, a+ b}, for all a, b ∈ [0, 1],
and define fuzzy sets µρ and νρ on X × (0,∞) as follows:

µρ(x, t) =
htn

htn +mρ(x)
, νρ(x, t) =

ρ(x)

ktn +mρ(x)
,

for all h, k ∈ R+ and m,n ∈ N. Then (X , µ, ν, ∗, ⋄) is an intuitionistic F-modular space. We investigate
condition (5) in Definition 2.1. For this let α, β ≥ 0 with α+ β = 1, since ρ is modular, we have

ρ(αx+ βy) ≤ ρ(x) + ρ(y), (1)

for all x, y ∈ X . Hence

µ(x, s) ∗ µ(y, t) =
hsn

hsn +mρ(x)
∗ htn

htn +mρ(y)

=
h2sntn

(hsn +mρ(x))(htn +mρ(y))

≤ hsntn

hsntn +m(tnρ(x) + snρ(y))
.
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Without loss of generality, we assume that t ≤ s. Then by using (1) we get

µ(x, s) ∗ µ(y, t) ≤ hsn

hsn +mρ(αx+ βy)

≤ h(s+ t)n

h(s+ t)n +mρ(αx+ βy)

= µ(αx+ βy, s+ t).

Remark 2.4. In Example 2.3, by taking h = k = m = n = 1, we get

µρ(x, t) =
t

t+ ρ(x)
, νρ(x, t) =

ρ(x)

t+ ρ(x)
.

This intuitionistic F-modular space is called the standard intuitionistic F-modular space.

It should be noted that, in general, an intuitionistic fuzzy modular and an intuitionistic fuzzy metric
do not necessarily induce mutually a metric when the triangular norm is the same one. In essence, the
intuitionistic fuzzy modular and intuitionistic fuzzy metric can be viewed as two different characterizations
for the same set. Next, we give two examples to show that there does not exist a direct relationship between
an intuitionistic fuzzy modular and an intuitionistic fuzzy metric. In fact, the intuitionistic fuzzy modular and
the intuitionistic fuzzy metric can be viewed as two different characterizations for the same set. The following
examples are the motivation of [19, Example 8, Example 9] in the view of intuitionistic fuzzy modular spaces.

Example 2.5. Let X = R and put ρ(x) = |x|, then ρ is modular on X . Put a ∗ b = min {a, b}, and
a ⋄ b = 1 − ((1 − a) ∗ (1 − b)) or a ⋄ b = max{a, b}. For every t ∈ (0,∞) and x ∈ X , define µ(x, t) = t

t+|x| .

Then [19, Example 8] implies that (X , µ, ∗) is an F-modular space and so by Remark 2.2, (X , µ, 1 − µ, ∗, ⋄)
is an intuitionistic F-modular space.
However, if we set

M(x, y, t) = µ(x− y, t) =
t

t+ |x− y|
, and N(x, y, t) =

|x− y|
t+ |x− y|

,

then [17, Remark 2.11] implies that (M,N) is not an intuitionistic fuzzy metric with the t-norm and t-conorm
defined as a ∗ b = min {a, b} and a ⋄ b = max {a, b}.

Example 2.6. Let X = R. Take t-norm a ∗ b = min a, b and t-conorm a ⋄ b = a+ b− ab. For every x, y ∈ X
and t ∈ (0,∞), we define

M(x, y, t) =


1, x = y
1
2 , x ̸= y, x, y ∈ Z
1
4 , x ∈ Z, y ∈ R\Z or x ∈ R\Z, y ∈ Z
1
4 , x ̸= y, x, y ∈ R\Z,

and

M(x, y, t) =


1, x = y
1
2 , x ̸= y, x, y ∈ Z
1
4 , x ∈ Z, y ∈ R\Z or x ∈ R\Z, y ∈ Z
1
4 , x ̸= y, x, y ∈ R\Z

It can easily be shown that (M,N, ∗, ⋄) is an intuitionistic fuzzy metric on X .
Now, set

µ(x, t) =


1, x = 0
1
2 , x ∈ Z\{0}
1
4 , x ∈ R\Z

, and ν(x, t) =


0, x = 0
1
4 , x ∈ Z\{0}
1
2 , x ∈ R\Z.
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If we take α =
√
2
2 , β = 1 − α, x ̸= y, and x, y ∈ Z, then αx + βy ∈ R\Z. Hence for each s, t > 0, we have

µ(αx+ βy, s+ t) = 1
4 , but

µ(x, s) ∗ µ(y, t) =
1

2
.

Also ν(αx+ βy, s+ t) = 1
2 , but

ν(x, s) ⋄ ν(y, t) =
1

4
.

Therefore (µ, ν) is not an intuitionistic fuzzy modular on X .

3 Topology Induced by an δ-homogeneous Intuitionistic Fuzzy Modular
Space

In this section, we define a topology induced by a δ-homogeneous intuitionistic F-modular and investigate
some topological properties in δ-homogeneous intuitionistic F-modular space. The results obtained in this
section are an extension of the results presented in [19] to intuitionistic fuzzy modular spaces.

Definition 3.1. Let (X , µ, ν, ∗, ⋄) be an intuitionistic F-modular space and let x ∈ X , r ∈ (0, 1) and t > 0.
Then the µ-ν-ball with center x and radius r with respect to t is defined as

B(x, r, t) = {y ∈ X : µ(x− y, t) > 1 − r, ν(x− y, t) < r}.

Let E ⊆ X . An element x ∈ E is called a µ-ν-interior point of E if there exist r ∈ (0, 1) and t > 0 such
that B(x, r, t) ⊆ E. We say that E is a µ-ν-open set in X if and only if every element of E is a µ-ν-interior
point. Note that each open set in an intuitionistic F-modular space is not a µ-ν-ball in general.

Example 3.2. Let X = R and let ρ, µ, ∗ and ⋄ be as in Example 2.5.
Consider V = {x ∈ R : 0 < x < 1} ∪ {x ∈ R : 1 < x < 2}. Then V is an open set in (R, µ, 1 − µ, ∗, ⋄), but it
is not a µ-(1−µ)-ball. In fact, the µ-(1−µ)-ball in (R, µ, 1−µ, ∗, ⋄) with center x and radius r is as follows.

B(x, r, t) = {y ∈ R :
t

t+ |x− y|
> 1 − r,

|x− y|
t+ |x− y|

< r}

= {y ∈ R : |x− y| < r

1 − r
t}.

Theorem 3.3. Each µ-ν-ball in a δ-homogeneous intuitionistic F-modular space is an open set.

Proof. Let B(x, r, t) be a µ-ν-ball and y ∈ B(x, r, t). Then

µ(x− y, t) > 1 − r, ν(x− y, t) < r.

Put t = 2t1. Since µ(x− y, .) and ν(x− y, .) are continuous, there exists εy > 0 such that

µ(x− y,
t1 − εy
2δ−1

) > 1−, ν(x− y,
t1 − εy
2δ−1

) < r.

For some ε > 0 with t1−ε
2δ−1 > 0 and ε

2δ−1 ∈ (0, εy), put r0 = µ(x − y, t1−ε
2δ−1 ). Since r0 > r − 1, there exists

s ∈ (0, 1) such that r0 > 1 − s > 1 − r, by Lemma 1.3, we can choose r1 ∈ (0, 1) such that

r0 ∗ r0 ≥ 1 − s, (1 − r0) ⋄ (1 − r0) ≤ s.
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Put r3 = max{r1, r2}. We show that B(y, 1 − r3,
ε

2δ−1 ) ⊆ B(x, r, 2t1). Suppose that z ∈ B(y, 1 − r3,
ε

2δ−1 )
then

µ(y − z,
ε

2δ−1
) > r3, ν(y − z,

ε

2δ−1
) < 1 − r3.

Therefore

µ(x− z, t) = µ(x− z, 2t1) ≥ µ(2(x− y), 2(t1 − ε)) ∗ µ(2(y − z), 2ε)

= µ(x− y,
t1 − ε

2δ−1
) ∗ µ(y − z,

ε

2δ−1
)

≥ r0 ∗ r1 ≥ 1 − s > 1 − r,

and

ν(x− z, t) = ν(x− z, 2t1) ≤ ν(2(x− y), 2(t1 − ε)) ⋄ ν(2(y − z), 2ε)

= ν(x− y,
t1 − ε

2δ−1
) ⋄ ν(y − z,

ε

2δ−1
)

< (1 − r0) ⋄ (1 − r3) ≤ (1 − r0) ⋄ (1 − r2) ≤ s < r.

Therefore z ∈ B(x, r, t) and hence B(y, 1 − r3,
ε

2δ−1 ) ⊆ B(x, r, t). □
Now, we define a topology on a δ-homogeneous intuitionistic F-modular space.

Definition 3.4. Let (X , µ, ν, ∗, ⋄) be a δ-homogeneous intuitionistic F-modular space. Define

τ(µ,ν) = {V ⊆ X : ∀x ∈ V, ∃t > 0, r ∈ (0, 1);B(x, r, t) ⊆ V }.

Then τ(µ,ν) is a topology on X .

Remark 3.5. Since the family of µ-ν-balls {B(x, 1n ,
1
n) : n ∈ N} is a local base at x, the topology τ(µ,ν) is

first countable.

Example 3.6. Let X = R and let ρ, µ, ∗ and ⋄ be as in Example 2.5. Then the set of all {(a, b) : a, b ∈ R}
induces a topology on (R, µ, 1 − µ, ∗, ⋄).

Theorem 3.7. Every δ-homogeneous intuitionistic F-modular space is Hausdorff.

Proof. Let x, y be two distinct points in δ-homogeneous intuitionistic F-modular space (X , µ, ν, ∗, ⋄). Then
for all t > 0, 0 < µ(x−y, t) < 1, 0 < ν(x−y, t) < 1. Put r1 = µ(x−y, t), r2 = ν(x−y, t) and r = max{r1, r2}.
For r0 ∈ (r, 1), there are r3, r4 such that

r3 ∗ r3 ≥ r0, (1 − r4) ⋄ (1 − r4) ≤ 1 − r0.

Put r5 = max{r3, r4}. Then B(x, 1 − r5,
t

2δ+1 ) ∩ B(y, 1 − r5,
t

2β+1 ) = ∅. Otherwise, if there exists z ∈
B(x, 1 − r5,

t
2δ+1 ) ∩B(y, 1 − r5,

t
2δ+1 ), then

r1 = µ(x− y, t) ≥ µ(2(x− z),
t

2
) ∗ µ(2(z − y),

t

2
)

= µ(x− z,
t

2δ+1
) ∗ µ(z − y,

t

2δ+1
)

≥ r5 ∗ r5 ≥ r3 ∗ r3 ≥ r0 > r1,
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and

r2 = ν(x− y, t) ≤ ν(2(x− z),
t

2
) ⋄ ν(2(z − y),

t

2
)

= ν(x− z,
t

2δ+1
) ⋄ ν(z − y,

t

2δ+1
)

≤ (1 − r5) ⋄ (1 − r5) ≤ (1 − r4) ⋄ (1 − r4) ≤ 1 − r0 < r2,

which is a contradiction. Therefore (X , µ, ν, ∗, ⋄) is Hausdorff. □
In the following, we give further properties of a δ-homogeneous intuitionistic F-modular space.

Definition 3.8. Let (X , µ, ν, ∗, ⋄) be a δ-homogeneous intuitionistic F-modular space.

1. A subset A of X is said to be µ-ν-bounded if there are t > 0 and r ∈ (0, 1) such that for all x ∈ A,
µ(x, t) > 1 − r and ν(x, t) < r.

2. A subset A of X is said to be µ-ν-compact if every µ-ν-open cover of A has a finite subcover.

3. A sequence {xn} in X is said to be µ-ν-convergent to x ∈ X if for every r ∈ (0, 1) and t > 0 there exists
n0 ∈ N such that for each n > n0, xn ∈ B(x, r, t).

Example 3.9. Let X = R and let ρ, µ, ∗ and ⋄ be as in Example 2.5.
(i) Consider V = {x ∈ R : 0 < x < 1}. Then V is a bounded set in (R, µ, 1 − µ, ∗, ⋄).
(ii) Each finite set in (R, µ, 1 − µ, ∗, ⋄) is µ-ν-compact.
(iii) The sequence { 1

n} is µ-ν-convergent to 0 in (R, µ, 1 − µ, ∗, ⋄) by choosing n0 such that 1 − t < 1
n0
< r.

Theorem 3.10. Every µ-ν-compact subset of a δ-homogeneous intuitionistic F-modular space (X , µ, ν, ∗, ⋄),
is µ-ν-bounded.

Proof. Let A be a µ-ν-compact subset of (X , µ, ν, ∗, ⋄). Fix t > 0 and r ∈ (0, 1), then the family
{B(x, r, t

2δ+1 ) : x ∈ A} is an open cover of A, since A is compact there exist x1, · · · , xn ∈ A such that
A ⊂ ∪n

i=1B(xi, r,
t

2δ+1 ). Hence for each x ∈ A there exists i such that x ∈ B(xi, r,
t

2δ+1 ). Thus

µ(x− xi,
t

2δ+1
) > 1 − r, ν(x− xi,

t

2δ+1
) < r.

Put α1 = min{µ(xi,
t

2δ+1 ) : 1 ≤ i ≤ n} and α2 = max{ν(xi,
t

2δ+1 ) : 1 ≤ i ≤ n}, it is clear that α1, α2 > 0,
hence for some s1, s2 ∈ (0, 1) we have

µ(x, t) = µ((x− xi) + xi, t) ≥ µ(2(x− xi),
t

2
) ∗ µ(2xi,

t

2
)

= µ(x− xi,
t

2δ+1
) ∗ µ(XI ,

t

2δ+1
) ≥ (1 − r) ∗ α1 > 1 − s1,

and

ν(x, t) = ν((x− xi) + xi, t) ≤ ν(2(x− xi),
t

2
) ⋄ ν(2xi,

t

2
)

= ν(x− xi,
t

2δ+1
) ⋄ ν(Xi,

t

2δ+1
) ≤ r ⋄ α2 < s2.

Taking s = max{s1, s2} we conclude µ(x, t) > 1 − s and ν(x, t) < s, consequently A is µ-ν-bounded. □

Theorem 3.11. Let (X , µ, ν, ∗, ⋄) be a δ-homogeneous intuitionistic F-modular space and {xn} a sequence
in X . Then xn → x if and only if µ(xn − x, t) → 1, ν(xn − x, t) → 0.
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Proof. Fix t > 0. Assume that xn → x, then for r ∈ (0, 1) there exists n0 ∈ N such that for each n ≥ n0,
xn ∈ B(x, r, t), so µ(xn − x, t) > 1 − r, ν(xn − x, t) < r. Hence

µ(xn − x, t) → 1, ν(xn − x, t) → 0.

Conversely, for each t > 0, let µ(xn−x, t) → 1, ν(xn−x, t) → 0. Then for r ∈ (0, 1), there exists n0 ∈ N such
that for each n ≥ n0, 1−µ(xn−x, t) < r, ν(xn−x, t) < r. Therefore µ(xn−x, t) > 1−r and ν(xn−x, t) < r,
for all n ≥ n0, that is, xn ∈ B(x, r, t) and so xn → x. □

In the following, we give some related results of completeness of an intuitionistic F-modular space.

Definition 3.12. Let (X , µ, ν, ∗, ⋄) be an intuitionistic F-modular space.

1. A sequence {xn} in X is called µ-ν-Cauchy if for every ε > 0 and t > 0 there exists n0 ∈ N such that
µ(xn − xm, t) > 1 − r and ν(xn − xm, t) < r for all m,n ≥ n0.

2. X is called µ-ν-complete if every µ-ν-Cauchy sequence is µ-ν-convergent.

Theorem 3.13. Let (X , µ, ν, ∗M , ⋄M ) be a δ-homogeneous intuitionistic F-modular space. Then every µ-ν-
convergent sequence in X is a µ-ν-Cauchy sequence.

Proof. Let {xn} be µ-ν-convergent to x ∈ X . Then for every ε > 0 and t > 0 there exists n0 ∈ N such that
µ(xn − x, t

2δ+1 ) > 1 − ε and ν(xn − x, t
2δ+1 ) < ε for all n ≥ n0. For all m,n ≥ n0 we get

µ(xm − xn, t) ≥ µ(2(xm − x),
t

2
) ∗ µ(2(xn − x),

t

2
)

≥ µ(xm − x,
t

2δ+1
) ∗ µ(xn − x,

t

2δ+1
)

> (1 − ε) ∗M (1 − ε) = 1 − ε,

and

ν(xm − xn, t) ≤ ν(2(xm − x),
t

2
) ⋄ ν(2(xn − x),

t

2
)

≤ ν(xm − x,
t

2δ+1
) ⋄ ν(xn − x,

t

2δ+1
) < ε ⋄M ε = ε.

□

Remark 3.14. (1) Theorem 3.13 shows that in an intuitionistic F-modular space, a µ-ν-convergent sequence
is not necessarily a µ-ν-Cauchy sequence, and the δ-homogeneity and the choice of t-norm and t-conorm are
essential.
(2) From Definition 3.12, it is clear that each µ-ν-closed subspace of µ-ν-complete F-modular space is µ-ν-
complete.

Theorem 3.15. Let (X , µ, ν, ∗, ⋄) be a δ-homogeneous intuitionistic F-modular space and Y a subset of
X . If every µ-ν-Cauchy sequence of Y is µ-ν-convergent in X , then every µ-ν-Cauchy sequence of Ȳ is
µ-ν-convergent in X , where Ȳ denotes the µ-ν-closure of Y .

Proof. Let {xn} be a µ-ν-Cauchy sequence of Ȳ , then for each n ∈ N and t > 0, there exists yn ∈ Y such
that µ(xn − yn,

t
4δ+1 ) > 1 − 1

n+1 and ν(xn − yn,
t

4δ+1 ) < 1
n+1 . Since µ(x, .) is non-decreasing and ν(x, .) is

non-increasing, we have µ(xn − yn,
t

2δ+1 ) > 1 − 1
n+1 and ν(xn − yn,

t
2δ+1 ) < 1

n+1 . Moreover for each r ∈ (0, 1)

and t > 0, there exists n0 ∈ N such that µ(xn − xm,
t

4δ+1 ) > 1− r and ν(xn − xm,
t

4δ+1 ) < r for all m,n ≥ n0.
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That is, µ(xn − xm,
t

4δ+1 ) → 1 and ν(xn − xm,
t

4δ+1 ) → 0. Now we show that {yn} is a µ-ν-Cauchy sequence
in Y . For all m,n ≥ n0 we have

µ(yn − ym, t) ≥ µ(2(yn − xn),
t

2
) ∗ µ(2(xn − yn),

t

2
)

≥ µ(2(yn − xn),
t

2
) ∗ µ(4(xn − xm),

t

4
) ∗ µ(4(xm − ym),

t

4
)

= µ(yn − xn,
t

2δ+1
) ∗ µ(xn − xm,

t

4δ+1
) ∗ µ(xm − ym,

t

4δ+1
)

> (1 − 1

n+ 1
) ∗ (1 − r) ∗ (1 − 1

m+ 1
).

Since ∗ is continuous µ(yn − ym, t) → 1, Furthermore

ν(yn − ym, t) ≤ ν(2(yn − xn),
t

2
) ⋄ ν(2(xn − yn),

t

2
)

≤ ν(2(yn − xn),
t

2
) ⋄ ν(4(xn − xm),

t

4
) ⋄ ν(4(xm − ym),

t

4
)

= ν(yn − xn,
t

2δ+1
) ⋄ ν(xn − xm,

t

4δ+1
) ⋄ ν(xm − ym,

t

4δ+1
)

<
1

n+ 1
⋄ r ⋄ 1

m+ 1
.

Hence ν(yn − ym, t) → 0, that is, {yn} is Cauchy in Y , so it is µ-ν-convergent to x ∈ X . Thus for each ε > 0
and t > 0 there exists n1 ∈ N such that µ(x − yn,

t
2δ+1 ) > 1 − ε and ν(x − yn,

t
2δ+1 ) < ε for all n ≥ n1.

Therefore

µ(xn − x, t) ≥ µ(2(xn − yn),
t

2
) ∗ µ(2(yn − xn),

t

2
)

= µ(xn − yn,
t

2δ+1
) ∗ µ(xn − yn,

t

2δ+1
)

> (1 − ε) ∗ (1 − 1

n+ 1
),

consequently, µ(xn − x, t) → 1. Similarly we have

ν(xn − x, t) ≤ ν(xn − yn,
t

2δ+1
) ⋄ ν(xn − yn,

t

2δ+1
) < ε ∗ 1

n+ 1
.

Hence ν(xn − x, t) → 0, and so the Cauchy sequence {xn} in Ȳ converges to x ∈ X . This completes the
proof. □

From Theorem 3.15 we get the following result.

Corollary 3.16. Let (X , µ, ν, ∗, ⋄) be a δ-homogeneous intuitionistic F-modular space and let Y be a dense
subset of X . If every µ-ν-Cauchy sequence of Y is µ-ν-convergent in X , then X is µ-ν-complete.

Now we extend the well-known Baire’s theorem to δ-homogeneous intuitionistic F-modular spaces.

Theorem 3.17. Let {Un}n∈N be a sequence of µ-ν-dense open subsets in δ-homogeneous intuitionistic µ-ν-
complete F-modular space (X , µ, ν, ∗M , ⋄M ). Then

∩∞
n=1 Un is µ-ν-dense in X .

Proof. Consider the µ-ν-ball B(x, r, t) and let y ∈ B(x, r, t). Then µ(x− y, 2t) > 1 − r and ν(x− y, 2t) < r.
Since µ(x − y, .) and ν(x − y, .) are continuous, there exists εy > 0 such that µ(x − y, t−ε

2δ−1 ) > 1 − r and
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ν(x − y, t−ε
2δ−1 ) < r for some ε > 0 with t−ε

2δ−1 > 0 and ε
2δ−1 ∈ (0, εy). We claim that B(y, r′, ε

4δ
) ⊆ B(x, r, 2t).

Choose r′ ∈ (0, 1) and z ∈ B(y, r′, ε
4δ

), then there exists a sequence {zn} in B(y, r′, ε
4δ

) which is µ-ν-converges
to z, so we have

µ(z − y,
ε

2δ−1
) ≥ µ(2(z − zn),

ε

2δ
) ∗M µ(2(zn − y),

ε

2δ
)

= µ(z − zn,
ε

4δ
) ∗M µ(zn − y,

ε

4δ
) > 1 − r,

and

ν(z − y,
ε

2δ−1
) ≤ ν(2(z − zn),

ε

2δ
) ⋄M ν(2(zn − y),

ε

2δ
)

= ν(z − zn,
ε

4δ
) ⋄M ν(zn − y,

ε

4δ
) < r.

Therefore we have

µ(x− z, 2t) = µ(2(z − y), 2ε) ∗M µ(2(x− y), 2(t− ε))

= µ(z − y,
ε

2δ−1
) ∗M µ(x− y,

t− ε

2δ−1
)

≥ (1 − r) ∗M (1 − r) = 1 − r,

and

ν(x− z, 2t) = µ(2(z − y), 2ε) ⋄M ν(2(x− y), 2(t− ε))

= ν(z − y,
ε

2δ−1
) ⋄M ν(x− y,

t− ε

2δ−1
)

≤ r ⋄M r = r.

So the claim is true and hence if V is a nonempty µ-ν-open set of X , then V ∩U1 is nonempty and µ-ν-open.
Suppose x1 ∈ V ∩ U1, so there exist r1 ∈ (0, 1) and t1 > 0 such that B(x1, r1,

t1
2δ−1 ) ⊆ V ∩ U1. Choose

r′1 < r1 and t′1 = min {t1, 1} such that B(x1, r
′
1,

t′1
2δ−1 ) ⊆ V ∩ U1. Since U2 is µ-ν-dense in X , we have

B(x1, r
′
1,

t′1
2δ−1 ) ∩ U2 ̸= ∅. Let x2 ∈ B(x1, r

′
1,

t′1
2δ−1 ) ∩ U2, hence there exist r2 ∈ (0, 12) and t2 > 0 such that

B(x2, r2,
t2

2δ−1 ) ⊆ B(x1, r
′
1,

t′1
2δ−1 )∩U2. Choose r′2 < r2 and t′2 = min {t2, 12} such that B(x2, r′2,

t′2
2δ−1 ) ⊆ V ∩U2.

By induction, we can obtain a sequence {xn} in X and two sequences {r′n}, {t′n} such that 0 < r′n < 1
n ,

0 < t′n <
1
n and B(xn, r′n,

t′n
2δ−1 ) ⊆ V ∩ Un. We show that {xn} is µ-ν-Cauchy. Get t > 0 and r ∈ (0, 1), then

we can choose k ∈ N such that 2t′k < t and r′k < r. Since xm, xn ∈ B(xk, r
′
k,

t′k
2δ−1 ), for m,n ≥ k, we get

µ(xm − xn, 2t) ≥ µ(xm − xn, 4t
′
k)

≥ µ(2(xm − xk), 2t′k) ∗M µ(2(xk − xn), 2t′k)

= µ(xm − xk,
t′k

2δ−1
) ∗M µ(xk − xn,

t′k
2δ−1

)

≥ (1 − rk) ∗M (1 − rk) > 1 − r,

and

ν(xm − xn, 2t) ≤ ν(xm − xn, 4t
′
k)

≤ ν(2(xm − xk), 2t′k) ⋄M ν(2(xk − xn), 2t′k)

= ν(xm − xk,
t′k

2δ−1
) ⋄M ν(xk − xn,

t′k
2δ−1

)

≤ rk ⋄M rk < r.
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Therefore {xn} is a µ-ν-Cauchy sequence. Since X is µ-ν-complete, there exists x ∈ X such that xn → x. For

all n ≥ k, xn ∈ B(xk, r
′
k,

t′k
2δ−1 ) and hence x ∈ B(xk, r

′
k,

t′k
2δ−1 ) ⊆ V ∩Uk. This implies that V ∩ (

∩∞
n=1 Un) ̸= ∅.

Therefore
∩∞

n=1 Un is µ-ν-dense in X . □
Finally, we give the uniform limit theorem in δ-homogeneous intuitionistic F-modular spaces. Let X be a

nonempty set and let (Y, µ, ν, ∗, ⋄) be an intuitionistic F-modular space. A sequence {fn} of mappings from
X to Y is called µ-ν-converges uniformly to a mapping f : X → Y if, for t > 0 and r ∈ (0, 1), there exists
n0 ∈ N such that µ(fn(x) − f(x), t) > 1 − r and ν(fn(x) − f(x), t) < r, for all n ≥ n0 and x ∈ X .

Theorem 3.18. Let {fn} be a sequence of continuous mappings from a topological space X to a δ-homogeneous
intuitionistic F-modular space (Y, µ, ν, ∗, ⋄). If {fn} µ-ν-convergent uniformly to f : X → Y, then f is con-
tinuous.

Proof. Let V be a µ-ν-open set of Y and x0 ∈ f−1(V ), so there exist t > 0 and r ∈ (0, 1) such that
B(f(x0), r, t) ⊂ V . For r ∈ (0, 1), we can choose s ∈ (0, 1) such that ∗(1−s)∗ (1−s) > 1− r. Since {fn} µ-ν-
converges uniformly to f , for s ∈ (0, 1) and t > 0 there exists n0 ∈ N such that µ(fn(x) − f(x), t

4δ+1 ) > 1 − s
and ν(fn(x) − f(x), t

4δ+1 ) < s for all n ≥ n0 and x ∈ X . Furthermore, each fn is continuous. Then there
exists a neighborhood U of x0 such that fn(U) ⊂ B(fn(x0), s,

t
4δ+1 ). Therefore µ(fn(x)− f(x0),

t
4δ+1 ) > 1− s

and ν(fn(x) − f(x0),
t

4δ+1 ) < s for all n ≥ n0 and x ∈ U and so we have

µ(f(x) − fn(x0), t) ≥ µ(2(f(x) − fn(x)),
t

2
) ∗ µ(2(fn(x) − f(x0)),

t

2
)

= µ(f(x) − fn(x),
t

2δ+1
) ∗ µ(2(fn(x) − f(x0)),

t

2δ+1
)

≥ µ(f(x) − fn(x),
t

2δ+1
) ∗ µ(2(fn(x) − fn(x0)),

t

2δ+2
) ∗ µ(2(fn(x0) − f(x0)),

t

2δ+2
)

= µ(f(x) − fn(x),
t

2δ+1
) ∗ µ(fn(x) − fn(x0),

t

4δ+1
) ∗ µ(fn(x0) − f(x0),

t

4δ+1
)

≥ (1 − s) ∗ (1 − s) ∗ (1 − s) > 1 − r.

and

ν(f(x) − fn(x0), t) ≤ ν(2(f(x) − fn(x)),
t

2
) ⋄ ν(2(fn(x) − f(x0)),

t

2
)

= ν(f(x) − fn(x),
t

2δ+1
) ⋄ ν(2(fn(x) − f(x0)),

t

2δ+1
)

≤ ν(f(x) − fn(x),
t

2δ+1
) ⋄ ν(2(fn(x) − fn(x0)),

t

2δ+2
) ⋄ ν(2(fn(x0) − f(x0)),

t

2δ+2
)

= ν(f(x) − fn(x),
t

2δ+1
) ⋄ ν(fn(x) − fn(x0),

t

4δ+1
) ⋄ ν(fn(x0) − f(x0),

t

4δ+1
)

≤ s ⋄ s ⋄ s < r.

This implies that f(x) ∈ B(f(x0), r, t) ⊂ V , therefore f(U) ⊆ V , hence f is continuous. □

4 Conclusion

In this paper, we have proposed the concept of an intuitionistic fuzzy modular space based on the modular
space and continuous t-norm and t-conorm, which can be regarded as a generalization of a modular space in
the intuitionistic fuzzy sense. We first deal with the problem of whether there is a relationship between an
intuitionistic fuzzy modular and an intuitionistic fuzzy metric. In the sequel, we have defined a Hausdorff
topology induced by a δ-homogeneous fuzzy modular and examined some related topological properties.
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Finally, we have extended the well-known Baire’s theorem and the uniform limit theorem to δ-homogeneous
intuitionistic fuzzy modular spaces.
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Completeness for Saturated L-Quasi-Uniform Limit Spaces
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Abstract. We define and study two completeness notions for saturated L-quasi-uniform limit spaces. The one, that
we term Lawvere completeness, is defined using the concept of promodule and lends a lax algebraic interpretation
of completeness also for saturated L-quasi-uniform limit spaces. The other, termed Cauchy completeness, is defined
using saturated Cauchy pair prefilters. We show that both concepts coincide with related notions in the case
of saturated L-quasi-uniform spaces and that also for saturated L-quasi-uniform limit spaces, both completeness
notions are equivalent.
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1 Introduction

Generalizing an approach in [2], completeness has recently been studied from a categorical point of view for
different kinds of many-valued quasi-uniform (convergence) spaces, [12, 13, 14]. This paper adds to these
investigations by considering many-valued quasi-uniform limit spaces based on saturated L-prefilters. These
spaces are a slight generalization of ⊤-uniform limit spaces [6, 7, 9] and of probabilistic quasi-uniform spaces
[5, 14]. We define a completeness notion using adjoint promodules, thus providing a categorical framework
for completeness. Also, we define completeness with the help of saturated pair L-prefilters. The main result
of the paper shows that both these approaches are equivalent.

The paper is organized as follows. In the second section we collect the necessary concepts about lattices,
L-subsets, saturated L-prefilters and prorelations. The third section studies saturated L-quasi-uniform limit
spaces and promodules. Sections 4 and 5 are devoted to the two concepts of completeness studied in this
paper. Finally, we draw some conclusions.

2 Preliminaries

In this paper, we will consider commutative and integral quantales L = (L,≤, ∗). Here, (L,≤) is a complete
lattice with distinct top and bottom elements ⊤ ̸= ⊥, (L, ∗) is a commutative semigroup with the top
element of L as the unit, that is, α ∗ ⊤ = α for all α ∈ L, and ∗ is distributive over arbitrary joins, that is,
(
∨

i∈J αi) ∗ β =
∨

i∈J(αi ∗ β) for all αi, β ∈ L, i ∈ J , see for example [4].
The implication in a quantale is defined by α → β =

∨
{δ ∈ L : δ ∗ α ≤ β} and characterized by

δ ≤ α→ β if and only if δ ∗ α ≤ β.
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Typical examples of commutative and integral quantales are L = ([0, 1],≤, ∗) with a left-continuous
t-norm on [0, 1] or Lawvere’s quantale L = ([0,∞],≥,+). Another example is given by the quantale of
distance distribution functions L = (∆+,≤, ∗), where ∆+ is the set of all distance distribution functions
φ : [0,∞] −→ [0, 1] which are left-continuous in the sense that φ(x) = supy<x φ(y) for all x ∈ [0,∞] and ∗ is
a sup-continuous triangle function, see [3, 11].

An L-subset of X is a mapping a : X −→ L and we denote the set of L-subsets of X by LX . For
A ⊆ X we define ⊤A ∈ LX by ⊤A(x) = ⊤ if x ∈ A and = ⊥ otherwise. The lattice operations are extended
pointwisely from L to LX . For a mapping φ : X −→ Y and a ∈ LX and b ∈ LY we define φ(a) ∈ LY by
φ(a)(y) =

∨
φ(x)=y a(x) for y ∈ Y and φ←(b) = b ◦ φ ∈ LX .

For L-subsets u ∈ LX×Y and v ∈ LY×Z , we define v ◦ u ∈ LX×Z by v ◦ u(x, z) =
∨

y∈Y u(x, y) ∗ v(y, z) for
all x ∈ X and z ∈ Z.

For a, b ∈ LX we denote the fuzzy inclusion order [a, b] =
∧

x∈X(a(x) → b(x)), [1]. The following properties
are well-known.

Lemma 2.1. Let a, a′, b, b′, c ∈ LX , d ∈ LY , u1, u2 ∈ LX×Y , , v1, v2 ∈ LY×Z and let φ : X −→ Y be a
mapping. Then

(i) a ≤ b if and only if [a, b] = ⊤;

(ii) a ≤ a′ implies [a′, b] ≤ [a, b] and b ≤ b′ implies [a, b] ≤ [a, b′];

(iii) [a, c] ∧ [b, c] = [a ∨ b, c];

(iv) [φ(a), d] = [a, φ←(d)];

(v) [u1, v1] ∗ [u2, v2] ≤ [u2 ◦ u1, v2 ◦ v1].

Definition 2.2. [5, 14] A subset F ⊆ LX is called a saturated L-prefilter (on X) if

(SP1) ⊤X ∈ F;

(SP2) a, b ∈ F implies a ∧ b ∈ F;

(SP3)
∨

b∈F[b, c] = ⊤ implies c ∈ F.

We denote the set of all saturated L-prefilters on X by FsatL (X) and we use the subsethood order on
FsatL (X).

The condition (SP3) implies a ≤ b, a ∈ F =⇒ b ∈ F. If additionally
∨

x∈X a(x) = ⊤ for all a ∈ F, then we
speak of a ⊤-filter [5, 14].

Example 2.3. For x ∈ X, [x] = {a ∈ LX : a(x) = ⊤} is a saturated L-prefilter, the saturated point L-
prefilter of x. We note that [x] is a ⊤-filter. More generally, for an L-set a ∈ LX , then [a] = {b ∈ LX : a ≤ b}
is a saturated L-prefilter and we have, in particular, [x] = [⊤{x}].

Definition 2.4. [5, 14] A subset B ⊆ LX is called a saturated L-prefilter base (on X) if

(SPB) a, b ∈ B implies
∨

c∈B[c, a ∧ b] = ⊤.

For a saturated L-prefilter base B, [B] = {a ∈ LX :
∨

b∈B[b, a] = ⊤} is the saturated L-prefilter generated
by B.

For a saturated L-prefilter F ∈ FsatL (X) and a mapping φ : X −→ Y , the set B = {φ(a) : a ∈ F} is a
saturated L-prefilter base on Y and we denote φ(F) the generated saturated L-prefilter on Y , the image of F
under φ, see e.g. [5].

A prorelation (from X to Y ) is a set of saturated L-prefilters Φ ⊆ FsatL (X × Y ) which satisfies the axioms
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(PR1) F ≤ G, F ∈ Φ implies G ∈ Φ;

(PR2) F,G ∈ Φ implies F ∧G ∈ Φ.

For F ∈ FsatL (X × Y ) the set [F] = {K ∈ FsatL (X × Y ) : F ≤ K} is a prorelation.

We consider now two prorelations Φ ⊆ FsatL (X × Y ) and Ψ ⊆ FsatL (Y × Z) and define

Ψ ◦ Φ = {H ∈ FsatL (X × Z) : ∃F ∈ Φ,G ∈ Ψ s.t. G ◦ F ≤ H}.

Here, it is defined G◦F = [{g◦f : g ∈ G, f ∈ F}] with g◦f(x, z) =
∨

y∈Y f(x, y)∗g(y, z) for all x ∈ X, z ∈ Z.
It is straightforward to show that Ψ ◦ Φ is a prorelation from X to Z.

We denote ∆X = {(x, x) : x ∈ X} ⊆ X × X. Then [⊤∆X
] ∈ FsatL (X × X) and hence [[⊤∆X

]] is a
prorelation from X to X.

Proposition 2.5. For a prorelation Φ ⊆ FsatL (X × Y ), we have Φ ◦ [[⊤∆X
]] = Φ and [[⊤∆Y

]] ◦ Φ = Φ.

Proof. Let H ∈ Φ ◦ [[⊤∆X
]]. Then there is F ∈ Φ such that F ◦ [⊤∆X

] ≤ H. For f ∈ F we have
f ◦ ⊤∆X

(x, y) =
∨

z∈X ⊤∆X
(x, z) ∗ f(z, y) = f(x, y) and hence we conclude that g ∈ F ◦ [⊤∆X

] if and
only if ⊤ =

∨
f∈F[f ◦ ⊤∆X

, g] =
∨

f∈F[f, g] if and only if g ∈ F, as F is a saturated L-prefilter. Hence,
F = F◦ [⊤∆X

] ≤ H and we have H ∈ Φ by (PR1). Conversely, for F ∈ Φ we have F = F◦ [⊤∆X
] ∈ Φ◦ [[⊤∆X

]].

The second equation can be shown in a similar way. □
For f ∈ LX×Y , g ∈ LY×Z and h ∈ LZ×U it is not difficult to show that h◦(g◦f) = (h◦g)◦f . From this we

conclude H◦ (G◦F) = (H◦G)◦F for saturated L-prefilters F ∈ FsatL (X×Y ),G ∈ FsatL (Y ×Z),H ∈ FsatL (Z×U)
and we obtain

Proposition 2.6. For prorelations Φ ⊆ FsatL (X × Y ),Ψ ∈ FsatL (Y × Z) and Θ ∈ FsatL (Z × U) we have
(Φ ◦ Ψ) ◦ Θ = Φ ◦ (Ψ ◦ Θ).

Consider now a mapping φ : X −→ Y . We define the L-relation (and denote it again by φ), φ(x, y) = ⊤
if y = φ(x) and φ(x, y) = ⊥ otherwise. Similarly, the opposite L-relation φ◦ is defined by φ◦(y, x) = ⊤ if
y = φ(x) and φ◦(y, x) = ⊥ otherwise. Hence, φ ∈ LX×Y and φ◦ ∈ LY×X and therefore [φ] ∈ FsatL (X × Y )
and [φ◦] ∈ FsatL (Y ×X) and we obtain prorelations [[φ]] ⊆ FsatL (X × Y ) and [[φ◦]] ⊆ FsatL (Y ×X).

If φ : X −→ Y and ψ : Y −→ Z, then it is not difficult to show that [ψ ◦ φ] = [ψ] ◦ [φ]. From this we
immediately conclude [[ψ]] ◦ [[φ]] = [[ψ ◦ φ]].

Proposition 2.7. Let φ : X −→ Y . Then [[φ]] ◦ [[φ◦]] ⊆ [[⊤∆Y
]] and [[⊤∆X

]] ⊆ [[φ◦]] ◦ [[φ]].

Proof. We have, for y, y′ ∈ Y , φ◦φ◦(y, y′) =
∨

x∈X φ◦(y, x)∗φ(x, y′) = ⊤ if y′ = φ(x) = y for some x ∈ X and
= ⊥ otherwise. Hence φ◦φ◦ ≤ ⊤∆Y

which implies [⊤∆Y
] ≤ [φ◦φ◦] and hence [[φ]]◦[[φ◦]] = [[φ◦φ◦]] ⊆ [[⊤∆Y

]].

Similarly, we have, for x, x′ ∈ X that φ◦ ◦φ(x, x′) =
∨

y∈Y φ(x, y)∗φ◦(y, x′) = ⊤ if φ(x′) = φ(x) and = ⊥
otherwise. Hence ⊤∆X

≤ φ◦ ◦ φ, implying [⊤∆X
] ≥ [φ◦ ◦ φ]. From this we conclude [[⊤∆X

]] ⊆ [[φ◦ ◦ φ]] =
[[φ◦]] ◦ [[φ]]. □

Lemma 2.8. Let φ : X −→ Y and b ∈ LX×X . Then (φ× φ)←(b) = φ◦ ◦ b ◦ φ.

Proof. For all x, x′ ∈ X we have (φ◦◦b)◦φ(x, x′) =
∨

y∈Y (φ◦◦b)(y, x′)∗φ(x, y) =
∨

y∈Y
∨

x:φ(x)=y φ
◦◦b(y, x′) =∨

x∈X φ◦ ◦ b(φ(x), x′) =
∨

y∈Y φ
◦(y, x′) ∗ b(φ(x), y) = b(φ(x), φ(x′)) = (φ× φ)←(b)(x, x′). □

Lemma 2.9. Let φ : X −→ Y and H ∈ FsatL (X ×X). Then we have, for b ∈ LX×Y , that b ∈ [φ] ◦H if, and
only if, φ◦ ◦ b ∈ H.
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Proof. We have with Lemma 2.1 (v), noting [φ◦, φ◦] = ⊤ = [φ,φ], for h ∈ H,

[φ ◦ h, b] ≤ [φ◦ ◦ φ ◦ h, φ◦ ◦ b] ≤ [h, φ◦ ◦ b] ≤ [φ ◦ h, φ ◦ φ◦ ◦ b] ≤ [φ ◦ h, b].

We conclude that b ∈ [φ] ◦H if, and only if, ⊤ =
∨

h∈H[φ ◦ h, b] =
∨

h∈H[h, φ◦ ◦ b] if, and only if, φ◦ ◦ b ∈ H.
□

Lemma 2.10. Let φ : X −→ Y and H ∈ FsatL (X ×X). Then we have, for a ∈ LY×X , that a ∈ H ◦ [φ◦] if,
and only if, a ◦ φ ∈ H.

Proof. Similar as in the last proof, we have, for h ∈ H,

[h ◦ φ◦, a] ≤ [h ◦ φ◦ ◦ φ, a ◦ φ] ≤ [h, a ◦ φ] ≤ [h ◦ φ◦, a ◦ φ ◦ φ◦] ≤ [h ◦ φ◦, a].

We conclude that a ∈ G ◦ [φ◦] if, and only if, ⊤ =
∨

h∈H[h ◦ φ◦, a] =
∨

h∈H[h, a ◦ φ] if, and only if, a ◦ φ ∈ H.
□

Proposition 2.11. For H ∈ FsatL (X ×X) and φ : X −→ Y we have (φ× φ)(H) = [φ] ◦H ◦ [φ◦].

Proof. We have b ∈ [φ] ◦H ◦ [φ◦] if, and only if, φ◦ ◦ b ∈ H ◦ [φ◦] if, and only if, (φ×φ)←(b) = φ◦ ◦ b ◦φ ∈ H
if, and only if, b ∈ (φ× φ)(H). □

3 Saturated L-Quasi-Uniform Limit Spaces and Promodules

Definition 3.1. Let X be a set and let Λ ⊆ FsatL (X×X). The pair (X,Λ) is called a saturated L-quasi-uniform
limit space if

(SLUL1) [⊤∆X
] ∈ Λ;

(SLUL2) H ∈ Λ, H ≤ K implies K ∈ Λ;

(SLUL3) H,K ∈ Λ implies H ∧K ∈ Λ;

(SLUL4) H,K ∈ Λ implies H ◦K ∈ Λ.

A mapping φ : (X,Λ) −→ (X ′,Λ′) is called uniformly continuous if (φ× φ)(H) ∈ Λ′ whenever H ∈ Λ.

The axioms (SLUL2) and (SLUL3) show that Λ is a prorelation from X to X that satisfies, via (SLUL1)
and (SLUL4), the additional axioms

[[⊤∆X
]] ⊆ Λ and Λ ◦ Λ ⊆ Λ.

Uniform continuity of a mapping can be characterized as follows.

Proposition 3.2. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces and φ : X −→ X ′ be a
mapping. The following statements are equivalent.
(1) φ is uniformly continuous.
(2) [[φ]] ◦ Λ ⊆ Λ′ ◦ [[φ]].
(3) Λ ◦ [[φ◦]] ⊆ [[φ◦]] ◦ Λ′.
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Proof. We first show that (1) implies (2). Let φ be uniformly continuous and let K ∈ [[φ]] ◦ Λ. Then
K ≥ [φ] ◦ H for some H ∈ Λ and hence K ◦ [φ◦] ≥ [φ] ◦ H ◦ [φ◦] = (φ × φ)(H) ∈ Λ′. We conclude
K = K ◦ [⊤∆X

] ≥ K ◦ [φ◦] ◦ [φ] ∈ Λ′ ◦ [[φ]] and we have K ∈ Λ′ ◦ [[φ]].
Now we show that (2) implies (3).Let K ∈ Λ ◦ [[φ◦]]. Then K ≥ H ◦ [φ◦] for some H ∈ Λ. Hence

[φ] ◦ K ≥ [φ] ◦ H ◦ [φ◦] ∈ Λ′ ◦ [[φ]] ◦ [[φ◦]] ⊆ Λ′ ◦ [[⊤∆Y
]] = Λ′ and we have that [φ] ◦ K ∈ Λ′. We conclude

K = [⊤∆X
] ◦K ≥ [φ◦] ◦ [φ] ◦K ∈ [[φ◦]] ◦ Λ′ and we have K ∈ [[φ◦]] ◦ Λ′.

Finally we show that (3) implies (1). Let H ∈ Λ. Then (φ × φ)(H) = [φ] ◦ H ◦ [φ◦] ∈ [[φ]] ◦ Λ ◦ [[φ◦]] ⊆
[[φ]] ◦ [[φ◦]] ◦ Λ′ ⊆ [[⊤∆Y

]] ◦ Λ′ = Λ′ and φ is uniformly continuous. □

Example 3.3 ([13]). Let X be a set. A saturated L-prefilter U ∈ FsatL (X ×X) is called a saturated L-quasi-
uniformity if

(U0) for all x ∈ X and u ∈ U we have u(x, x) = ⊤;

(UC) for all u ∈ U we have
∨

v∈U [v ◦ v, u] = ⊤.

The pair (X,U) is the called a saturated L-quasi-uniform space. A mapping φ : (X,U) −→ (X ′,U ′)
between the saturated L-quasi-uniform spaces (X,U), (X ′,U ′) is called uniformly continuous if (φ×φ)←(v) ∈
U for all v ∈ U ′.

We note that the conditions (U0) and (UC) are equivalent to (U0’) U ≤ [⊤∆X
] and (UC’) U ≤ U ◦ U .

Uniform continuity of a mapping φ : (X,U) −→ (X ′,U ′) can equivalently be expressed by [φ] ◦ U ≥ U ′ ◦ [φ].
Wang and Yue [13] call a saturated L-quasi-uniform space a fuzzy quasi-uniform space. Also, they use as

order on the set of saturated L-prefilters the opposite order of the subsethood order.
For a saturated L-quasi-uniform space (X,U) then (X, [U ]) is a saturated L-quasi-uniform limit space

and a uniformly continuous mapping φ : (X,U) −→ (X ′,U ′) is also uniformly continuous as a mapping
φ : (X, [U ]) −→ (X ′, [U ′]).

Definition 3.4. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces. A prorelation from X to
X ′, Φ ⊆ FsatL (X ×X ′), is called a promodule (from (X,Λ) to (X ′,Λ′)) if Φ ◦ Λ ⊆ Φ and Λ′ ◦ Φ ⊆ Φ.

We note that for a promodule Φ = Φ ◦ [[⊤∆X
]] ⊆ Φ ◦ Λ and hence we even have Φ ◦ Λ = Φ. Similarly we

can see also that Λ′ ◦ Φ = Φ. Also, from (SLUL4) we see that Λ is a promodule from (X,Λ) to (X,Λ).

Example 3.5. Let φ : (X,Λ) −→ (X ′,Λ′) be uniformly continuous. Then φ∗ = Λ′ ◦ [[φ]] is a promodule
from (X,Λ) to (X ′,Λ′) and φ∗ = [[φ◦]] ◦Λ′ is a promodule from from (X ′,Λ′) to (X,Λ). It is easy to see that
φ∗ and φ∗ are prorelations. Furthermore φ∗ ◦Λ = Λ′ ◦ [[φ]] ◦Λ ⊆ Λ′ ◦Λ′ ◦ [[φ]] ⊆ Λ′ ◦ [[φ]] = φ∗ and, similarly,
Λ′ ◦ [[φ∗]] = Λ′ ◦ Λ′ ◦ [[φ]] ⊆ Λ′ ◦ [[φ]] = φ∗. The proof that φ∗ is a promodule is similar and not shown.

Definition 3.6. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces, let Φ ⊆ FsatL (X,X ′) be a
promodule from (X,Λ) to (X ′,Λ′) and let Ψ ⊆ FsatL (X ′ ×X) be a promodule from from (X ′,Λ′) to (X,Λ).
Φ is called left-adjoint for Ψ (and Ψ is called right-adjoint for Φ) if Λ ⊆ Ψ ◦ Φ and Φ ◦ Ψ ⊆ Λ′. In this case
we write Φ ⊣ Ψ.

Example 3.7. For a uniformly continuous mapping φ : (X,Λ) −→ (X ′,Λ′) we have φ∗ ⊣ φ∗. In fact, we
have Λ = Λ ◦ [[⊤∆X

]] = Λ ◦ [[φ◦]] ◦ [[φ]] ⊆ [[φ◦]] ◦ Λ′ ◦ [[φ]] = [[φ◦]] ◦ Λ′ ◦ Λ′ ◦ [[φ]] = φ∗ ◦ φ∗ and also
φ∗ ◦ φ∗ = Λ′ ◦ [[φ]] ◦ [[φ◦]] ◦ Λ′ ⊆ Λ′ ◦ [[⊤∆Y

]] ◦ Λ′ = Λ′ ◦ Λ′ = Λ′.

We note that for a promodule Ψ ⊆ FsatL (X ′ ×X) its left-adjoint Φ ⊆ FsatL (X,X ′) is unique. In fact, if we
have Φ1 ⊣ Ψ and Φ2 ⊣ Ψ, then Φ1 = Φ1 ◦Λ ⊆ Φ1 ◦ (Ψ ◦Ψ2) = (Φ1 ◦Ψ) ◦Φ2 ⊆ Λ′ ◦Φ2 = Φ2. Similarly we see
that Φ2 ⊆ Φ1 and hence Φ1 = Φ2. In the same way, also for a promodule Φ ⊆ FsatL (X,X ′) its right-adjoint
Ψ ⊆ FsatL (X ′ ×X) is unique.

The following lemma will come in handy later.
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Lemma 3.8. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces, let Φ,Φ′ ⊆ FsatL (X,X ′) be
promodules from (X,Λ) to (X ′,Λ′) and let Ψ,Ψ′ ⊆ FsatL (X ′×X) be promodules from from (X ′,Λ′) to (X,Λ).
If Φ′ ⊆ Φ and Ψ′ ⊆ Ψ, then Φ′ = Φ and Ψ′ = Ψ.

Proof. We have Φ′ = Λ′ ◦ Φ′ ⊇ (Φ ◦ Ψ) ◦ Φ′ ⊇ (Φ ◦ Ψ′) ◦ Φ′ = Φ ◦ (Ψ′ ◦ Φ′) ⊇ Φ ◦ Λ = Φ. Similarly we can
show Ψ ⊆ Ψ′. □

4 Lawvere Completeness of Saturated L-Quasi-Uniform Limit Spaces

We consider a one-point set 1 = {•} and the unique saturated L-quasi-uniform limit structure Π = [[⊤{(•,•)}]].
A mapping φ : 1 −→ X, φ(•) = x will be identified with x ∈ X and we shall write x : 1 −→ X for it. We note
that x : (1,Π) −→ (X,Λ) is uniformly continuous: For H ≥ [⊤{(•,•)}] we find (φ×φ)(H) ≥ (φ×φ)([⊤{(•,•)}]) =
[⊤{(φ(•),φ(•))}] = [⊤{(x,x)}] ≥ [⊤∆X

] ∈ Λ and hence (φ× φ)(H) ∈ Λ.

Definition 4.1. A saturated L-quasi-uniform limit space (X,Λ) is called Lawvere complete if for all promod-
ules Φ ⊆ FsatL (1×X) from (1,Π) to (X,Λ), Ψ ⊆ FsatL (X × 1) from (X,Λ) to (1,Π) with Φ ⊣ Ψ there is x ∈ X
such that Φ = x∗ and Ψ = x∗.

In the sequel, we want to identify X×1 and 1×X with X. This leads to some adaptation in the concepts
and definitions. For a mapping x : 1 −→ X we note that x(•, y) = ⊤ if and only if x = x(•) = y and
x(•, y) = ⊥ otherwise. Hence, x(•, y) = ⊤{x}(y) and we can write x∗ = Λ ◦ [[x]] with the saturated point
L-prefilter [x]. Similarly, x◦(y, •) = ⊤ if x = x(•) = y and x◦(y, •) = ⊥ otherwise, so that also x∗ = [[x]] ◦ Λ.

More generally, for F ∈ FsatL (X × 1) (or, similarly, for F ∈ FsatL (1×X)) we identify f ∈ F with an L-subset
of X (denoted again by f) via f(x) = f(x, •). In this sense, we define for H ∈ FsatL (X ×X) and F ∈ FsatL (X)

H ◦ F = [{h ◦ f : h ∈ H, f ∈ F}]

with h◦f(x) = h◦f(•, x) = h◦f(•, x) =
∨

y∈X f(•, y)∗h(y, x) =
∨

y∈X f(y)∗h(y, x) for all x ∈ X. Similarly,
we define

F ◦H = [{f ◦ h : f ∈ F, h ∈ H}]

with f ◦ h(x) = f ◦ h(x, •) =
∨

y∈X h(x, y) ∗ f(y, •) =
∨

y∈X h(x, y) ∗ f(y).
A promodule Φ ⊆ FsatL (1×X) from (1,Π) to (X,Λ) then satisfies the conditions Φ◦Π ⊆ Φ and Λ◦Φ ⊆ Φ.

We note that the first of these conditions is always satisfied: Φ ◦Π = Φ ◦ [[⊤{(•,•)}]] = Φ ◦ [[⊤∆1 ]] = Φ. Hence
it is sufficient to demand the condition Λ ◦Φ ⊆ Φ in this case. Identfying Φ ⊆ FsatL (1×X) with Φ ⊆ FsatL (X),
we call a prorelation Φ ⊆ FsatL (X) a left-Λ-promodule if Λ ◦ Φ ⊆ Φ. If the saturated L-quasi-uniform limit
space (X,Λ) is clear from the context, we simply speak of a left-promodule in this case.

Similarly, for a promodule Ψ ⊆ FsatL (X × 1) from (X,Λ) to (1,Π) we have the conditions Ψ ◦ Λ ⊆ Ψ and
Π ◦ Ψ ⊆ Ψ and again the second of these conditions will be always satisfied. We therefore call a prorelation
Ψ ⊆ FsatL (X) a right-Λ-promodule if Ψ ◦ Λ ⊆ Ψ. Again, if the saturated L-quasi-uniform limit space (X,Λ) is
clear from the context, we simply speak of a right-promodule.

For adjoint promodules, we consider prorelations Φ,Ψ ⊆ FsatL (X) as promodules (from (1,Π) to (X,Λ) for
Φ and from (X,Λ) to (1,Π) for Ψ). Then, by definition, Φ ⊣ Ψ if and only if Φ ◦ Ψ ⊆ Λ and Π ⊆ Ψ ◦ Φ. The
first condition, Φ ◦ Ψ ⊆ Λ, means that for all F ∈ Φ and all G ∈ Ψ we have F ◦G ∈ Λ. Now we note that for
f ∈ F and g ∈ G we have

f ◦ g(x, y) =
∨
z∈1

g(x, z) ∗ f(z, y) = f(•, y) ∗ g(x, •) = f(y) ∗ g(x) = g ⊗ f(x, y)

and hence, G⊗ F ∈ Λ for all F ∈ Φ and all G ∈ Ψ.
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The second condition, Π ⊆ Ψ ◦ Φ, means that there are F ∈ Φ and G ∈ Ψ such that G ◦ F ≤ [⊤{(•,•)}],
that is, that there are F ∈ Φ and G ∈ Ψ such that ⊤ = g ◦ f(•, •) =

∨
x∈X f(•, x) ∗ g(x, •) =

∨
x∈X f(x) ∗ g(x)

for all f ∈ F, g ∈ G. So we arrive at the following characterization.

Proposition 4.2. Let (X,Λ) be a saturated L-quasi-uniform limit space and let Φ ⊆ FsatL (X) be a left-
promodule and Ψ ⊆ FsatL (X) be a right-promodule. Then Φ is left-adjoint to Ψ, Φ ⊣ Ψ, if, and only if,
(1) G⊗ F ∈ Λ for all F ∈ Φ and all G ∈ Ψ; and
(2) there are F ∈ Φ and G ∈ Ψ such that for all f ∈ F and all g ∈ G we have

∨
x∈X f(x) ∗ g(x) = ⊤.

Proposition 4.3. The saturated L-quasi-uniform limit space (X,Λ) is Lawvere complete if, and only if, for
all left-promodules Φ ⊆ FsatL (X) and all right-promodules Ψ ⊆ FsatL (X) with Φ ⊣ Ψ there is x ∈ X such that
Φ = Λ ◦ [[x]] and Ψ = [[x]] ◦ Λ.

In [6, 13, 14], for a saturated L-quasi-uniform space (X,U) a prorelation is defined to be a saturated
prefilter H ∈ FsatL (X). A prorelation H is a left-U-promodule if H ≤ U ◦ H and a prorelation K is a right-U-
promodule if K ≤ K◦U . (Note that in [6] the composition was defined in a different order.) A left-U-promodule
H is left-adjoint to the right-U-promodule K, H ⊣ K, if U ≤ K⊗H and

∨
x∈X h(x) ∗ k(x) = ⊤ for all h ∈ H

and all k ∈ K. Then H is a left-U-promodule if and only if [H] is a left-[U ]-promodule. In fact, if H is
a left-U-promodule and F ∈ [U ] ◦ [H], then H ≤ U ◦ H ≤ F and hence, F ∈ [H]. Conversely, if [H] is a
left-[U ]-promodule, then U ◦ H ∈ [U ] ◦ [H] ⊆ [H], so that H ≤ U ◦ H. In a similar way, we see that K is a
right-U-promodule if and only if [K] is a right-[U ]-promodule.

Furthermore, it is not difficult to show that H ⊣ K (in (X,U)) if and only if [H] ⊣ [K] (in (X, [U ])).

A saturated L-quasi-uniform space (X,U) is called Lawvere complete [13] (see also [6]) if for all left-U -
promodules H and all right-U-promodules K with H ⊣ K there is x ∈ X such that H = U(x, ·) = [{u(x, ·) :
u ∈ U}] and K = U(·, x) = [{u(·, x) : u ∈ U}].

Proposition 4.4. A saturated L-quasi-uniform space (X,U) is Lawvere complete if, and only if, (X, [U ]) is
Lawvere complete.

Proof. Let first (X,U) be Lawvere complete and let Φ ⊣ Ψ. From Proposition 4.2 we see that there are
F ∈ Φ and G ∈ Ψ such that F ⊣ G. By Lawvere completeness, there is x ∈ X such that F = U(x, ·) and
G = U(·, x). For u ∈ LX×X we have u ◦ ⊤{x}(y) =

∨
z∈X ⊤{x}(z) ∗ u(z, y) = u(x, y) for all y ∈ X and hence

U ◦ [x] = U(x, ·). Similarly we can show [x] ◦ U = U(·, x). We conclude [F] = [U ] ◦ [[x]] and [G] = [[x]] ◦ [U ].
Clearly, we have [F] ⊣ [G] and [F] ⊆ Φ and [G] ⊆ Ψ. Lemma 3.8 implies Φ = [F] = [U ] ◦ [[x]] = x∗ and
Ψ = [G] = [[x]] ◦ [U ] = x∗ and hence (X, [U ]) is Lawvere complete.

For the converse, let (X, [U ]) be Lawvere complete and let H ⊣ G. Then [H] ⊣ [G] and hence there is x ∈ X
such that [H] = [U ] ◦ [[x]] and [G] = [[x]] ◦ [U ]. We conclude H ≥ U ◦ [x] = U(x, ·) and K ≥ [x] ◦ U = U(·, x).
As U(x, ·) ⊣ U(·, x), see [6], we obtain H = U(x, ·) and K = U(·, x) and (X,U) is Lawvere complete. □

5 Cauchy Completeness of Saturated L-Quasi-Uniform Limit Spaces

Let (X,Λ) be a saturated L-quasi-uniform limit space and let F,G ∈ FsatL (X). The following concepts were
introduced in [13].

(1) (F,G) are called a saturated pair L-prefilter if for all f ∈ F and all g ∈ G we have
∨

x∈X f(x)∗g(x) = ⊤.

(2) A saturated pair L-prefilter (F,G) is called a Cauchy pair if G⊗ F ∈ Λ.

(3) A saturated pair L-prefilter (F,G) converges to x ∈ X, (F,G) → x, if [x] ⊗ F ∈ Λ and G⊗ [x] ∈ Λ.

We note that if a saturated pair L-prefilter (F,G) converges to x, then ([x] ⊗ F) ◦ (G⊗ [x]) = G⊗ F ∈ Λ,
that is, (F,G) is a Cauchy pair.
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Proposition 5.1 (see also [6]). Let (X,Λ) be a saturated L-quasi-uniform limit space and let (F,G), (F′,G′)
be saturated pair L-prefilters on X.

(SCP1) ([x], [x]) is a Cauchy pair for all x ∈ X;

(SCP2) If (F,G) is a Cauchy pair and if F′ ≥ F and G′ ≥ G, then (F′,G′) is a Cauchy pair.

(SCP3) If (F,G), (F′,G′) are Cauchy pairs and if
∨

x∈X f(x) ∗ g′(x) = ⊤ for all f ∈ F and all g′ ∈ G′ and also∨
x∈X f ′(x) ∗ g(x) = ⊤ for all f ′ ∈ F and all g ∈ G′, then (F ∧ F′,G ∧G′) is a Cauchy pair.

Proof. We show only (SCP3). Obviously, (F ∧ F′,G ∧ G′) is a pair L-prefilter.
∨

x∈X f(x) ∗ g′(x) = ⊤
for all f ∈ F and all g′ ∈ G′, we conclude (G′ ⊗ F′) ◦ (G ⊗ F) = G ⊗ F′, see [7]. Similarly, we have
(G⊗ F) ◦ (G′ ⊗ F′) = G′ ⊗ F. By (SLUL2) then G⊗ F′ ∈ Λ and G′ ⊗ F ∈ Λ. Hence, using Proposition 3.10
[7], we obtain Λ ∋ (G⊗ F) ∧ (G⊗ F′) ∧ (G′ ⊗ F) ∧ (G′ ⊗ F′) = (G ∧G′) ⊗ (F ∧ F′). □

This proposition shows that a saturated L-quasi-uniform limit space has an underlying ⊤-quasi-Cauchy
space. These spaces were introduced in [8].

Definition 5.2. A saturated L-quasi-uniform limit space (X,Λ) is called Cauchy complete if for all Cauchy
pairs (F,G) there is x ∈ X such that (F,G) → x.

For a saturated L-quasi-uniform space (X,U), a saturated pair L-prefilter (F,G) is called a Cauchy pair
[13] if G⊗F ≥ U , that is, if (F,G) is a Cauchy pair in (X, [U ]). The saturated pair L-prefilter (F,G) is called
convergent to x ∈ X if F ≥ U(x, ·) and G ≥ U(·, x). From ([x] ⊗ F) ◦ [x] = F we obtain [x] ⊗ F ≥ U if, and
only if, F ≥ U ◦ [x] = U(x, ·) and similarly we have G ⊗ [x] ≥ U if, and only if, G ≥ [x] ◦ U = U(·, x). Hence
we have (F,G) → x in (X,U) if, and only if, (F,G) → x in (X, [U ]). From these observations we immediately
obtain the following result.

Proposition 5.3. A saturated L-quasi-uniform space (X,U) is Cauchy complete if, and only if, (X, [U ]) is
Cauchy complete.

It is shown in [13, 14] that a saturated L-quasi-uniform space is Cauchy complete if, and only if, it is
Lawvere complete. Hence, by Propositions 4.4 and 5.3, for a saturated L-quasi-uniform space (X,U), the
saturated L-quasi-uniform limit space (X, [U ]) is Cauchy complete if, and only if, it is Lawvere complete.
This is also true for arbitrary saturated L-quasi-uniform limit spaces. We first show the following Lemma.

Lemma 5.4. Let (X,Λ) be a saturated L-quasi-uniform limit space, x ∈ X and F,G ∈ FsatL (X). Then
(1) [x] ⊗ F ∈ Λ if, and only if, F ∈ Λ ◦ [[x]].
(2) G⊗ [x] ∈ Λ if, and only if, G ∈ [[x]] ◦ Λ.

Proof. (1) Let first [x] ⊗ F ∈ Λ. Then F = ([x] ⊗ F) ◦ [x] ∈ Λ ◦ [[x]]. (We have (⊤{x} ⊗ f) ◦ ⊤{x}(y) =∨
z∈X ⊤{x}(z) ∗ (⊤{x} ⊗ f)(z, y) = ⊤{x} ⊗ f(x, y) = f(y).)

Let now F ∈ Λ◦[[x]]. Then there is L ∈ Λ such that L◦[x] ≤ F. We conclude L ≤ [x]⊗(L◦[x]) ≤ [x]⊗F and
hence [x]⊗F ∈ Λ. (We have ⊤{x}⊗(l◦⊤{x})(s, t) = ⊤{x}(s)∗

∨
y∈X ⊤{x}(y)∗l(y, t) = ⊤{x}(s)∗l(x, t) ≤ l(s, t).)

(2) can be shown in a similar way. □

Theorem 5.5. A saturated L-quasi-uniform limit space (X,Λ) is Cauchy complete if, and only if, it is
Lawvere complete.

Proof. Let first (X,Λ) be Lawvere complete and let (F,G) be a Cauchy pair. We define Φ = Λ ◦ [F] and
Ψ = [G] ◦ Λ. It is not difficult to see that Φ,Ψ are prorelations. As Λ ◦ Φ = Λ ◦ Λ ◦ [F] ⊆ Λ ◦ F = Φ, Φ is a
left-promodule. Similarly, Ψ◦Λ = [G]◦Λ◦Λ ⊆ [G]◦Λ = Ψ, that is, Ψ is a right promodule. We show Φ ⊣ Ψ.
Let H ∈ Φ and K ∈ Ψ. Then there are L1,L2 ∈ Λ such that H ≥ L1 ◦ F and K ≥ G ◦ L2. A straightforward
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calculation shows that for l2, l2 ∈ LX×X and f, g ∈ LX we have l1 ◦ (g ⊗ f) ◦ l2 = (g ◦ l2) ⊗ (l1 ◦ f). Hence
K⊗H ≥ (G ◦ L2) ⊗ (L1 ◦ F) = L1 ◦ (G⊗ F) ◦ L2 ∈ Λ by (SLUL4). Furthermore, we have F = [⊤∆X

] ◦ F ∈ Φ
and G = G ◦ [⊤∆X

] ∈ Ψ and therefore Φ ⊣ Ψ. As (X,Λ) is Lawvere complete, there is x ∈ X such that
Φ = x∗ and Ψ = x∗, that is, Λ ◦ [F] = Λ ◦ [[x]] and [G] ◦Λ = [[x]] ◦Λ. As F = [⊤∆X

] ◦F ∈ Λ ◦ [F] = Λ ◦ [[x]] we
conclude with Lemma 5.4 that [x] ⊗ F ∈ Λ. In a similar way we see that G⊗ [x] ∈ Λ and hence (F,G) → x
and (X,Λ) is Cauchy complete.

Let now (X,Λ) be a Cauchy complete. Let Φ ⊣ Ψ. From Proposition 4.2 we see that there is a Cauchy
pair (F,G) with F ∈ Φ and G ∈ Ψ. By Cauchy completeness there is x ∈ X such that [x] ⊗ F ∈ Λ and
G ⊗ [x] ∈ Λ, that is, F ∈ Λ ◦ [[x]] and G ∈ [[x]] ◦ Λ. We define Φ = Λ ◦ [F] and Ψ = [G] ◦ Λ. Then, as
in the first part of the proof, Φ ⊣ Ψ. We have Φ = Λ ◦ [F] ⊆ Λ ◦ Φ ⊆ Φ. In a similar way we conclude
Ψ ⊆ Ψ and hence, by Lemma 3.8, Φ = Λ ◦ [F]. From F ∈ Λ ◦ [[x]] we conclude [F] ⊆ Λ ◦ [[x]] and hence
Φ = Λ ◦ [F] ⊆ Λ ◦ Λ ◦ [[x]] ⊆ Λ ◦ [[x]] = x∗.

Let F ∈ x∗ = Λ ◦ [[x]]. Then there is L ∈ Λ such that L ◦ [x] ≤ F. We note that for f ∈ F, g ∈ G we have∨
x∈X f(x) ∗ g(x) = ⊤ and therefore (g ⊗⊤{x}) ◦ f = ⊤{x}. Hence we have [x] = (G⊗ [x]) ◦ F ∈ Λ ◦ Φ = Φ.

It follows that F ≥ L ◦ [x] ∈ Λ ◦ Φ = Φ and we have F ∈ Φ, that is x∗ ⊆ Φ. Similar arguments show that
Ψ = x∗ and (X,Λ) is Lawvere complete. □

6 Conclusion

We studied two completeness notions for saturated L-quasi-uniform limit spaces. The one is based on the
concept of adjoint promodules and generalizes an approach of Clementino and Hofmann [2]. The other uses
the concept of the Cauchy pair and generalizes a classical approach due to Lindgren and Fletcher [10]. We
show that both approaches are equivalent.

An open problem is the construction of a completion based on either of the two completeness notions.
This will still deserve more work.
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[6] Jäger G. Sequential completeness for T-quasi-uniform spaces and a fixed point theorem. Mathematics.
2022; 10(13): 2285. DOI: http://doi.org/10.3390/math10132285
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Abstract. This paper develops the notion of fuzzy ideal and generalized fuzzy ideal on double Boolean algebra
(dBa). According to Rudolf Wille, a double Boolean algebra D := (D,⊓,⊔,¬, ⌟,⊥,⊤) is an algebra of type
(2, 2, 1, 1, 0, 0), which satisfies a set of properties. This algebraic structure aimed to capture the equational theory
of the algebra of protoconcepts. We show that collections of fuzzy ideals and generalized fuzzy ideals are endowed
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1 Introduction

Nowadays, fuzzy logic is used in numerous applications such as facial pattern recognition, air conditioners,
washing machines, vacuum cleaners, anti-skid braking systems, transmission systems and unmanned heli-
copters knowledge-based systems for multi-objective optimization of power systems. In Machine Learning,
fuzzy logic can be applied in some models such as MLP (Multi Layers Perceptron) model which is a fully
connected class of feed-forward artificial neural network (ANN). In forecasting, fuzzification is incorporated
at the input layers by considering the degree of participation of each of the features in the prediction model
[2]. Fuzzy layers can also be seen as a circuit design as it is an application of Boolean algebra and therefore,
we strongly believe that the way of connecting layers can be related to a lattice structure. Lattices can also
appear in analysis of cellular traffic for finding anomalies in the performance and provisioning of demand
resources [3]. Another application of double Boolean algebra is in multi-layer neural networks, in fact consid-
ering multilayer neural network design. Different blocks made between layers represent ordered structures of
dBas. So with a specific dBa, we can easily design a multilayer neural network based on connection between
layers. This task can therefore be added to artificial intelligence purpose on designing circuits that are used
in digital computers.

So far, fuzzification of ideals has been studied on bounded lattices [1, 7, 10]. Mezzomo et al, based on
Chon’s approach [4], has defined the notion of fuzzy ideals and fuzzy filters on the product operators of
bounded lattices. They have also proved some properties that are analogous to the classical theory of fuzzy
ideals and fuzzy filters such as, the class of fuzzy ideals being closed under fuzzy union and fuzzy intersection.
Thus this leads to the study of fuzzy topology on bounded lattices. Attalah has studied complete fuzzy prime
ideals on distributive lattices. Fuzzification of ideals has been tackled in other algebraic structures such as, IL
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algebras [6], in that structure the concept of fuzzy ideal generalizes the notion of fuzzy ideals in BL-algebra
and MTL-algebra. Kuanyum et al [12] have tackled the question of fuzzy ideals in residuated lattices. They
first defined the generalized fuzzy ideals and they showed that the set of generalized fuzzy ideals is endowed
with a lattice structure. As it is known that a double Boolean algebra is a more general structure than a
residuated lattice and does not necessarily have a subjacent structure of lattice and Tatuéné [5] has shown
that transfer of structure from that algebra to the fuzzy structure does not holds. The question that captures
our interest is whether for the case of a double Boolean algebra, we still have a lattice structure by endowing
the set of fuzzy ideals with some operators. From the best of our knowledge, this direction has not yet been
tackled. So our goal in this paper is mainly focused on the study of fuzzy ideals of a double Boolean algebra.
We fuzzify the notion of ideals on double Boolean algebra. Moreover we prove that the collection of fuzzy
ideals of a double Boolean algebra D is endowed with a lattice structure which is an extension of the work
done by Kuanyun et al [12].

The paper is organized as follows: in section 2, we present a background which contains definitions
and related properties of ideals and filters in the double Boolean algebra for a better understanding of the
structure. In section 3, we introduce the concept of fuzzy ideals and fuzzy filters on double Boolean algebras
and then we characterize them. In section 4, we study the lattice structure of the set of all fuzzy ideals of a
double Boolean algebra D. In section 5, we draw a generalization of the concept of fuzzy ideal and then we
study the bounded lattice structure of the set of generalized fuzzy ideals of a double Boolean algebra.

2 Background

In this section, we present double Boolean algebras, ideals of double Boolean algebras and related properties.
We then give some results obtained by Tenkeu et al [11] for this structure. These notions will be useful for
the rest of the paper.

2.1 Double Boolean algebras and related properties

Definition 2.1. [9] A double Boolean algebra is an algebra D = (D,⊓,⊔,¬, ⌟,⊥,⊤) of type (2, 2, 1, 1, 0, 0)
that satisfies (1a) to (11a) and (1b) to (11b).

(1a) (x ⊓ x) ⊓ y = x ⊓ y

(2a) x ⊓ y = y ⊓ x

(3a) x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z

(4a) ¬(x ⊓ x) = ¬x

(5a) x ⊓ (x ⊔ y) = x ⊓ x

(6a) x ⊓ (y ∨ z) = (x ⊓ y) ∨ (x ⊓ z)

(7a) x ⊓ (x ∨ y) = x ⊓ x

(8a) ¬¬(x ⊓ y) = x ⊓ y

(9a) x ⊓ ¬x = ⊥

(10a) ¬⊥ = ⊤ ⊓⊤

(11a) ¬⊤ = ⊥
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(1b) (x ⊔ x) ⊔ y = x ⊔ y

(2b) x ⊔ y = y ⊔ x

(3b) x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z

(4b) ⌟(x ⊔ x) =⌟x

(5b) x ⊔ (x ⊓ y) = x ⊔ x

(6b) x ⊔ (y ∧ z) = (x ⊔ y) ∧ (x ⊔ z)

(7b) x ⊔ (x ∧ y) = x ⊔ x

(8b) ⌟⌟(x ⊔ y) = x ⊔ y

(9b) x⊔⌟x = ⊤

(10b) ⌟⊤ = ⊥ ⊔⊥

(11b) ⌟⊥ = ⊤

(12) (x ⊓ x) ⊔ (x ⊓ x) = (x ⊔ x) ⊓ (x ⊔ x)

Where the supremum (join) is defined by x ∨ y := ¬(¬x ⊓ ¬y), and the infimum (meet) is defined by:
x ∧ y :=⌟(⌟x⊔⌟y), 1 := ¬⊥ and 0 :=⌟⊤. The relation defined by x ⊑ y ⇐⇒ x ⊓ y = x ⊓ x and x ⊔ y = y ⊔ y
is a quasi-order.

A double Boolean algebra is called pure if it satisfies: x ⊓ x = x or x ⊔ x = x. This relation also holds
in algebra of semiconcepts.

The following notations are adopted x⊓ := x ⊓ x, D⊓ = {x⊓ : x ∈ D} and x⊔ = x ⊔ x, D⊔ =
{x⊔ : x ∈ D} . The algebras (D⊓,⊓,∨,¬,⊥, 1) and (D⊔,∧,⊔, ⌟, 0,⊤) are Boolean algebras.

x⊓ ≤ y⊓ ⇐⇒ x ⊑ y

⇐⇒ x⊓ ⊓ y⊓ = (x ⊓ x) ⊓ (y ⊓ y) = x ⊓ x = x⊓

and in the same way, we have: x⊔ ⊔ y⊔ = y⊔. As ⊓ is the meet and ⊔ is the join operator in the Boolean
algebra (D⊓,⊓,∨,¬,⊥, 1) and (D⊔,∧,⊔, ⌟, 0,⊤) respectively. We get x ⊑ y ⇐⇒ x⊓ ≤ y⊓ and x⊔ ≤ y⊔
where ≤ is the induced order in the corresponding Boolean algebra.

A double Boolean algebra is called regular if the relation ⊑ is an order relation.

Example 2.2. Let D = {a, b, c, d, e = a ⊓ b = c ⊔ d,⊥,⊤} with the diagram given by the following:
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Figure 1: dBa pure

With the following table:

⊔ a b c d ⊥ ⊤ e

a a ⊤ a a a ⊤ a

b ⊤ b b b b ⊤ b

c a b e e e ⊤ e

d a b e e e ⊤ e

e a b e e e ⊤ e

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ e b e e ⊥ ⊤ e

x a b c d ⊥ ⊤ e

¬x ⊥ ⊥ d c e ⊥ ⊥

x a b c d ⊥ ⊤ e

⌟x b a ⊤ ⊤ ⊤ e ⊤

⊓ a b c d ⊥ ⊤ e

a e e c d ⊥ e e

b e b c d ⊥ b b

c c c c ⊥ ⊥ c e

d d d ⊥ d ⊥ d e

⊤ a b c d ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ e

e a b e e e ⊤ e

D = D⊔ ∪D⊓, with D⊔ = {a, b, a ⊓ b,⊤}and D⊓ = {c, d, c ⊔ d,⊥} a ⊔ a = a, b ⊔ b = b, ,⊤ ⊔ ⊤ = ⊤.
Hence D is a pure double Boolean algebra.

Example 2.3. Let D = {α, β, γ, λ,⊥,⊤} with the diagram and tables given by the following:

⊓ ⊥ γ λ β α ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
γ ⊥ γ ⊥ γ γ γ

λ ⊥ ⊥ λ λ ⊥ λ

β ⊥ λ β γ γ β

α ⊥ γ ⊥ γ γ γ

⊤ ⊥ γ λ β γ β

Figure 2: Hasse diagram of D
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⊔ ⊥ γ λ β α ⊤
⊥ γ γ β β α ⊤
γ γ γ β β α ⊤
λ β β β β ⊤ ⊤
β β β β β ⊤ ⊤
α α α ⊤ ⊤ α ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

x ⊥ γ λ β α ⊤
¬x β λ γ ⊥ λ ⊥
⌟x ⊤ ⊤ α α β γ

The dBa D is pure and we have D⊓ = {⊥, γ, λ, β} and D⊔ = {α, β, γ,⊤}

2.2 Ideals on double Boolean algebras and their properties

Definition 2.4. (see [8]) Let D be a double Boolean algebra. A non empty subset F of D is called a filter if
it satisfies:

(i) x, y ∈ F =⇒ x ⊓ y ∈ F ;
(ii) x ∈ F, y ∈ D,x ⊑ y =⇒ y ∈ F.

Dually, ideals of double Boolean algebras is defined.

Definition 2.5. (see [8]) Let D be a double Boolean algebra. A filter F is called proper if F ̸= D, and
primary if it is proper and satisfies x ∈ F or ¬x ∈ F, for all x ∈ D.
Dually are defined primary ideals.

Tenkeu et al. [11] showed that primary ideals are exactly maximal ideals in the framework of double
Boolean algebras.

Proposition 2.6. (see [8]) Let I an ideal of D, then I⊔ = {x⊔ : x ∈ I} is an ideal of D⊔.

We call double Boolean algebra trivial iff ⊤ ⊓⊤ =⊥ ⊔ ⊥ .

Proposition 2.7. (see [11]) Let D be a dBa and X ⊆ D a non empty subset of D. F1, F2 two filters of D
and I1, I2 two ideals of D.

1. I(a) = {x ∈ D : x ⊑ a⊔a}, where I(a) stand for the ideal generated by a and F (a) = {x ∈ D : a⊓a ⊑ x},
where F (a) stand for the filter generated by a.

2. Ideal(∅) = I(⊥) = {x ∈ D : x ⊆ ⊥ ⊔⊥} and Filter(∅) = F (⊤) = {x ∈ D : ⊤ ⊓⊤ ⊑ x}

3. Ideal(X) = {x ∈ D : x ⊑ b1 ⊔ b2 ⊔ · · · ⊔ bn, for some b1, b2, · · · , bn ∈ X,n ≥ 1}

4. Filter(X) = {x ∈ D : x ⊒ b1 ⊓ b2 ⊓ · · · ⊓ bn, for some b1, b2, · · · , bn ∈ X,n ≥ 1}

5. Ideal (I1 ∪ I2) = {x ∈ D : x ⊑ i1 ⊔ i2, i1 ∈ I1, i2 ∈ I2} = I1 ∨ I2

6. Filter (F1 ∪ F2) = {x ∈ D : x ⊑ f1 ⊓ f2, f1 ∈ F1, f2 ∈ F2} = F1 ∨ F2

The following proposition gives the distributivity-like property of dBa.

Proposition 2.8. (see [11]) Let D = (D,⊓,⊔,⊥,⊤) be a dBa and a, b, c ∈ D. We have:
(i) a ∨ (b ⊓ c) = (a ∨ b) ⊓ (a ∨ c) (iv) a ∧ (a ⊔ b) = a ⊔ a

(ii) a ∧ (b ⊔ c) = (a ∧ b) ⊔ (a ∧ c) (v) (a ⊓ a) ∨ (b ⊓ b) = a ∨ b
(iii) a ∨ (a ⊓ b) = a ⊓ a (vi) (a ⊔ a) ∧ (b ⊔ b) = a ∧ b.
(vii) a ⊔ b, c ⊔ d =⇒ a ⊓ c ⊑ b ⊓ d, a ⊔ c ⊑ b ⊔ d, a ∨ c ⊑ b ∨ d and a ∧ c ⊑ b ∧ d.

In the next section we are going to introduce fuzzy ideals and fuzzy filters on double Boolean algebras
and give some related properties.
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3 Fuzzy ideals and fuzzy filters on double Boolean algebras

In this section we introduce the notion of fuzzy ideals and fuzzy filters in the context of double Boolean
algebras. Namely, we characterized these concepts. A fuzzy set on D is a function µ : D −→ [0, 1]. Let
α ∈ [0, 1], the α-cut of µ is defined by µα = {x ∈ D : µ(x) ≥ α}.

Definition 3.1. Let D = (D,⊓,⊔,¬, ⌟,⊥,⊤) be a double Boolean algebra and µ, ν two fuzzy subsets of D.
The fuzzy subset µ of D is a fuzzy filter if for all x, y ∈ D

(i) µ(x ⊓ y) ≥ µ(x) ∧ µ(y);

(ii) x ⊑ y =⇒ µ(x) ≤ µ(y).

Dually the fuzzy subset ν of D is a fuzzy ideal if for all x, y ∈ D, the following inequalities hold:

(i) ν(x ⊔ y) ≥ ν(x) ∧ ν(y);

(ii) x ⊑ y =⇒ ν(x) ≥ ν(y).

The above two relations on Definition 3.1 are equivalent to say that : µ is fuzzy ideal of D iff µ(x ⊔ y) =
µ(x) ∧ µ(y), for all x, y ∈ D. And µ is fuzzy filter of D iff µ(x ⊓ y) = µ(x) ∧ µ(y), for all x, y ∈ D.

Proposition 3.2. Let µ be a fuzzy ideal of D, and ν the fuzzy filter of D, then we have the following:
µ(x ⊔ x) = µ(x) and ν(x ⊓ x) = ν(x), for all x ∈ D.

Proof. Since µ is a fuzzy ideal then we have: µ(x⊔x) ≥ µ(x)∧µ(x) = µ(x) this implies that µ(x⊔x) ≥ µ(x).
In addition, we have x ⊑ x⊔x, then µ(x) ≥ µ(x⊔x). Hence µ(x⊔x) = µ(x). Similarly, the cases of the fuzzy
filter can be shown. □

The previous proposition shows that the fuzzy ideals of the Boolean algebra D⊔ can be extended as fuzzy
ideals of the double Boolean D.

Let denote by FI(D⊔) and FI(D) the collection of fuzzy ideals of D⊔ and D respectively. We have the
following proposition which is a characterization of fuzzy ideals and fuzzy filters with their α-cuts.

Proposition 3.3. Let µ, ν be two fuzzy subsets of D.

(i) µ is a fuzzy ideal iff for all α ∈ [0, 1], µα = ∅ or µα is an ideal of D.

(ii) ν is a fuzzy filter iff for all α ∈ [0, 1], να = ∅ or να is an filter of D.

Proof.
Case of (i)

Let µ be a fuzzy subset of D.

=⇒) Let us assume that µ is a fuzzy ideal of D. Let α ∈ [0, 1], such that µα ̸= ∅. we need to show that µα is
an ideal of D.

Suppose x, y ∈ µα then we have µ(x) ≥ α and µ(y) ≥ α, hence µ(x) ∧ µ(y) ≥ α. But by hypothesis, µ
is a fuzzy ideal of D. So we have µ(x ⊔ y) ≥ µ(x) ∧ µ(y). Thus µ(x ⊔ y) ≥ α. Hence x ⊔ y ∈ µα.

Now suppose that x ⊑ y then µ(y) ≤ µ(x) since µ is a fuzzy ideal of D. And since y ∈ µα, this means
that µ(y) ≥ α, so µ(x) ≥ α, by transitivity of ≤, therefore x ∈ µα. Hence µα is an ideal of D.

⇐=) Let us assume that for any α ∈ [0, 1], µα is an ideal of D.

Let x, y ∈ D, for α = µ(x) ∧ µ(y), x, y ∈ µα, since µα is an ideal of D, we have x ⊔ y ∈ µα. Thus
µ(x ⊔ y) ≥ µ(x) ∧ µ(y). Also x ⊑ y =⇒ x ⊔ y = y ⊔ y (Prop.3). For α = µ(y), y ∈ µα, but x ⊑ y and
µα ideal implies x ∈ µα. Thus µ(x) ≥ α = µ(y).
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The proof of (ii) is similar.
□

Example 3.4. Let us consider the double Boolean algebra defined in the example 2.2 with it diagram in
Figure 1. Then we have the following:

µ(x) =

{
1
2 if x ∈ {a, b, c, d, e,⊤}
1 if x = ⊥

is a fuzzy ideal of the double Boolean algebra D, defined in example 1 of the paper. In fact, let α ∈ [0, 1], if
α ≤ 1

2 , µα = {a, b, c, d, e,⊤} which is an ideal of D. If α > 1
2 , then µα = {⊥}, which is an ideal of D.

ν(x) =


3
4 if x ∈ {a, b, e}
1 if x ∈ {c, d,⊤}
0 if x = ⊥

is a fuzzy filter of the double Boolean algebra D, defined in example 2.2

Definition 3.5. Let D a double Boolean algebra. A fuzzy filter µ is called proper if µ is a non constant
function.

Definition 3.6. Let µ be a fuzzy subset of D, µ is a fuzzy primary filter of D if it is proper and satisfies
µ(x) ∨ µ(¬x) = 1, for all x ∈ D. Dually, a fuzzy subset ν is a fuzzy primary ideal of D if ν(x) ∨ ν(⌟x) = 1,
for all x ∈ D.

Example 3.7. Let us consider the double Boolean algebra of the example 2.3, where D = {⊥, α, β, γ, λ,⊤}
with it diagram in Figure 2.

µ(x) =


1 if x ∈ {⊥, α, β, γ}
1
3 if x = λ

1
10 if x = ⊤

(1)

Then µ is a fuzzy primary ideal of D. In fact, µ is a fuzzy ideal of D, since it is a decreasing function.
And it is primary: let x ∈ D = {⊥, α, β, γ, λ,⊤}

If x = ⊥, then since µ(⊥) = 1, we directly have µ(x) ∨ µ(⌟x) = 1;

If x = α, then since µ(α) = 1, we directly have µ(α) ∨ µ(⌟α) = 1;

If x = β, then since µ(β) = 1, we directly have µ(β) ∨ µ(⌟β) = 1;

If x = γ, then since µ(γ) = 1, we directly have µ(γ) ∨ µ(⌟γ) = 1;

If x = λ, then since µ(⌟λ) = 1, we directly have µ(λ) ∨ µ(⌟λ) = 1;

If x = ⊤, then since µ(⌟⊤) = 1, we directly have µ(⊤) ∨ µ(⌟⊤) = 1.
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Proposition 3.8. Let ν and µ be two fuzzy subsets of D,

(i) ν is a fuzzy primary ideal of D if and only if for all α ∈ [0, 1] , such that ∅ ̸= να ̸= D, να is a primary
ideal of D;

(ii) µ is a fuzzy primary filter of D if and only if for all α ∈ [0, 1] , ∅ ̸= µα ̸= D, µα is a primary filter of D.

Proof. Case of (i)
=⇒) Suppose ν is a fuzzy primary ideal of D, let α ∈ [0, 1] and x ∈ D. We have ν(x)∨ ν(⌟x) = 1 this implies
ν(x) ∨ ν(⌟x) ≥ α. Thus we have: ν(x) ≥ α or ν(⌟x) ≥ α. Hence x ∈ να or ⌟x ∈ να.
⇐=) Conversely, let’s assume that for any α ∈ [0, 1] , να is a primary ideal of D. let us show that ν is a fuzzy
primary ideal of D. Let x ∈ D, since να is a primary ideal of D, either x ∈ να or ⌟x ∈ να this implies ν(x) ≥ α
or ν(⌟x) ≥ α, thus ν(x) ∨ ν(⌟x) ≥ α by taking on both side the sup on α, we get ν(x) ∨ ν(⌟x) ≥ 1. Hence
ν(x) ∨ ν(⌟x) = 1. The proof of (ii) is similar to the one of (i). □

Definition 3.9. Let µ be a fuzzy subset of D. Then µ is a fuzzy maximal ideal if µ ̸= 1 and for any fuzzy
ideal ν, µ ≤ ν =⇒ ν = 1 or µ = ν.

Dually, fuzzy maximal filter of D is defined.

Example 3.10. Let us consider the double Boolean algebra illustrated in example 2.2, with it diagram in
Figure 1. Then we have the following:

µ(x) =

{
1
2 if x ∈ {a, b, c, d, e,⊤}
1 if x = ⊥

is a maximal fuzzy ideal. In fact by taking α ∈ [0, 1], we have µα = D, if α > 3
5 and µα = {a, b, c, d, e,⊤} if

α ≤ 3
5 . So µα is a maximal ideal of D.

Proposition 3.11. Let µ, ν be two fuzzy subsets of D.

(i) If µ is fuzzy primary ideal iff µ is fuzzy maximal ideal.

(ii) If ν is fuzzy primary filter iff ν is fuzzy maximal filter.

Proof. Case of (i)
Let µ a fuzzy primary ideal of D, let us show that µ is a fuzzy maximal ideal of D. Since µ is a fuzzy primary
ideal, µ is proper, then µ ̸= 1. Let ν be a fuzzy ideal of D such that µ ≤ ν and let us assume that ν ̸= 1 and
show that necessarily we have µ = ν. If µ ̸= ν then there exists a ∈ D, such that µ(a) < ν(a). According to
Proposition 3.8, for α = 1, µ1 = {x ∈ D : µ(x) = 1}, since µ ̸= 1, and ⊥ ∈ µ1 then ∅ ̸= µ1 ̸= D is a primary
ideal of D. But µ ≤ ν implies that µ1 ⊆ ν1 and using the fact that any primary ideal of D is maximal, we
therefore have µ1 = ν1 or ν1 = D. Having µ < ν implies that µ1 ̸= ν1. Hence by maximality of µ1, we have
ν1 = D and this implies that ν = 1 which is absurd (ν ̸= 1 by hypothesis). Conversely, let assume that µ is
a maximal fuzzy ideal and let us show that µ is a fuzzy primary ideal.

Suppose that there exists x ∈ D such that µ(x)∨ µ(⌟x) < 1, then we have µ(x) < 1 and µ(⌟x) < 1. Then
there exists x ∈ D, x /∈ µ1 and ⌟x /∈ µ1. Since µ is maximal fuzzy ideal, then µ1 is a maximal ideal. But x /∈ µ1
implies that Ideal < x > ∪µ1 strictly contains µ1 and by maximality of µ1, we have Ideal < x > ∪µ1 = D.
Thus ⌟x ∈ µ1, which is absurd.

The case of (ii) is the dual version. □

Proposition 3.12. Let µ be a fuzzy subset of D.

(i) µ is a fuzzy ideal of D iff µ(⊥) ≥ µ(x) and µ(y) ≥ µ(x) ∧ µ(⌟x ∧ y), ∀x, y ∈ D
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(ii) µ is a fuzzy filter of D iff µ(⊤) ≥ µ(x) and µ(x) ≥ µ(y) ∧ µ(x ∨ ¬y).

Proof. Case (i)
=⇒) Let us assume that µ is a fuzzy ideal of D. Then it is obvious that µ(⊥) ≥ µ(x). Since µ is a fuzzy ideal
of D, we have: µ(x⊔ (⌟x∧ y)) = µ(x)∧µ(⌟x∧ y) but y ⊑ x⊔ (⌟x∧ y), since x⊔ (⌟x∧ y) = (x⊔⌟x)∧ (x⊔ y) =
⊤ ∧ (x ⊔ y) = x ⊔ y. Thus µ(y) ≥ µ(x) ∧ µ(⌟x ∧ y).

⇐=) Now let us assume that µ(⊥) ≥ µ(x) and µ(y) ≥ µ(x)∧µ(⌟x∧y), ∀x, y ∈ D. Then we have µ(x⊔y) ≤
µ(x) and µ(x ⊔ y) ≤ µ(y). Thus µ(x ⊔ y) ≤ µ(x) ∧ µ(y) and µ(x ⊔ y) ≥ µ(x) ∧ µ(⌟x ⊔ (x ⊔ y)) ≥ µ(y) ∧ µ(y).
Thus µ(x ⊔ y) = µ(x) ∧ µ(y).

Let x, y such that x ⊑ y, then we have

µ(x) ≥ µ(y) ∧ µ(⌟y ∧ x)

= µ(y ⊔ (⌟y ∧ x)) By definition

≥ µ(y ⊔ y) = µ(y) Proposition 3.3

Finally, we have the equivalence. The case (ii) is similar. □

4 Lattices of fuzzy ideals in double Boolean algebras

Kaunyun et al. in [12] have introduced the concept of tip-extended. In the context of double Boolean algebra,
having µ and ν to be two fuzzy ideals, it is not always true that µ ∨ ν is a fuzzy ideal too. So to solve this
problem we need to introduce the concept of tip-extended in double Boolean algebra.

Definition 4.1. Let µ and ν be two fuzzy sets of D. Then the tip-extended pair of µ and ν of D can be
defined as follows:

µν(x) =

 µ(x) if x ̸= ⊥

µ(⊥) ∨ ν(⊥) if x = ⊥

and

νµ(x) =

 ν(x) if x ̸= ⊥

ν(⊥) ∨ µ(⊥) if x = ⊥ .

Lemma 4.2. Let µ be a fuzzy ideal of D and t ∈ [0, 1]. Then

µt(x) =

 µ(x) if x ̸= ⊥

µ(⊥) ∨ t if x = ⊥

is a fuzzy ideal of D.

Proof. Let x, y ∈ D, and t ∈ [0, 1]

µt(x ⊔ y) =

 µ(x ⊔ y) if x ⊔ y ̸= ⊥

µ(⊥) ∨ t if x ⊔ y = ⊥

• If x ⊔ y ̸= ⊥, then we have µt(x ⊔ y) = µ(x ⊔ y) = µ(x) ∧ µ(y)
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• If x = ⊥ and y ̸= ⊥

µt(x ⊔ y) = µ(x ⊔ y)

= µ(x) ∧ µ(y)

= (µ(⊥) ∨ t) ∧ µt(y)

= µt(x) ∧ µt(y)

• If x ̸= ⊥ and y ̸= ⊥, then

µt(x ⊔ y) = µ(x ⊔ y)

= µ(x) ∧ µ(y)

= µt(x) ∧ µt(y)

Let x, y ∈ D such that x ⊑ y we need to show that µt(x) ≥ µt(y).

If y = ⊥, then µt(x) = µt(y).
If y ̸= ⊥ and x = ⊥ then we have µt(y) = µ(y) ≤ µ(⊥) = µ(x) ≤ µ(⊥) ∨ t = µt(x). If y ̸= ⊥ and
x ̸= ⊥ we have µt(y) = µ(y) ≥ µ(x) = µt(x). Thus in any case, µt(y) ≥ µt(x). Thus for all x, y ∈ D,
µt(x ⊔ y) = µt(x) ∧ µt(y).

□ In general, when ν is a non constant function, the tip-extended pair µν is a fuzzy ideal. Here we
defined the join of two fuzzy ideals.

Definition 4.3. Let µ and ν be two fuzzy sets of D. Then the operation ⊔∗ is defined as follows:

(µ ⊔∗ ν) (x) =
∨

x⊑y⊔z
(µ(y) ∨ ν(z)) , ∀x ∈ D. (2)

The following theorem characterizes the fuzzy ideal of D generated by a fuzzy subset.

Lemma 4.4. Let µ be a fuzzy set of D. Define a fuzzy set ν of D as follows:

ν(x) =
∨

x⊑x1⊔x2⊔···⊔xn

(µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xn)) (3)

for some x1, x2 · · · , xn ∈ D. Then ν is the smallest fuzzy ideal of D that contains µ.

Proof. Let us first show that ν is a fuzzy ideal of D. Let x, y ∈ D. By definition of ν(x ⊔ y), we have

ν(x ⊔ y) =
∨

x⊔y⊑x1⊔x2⊔···⊔xn

(µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xn)) .

By definition of ν(x) and ν(y), we have

ν(x) =
∨

x⊑a1⊔a2⊔···⊔an

(µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an))

ν(y) =
∨

y⊑b1⊔b2⊔···⊔bm

(µ(b1) ∧ µ(b2) ∧ · · · ∧ µ(bm)) .
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We know from [11] that if x ⊑ a1 ⊔ a2 ⊔ · · · ⊔ an and y ⊑ b1 ⊔ b2 ⊔ · · · ⊔ bm, then x⊔ y ⊑ (a1 ⊔ a2 ⊔ · · · ⊔ an)⊔
(b1 ⊔ b2 ⊔ · · · ⊔ bm) thus we have the following:

ν(x) ∧ ν(y) =

 ∨
x⊑a1⊔a2⊔···⊔an

µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an)

∧

 ∨
y⊑b1⊔b2⊔···⊔bm

µ(b1) ∧ µ(b2) ∧ · · · ∧ µ(bm)


=
∨

(µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an) ∧ µ(b1) ∧ µ(b2) ∧ · · · ∧ µ(bm))

= ν(x ⊔ y).

Thus ν is a fuzzy ideal of D.
Let x ∈ D, then we have that ν(x) ≥ µ(x), this shows that ν contains µ.
Let η be a fuzzy ideal of L that contains µ (η(x) ≥ µ(x)) and let x ∈ D,

ν(x) =
∨

x⊑x1⊔x2⊔···⊔xn

µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xn)

≤
∨

x⊔y⊑x1⊔x2⊔···⊔xn

η(x1) ∧ η(x2) ∧ · · · ∧ η(xn)

≤ η(x).

□
Notation:

Let µ be a fuzzy set of D. We denote by < µ >, the fuzzy ideal generated by µ. That is the smallest fuzzy
ideal containing µ.

Lemma 4.5. Let D be a double Boolean algebra, µ and ν two fuzzy ideals of D. Then µν ⊔∗ νµ =< µ∨ ν > .
That is: the fuzzy ideal generated by µ and ν is exactly the supremum between the tip-extended pair of µ and
ν.

Proof. We need first to show that µν ⊔∗ νµ is a fuzzy ideal.
Let x, y ∈ D,

(µν ⊔∗ νµ) (x ⊔ y) =
∨

x⊔y⊑a⊔b
µν(a) ∧ νµ(b)

≥
∨

x⊑q⊔p,y⊑r⊔s
µν(p ⊔ r) ∧ νµ(q ⊔ s)

≥
∨

x⊑q⊔p,y⊑r⊔s
µν(p) ∧ µν(r) ∧ νµ(q) ∧ νµ(s)

=

 ∨
x⊑p⊔q

µν(p) ∧ νµ(q)

 ∧

 ∨
y⊑r⊔s

µν(r) ∧ νµ(s)


= (µν ⊔∗ νµ) (x) ∧ (µν ⊔∗ νµ) (y).

Let x, y ∈ D such that x ⊑ y, we need to show that (µν ⊔∗ νµ) (x) ≥ (µν ⊔∗ νµ) (y)



148 Kuiebove F. Trans. Fuzzy Sets Syst. 2023; 2(2)

If y = ⊥ then it is obvious that x = ⊥ and the result holds.
If y ̸= ⊥

(µν ⊔∗ νµ) (x) =
∨

x⊑t⊔z
µν(t) ∧ νµ(z) (4)

(µν ⊔∗ νµ) (y) =
∨

y⊑r⊔s
µν(r) ∧ νµ(s) (5)

since x ⊑ y so by transitivity of ⊑, x ⊑ r ⊔ s.
Thus

∨
y⊑r⊔s µ

ν(r) ∧ νµ(s) ≤
∨

x⊑t⊔z µ
ν(t) ∧ νµ(z). That is (µν ⊔∗ νµ) (x) ≤ (µν ⊔∗ νµ) (x)

Thus µν ⊔∗ νµ is a fuzzy ideal of D. Now let us show that we have µν ⊔∗ νµ ≥ µ ∨ ν to conclude with
Lemma 4.2 and Lemma 4.4.

Let x ∈ D,

(µν ⊔∗ νµ) (x) =
∨

x⊑y⊔z
µν(y) ∧ νµ(z)

≥ µν(x) ∧ νµ(⊥)

≥ µ(x) ∧ µ(⊥)

= µ(x).

Thus µν ⊔∗ νµ contains µ. Similarly,

(µν ⊔∗ νµ) (x) =
∨

x⊑y⊔z
µν(y) ∧ νµ(z)

≥ νµ(x) ∧ µν(⊥)

≥ ν(x) ∧ ν(⊥)

= ν(x).

Let η be a fuzzy ideal of D containing µ ∨ ν. We need to show that η(x) ≥ (µν ⊔∗ νµ) (x)
Let x ∈ D, if x = ⊥, then (µν ⊔∗ νµ) (⊥) = µ(⊥) ∨ ν(⊥) ≤ η(⊥).
If x ̸= ⊥

(µν ⊔∗ νµ) (x) =
∨

x⊑y⊔z
µν(y) ∧ νµ(z)

=

 ∨
x⊑y⊔z,y ̸=⊥,z ̸=⊥

µ(y) ∧ ν(z)

 ∨

∨
x⊑y

µ(y)

 ∨

∨
x⊑z

ν(z)


=

 ∨
x⊑y⊔z,y ̸=⊥,z ̸=⊥

µ(y) ∧ ν(z)

 ∨

∨
x⊑y

µ(y)

 ∨

∨
x⊑z

ν(z)


≤

 ∨
x⊑y⊔z,y ̸=⊥,z ̸=⊥

η(y) ∧ η(z)

 ∨

∨
x⊑y

η(y)

 ∨

∨
x⊑z

η(z)


=

∨
x⊑y⊔z

η(y) ∧ η(z)

≤ η(x).

Thus µν ⊔∗ νµ =< µ ∨ ν > . □
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Theorem 4.6. If we consider FI(D) to be the collection of all fuzzy ideals of D, then (FI(D),⊔∗,⊓∗, 0, 1)
is a bounded lattice, where ⊓∗ is defined as follows: µ ⊓∗ ν = µ ∧ ν, 0 : D 7→ [0, 1], 0(x) = 0, for all x ∈ D.
1 : D 7→ [0, 1], and 1(x) = 1, for all x ∈ D.

Proof. From the previous proposition, any pair of elements of FI(D) has a supremum (Lemma 4.5) and the
upper bound is 1, the lower bound is 0. □

Theorem 4.7. The map

φ : FI(D⊔) −→ FI(D)

µ 7−→ µ̃

Where

µ̃ : D −→ [0, 1]

x 7−→ µ(x ⊔ x)

is an isomorphism of lattices.

Proof. The map φ is well defined, in fact for µ ∈ FI(D⊔), µ̃ ∈ FI(D) according to Proposition 3.2. φ
preserve the order ≤ . Suppose µ1 ≤ µ2 then let x ∈ D, µ̃1(x) = µ1(x ⊔ x) ≤ µ2(x ⊔ x). Thus µ̃1(x) ≤ µ̃2(x).
Hence µ̃1 ≤ µ̃2. Conversely, if µ̃1 ≤ µ̃2, then µ̃1/D⊔ = µ̃2/D⊔ i.e µ1 ≤ µ2. Thus µ1 ≤ µ2 ⇐⇒ φ(µ1) ≤ φ(µ2).

φ is surjective since for any µ ∈ FI(D), µ/D⊔ ∈ FI(D⊔) and φ
(
µ/D⊔

)
= µ. φ is injective, in fact let

µ1, µ2 ∈ FI(D⊔) such that µ̃1 = µ̃2 Let us show that µ1 = µ2. Let x ∈ D⊔,

µ1(x) = µ1(x ⊔ x) by (i) of Proposition 3.2

= µ̃1(x) by definition of φ

= µ̃2(x) by hypothesis (µ̃1 = µ̃2)

= µ2(x ⊔ x)

= µ2(x).

Thus µ1 = µ2. □

5 Lattices of generalized fuzzy ideals in dbas

In this section, we introduce the notion of generalized fuzzy ideal which is a more general definition of fuzzy
ideal on dBas. Namely we show that the collection of generalized fuzzy ideals of a dBa is endowed with a
lattice structure.

Let us first define the concept of generalized fuzzy ideal.
Let m,n ∈ [0, 1] and m < n, then a fuzzy set µ of D is called a generalized fuzzy ideal of D if:

(I1) µ(x ⊔ y) ∨m ≥ µ(x) ∧ µ(y) ∧ n

(I2) x ⊑ y =⇒ µ(x) ∨m ≥ µ(y) ∧ n.

Here generalized fuzzy ideals are defined with respect to a fixed pair (m,n). We denote by GFI(D) the
set of all generalized fuzzy ideals.

Let m,n ∈ [0, 1] and m < n. Then the fuzzy set µ of D is called generalized fuzzy ideal if :

(I3) µ(⊥) ∨m ≥ µ(x) ∧ n;
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(I4) µ(y) ∨m ≥ µ(x) ∧ µ(⌟x ⊔ y) ∧ n.

Proof. Let µ be a generalized fuzzy ideal of D. Since ⊥ ⊑ x, for any x ∈ D, it follows that µ(⊥)∨m ≥ µ(x)∧n.
On other hand, since y ⊑ x ⊔ (⌟x ⊔ y), we have µ(y) ∨m ≥ µ (x ⊔ (¬x ⊔ y)) ∧ n.

Thus one can write:

µ(y) ∨m ∨m = µ(y) ∨m
≥ (µ (x ⊔ (⌟x ⊔ y)) ∧ n) ∨m
= (µ(x ⊔ (⌟x ⊔ y)) ∨m) ∧ (n ∨m)

≥ µ(x) ∧ µ(⌟x ⊔ y) ∧ n ∧ n
= µ(x) ∧ µ(⌟x ⊔ y) ∧ n.

Conversely, let us now assume that I3 and I4 hold. Let x, y ∈ L and x ⊑ y. Then ⌟y ⊑⌟x and x∧⌟y ⊑ x∧⌟y
by compatibility. So µ(⊥) = µ(¬y ∧ x) and from (I2) we have that

µ(x) ∨m ≥ µ(y) ∧ µ(¬y ∧ x) ∧ n
= µ(y) ∧ µ(⊥) ∧ n.

Thus

µ(x) ∨m ∨m ≥ ((µ(y) ∧ n) ∨m) ∧ (µ(⊥) ∨m)

≥ (µ(y) ∧ n) ∨m) ∧ (µ(y) ∧ n)

= µ(y) ∧ n.

This implies that I2 holds. On the other hand, since ⌟x ∧ (x ⊔ y) ⊑ y,

we have µ (⌟x ∧ (x ⊔ y))∨m ≥ µ(y)∧n and from I4 we have that µ(x⊔y)∨m ≥ µ(x)∧µ(⌟x∧ (x⊔y))∧n.
Thus

µ(x ⊔ y) ∨m ∨m ≥ ((µ(x) ∧ n) ∨m) ∧ (µ(y) ∧ n) ∨m
= ((µ(x) ∧ n) ∨m) ∧ (µ (⌟x ∧ (x ⊔ y)) ∨m)

= ((µ(x) ∧ n) ∨m) ∧ (µ(y) ∧ n)

= (µ(x) ∧ n) ∧ (µ(y) ∧ n)

= µ(x) ∧ µ(y) ∧ n.

Therefore I1 is satisfied and this shows that µ is a generalized fuzzy ideal of D. □

Theorem 5.1. Let m,n ∈ [0, 1] and m < n, Then a fuzzy set µ of D is a generalized fuzzy ideal if and only
if for all x, y, z ∈ D,

x ⊑ y ⊔ z =⇒ µ(x) ∨m ≥ µ(y) ∧ µ(z) ∧ n.

Proof. Let µ be a generalized fuzzy ideal of D and x ⊑ y ⊔ z, then µ(x) ∨m ≥ µ(y ⊔ z) ∧ n.
Hence one can write

µ(x) ∨m ≥ (µ(y ⊔ z) ∨m) ∧ (n ∨m)

≥ µ(y) ∧ µ(z) ∧ n ∧ n
= µ(y) ∧ µ(z) ∧ n.
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Thus µ(x) ∨m ≥ µ(y) ∧ µ(z) ∧ n, conversely, since we know that we have µ(⊥) ∨m ≥ µ(x) ∧ µ(x) ∧ n.
Thus µ(⊥) ∨m ≥ µ(x) ∧ n.

On the other side, since we know that y ⊑ x ⊔ (⌟x ∧ y) we have:

µ(y) ∨m ≥ µ(x) ∧ µ(⌟x ∧ y) ∧ n

Hence µ is a generalized fuzzy ideal of D.
□

Example 5.2. By considering the dBa of example 2.2, we can easily show that the following is a generalized
fuzzy dBa:

µ(x) =

{
1
3 if x ∈ {a, b, c, d, e,⊤}
1 if x = ⊥

In fact, let m,n ∈ [0, 1] such that m < n. Then the following property is verify:

x ⊑ y ⊔ z =⇒ µ(x) ∨m ≥ µ(z) ∧ n.

Corollary 5.3. Let m,n ∈ [0, 1] and m < n. Then a fuzzy set µ of D is called a generalized fuzzy ideal if
and only if for all x, y1, · · · , yn ∈ D, x ⊑ y1 ⊔ y2 ⊔ · · · ⊔ yn implies that µ(x) ∨m ≥ µ(y1) ∧ · · · ∧ µ(yn) ∧ n.

Let µ be a fuzzy set of D, m, n ∈ [0, 1] and m < n. Then the intersection of all generalized fuzzy ideals
containing µ is called the generated generalized fuzzy ideal by µ, denoted < µ >(m,n) .

Theorem 5.4. Let D be a double Boolean algebra µ be a fuzzy set of L, m, n ∈ [0, 1] and m < n then

⟨µ⟩(m,n) (x) = m ∨

 ∨
x⊑a1⊔a2⊔···⊔an

µ(a1) ∧ · · · ∧ µ(an) ∧ n


=

∨
x⊑a1⊔a2⊔···⊔an

(µ(a1) ∨m) ∧ · · · ∧ (µ(an) ∨m) ∧ n, for all x ∈ D.

Proof. Let

θ(x) = m ∨

 ∨
x⊑a1⊔a2⊔···⊔an

µ(a1) ∧ · · · ∧ µ(an) ∧ n

 .

Let us show that θ is a generalized fuzzy ideal which contains µ.
For n = 1 and a1 = x, m ∨ (n ∧ µ(x)) ≤ θ(x). Hence n ∧ µ(x) ≤ θ(x) ∨m. We can easy check that θ is a

generalized fuzzy ideal. Now let us focus on how to show that θ is the smallest generalized fuzzy ideal which
contains µ.

Let us assume that there is a generalized fuzzy ideal η such that ∀x ∈ D, η(x) ∨m ≥ n ∧ µ(x).
Then we need to show that η contains θ too.

n ∧ θ(x) = n ∧

m ∨

 ∨
x⊑a1⊔a2⊔···⊔an

µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an) ∧ n


≤ m ∨

 ∨
x⊑a1⊔a2⊔···⊔an

η(x) ∧ · · · ∧ η(x) ∧ n


≤ m ∨ η(x).

Thus θ is the smallest generalized fuzzy ideal which contains µ. □
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Definition 5.5. Let µ and ν be two fuzzy sets of L, m, n ∈ [0, 1] and m < n the operation ⊔̃(m,n)
is defined

by:

µ⊔̃(m,n)
ν =

∨
x⊑y⊔z

((µ(y) ∨m) ∧ (ν(z) ∨m) ∧ n) .

Let GFI(D) the set of generalized fuzzy ideals of D.

Remark 5.6. Let µ be a generalized fuzzy ideal of D and t ∈ [0, 1]. Then µt is also a generalized fuzzy ideal
of D.

Theorem 5.7. Let D be a double Boolean algebra, m,n ∈ [0, 1] such that m < n. Then µν⊔̃(m,n)
νµ =

⟨µ ∨ ν⟩(m,n) . More over, (GFI(D), ⊓̃, ⊔̃, 0, 1) is a bounded lattice, where GFI(D) the set of generalized fuzzy
ideals of D.

Proof.

m ∨
(
µν⊔̃(m,n)

νµ
)

(x ∧ y) =
(
µν⊔̃(m,n)

νµ
)

(x ∧ y)

=
∨

x⊔y⊑u⊔v
((µν(u) ∨m) ∧ (νµ(v) ∨m) ∧ n)

≥
∨

x⊑p⊔q,y⊑r⊔s
(µν(p ⊔ r) ∨m) ∧ (νµ(q) ∧ νµ(p) ∧ n)

=
(
µν⊔̃(m,n)

νµ
)

(x) ∧
(
µν⊔̃(m,n)

νµ
)

(y)

=
(
µν⊔̃(m,n)

νµ
)

(x) ∧
(
µν⊔̃(m,n)

νµ
)

(y) ∧ n.

Let x, y ∈ D and x ⊑ y. Then it is easy to see that m ∨ (µν⊔̃νµ) (x) ≥ n ∧ (µν⊔̃νµ) (y).

So µν⊔̃(m,n)
νµ is a generalized fuzzy ideal of D.

Let x ∈ D,

m ∨
(
µν⊔̃(m,n)

νµ
)

(x) =
(
µν⊔̃(m,n)

νµ
)

(x)

=
∨

x⊑y⊔z
((µν(y) ∨m) ∧ (νµ(z) ∨m) ∧ n)

≥ ((µν(x) ∨m) ∧ (νµ(⊥) ∨m) ∧ n)

≥ ((µν(x) ∨m) ∧ (µν(⊥) ∨m) ∧ n)

= ((µν(x) ∧ n) ∨m)

≥ µν(x) ∧ n
≥ µ(x) ∧ n.

Hence m ∨ µν⊔̃νµ ≥ µ ∧ n. In a similar way, we have m ∨ µν⊔̃νµ ≥ ν ∧ n.
Hence µν⊔̃νµ ≥ µ ∨ ν(m,n).

Last, let us verify that is the smallest. Let λ ∈ GFI(D) such that n ∧ (µ(x) ∨ ν(x)) ≤ λ(x) ∧ n.
Consider the following cases:

If x = 0 then n ∧
(
µν⊔̃(m,n)

νµ
)

(⊥) =
(
µν⊔̃(m,n)

νµ
)

(0) = (µ(⊥) ∨ ν(⊥) ∨m) ∧ n ≤ λ(⊥) ∨m.
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Else:

n ∧
(
µν⊔̃(m,n)

νµ
)

(x) =
(
µν⊔̃(m,n)

νµ
)

(x)

=
∨

x⊑y⊔z
(((µν(y) ∨m)) ∧ (νµ(y) ∨m) ∧ n)

≤ m ∨
∨

x⊑y⊔z
(λ(y) ∧ λ(z) ∧ n)

≤ m ∨ λ(x).

Thus
n ∧

(
µν⊔̃(m,n)

νµ
)

(x) ≤ m ∨ λ(x)

We can conclude that µν⊔̃(m,n)
νµ = ⟨µ ∨ ν⟩(m,n) . Thus we have just proved that any pair of elements of

FI(D) has a supremum. The upper bound is 1, the lower bound is 0.
□

6 Conclusion

In this paper fuzzy ideals on double Boolean algebras have been studied. Various properties and character-
izations of fuzzy ideals have been proved. Based on the notion of tip-extended pair inspired by Kuanyun
[12], it was proved that the set of fuzzy ideals on double Boolean algebra is endowed with a structure of the
bounded lattice. This is a new type of lattice structure constructed from fuzzy ideals. This lattice structure
has the particularity that it is isomorphic to the collection of fuzzy ideals of the Boolean algebra D⊔. Thus
we can conclude that the collection of fuzzy ideals of the dBa D can fully be determined by knowing just
fuzzy ideals of the Boolean algebra D⊔. We have also introduced the concept of fuzzy primary ideals and
fuzzy primary filters and have established that the set of generalized fuzzy ideals of a double Boolean algebra
has the structure of a bounded lattice. Generalized fuzzy ideals of D can also be entirely determined by
generalized fuzzy ideals of D⊔. In the future, it will be interesting to investigate L-fuzzy ideals (where L is a
bounded lattice) and generalized L-fuzzy ideals in the framework of double Boolean algebras.
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1 Introduction

In this paper, we propose Cloud-based machine learning tools for enhanced big data applications (e.g., [34,
7, 21]), where the main idea is that of predicting the “next” workload occurring against the target Cloud
infrastructure via an innovative ensemble-based (e.g., [47]) approach combining the effectiveness of different
well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant
at now in the specific context of Big Data (e.g., [17]). So-called workload categorization problem plays a
critical role in improving the efficiency and the reliability of Cloud-based big data applications (e.g., [60,
62]). Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed
classification approach on top of virtual machines (e.g., [28]), which represent classical “commodity” settings
for Cloud-based big data applications (e.g., [37]).

Virtualization technology has become fundamental in modern computing environments such as cloud
computing [9, 13, 22, 8] and server farms [57, 23]. By running multiple virtual machines on the same
hardware, virtualization allows us to achieve a high utilization of the available hardware resources. Moreover,
virtualization brings advantages in security, reliability, scalability, and resource management (e.g., [10, 58,
12]). Resource management in the virtualized context can be performed by classifying the workload of the
virtualized application (e.g., [66]). As a consequence, workload characterization and prediction have been
widely studied during past research efforts (e.g., [14, 3]). More recently, some work has been done on
workload characterization in data center environments [26]. On the other hand, workload modeling and
prediction in virtualization environments have been addressed in [24, 27, 2], while a virtualized workload
balancing approach is described in [29] which uses virtual machine migration, and another approach that
focuses on server farms is presented in [61]. From a methodological point of view, workload classification
is a critical task that integrates the previously-mentioned ones, is performed by collecting suitable metrics
during the execution of reference applications, and running a pattern classifier on the collected data, which
allows us to discriminate among the different classes. At a base level, the workload can be classified as CPU-
intensive or I/O-intensive. In [32], Hu et al. perform asymmetric virtual machine scheduling based on this
base classification level. At a finer level, the workload can be classified as CPU-intensive, memory-intensive,
disk read/write-intensive, and network I/O-intensive. Zhao et al. [66] describe a workload classification
model based on such a finer classification level. In [65], Zhang et al. address the problem of automatically
selecting the metrics which provide the best accuracy in the classification task. Also, it has been studied that
workloads can be classified by considering memory references as signals, which can be analyzed using spectral
parameters (e.g., [53, 42]). Results on instrumented machines and in simulation show that Hidden Markov
Model (HMM) classifiers [4] can be used to model memory references created and managed by processes
under execution.

In our proposed research, the classification phase works as follows. First, in a virtualized environment, we
run some programs we take as reference (in this work, we make use of the well-known SPEC CINT2006 bench-
marks [54]) and, then, from their execution, we extract some features using the APIs of the Virtual Machine
Monitor. With these so-collected features, we train a model of the workload of each benchmark program
according to various and well-understood machine learning algorithms. Unknown programs are executed in
the same environment, and their features are fed to models of the reference workloads, in order to find the
belief that the unknown workload could be associated with each model. Finally, beliefs obtained by means
of different classification algorithms are fused using the Dempster-Shafer rule of evidence combination [48] in
order to derive a higher-quality classifier (e.g., [6]).

In particular, we discriminate among application workloads. In fact, we run the SPEC2006 benchmarks
under a virtualized operating system, and we collect some features through the Virtual Machine Monitor.
Using machine learning algorithms, we develop a model for each workload. Unknown workloads are then
classified among the different models. The classification among application workloads running in virtualiza-
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tion gives interesting potential applications. For example, if the benchmarks are chosen appropriately, it may
be determined what the main characteristics of the processes running in the virtual machine are. Another
possibility might be to know what are the processes that a given customer typically executes. Other possible
applications are in the area of malware detection [31]. In this respect, running processes can be monitored to
see if their workload is the same or if it changes over time (e.g., [35]). Preliminary experimental assessment
and analysis clearly confirm the benefits derived from our classification framework.

The remaining part of this paper is organized as follows. Section 2 considers related work relevant for
our research. In Section 3, we highlight the process of workload categorization using common classification
algorithms. Section 4 presents the SPEC 2006 Benchmarks used in this work. In Section 5, we provide a
description of the virtual environment settings used to elaborate our experiments. Section 6 introduces the
aspects on which we based our data analysis (i.e., memory reference and resource demand). In Section 7,
we present a detailed description of our methodology along with the used classification algorithms, i.e.,
Neural Networks, Hidden Markov Models, k-NN, and ARMA. Section 8 demonstrates the fundamentals of
the Dempster-Shafer theory of evidence adopted in our approach. Section 9 shows an innovative case study
where we describe workload categorization in the context of anomaly detection. In Section 10, we report
our extensive experimental assessment and the obtained results. Finally, Section 11 contains conclusions and
future work of our research.

2 Related Work

The problem of workload categorization has gained a great deal of attention from researchers, and as a result,
several works have appeared in the active literature. In this Section, we will discuss some of the most relevant
to our work.

In [36], the authors provide a solution to reduce the risk of incidents and injury in hazardous work
conditions, especially in the forestry industry, which is one of the most dangerous industries in New Zealand,
by proposing a semantic paradigm for workload classification. The model takes a collection of multi-modal
physiological measures as input and categorizes a sequence of workloads (resting, cognitive, and physical
workloads). The proposed model was subjected to a series of experimental assessments with participants
ranging in age from 22 to 39 based on three different scenarios: (i) relaxing and refraining from any physically
or intellectually demanding tasks; (ii) performing a cognitively intense activity; (iii) walking, jogging, and
running. The obtained results in these experiments achieved an average accuracy of 89% for resting workload,
76% for cognitive workload, and 97% for physical workload. Finally, the contribution reported in this work,
by proposing the model to forecast fatigue in hazardous sectors, opens the doors to a wider research initiative
focused on technological applications in hazardous work situations.

[55] presents a workload categorization-based resource allocation framework for balancing the load between
active physical machines and leveraging their resource capacities. The CloudSim simulator is used to run
simulation-based experiments using three separate sets of tasks having 10000, 20000, and 30000 tasks. During
the experiments, the imbalance in workload among active physical machines and the disparity in resource
utilization, specifically CPU and RAM, are observed and measured. According to the simulation results,
the proposed framework outperforms similar methods in the literature in terms of balancing the load among
active physical machines and using their various resource capabilities.

In [40], they focus the attention on performance testing in new application developments and propose a
performance engineering strategy that extracts the workload of an existing legacy Enterprise Resource Plan-
ning (ERP) application with over 1 million users and produces workload for a new version of this application.
The proposed method demonstrates that (i) workload for new application testing and architecture validation
can be generated from legacy application behavior; (ii) end user organizations have significantly different
usage patterns; (iii) high-level operations provide a useful method for analyzing and generating workload
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for ERP applications as opposed to low-level page views. The experimental tests of the proposed method
performed on a Dutch software firm show that leveraging this approach gives better results in performance
engineering.

In [41], the authors investigate and classify Infrastructure as a Service (IaaS) cloud workloads into patterns
based on their behavioral features as effective characterization of workloads plays a crucial role in driving
Capacity Planning and Performance Management in IaaS Cloud environments. Various workload metrics,
including CPU utilization, memory usage, throughput, and response time, can be leveraged and modeled to
understand their interrelationships. Furthermore, different types of behavioral patterns that can be observed
within workloads and an outline of statistical techniques to be employed in identifying and determining these
patterns are presented in this work. To support their research, they present initial results obtained from the
analysis of development workload data collected in a controlled lab environment. These results highlight the
potential of the proposed approach in uncovering meaningful workload patterns and highlight the importance
of effective workload characterization for efficient Capacity Planning and Performance Management in IaaS
Clouds.

[44] introduces the analysis of Cloud workloads and evaluation of the effectiveness of two commonly used
prediction techniques, namely Markov Modeling and Bayesian Modeling, using a dataset comprising 7 hours of
Google cluster data. The primary objective is to assess the performance of these methodologies in accurately
forecasting user demand. Moreover, a key aspect of this study involves the categorization and characteri-
zation of Cloud workloads, which enables the modeling of essential parameters for user demand forecasting.
By understanding the patterns and characteristics of workloads, the authors aim to enhance the accuracy
of demand prediction, thereby facilitating efficient resource allocation and energy consumption management,
they present an optimal solution to minimize idle resources and reduce unnecessary energy consumption
while ensuring Quality of Service (QoS) maintenance. Through the experimental analysis and assessments,
the research provides insights into the effectiveness of different prediction methodologies for Cloud work-
load forecasting. This research contributes to the development of energy-efficient Cloud environments while
maintaining optimal QoS levels.

In [51], the authors manage the dynamic scalability of resources in IaaS environments by studying dif-
ferent workloads and classifying them based on their features and limits. Additionally, metrics aligned with
QoS requirements are defined and analyzed for each task, enabling the creation of improved application ar-
chitectures, as efficiently managing these workloads is essential for the optimal utilization of dynamic natural
resources. This research contributes to enhancing the efficiency of Cloud resource utilization by considering
workload as a core capacity. Therefore, by effectively classifying and characterizing workloads, organizations
can optimize resource allocation and ensure that QoS demands are met. This research emphasizes the impor-
tance of aligning application architecture with workload characteristics and QoS metrics to achieve optimal
performance in IaaS Cloud environments.

[49] discusses the problem of Instruction Set Architecture (ISA)-independent workload characterization for
significant program features related to compute, memory, and control flow by employing a Just-In-Time (JIT)
compiler that generates ISA-independent instructions. Through a comparative analysis with an x86 trace,
they evaluate the impact of different ISAs on the workload characterization results. revealing that certain
aspects of the study exhibit significant sensitivity to the ISA employed. This highlights the importance of
adopting ISA-independent workload characterization methodologies for designers of specialized architectures.
Based on these results, one can notice that specialized architecture designers must utilize ISA-independent
workload characterization methodologies to ensure accurate and reliable assessments of program features.
By decoupling workload characterization from specific ISAs, designers can effectively optimize specialized
architectures for energy efficiency while considering the unique demands and characteristics of the workload,
providing insights into the design and development of energy-efficient computing solutions in the industry.
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3 Operational Principles

The training and testing phases of the classification algorithm are described in Figure 1. The idea behind
training is to use the different execution sequences produced by a program when fed by different inputs to
train the workload model of that program. On the other hand, when an unknown execution sequence is given
to a workload model, the probability that the workload of the unknown sequence is similar to that of the
model is produced.

Figure 1: Training and testing of workload models

It is also worth remarking that a number of inputs are given to the benchmarks. In other words, we
generate different executions from a given benchmark using different input data. The executions generated
from the same benchmark are different because they are obtained with different inputs. Nevertheless, the
executions have in common the fact that they come from the same benchmark. The correct classification of
the workload of one process means that the classifier is able to understand that different executions come
from a single benchmark. Furthermore, we perform the workload classification using four classifiers, namely
Neural Networks (e.g., [46]), Hidden Markov Models, k-Nearest Neighbors [1] and ARMA [33].

After that, we show that the Dempster-Shafer data fusion algorithm can be successfully used with two
different and independent types of metrics. The final classification rate is slightly less than 80% over six
benchmarks. In this work, we derived workload models from six benchmarks.

We performed two classification experiments: first, we tested the workload models with the same six
benchmarks used to derive the models. However, the input data is different from that used in training, and
therefore the processes are always different. Secondly, the other six benchmarks are used for evaluating the
similarity with the workload models.

Different classifiers and features can be considered in a data fusion framework to improve classification
accuracy, as reported in Figure 2. As it will be shown at the end of the paper, these higher-quality classifiers
can be used to find the category of an unknown workload.
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Figure 2: Data fusion of two classifiers

4 SPEC 2006 Benchmarks

CINT2006 [54] is SPEC’s CPU-intensive benchmark suite, stressing a system’s processor, memory subsystem,
and compiler. SPEC designed CPU2006 to provide a comparative measure of compute-intensive performance
across the widest practical range of hardware using workloads developed from real user applications. All
the benchmarks are provided as source code. The twelve programs included in the benchmark suite can be
grouped into the following classes according to their functionality: compiler class, game class, compression
class, scientific computing class, and optimization class.

In this work, we derived workload models from six benchmarks, namely 401.bzip2, 403.gcc, 458.sjeng,
471.omnetpp, 400.perlbench and 462.libquantum. In the first experiment, we tested the derived models with
the same six benchmarks. It is important to note that the input data is different from that used in training, and
therefore the execution sequences are always different. In the second experiment, the other six benchmarks
are used to evaluate the similarity between the workload models.

It is worth observing that the used benchmarks represent only a fraction of what applications look like
because I/O and memory activity are missing. Thus, the reported results have to be considered as preliminary
from a general point of view, being valid only within computer-intensive workloads.

It is important to describe how the input data for the benchmarks are organized in order to make the
reported results repeatable. SPEC gives six different inputs for bzip, nine for gcc and three for perlbench.
The sjeng benchmark has only one input; two other inputs for sjeng have been obtained from the first chess
positions of chess.html downloaded from www.downscripts.com/chess-database.

Similarly, omnetpp has only one input furnished by SPEC; other inputs have been obtained from the first
example networks reported in http://inet.omnetpp.org/doc/INET/neddoc/.

Finally, libquantum was given the following two additional pairs of numbers: (159, 15) and (1413, 17). In
this way, all the benchmarks have at least three inputs that are used for training. Additional input for the
test has been obtained in a similar way.

5 Virtual Machine Setting

The virtualization infrastructure used in this work is provided by VirtualBox, which is an open source full
virtualization Virtual Machine Monitor (VMM) that runs on both Linux and Windows operating systems
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running on x86 and x64-based architectures [43]. The useful thing is that VirtualBox offers a rich set of
APIs that easily allow to collect metrics on the virtualized process, and the complete set of available APIs
is described in [56]. The SDK provided with Virtual Box allows third parties to develop applications that
can directly interact with it. It is designed in levels, and at the bottom level, we find the VMM (hypervisor)
which is the heart of the virtualization engine that allows for monitoring the performance of virtual machines,
providing security, and ensuring the absence of conflicts between virtual machines and the host. Above the
hypervisor, there are modules that provide additional functionality, for example, the RDP server (Remote
Desktop Protocol). Finally, there is the API level, which is implemented above these functional blocks.

VirtualBox comes with a web service that, once running, acts as an HTTP server, accepts SOAP connec-
tions [52] (Simple Object Access Protocol) and processes them. And the interface of this service is described
in a Web Services Description Language (WSDL) file [59]. In this way, it is possible to write client programs
in any programming language that has provided the tools to process WSDL files, such as Java, C++, NET
PHP, Python, and Perl. In addition to Java and Python, the SDK contains many libraries that are ready
for use. Internally, the API is implemented using Component Object Model (COM) as a reference model. In
Windows, it is natural to use Microsoft COM, however, in other hosts, where COM is not present, XPCOM,
which is a free implementation of COM, can be used.

Despite the numerous advantages of Web service API, we used the COM method because it allows a lower
overhead and thus a higher data rate. We conducted a data exchange experiment, and it turns out that the
web service is able, on average, to collect data every 5.96 ms, while using COM, data can be collected every
0.49 ms. As other interesting features regarding the collection of statistical data about resources usage, the
API provides functions for:

• specifying which groups of indicators we are interested in (CPU, RAM, Network, and Disk);

• setting the measuring range (minimum interval of 1 s);

• setting the frame size for statistics (Min, Max, and Average);

• making queries on the usage of a single resource.

6 Metrics

As regards metrics, we developed the acquisition system described in the block diagram reported in Figure 3.
The acquisition is driven by the host, and all the commands and the acquired data use the COM interface.
There is also a web interface to the VirtualBox VMM, but it is much slower, as specified above.

The measured quantities used for workload characterization are of two types, namely memory references
and resource demand. Both quantities are gathered using the VirtualBox VMM’s API classes. The memory
references are the instruction addresses generated by the virtualized process. The VMM’s IMachineDebugger
API can collect the value of the Program Counter related to instructions every 0.5 ms. In Figure 4 (a), we
report, as an example, a chunk of memory references collected during the virtualized execution of one SPEC
benchmark (gobmk). On the other hand, Figure 4 (b) presents a chunk of memory reference for another
SPEC benchmark (perlbench).

The data is collected in a <time stamp><address> format. Using the IPerformanceCollector API, we
collect resource demand features generated by the virtualized process. The resource demand features we
acquired are the following:

• the CPU used in user mode;

• the CPU used in system mode;
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Figure 3: Acquisition system

(a) (b)

Figure 4: Memory references generated by (a) the gobmk benchmark - (b) the perlbench benchmark

• memory fragmentation (free memory / total memory).

In Figure 5 (a), we report, as an example, a portion of 400 s of the CPU used when in user mode collected
during the execution of the virtualized process. In Figure 5 (b), we report, instead, the amount of free RAM
memory available during the execution of the virtualized process.

Each curve is related to the execution of a different process in the virtual machine, and resource demand
feature data is also acquired in a time-stamp format as shown in Figure 6, which reports a piece of resource
demand metrics acquired during execution.
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(a) (b)

Figure 5: User CPU time feature (a) - free RAM feature (b) for different programs in two different executions

Figure 6: Resource demand format

7 Data Analysis Methodology

7.1 Pre-Processing Algorithms

It is well known that the initial instructions of a running code are highly non-representative of the steady-
state behavior of the program. In fact, the first billion instructions do very little except for file I/O and
memory allocation as data structures are set up and populated before getting to the real computation to be
performed by the program. In this work, we do not use techniques for discovering program phases such as
those described in [50] to find the beginning of the steady-state phase of the programs. Instead, we simply
blindly fast forward for 1 billion instructions before starting data analysis.

We consider the memory reference sequence as a one-dimensional signal and the resource demand sequence
as a multi-dimensional signal. Similarly to what happens in signal processing, we use a parametric description
of the sequences. We remark that events in the process, such as for examples loops or sequential program
behaviors, produce important events in the metrics sequences and then in the signal spectrum. For instance,
loops introduce peaks in the spectrum, while a sequential address sequence produces a DC spectral component.
Moreover, the sequences dynamically change their properties. For these reasons, we used a short-time spectral
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description of the memory reference sequence. Thus, the sequences are divided into overlapped analysis frames
of a given size, as reported in Figure 7. The frames are further divided into blocks. Hence, for instance, a
frame of memory references is represented by a set of blocks. Also, the multi-dimensional sequence of resource
demand features is divided into overlapped frames and blocks.

Figure 7: Analysis frames

The next step is to perform a spectral analysis of the blocks. Among the possible spectral-related param-
eters, we chose the Discrete Cosine Transform (DCT) representation. DCT is a well-known signal processing
operation with important properties [30]. For example, it is useful for reducing signal redundancy since it
places as much energy as possible in as few coefficients as possible (energy compaction). The first DCT coeffi-
cients are given as input to the classification algorithm. The effects of retaining the first DCT coefficients are
shown in Figure 8. A frame of 1024 memory references is plotted in this Figure. On this frame, we perform
a DCT transform; the first sixteen coefficients are used to obtain a 1024-coefficient vector with zero-padding.
By inversely transforming this sequence, we obtain the curve plotted in the same Figure 8. It is evident
that the effect of retaining the first coefficients is to smooth the peaks of the original sequence while still
representing the overall sequence behavior, reflecting the signal redundancy reduction property.

Figure 8: Signal reconstruction by inverse transforming the first DCT coefficients

Concerning the resource demand, since there are three types of features in a frame, the DCT is applied
separately to each feature. In every case, we take a small number of DCT coefficients per feature to represent
the frame. In this case, a frame is spectrally described by a three-component vector, each formed by a DCT
coefficient for a single feature. Eventually, the mono or multi-dimension DCT representations are vector
quantized with a 128 entries codebook. The result is that each block of the acquired sequences, both in terms
of memory references and resource demand, is described by an integer number.
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7.2 Process Selection

The SPEC CPU2006 is formed by two sets of benchmarks: CINT2006 benchmarks, integer benchmarks,
and CFP2006, floating point benchmarks. In our experiments, we consider all the CINT2006 benchmarks,
formed by twelve programs. Early classification experiments gave the impression that some benchmarks were
classified as the same workload. To explore this impression, we performed the following experiment. Using
the analysis algorithm of Section 7.1, we train a three-hidden-layer Neural Network for each benchmark,
using three different input sets per benchmark. Hence, we have a Neural Network trained for each workload.
Then, the vector-quantized parametric sequence obtained from each benchmark in execution was given as
input to the Neural Network. The output is very close to one if a given workload is given as input to the
Neural Network trained for the same type of workload, and between one and zero for all the others. A
distance matrix among all the twelve workloads is obtained by computing y = 1 − out, where out is the
Neural Network output, and averaging y for the same type of workloads. The size of the distance matrix is
clearly twelve by twelve.

By k-means clustering of the distance matrix, we have a reduction to six processes, which confirms our
first impression. To get a graphical view of this, in Figure 9, we report the 3D graphical plot, obtained
with multidimensional scaling, of the distance matrix. From this Figure, we can see that the distance among
astar, h264, gobmk, and perl is very small, so they can be represented by only one program. Similarly, the
distance between hmm and sjeng is very small and the distance among libquantum, mcf, and xalancbmk is
also very small. In conclusion, the workloads resulting from the clustering reduce to the six benchmarks:
bzip, gcc, sjecg, omnetpp, perlbench, and libquantum. The workload classifications reported in the following
are performed using these six benchmarks.

Figure 9: 3D visualization of the distances among programs

7.3 The Input Data to the Benchmarks

Each benchmark has three sets of input data supplied by SPEC in a text file. The sets of input data provided
by SPEC are used for training the classifiers. Each benchmark, when run, gives rise to three different
processes, one for each set of input data. We can say that each process represents the workload of the
benchmark that generated that process. The processes are used to train the classifiers. Each classifier is
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trained with the different processes so that you can classify the workload of the benchmark.

For each benchmark, we constructed three other sets of input data, other than the above, for the classifi-
cation stage. Each process generated during benchmark execution with the new sets of input data is classified
by the classifiers trained earlier. This generates a number of classification experiments equal to 3 ·N , where
N is the number of benchmarks.

7.4 Sampling Rate

A memory reference value is acquired every 0.5 ms. It is important for computational complexity reasons to
ascertain how much this sample rate can be reduced. We therefore performed classification experiments with
memory reference features at various sampling rates.

For each benchmark, with three different inputs, a Neural Network was trained with the parameters
reported in Table 1.

Table 1: Initial analysis parameters

Frame size 50s
Overlap 50%
Number of DCT coeffs 10
Number of blocks per frame 50
Vector quantization 128 levels

In Figure 10 (a), we show the accuracy obtained at different values of the decimation of the original
sampling rates. We note that by acquiring the memory references and decimating the original sampling
rates by ten, the accuracy drops from 60% to 53%. In view of the fact that this accuracy is improved if the
parameters are tuned, and for reducing the algorithm complexity, we acquired the memory references are
acquired at a 5 ms sampling rate, which corresponds to a decimation factor of ten. The resource demand
features acquisition was decimated accordingly.

Starting from the initial analysis parameters, we conducted some experiments of Neural Network Classi-
fication, using three hidden layers and 50 neurons. First, we obtained the accuracy with different values of
frame size. We find that by slightly decreasing the frame duration from 50 s to 48 s we get a slight accuracy
improvement. We also find that the frame overlap we used initially lead to the best accuracy. The next set
of experiments is directed to the number of DCT coefficients. We found that the best accuracy is obtained
by setting the number of DCT coefficients to sixteen, which is shown in Figure 10 (b).

Other classification experiments indicate that the best number of blocks per frame is forty. Thus, the
final optimal analysis parameters are reported in Table 2.

Table 2: Final parameters setup

Frame size 48s
Overlap 50%
Number of DCT coeffs 16
Number of blocks per frame 40
Vector quantization 128 levels
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(a) (b)

Figure 10: Accuracy versus decimation factor (a) - DCT coefficients (b)

7.5 Classification Algorithms

For the sake of completeness, in this Section we present a brief description of the machine learning algorithms
that we used as classifiers.

7.5.1 k-Nearest Neighbor Algorithm

The k-Nearest Neighbor algorithm (k-NN) is a simple machine learning algorithm that does not use any
underlined model acquired during the training phase, as other machine learning algorithms do. Instead,
k-NN is based on the principle that instances within a dataset will generally exist in close proximity to other
instances that have similar properties. If the objects are tagged with a classification label, they are classified
by a majority vote of their neighbors and are assigned to the class most common amongst their k-nearest
neighbors.

k is usually a small odd positive number, and the correct classification of the neighbors is known a priori.
The objects can be considered n-dimensional points within an n-dimensional instance space, where each point
corresponds to one of the n features describing the objects. The distance or closeness to the neighbors of an
unclassified object is determined by using a distance metric (also called the similarity function), for example,
the Euclidean distance or the Manhattan distance.

Our k-NN uses the Euclidean distance to represent the closeness to the neighbors of an unclassified object,
as the high degree of local sensitivity makes k-NN highly susceptible to noise in the training data. In other
words, the value of k strongly influences the performance of the k-NN algorithm.

7.5.2 Neural Network Algorithm

The well-known neural networks are composed of a set of simple processing units which communicate with
each other through a large number of weighted connections. In most cases, it is assumed that each neuron
makes an additive contribution to the neuron to which it is connected. The total input sk is simply the
weighted sum of the different outputs of the connected neurons plus a noise factor:
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sk(t) =
∑
j

wjk(t)uj(t) + θk(t) (1)

where positive wjk are said to excite the neuron input, and negative wjk are said to inhibit the neuron.
We need to have rules to determine the effect of the total input on the activation of the neuron. It is

well defined a function Fk that, based on the total input sk(t) and the current activation of the neuron yk(t)
produces the new value of the activation:

yk(t+ 1) = Fk(yk(t), sk(t)) (2)

Very often, Fk depends only on the total input at that moment, and then the last Equation can be written
as follows:

yk(t+ 1) =
∑
j

wjk(t)yj(t) + θ(t) (3)

Normally Fk has values in the range [−1, . . . ,+1]. The most commonly used functions are the sign
function, the hyperbolic tangent, or the sigmoid function.

We used a neural network with a Feed-forward topology with three hidden layers, where the flow of
information between the input and the output travels one-way to the exit.

• feed-forward networks: here, the flow of information between the input and the output travels one way
to the exit. Processing can be extended to many levels of neurons;

• recursive networks: contrary to feed-forward networks, they have feedback connections. The network
is bound to evolve towards a stable state in which the functions of activation do not change.

As a classic example of the first type is the perception, while the second type is the Hopfield network, a
neural network must be configured in such a way that the application of inputs produce the desired output.
It is therefore necessary to modify the weight of the connections during a training phase.

7.5.3 Hidden Markov Model Algorithm

Markov models are stochastic interpretations of time series. The basic Markov model is the Markov chain,
which is represented by a graph composed by a set ofN states, the graph describes the fact that the probability
of the next event depends on the previous event. A Markov chain is described by the transition matrix A
whose elements are:

ai,j = Prob(St+1 = j|St = i) (4)

and the initial probability vector πi:

πi = Prob(S1 = i) (5)

where:

N∑
i=1

πi = 1 (6)

In homogeneous Markov chains, the transition probability depends only on the previous state; in such
cases, the transition probabilities can be represented by a transition matrix. However, in many cases, Markov
models are too simple to describe complex real-life systems and signals.
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In the case of Hidden Markov Models (HMMs), the output of each state corresponds to an output
probability distribution instead of a deterministic event. That is, if the observations are sequences of discrete
symbols chosen from a finite alphabet, then for each state, there is a corresponding discrete probability
distribution that describes the stochastic process to be modeled. In HMMs, the state sequence is hidden
and can only be observed through another set of observable stochastic processes. Thus, the state sequence
is recovered with a suitable algorithm on the basis of optimization criteria. It is important to note that the
observation probabilities can be discrete or continuous feature vectors.

7.5.4 ARMA

Considering the memory reference sequence as a time series of data Mt, the ARMA model is a tool for
understanding and, perhaps, predicting future values in this series. The model consists of two parts, an Auto
Regressive (AR) part and a Moving Average (MA) part. Thus, the model is referred to as the ARMA(p, q)
model, where p is the order of the auto-regressive part and q is the order of the moving average part:

Mt = c+ ϵt +

p∑
i=1

φiMt−i +

q∑
i=1

ψϵt−i (7)

where φi and ψi are the parameters of the model, ϵt is white noise, and c is a constant. Classification with
ARMA model is performed using the generalized linear model.

8 The Dempster-Shafer Fusion

The goal of the Dempster-Shafer (DS) theory of evidence [48], is to combine different measures of evidence.
At the base of the theory is a finite set of possible hypotheses, say θ = {θ1, . . . , θK}.

8.1 Basic Belief Assignment

The Basic Belief Assignment (BBA) can be viewed as a generalization of a probability density function. More
precisely, a basic belief assignment m is a function that assigns a value in [0, 1] to every subset A of θ that
satisfies the following conditions: ∑

A⊆Θ
m(A) = 1, m(∅) = 0 (8)

It is worth noting that m(A) is the belief that supports the subset A of θ, not the elements of A. This
reflects some ignorance because it means that we can assign belief only to subsets of θ, not to the individual
hypothesis.

8.2 Belief Function

The belief function, bel(.), associated with the Basic belief assignment m(.), assigns a value in [0, 1] to every
nonempty subset B of θ. It is defined by:

bel(B) =
∑
A⊆B

m(A) (9)

where the belief function can be viewed as a generalization of a probability function.
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8.3 Combination of Evidence

Considering two Basic belief assignments, m1(.) and m2(.) and the corresponding belief functions, bel1(.) and
bel2(.). Let Aj and Bk be subsets of θ. Then, m1(.) and m2(.) can be combined to obtain the belief mass
assigned to C ⊂ θ according to the following formula [48]:

m(C) = m1

⊕
m2 =

∑
j,k,Aj∩Bk=Cm1(Aj)m2(Bk)

1 −
∑

j,k,Aj∩Bk=0m1(Aj)m2(Bk)
(10)

where the denominator is a normalizing factor, which measures how much m1(.) and m2(.) are conflicting.

8.4 Belief Functions Combination

The combination rule can be easily extended to several belief functions by repeating the rule for new belief
functions. Thus the sum of n belief functions, bel1, bel2, . . . , beln, can be formed as:

((bel1
⊕

bel2)
⊕

bel3) . . . beln =

n⊕
i=1

beli (11)

It is important to note that the basic belief combination formula given above assumes that the belief
functions to be combined are independent.

8.5 BBA Based on Single Class Classifiers

In our case, a hypothesis set is defined for each texel in which the image is divided. Within each texel, the
hypothesis concerns the possibility that the pixel (i, j) corresponds to an object or not. In other words, we
have eight hundred hypotheses for each texel, namely:

θ = {θ1(0, 0), . . . , θ1(19, 19), θ2(0, 0), . . . , θ2(19, 19)} (12)

where θ1(i, j) is the belief that the pixel (i, j) of that texel belongs to an object in the environment and
θ2(i, j) is the belief that the pixel (i, j) doesn’t belong to an object.

If we have K benchmarks, we can use K classifiers, each trained using the processes generated by each
of the K benchmarks. Each classifier is used as an expert in DS fusion. The goal of the classifiers is to infer
from the benchmark where an unknown process comes from.

The classifier Ci provides a probability pi as output, i = 1, . . . ,K, where pi is the probability that the
process analyzed by the classifier has been generated by the i-th benchmark. The hypothesis set is given by:

Θ = {θ1, . . . , θK} (13)

where θi is the event that the process comes from the benchmark i, i = 1, . . . ,K. Under this assumption,
the expert i provides the probability of the subset {θi}:

mi({θi}) = pi (14)

If the classifier has been trained with the processes generated by a given benchmark, the probability of
the event θi shall be distributed to all the other subsets C of Θ:

mi(C) =
1 − pi
2K − 1

(15)

Then, we consider K single-class classifiers; each classifier is specialized to recognize the workload of a
particular benchmark. Under this BBA, the i-th classifier is trained using a set of data produced by the
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benchmark i and a set of data not produced by the benchmark i, and it provides as output a real value pi
in the range [0,1], that represents the probability that the current input comes from the benchmark i. Each
expert shall assign a belief to the subsets of Θ. Under this BBA, the i-th expert assigns mi({θi}) = pi and
mi(C) = 1−pi

2K−1 , C ⊆ Θ, C ̸= {θi}.

8.6 Pseudocode

The application of the rule follows the following pseudocode.

Foreach classifier

Foreach classifier

Translates a set of hypotheses

to the internally used representation.

Add a set of hypotheses to the

evidence and assign a mass to it.

Combine two evidences.

9 Case Study: Workload Categorization in the Context of Anomaly De-
tection Caused by Android Malware

Android mobile devices have become significantly more popular recently, and at the same time, the number
of malicious programs operating on them has also grown significantly. As a result, business and academics
have given a lot of attention to the security and privacy concerns of Android applications and systems, as
Anomaly Detection is crucial due to the increasing dependability of these systems and applications. To this
end, behavior-based anomaly detection systems have been developed to identify irregularities brought on by
Android malware. These systems analyze these anomalies in data on network traffic, battery temperature, and
power usage using machine learning classification algorithms. Hence, we provide in this Section a detailed
case study where we show how our proposed approach can be employed within the context of Anomaly
Detection caused by Android Malware.

According to a new security report, 4.9 million malware attacks were prevented in the first quarter of
2023 by Kaspersky mobile security solutions. Each malware sample must be thoroughly analyzed, which
takes time. Malware analysis systems are therefore overloaded by the sheer volume of malware samples.
Most newly discovered malware samples are polymorphic versions of already existing malware. By grouping
malware samples into different families and then choosing representative samples from each family, we can
speed up the analysis of malware. The familial classification of Android malware is difficult, though, for two
reasons:

• it is difficult to distinguish between dangerous and legitimate components in the bulk of Android
malware samples, which are repackaged versions of popular apps. In fact, 86% of Android malware
samples are malicious component-infected repackaged apps [67]. In most cases, just a tiny part of the
repackaged apps have dangerous components that have been introduced, which are concealed inside
the features of popular programs. System calls [64] and sensitive paths [63] are examples of existing
features that make it difficult to distinguish between malware’s legitimate and harmful parts;

• the same destructive actions are carried out with multiple implementations by polymorphic Android
malware versions that belong to the same family. As a result, malware of this type is readily able to
avoid existing classification techniques that look for a precise match to a given specification [11]. As an
illustration, two malware samples have various ways of carrying out the same task (i.e., obtaining the
device id, phone number, and voice mail number).
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Monitoring data is collected and analyzed to determine system health, workload patterns, and metric
spaces, which are then utilized to discover anomalies. Furthermore, to test the efficacy of anomaly detection,
the detection can be evaluated using different faults to analyze: sensitive API calls, CPU heavy loops, memory
leaks, disk I/O errors, and network anomalies:

• sensitive API calls: Android malware typically uses sensitive Application Programming Interface (API)
methods, such as getDeviceId(), getLine1Number(), and getVoiceMailNumber(), that operate on sensi-
tive data to carry out harmful actions. For example, in order to gather the consumers’ phone numbers,
the malware may invoke getLine1Number();

• CPU-intensive loops: Malware causes circular waits and never-ending loops in applications, such as
spin lock faults, where CPU resource-intensive operations result in server requests timing out in An-
droid systems and application failures. These injections of fault components result in more computing
processes, which need more CPU resources;

• memory leak: this is brought on by assigning heap memory to objects without releasing them, which
steadily depletes the system’s memory resource and finally causes a system crash. It might take a
system with a memory leak a long time before any significant issues arise, making it challenging to
identify the issue right away;

• disk I/O error: disk I/O access has a predictable pattern, however, disk access can also be impacted
by application-level or hard disk failures in a particular workload pattern. By adding additional disk
reading and writing operations to application components, malware trigger this type of these errors;

• network anomaly: Android-based systems and programs are vulnerable to network assaults because
rogue scripts may be placed into programs to broadcast schematics that suck up network capacity,
saturating servers and leading to service denial. When the injected servlet components are invoked, the
malicious code in the application sends UDP packets to any host on the local network.

To this end, the reference architecture shown in Figure 11 for Workload Analysis in Familial Classification
of Android Malware, where the architecture is depicted, can be integrated with our proposed Workload
Categorization approach using the Dempster-Shafer theory of evidence [48] that we previously described in
detail in Section 8. And the hierarchical levels include the following:

• Detection of malicious API calls and FASTA files generation: To identify the APIs, malware applications
from different families in reference datasets and benign apps retrieved from Google Play Store are
disassembled and analyzed. Furthermore, the frequency of each API call mentioned in both groups
is computed independently. API calls are found and documented that are regularly used in malware
apps but not in benign apps. Then, based on the suspected Android API types, the API classes
are categorized, and these groupings constitute the API class sequence in FASTA format [45]. This
structure is required to feed the sequence file into machine learning tools for training and assessment;

• Multiple Sequence Alignment (MSA) generation: MSA is created for each app in the family and is used
to build a Profile Hidden Markov Model (PHMM) using machine learning techniques, which is then
trained and utilized as one of the classifiers of unfamiliar Android applications based on a derived score;

• Training and classification: in this layer, the PHMM is trained along with other classifiers such as a
Neural Network and k-NN using some reference datasets which consist of malware samples from several
families, where these samples are selected from the datasets such that they contain multiple apps from
every family. From the selected malware samples, a big percentage of apps is used for training the
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classifiers and the rest for testing, and the training is conducted by decompiling the apps and creating
the API call list. Then, from the API call list, the suspicious APIs are identified, the final APIs are
represented in FASTA format, and the corresponding MSA files are generated. Finally, MSA for all
the families are given to the classifiers to create the profile files corresponding to malware families for
classification. And the scores generated by each classifier will be combined using the Dempster-Shafer
theory of evidence for a final classification;

• Dempster-Shafer fusion: in this layer, the Dempster-Shafer theory of evidence is employed, which
combines different measures of evidence on the basis of a finite set of possible hypotheses, which are in
our case the scores provided by the classifiers. These scores are also, as a result, the belief values of the
assignments represented by the malware families or benign apps that the unknown workload should be
classified to. All follow the particular formula presented in Equation 10.

Figure 11: Familial classification of android malware using Dempster-Shafer Fusion

10 Experimental Results and Analysis

First, we specify how the classification experiments that we report in this Section were made. The input
data to the classifiers are the metrics acquired during the execution of the benchmarks, namely the memory
reference and the resource demand features. The six selected benchmarks are executed three times, each with
a different set of input data. We thus obtained the execution sequences that describe the workloads of the
different benchmarks. These execution sequences are preprocessed as described in Section 7 and are used to
train the classifiers that are so ready to perform the classification. For example, a neural network trained
with three different sets of input data but with the same benchmark will become a model of that workload.

The same six benchmarks are then executed with three different sets of input values. Of course, as
mentioned before, these executions are completely different from the first ones, but they share the workload
for the same benchmark. These executions are classified according to the models derived above.
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Let us first consider the result obtained with the memory reference metric. Figure 12 (a) represents the
accuracy obtained with the k-NN classifier (e.g., [1]) versus K. From this Figure, we also note that the best
accuracy (26.3%) is obtained for k = 15. Figure 12 (b) represents the accuracy of the classification with
HMM. We used a continuous HMM in which the output distribution is represented by 20 Gaussian mixtures.
The used topology is ergodic. This graph shows the classification accuracy as a function of the number of
states. The best accuracy is 52.8% and is obtained with six states.

(a) (b)

Figure 12: Average classification accuracy of k-NN versus k (a) and HMM versus the number of states (b)
using memory reference metrics

Figure 13 shows the accuracy obtained with the neural network. The graph displays the accuracy versus
the number of neurons in each hidden layer. Each curve is related to a different number of hidden layers. In
particular, curves marked with circles, squares and diamonds are obtained with three, four, and five hidden
layers, respectively, and all the other curves are obtained with six up to nine layers. The best accuracy
(65.32%) is obtained with four hidden layers and 120 neurons per layer. However, with 50 neurons per
hidden layer, the accuracy is around 60% for every number of layers.

Finally, Figure 14 shows the accuracy obtained with the ARMA model (e.g., [33]) with p = 8 and q = 4.
The average classification accuracy is 44.15%. The benchmarks are respectively from 1 to 6: 401.bzip2,
403.gcc, 458.sjeng, 471.omnetpp, 400.perlbench, and 462.libquantum.

The Dempster-Shafer data fusion combines the output values from the classifiers. We used different
workload metrics and the best classification algorithms according to the results reported in Table 2. The
results shown in Figure 15 are obtained by fusing Neural Networks with memory reference features, indicated
by NNmr, Neural Networks with resource demand features, indicated by NNrd and HMM with memory
references, denoted by HMMmr. In this Figure, the bars show the classification accuracies obtained with,
respectively from left to right, the fusion between NNmr and HMMmr, between NNmr and NNrd, between
HMMmr and NNrd, and the fusion of HMMmr, NNrd, and NNmr. As shown, the best results are obtained
with data fusion between NN with memory reference features and NN with resource demand features, and
the obtained accuracy is 79.35%.

The first bar is the data fusion of different classifiers with the same feature (mr), while the other bars are
related to the usage of two different features (mr and rd). As shown in Figure 15, the best results are obtained
with data fusion between NN with memory reference features and NN with resource demand features, and the
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Figure 13: Average classification accuracy of neural networks versus the number of neurons per Layer with
memory reference features

Figure 14: Average classification accuracy obtained with the ARMA model with MA order of 8 and AR
order of 4

obtained accuracy is 79.3%. This is an important result that shows that data fusion is effective in boosting
classification accuracy with features having different time constants and different computational complexity.

As highlighted so far, using Dempster-Shafer data fusion, we can build a high-quality classifier using
lower-quality classifiers. Now, we will show that these high-quality classifiers can be used to find the category
of an unknown workload. By testing an unknown execution sequence with the classifier trained on a given
workload W , we get an indication of how much the unknown execution sequence can be assigned to the
category of the workload W . In fact, if an execution sequence with the workload W is tested with the
high-quality classifier trained with a given workload W , the output will be close to one. If an execution
sequence with a workload similar to W is tested with the same classifier, the output will be close to 1, and
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Figure 15: Classification accuracies of the fusion between (from left to right) NNmr and HMMmr, NNmr
and NNrd, HMMmr and NNrd, and HMMmr, NNrd and NNmr, respectively

so forth. This property can be used to assign a workload category to an unknown execution sequence. In
the experiment described in this Section, we used this property to evaluate distances among the benchmarks
from the point of view of the workload they represent. Figure 16 shows a graphical view of the distances
among workloads.

Figure 16: 3D visualization of distances among programs

This Figure shows that 429.mcf can be given the category of 462.libquantum, and that 456.hmmer can
be given the category of 458.sjeng and the workloads of 445.gobmk and 464.h264ref are very close.



An Artificial Intelligence Framework for Supporting Coarse-Grained
Workload Classification in Complex Virtual Environments. Trans. Fuzzy Sets Syst. 2023; 2(2) 177

11 Concluding Remarks and Future Work

In this paper, we deal with the classification of application workloads in a virtualized environment as a means
of improving the efficiency and reliability of Cloud-based big data applications. We show that, using lower-
quality classifiers, we can build a higher-quality classifier using data fusion algorithms. There may be several
applications for this type of classification, from user profiling to malware detection. To this end, we used the
SPEC benchmarks that were run in a virtual environment. Different sets of input data were used. The Neural
Network classifier gives better results than Hidden Markov Models and K-NN. Final results are obtained by
Dempster-Shafer fusion of the Neural Network classification with memory reference and resource demand
features, which are workload metrics with completely different time constants. The best classification rate is
about 80%.

An obvious extension of the work described in this paper is to use other benchmarks in order to include
other workload activities. Also, we plan to further improve the characteristics of our framework by integrating
solutions for dealing with novel aspects of massive big data set processing, on top of which workloads may still
be defined, such as data compression techniques (e.g., [20]), fragmentation approaches (e.g., [19]), privacy-
preservation approaches (e.g., [18]) that, particularly, may be extremely useful when combined with malware
detection issues. In addition, we are planning to further enrich our proposed framework by means of emerging
big data trends (e.g., [5, 16, 39, 15, 38, 25])
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Abstract. In this paper we consider MV-algebras and their prime spectrum. We show that there is an uncountable
MV-algebra that has the same spectrum as the free MV-algebra over one element, that is, the MV-algebra Free1 of
McNaughton functions from [0, 1] to [0, 1], the continuous, piecewise linear functions with integer coefficients. The
construction is heavily based on Mundici equivalence between MV-algebras and lattice ordered abelian groups with
the strong unit. Also, we heavily use the fact that two MV-algebras have the same spectrum if and only if their
lattice of principal ideals is isomorphic. As an intermediate step we consider the MV-algebra A1 of continuous,
piecewise linear functions with rational coefficients. It is known that A1 contains Free1, and that A1 and Free1
are equispectral. However, A1 is in some sense easy to work with than Free1. Now, A1 is still countable. To build
an equispectral uncountable MV-algebra A2, we consider certain “almost rational” functions on [0, 1], which are
rational in every initial segment of [0, 1], but which can have an irrational limit in 1.

We exploit heavily, via Mundici equivalence, the properties of divisible lattice ordered abelian groups, which
have an additional structure of vector spaces over the rational field.
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1 Introduction

MV-algebras are the algebraic counterpart of  Lukasiewicz fuzzy logic in the same sense as Boolean algebras are
the counterpart of classical logic. An important topological invariant of MV-algebras is the prime spectrum.
However, unlike the particular case of Boolean algebras, whose prime spectrum is a complete invariant by
Stone duality, see [11], there are different MV-algebras with the same spectrum. A simple example is given
by the Boolean algebra {0, 1} and the real interval [0, 1]. These two MV-algebras are not isomorphic (one
has two elements, and the other has the power of the continuum) but their prime spectrum is the one point
topological space.

As usual we denote the set of natural numbers by N = {0, 1, 2, . . .}, the set of positive integers N+ =
{1, 2, 3, . . . , }, the integer ring by Z, the rational field by Q, and the real field by R.

MV-algebras are axiomatized in the following way (see [5] for a basic treatment and [9] for a more advanced
text). They are algebraic structures of the form (A,⊕, 0,¬, 1) where

• (A,⊕, 0) is a commutative monoid;

• ¬¬x = x;

• ¬0 = 1;
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• x⊕ 1 = 1;

• ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x (Mangani axiom).

We will denote an MV-algebra by A.

The most important (and motivating) example of MV-algebra is [0, 1], where x⊕ y = min(x+ y, 1) and
¬x = 1 − x. We have:

Lemma 1.1. (see [6]) The MV-algebra [0, 1] generates the variety of MV-algebras.

For n ∈ N+ and x ∈ A we denote nx = x⊕ x . . .⊕ x where ⊕ occurs n− 1 times. We let also 0x = 0.

Recall that a lattice is a partially ordered set (L,≤) where for every x, y ∈ L there is the supremum (least
upper bound) x ∨ y and the infimum (greatest lower bound) x ∧ y. We will denote a lattice by L.

In any MV-algebra we have the partial order such that x ≤ y if and only if there is z such that y = x⊕ z.
This order is a (distributive) lattice where x ∨ y = ¬(¬x⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

2 Abelian ℓ-groups

A kind of algebraic structure close to MV-algebras are abelian ℓ-groups, see [5]. An abelian ℓ group is an
abelian group with a lattice structure such that x ≤ y implies x+ z ≤ y + z. A strong unit of an ℓ-group G
is an element u ≥ 0 such that for every x ∈ G there is a positive integer n ∈ N such that x ≤ nu.

We will denote an abelian ℓ-group by G.

For x ∈ G and m ∈ Z we denote by mx the usual multiplication by m.

We collect some useful ℓ-group rules of commutation (or anticommutation):

Lemma 2.1. For every a, b, c in an abelian ℓ-group G and for every m,m′ ∈ Z we have

a+ (b ∧ c) = (a+ b) ∧ (a+ c)

a+ (b ∨ c) = (a+ b) ∨ (a+ c)

0a = 0

m(a ∧ b) = ma ∧mb,m > 0

m(a ∨ b) = ma ∨mb,m > 0

m(a ∧ b) = ma ∨mb,m < 0

m(a ∨ b) = ma ∧mb,m < 0

m(a+ b) = ma+mb

m(m′a) = (mm′)a

(1)

Proof. It is known that the variety of abelian ℓ-groups is generated by Z, see [1]. So it is enough to prove
these assertions in Z, which is easy. □

We find it useful to recall divisible abelian ℓ-groups. An abelian ℓ-group G is called divisible if for every
x ∈ G and for every n ∈ N+ there is y ∈ G such that ny = x. Abelian ℓ-groups are torsion free, see [4], so
when y exists, it is unique, and it will be denoted by x/n.

A divisible abelian ℓ-group has a natural structure of a vector space over Q, that is, if m ∈ Z and n ∈ N+,
we denote (m/n)x = (mx)/n.

Now for divisible abelian ℓ-groups we not only have all properties of ℓ-groups, but some properties con-
cerning multiplication by elements of Q:
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Lemma 2.2. For every a, b, c in a divisible abelian ℓ-group G and for every q, q′ ∈ Q we have

q(a ∧ b) = qa ∧ qb, q > 0

q(a ∨ b) = qa ∨ qb, q > 0

q(a ∧ b) = qa ∨ qb, q < 0

q(a ∨ b) = qa ∧ qb, q < 0

q(a+ b) = qa+ qb

q(q′a) = (qq′)a

(2)

Proof. The idea is to write q = m/n with m ∈ Z and n ∈ N+ and reduce to the integer case, which is treated
in the Lemma 2.1. □

We derive from Lemmas 2.1 and 2.2 a lemma on subgroups:

Lemma 2.3. Let G be a divisible abelian ℓ-group and S a subset of G. The divisible abelian ℓ-group generated
by S is given by the lattice combinations of rational linear combinations of elements of S.

Proof. Let T be the set of the lattice combinations of rational linear combinations of elements of S. It is
enough to show that T is a divisible ℓ-group.

First, 0 ∈ T trivially, and by definition, T is closed under the lattice operations ∧ and ∨.

To prove that T is closed under sum, we have to show that if t, t′ ∈ T then t+ t′ ∈ T . To this aim, if u is
a ℓ-group term, let us denote by n(u) the number of lattice operations in u.

Closure under sum can be proved by induction on n(t + t′). In fact, if n(t + t′) = 0 then the thesis is
clear. If n(t + t′) > 0 then at least one of t, t′ begins with ◦, where ◦ is one of ∧,∨. By symmetry we can
suppose t′ = u ◦ v. Now t+ t′ = t+ (u ◦ v) = (t+ u) ◦ (t+ v) by Lemma 2.1. But t+ u and t+ v have less
lattice operators than t + t′, so we can apply the inductive hypothesis and find t + u ∈ T and t + v ∈ T , so
t+ t′ = (t+ u) ◦ (t+ v) ∈ T . This completes the inductive proof.

Finally, T is closed under multiplication by any q ∈ Q since the latter commutes (or anticommutes) with
lattice operations and rational linear combinations, in the sense of Lemma 2.2. In particular taking q = −1,
T is closed under inverse, so is a group, and taking q = 1/n, n ∈ N+, T is divisible. □

Mundici in [10] discovered an equivalence Γ between the category of MV-algebras and the category of
abelian ℓ-groups with strong unit. Namely, Γ(G, u) is the MV-algebra with universe {x ∈ G | 0 ≤ x ≤ u} and
operations x⊕ y = (x+ y)∧ u and ¬x = u− x. The motivation of Mundici was the study of AF C∗-algebras
in quantum mechanics. The equivalence Γ will be very useful in this work.

3 Ideals in MV-algebras and lattices

An ideal of an MV-algebra A is a subset I of A which is a monoid and is closed downwards. Ideals in ℓ-groups
also exist, but they will not be used in this work.

An ideal of a lattice L is a subset I of L closed under ∨ and closed downwards.

An ideal I is called principal if it is generated by one element. In MV-algebras or lattices, every finitely
generated ideal is principal.

If a ∈ A, we denote by idA(a) the principal ideal generated by a in A. So, idA(a) is the set of all b ∈ A
such that b ≤ na for some n ∈ N.

An ideal P of an MV-algebra A is called prime if P ̸= A and x ∧ y ∈ P implies x ∈ P or y ∈ P . The
same holds for prime ideals of a lattice L.
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Following [13], we denote by Idc(A) the lattice of principal ideals of an MV-algebra A, where c stands for
compact, since principal ideals are exactly the compact elements of the lattice of all ideals of A.

The lattice Idc(A) when A is an MV-algebra can also be characterized in the following way:

Lemma 3.1. (see [3] for the introduction of the Belluce lattice) Let A be an MV-algebra. The lattice Idc(A)
is isomorphic to the Belluce lattice β(A), which is A modulo the equivalence of lying in the same prime ideals,
where [x] ∧ [y] = [x ∧ y] and [x] ∨ [y] = [x ∨ y], and [x] denotes the equivalence class of x.

Proof. It is enough to show that, for every x, y ∈ A, we have x ∈ idA(y) if and only if every prime ideal
containing y contains x.

Suppose x ∈ idA(y). Then x ≤ ny for some n ∈ N. Let P prime with y ∈ P . Since P is an ideal, ny ∈ P
and x ∈ P .

Conversely, suppose x /∈ idA(y). Let S be the set of ideals I of A such that x /∈ I and y ∈ I. Then S
is nonempty since idA(y) ∈ S. Every chain in S has an upper bound since S is closed under union. So, by
Zorn’s Lemma, S has a maximal element P . It is enough to show that P is prime.

First, P is a proper ideal since x /∈ P .
Moreover, suppose a∧ b ∈ P but a, b /∈ P . Then P ∪ {a} and P ∪ {b} generate an ideal containing x. So,

x ≤ p1 ∨ n1a and x ≤ p2 ∨ n2b with p1, p2 ∈ P and n1, n2 ∈ N. We can write n1 + n2 = n and p1 ∨ p2 = p.
Then x ≤ p ∨ na and x ≤ p ∨ nb. Taking the infimum we have

x ≤ (p ∨ na) ∧ (p ∨ nb) = p ∨ (na ∧ nb) = p ∨ n(a ∧ b) (3)

(this can be proved by Lemma 1.1).
But p ∈ P and a ∧ b ∈ P , so x ∈ P , contrary to the fact that x /∈ P . □

The prime spectrum Spec(A) is the topological space of the prime ideals of A where the basic opens
are O(a) = {P ∈ Spec(A)|a /∈ P}, where a ∈ A. This topology is called the Zariski topology. The prime
spectrum of a lattice L, Spec(L), is defined in the same way.

Spectra of MV-algebras have been characterized in [7] in terms of their compact open sets. They are
particular spectral spaces. So, we can take advantage of Stone duality between spectral spaces and bounded

distributive lattices, see [12]. If X is a spectral space, its Stone dual is the lattice
◦
K(X) of compact open

sets of X. Conversely, if L is a bounded distributive lattice, then Spec(L) is the prime spectrum of L with
the Zariski topology.

Moreover, the following are known:

Proposition 3.2. For every MV-algebra A, Spec(Idc(A)) is homeomorphic to Spec(A).

Proof. This follows from [3] and Lemma 3.1. □

Proposition 3.3. For every MV-algebra A, the lattice
◦
K(Spec(A)) is isomorphic to Idc(A).

Proof. By the previous proposition
◦
K(Spec(A)) =

◦
K(Spec(Idc(A))) and this is Idc(A) by the Stone duality

of [12]. □

Summing up, it follows:

Lemma 3.4. Let A,B be two MV-algebras. Then the topological spaces Spec(A) and Spec(B) are homeo-
morphic if and only if the lattices Idc(A) and Idc(B) are isomorphic.

Proof. Suppose Idc(A) = Idc(B). Then Spec(Idc(A)) = Spec(Idc(B)). So by Proposition 3.2, Spec(A) =
Spec(B).

Conversely, suppose Spec(A) = Spec(B). Then
◦
K(Spec(A)) =

◦
K(Spec(B)) and by Proposition 3.3 we

conclude Idc(A) = Idc(B). □
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4 Piecewise-F functions and free MV-algebras

In the next section we will build an MV-algebra consisting of one-dimensional functions with real values. So,
in this section we introduce some notation which is ad hoc for the study of this kind of functions.

Given a, b ∈ R we use the standard notations for intervals like [a, b] = {x|a ≤ x ≤ b} and ]a, b[= {x|a <
x < b} and [a, b[= {x|a ≤ x < b}.

Given a real valued function f , let zeros(f) denote the set of zeros of f .
Let F be a class of functions. Let a, b ∈ Q.
A continuous function f : [a, b] → R is piecewise-F if there is n ∈ N and there are n rationals c1 = a <

c2 < . . . < cn = b such that every restriction f |[ci,ci+1] is in F .
More generally, we say that a continuous function f : [a, b] → R is almost (piecewise) F if for every closed

rational interval J = [a, c] with a < c < b, the restriction f |J is piecewise F . Note that J is an initial segment
of [a, b].

Since MV-algebras are axiomatized by equations, they form a variety, and there are free MV-algebras
Freek over any cardinal k. For k = 1 we have:

Theorem 4.1. (see [5]) The MV-algebra Free1 is given by one variable McNaughton functions, that is, the
piecewise-AFFINT functions from [0, 1] to [0, 1], where AFFINT is the set of affine linear functions with
integer coefficients.

More generally one can consider the family AFFRAT of affine linear functions with rational coefficients,
or AFFREAL with real coefficients (we do not need real coefficients in this work, but they are important in
the context of Riesz MV-algebras, see [8]).

It is convenient to say that a segment in the Cartesian plane is rational if it has two rational extremes
(this implies that the slope is rational unless the segment is vertical).

Lemma 4.2. The graph of a piecewise AFFRAT function from [a, b] to R is a finite union of rational
segments.

Corollary 4.3. Let f be a piecewise AFFRAT function from [a, b] to R. The intersection of the graph of f
with a rational segment is a finite union of rational points and rational segments.

Proof. The intersection of two rational segments, if nonempty, is either a rational point or a rational segment
(by analytic geometry). Now the thesis follows from the previous lemma by subdividing the graph of f into
finitely many rational segments. □

5 On the spectrum of Free1

We have seen that there are different MV-algebras with homeomorphic spectrum.
We call equispectral two MV-algebras with homeomorphic spectrum.
We recall from a submitted work:

Proposition 5.1. (see [2]) Let A be an MV-algebra. Then the equispectrality class of A is a set (in Zermelo-
Fraenkel set theory) and it has at least cardinality 2ℵ0.

We conjecture that every equispectrality class has at least cardinality 22
ℵ0 . This happens, for instance,

for the class of A = {0, 1}.
The conjecture implies that every equispectrality class contains an uncountable MV-algebra. This question

is relevant in view of the results of [10], where countable MV-algebras play a major role, since they are put
in correspondence with certain AF-C∗-algebras in view of applications to quantum mechanics.

In this paper we focus on the equispectrality class of the MV-algebra Free1. We will prove:
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Theorem 5.2. There is an uncountable MV-algebra equispectral with Free1.

Proof.
It is enough to find an uncountable MV-algebra with the same principal ideal lattice as Free1. We will

build two MV-algebras A1 and A2; A1 is already known, whereas A2 (to our knowledge) is new and is the
witness of the theorem. We have Free1 ⊆ A1 ⊆ A2.

Free1, A1 and A2 are MV-algebras of continuous functions from [0, 1] to itself.
Let G1 be the divisible ℓ-group of piecewise AFFRAT functions from [0, 1] to R, where AFFRAT is the

set of affine linear functions with rational coefficients.
Let A1 = Γ(G1, 1). Note that A1 is an MV-algebra consisting of all functions of the form trunc(g) for

g ∈ G1, where trunc is the truncation operator:

trunc(g) = (g ∨ 0) ∧ 1. (4)

Equivalently, A1 is the MV-algebra of piecewise AFFRAT functions from [0, 1] to [0, 1].
We can say that the elements of A1 are generalized McNaughton functions, where integer coefficients are

replaced by rational coefficients. In particular Free1 is a MV-subalgebra of A1.
It is known:

Lemma 5.3. Two elements of A1 generate the same ideal if and only if they have the same zeros.

Proof. Let f, g ∈ A1. If idA1(f) = idA1(g) then f ≤ ng and g ≤ nf for some n ∈ N, so they have the same
zeros.

Conversely, suppose f, g have the same zeros.
Let us call maximal nonzero interval any maximal open interval ]a, b[⊆ [0, 1] where f, g have no zero.

Note that a and b can be zeros of f , or 0, or 1.
Let ]a, b[ be a maximal nonzero interval.
If c is sufficiently close to a, then f and g are linear in ]a, c[. Likewise if d is sufficiently close to b, then

f and g are linear in ]d, b[. So, f/g is bounded in ]a, c[∪]d, b[. Moreover, g ̸= 0 in [c, d]; so, by continuity, g is
bounded from below in [c, d], and since f is bounded in [c, d], f/g is bounded in [c, d]. Summing up, f/g is
bounded in ]a, b[, and taking the supremum over all maximal nonzero intervals ]a, b[, f/g is bounded in [0, 1]
whenever g ̸= 0. So, there is n ∈ N such that f ≤ ng whenever g ̸= 0, hence f ≤ ng everywhere in [0, 1] since
zeros(f) = zeros(g).

By symmetry, there is also n′ ∈ N such that g ≤ n′f . So idA1(f) = idA1(g). □

It is also known:

Lemma 5.4. The MV-algebras Free1 and A1 are equispectral.

Proof. By Lemma 3.4 it is enough to show that Free1 and A1 have the same lattice of principal ideals.
Given a function f ∈ A1, let us consider the MV-algebraic sum nf , by a sufficiently large integer n ∈ N.

Then rational slopes of f become integer in nf , and the intersection of every piece of the function with the y
axis is an integer point. So in nf , every piece is affine linear with integer coefficients (or constantly 1, which
is trivially an affine function with integer coefficients), so nf is piecewise AFFINT , that is, nf ∈ Free1.

Moreover, clearly the zeros of f and nf are the same. So, by Lemma 5.3, the ideals generated in A1 by
f and nf are the same. □

The previous lemma allows us to use A1 rather than Free1, which is more convenient for our purposes.
Let us begin our construction of A2.
Let B be a vector space basis of R over Q such that 1 ∈ B. Note that B has size 2ℵ0 .
For every b ∈ B, b ̸= 1, let (qn(b))n∈N be a sequence of rationals converging to b and we define ub : [0, 1] → R

as the function such that
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• ub is continuous

• ub(1 − 1/n) = qn(b)

• ub is linear between 1 − 1/n and 1 − 1/n+ 1.

Note that ub is almost AFFRAT in [0, 1] and ub(1) = b.
Let G2 be the divisible ℓ-group generated by G1 ∪ {ub, b ∈ B, b ̸= 1} in the function space R[0,1] of all

functions from [0, 1] to R. Note that every element of G2 is a continuous, almost AFFRAT function from
[0, 1] to R.

Let A2 = Γ(G2, 1) be the corresponding MV-algebra.
Note that A2 is an MV-algebra consisting of the functions trunc(g) for g ∈ G2.
Since G1 ⊆ G2 we have A1 ⊆ A2. Moreover:

Corollary 5.5. Two elements f, g of A1 generate the same ideal in A2 if and only if they have the same
zeros.

Proof. By Lemma 5.3, zeros(f) = zeros(g) if and only if f ≤ ng and g ≤ nf for some n ∈ N, that is, f an
g generate the same ideal in A2. □

Note that the proof of the previous corollary works only for f, g ∈ A1.
The elements of G2 have the following local representation as a sum:

Lemma 5.6. Locally in 1, every element g2 of G2 has the form

g2 = g1 + Σb̸=1qbub, (5)

where g1 ∈ G1, Σ is a finite sum, b ∈ B, and qb ∈ Q. (Note that no lattice operations are necessary).

Proof. Let f, g be continuous functions from [0, 1] to R. If f(1) < g(1), then f ∧ g = f locally in 1. Likewise
if f(1) > g(1), then f ∨ g = f locally in 1.

So, let g2 be any element of G2. By Lemma 2.3, g2 is a lattice combination of rational linear combinations
of G1 ∪ {ub, b ∈ B, b ̸= 1}.

So, g2 is locally in 1 a lattice combination of a family (fi)i∈I of rational linear combinations of G1∪{ub, b ∈
B, b ̸= 1} such that fi(1) = g2(1) for every i ∈ I.

Since B is a basis of R over Q, and fi(1) = g2(1) is independent of i, every fi is a sum of a rational linear
combination of the ub’s independent of i, say uB = Σb̸=1qbub, and a part gi ∈ G1 possibly dependent on i. So
fi = uB + gi for every i ∈ I.

Hence, by Lemma 2.2, g2 is, locally in 1, the sum of uB and an element g1 which is a lattice combination
of rational linear combinations of elements of G1, so g1 ∈ G1 since G1 is a divisible ℓ-group. □

Lemma 5.7. Let g2 ∈ G2, with
g2 = g1 + Σb̸=1qbub (6)

locally in 1 as in the previous lemma.
If qb ̸= 0 for some b, then g2(1) is irrational.

Proof. Evaluating the equation (6) in 1 we derive

g2(1) = g1(1) + Σb̸=1qbub(1) = g1(1) + Σb̸=1qbb.

Since each b is in the base B of R and qb ∈ Q, it follows Σb̸=1qbb is irrational; and since g1(1) is rational,
g2(1) is irrational. □



On The Spectrum of Countable MV-algebras Trans. Fuzzy Sets Syst. 2023; 2(2) 191

Let f ∈ A2. We want to show that there is f1 ∈ A1 such that idA2(f) = idA2(f1). The key idea is to
“sandwich” f between two elements of A1 whenever possible.

Suppose f(1) ∈ {0, 1}. Then f ∈ A1. In fact, locally in 1,

f = trunc(g1 + Σ), (7)

where g1 ∈ G1 and Σ = Σb ̸=1qbub. Let us distinguish the possible values of (g1 + Σ)(1).
If (g1 + Σ)(1) > 1 then f is an element of A1 up to some rational abscissa less then 1, followed by a

segment constant 1, so f ∈ A1.
If (g1 + Σ)(1) = 1 then Σ = 0 otherwise Σ(1) should be irrational by Lemma 5.7, so f = trunc(g1) ∈ A1.
The case 0 < (g1 + Σ)(1) < 1 is impossible, otherwise by truncation we have 0 < f(1) < 1, which is false

by hypothesis.
If (g1 + Σ)(1) = 0 then Σ = 0 otherwise Σ(1) should be irrational by Lemma 5.7, so f = trunc(g1) ∈ A1.
Finally if (g1 + Σ)(1) < 0 then f is an element of A1 up to some rational abscissa less than 1, followed by

a segment constant 0, so f ∈ A1.

Otherwise suppose f(1) /∈ {0, 1}. We build two functions h1, h2 ∈ A1 which “sandwich” f .
Let pf < 1 be a rational such that f is nonzero in [pf , 1] (pf exists since f is continuous and f(1) ̸= 0).
Let qf be a rational with 0 < qf < f(1). Consider the segment s1 joining (1, qf ) and (pf , f(pf )). Note

that the slope of s1 is finite and negative, and that the extremes of s1 are rational, so s1 is a rational segment.
Let us write y = s1(x) when (x, y) ∈ s1.

Let (y1, f(y1)) be the rightmost intersection of s1 and the graph of f . This intersection point exists since
(pf , f(pf )) is in s1 and is also in the graph of f . Moreover the point (y1, f(y1)) has rational coordinates, by
Corollary 4.3. The function h1 : [0, 1] → [0, 1] is defined by

h1(x) =

{
f(x), x < y1

s1(x), x ≥ y1.
(8)

Note that h1 ∈ A1, h1 ≤ f , and f and h1 have the same zeros.
Likewise consider the segment s2 joining (1, 1) and (pf , 0). The segment s2 has finite positive slope and

has two rational extremes, so it is rational. Let us write y = s2(x) when (x, y) ∈ s2.
Let (y2, f(y2)) be the leftmost intersection of s2 and the graph of f . This intersection exists by continuity

since (1, 1) is above the graph of f and (pf , 0) is below the graph of f . Moreover the point (y2, f(y2)) has
rational coordinates, by Corollary 4.3.

The function h2 : [0, 1] → [0, 1] is defined by

h2(x) =

{
f(x), x < y2

s2(x), x ≥ y2.
(9)

Note that h2 ∈ A1, f ≤ h2, and f and h2 have the same zeros.
Summing up, we have h1 ≤ f ≤ h2 and zeros(h1) = zeros(f) = zeros(h2); so by Corollary 5.5, we have

idA2(h1) = idA2(h2); and since h1 ≤ f ≤ h2 we have idA2(h1) = idA2(h2) = idA2(f). □

6 Conclusion

We hope to extend theorem 5.2 to every countable MV-algebra. Also we hope to solve the problem whether
all equispectrality classes have size exactly 22

ℵ0 .
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values among recommenders. For example, some of the single rating or single preference based trust models
[1, 10, 13, 15, 21], represent the trust value ’2’ as low trust, while trust value ’5’ represents very high trust
in the five rating scale. With a single rating or preference, the multiple features of the user or item cannot
be stated which will either directly or indirectly reduce the recommendation quality. Therefore, if the trust
rating is derived using multiple features, for example ’Food Quality’, ’Food Service’, and ’Cleanliness’ rated
as (4, 3, 2) to recommend a hotel, then evidently the quality of recommendation is improved. Therefore, the
proposed recommender system considers multiple attributes or preferences (here 5).

Although many researchers have been successfully working on the integration of trust networks in recom-
mender systems, some more directions are yet to be explored. The issues that are addressed in this work are
stated below.

• The derivation of the trust score plays a vital role in any trust based recommender system. Only,
countable number of approaches exist that derive the trust score using provenance, but fail to prove
the reduced prediction rate.

• Next is, many trust based recommender systems handle only the crisp input (trust score) i.e. 5 (highly
trusted) and 1 (meagerly trusted) but unable to handle the vague trust score effectively.

• The final issue that is addressed here is the recommendation of top-k trustworthy reviewers with reduced
prediction error.

The first issue is handled by adopting the W7 provenance model to compute the trust score. The second
issue is handled by generating fuzzy rules from the Fuzzy Decision Tree based classifier. The first two issues
are solved in [31]. This work is an extension of the above two works and solves the last issue. The TBRS
works by first extracting the conditional and decision attributes from fuzzy rules and forms a Fuzzy Vector
Space (FVSP). Then it finds the similarity between trusted users using the vector based similarity measures,
namely Jaccard, Dice and Cosine [8]. Then computes the weighted similarity score by taking the attribute
gain as a weight component. Finally, this similarity is boosted by the user’s respective trust degree and Top-k
similar users are recommended to the target user. The three major contributions of this paper are as follows:

• User profile Modeling

• Formation of Fuzzy Vector Space

• Prediction and Recommendation

This paper is organized as follows. Section 2 briefs about the existing trust based recommender systems. A
detailed discussion of the proposed recommender system is given in section 3. Performance evaluation and
results are discussed in section 4. Finally, the conclusion and future works are stated in section 5.

2 Related Research
This section discusses the various related articles in the field of trust based recommender systems. The
taxonomy of background work is graphically represented in Figure 1. Based on the information collected
from an online trust network, recommendation is generated in trust enhanced recommender systems. The
most common trust enhanced recommender strategy is, asking the users to explicitly mention the trust
statements about other users. For instance, the Moleskiing recommender system [4] uses FOAF files that
contain trusted information scales ranging from 1 to 9. The Trust model proposed by A. Abdul Rahman
and S. Hailes [1] for virtual communities is grounded in real-world social trust characteristics, reputation
or word-of-mouth. Falcone et.al. proposed a fuzzy cognitive map model [10] to derive the trust based on



196 Teekaraman D, Sendhilkumar S, Mahalakshmi G. S. Trans. Fuzzy Sets Syst. 2023; 2(2)

the belief value of an agent. This model shows how different components (belief) may change and how
their impact can change depending on the specific situation and from the agent’s personality. The aim of a
Golbeck’s trust model [13] is, to determine how much one person in the network should trust another person
to whom they are not directly connected. This algorithm accurately analyses the opinions of the people in
the system. TidalTrust algorithm works based on trust-based weighted mean which uses the trust value of
users as a weight for the ratings of other users. Hang et al. [14] used a graph-based approach to recommend
a node in a social network using similarity in trust networks. Massa and Aversani [21] proposed a trust-based
recommendation system where it is possible to search for trustable users by exploiting trust propagation over
the trust network. Andersen et. al. [2] explored an axiomatic approach for trust-based recommendation and
proposed several recommendation models, some of which are incentive compatible. In the MoleTrust method
the similarity weight is attributed to ratings by users.

Figure 1: Taxonomy of related work

A trust-filtered collaborative filtering technique is used by O’Donovan and Smith in [29]. Here, the trust
value is used as a filtering mechanism, to choose only, the item raters who are trusted above a certain thresh-
old. An Ensemble trust technique proposed by Victor et al. [32] aims to take into account all possible ways
to obtain a positive weight for a rater of an item while favoring trust over similarity. Tomislav Duricic et
al. [9] proposed a solution to solve the cold start problem in a collaborative-filtering method using regular
equivalence. This regular equivalence is applied to a trusted network to generate a similarity matrix using
the Katz similarity measure. Abdelghani Bellaachia & Deema [6] proposed a recommendation algorithm
called Averaged Localized Trust-Based Ant Recommender (ALT-BAR) to increase the prediction accuracy.
The base for this algorithm is Ant Colony Optimization (ACO). To overcome the cold start problem (lack
of ratings), ALT-BAR emphasizes the significance of trust between users by modifying the initial pheromone
levels of edges. Vahid Faridani et al. [11] proposed a method called effective trust to solve the data sparsity
and cold start issues by combining the ratings of trusted neighbors to complement and represent the pref-
erences of active users. Liaoliang et al. [16] proposed a slope one algorithm based on the fusion of trusted
data and user similarity. The procedure for the above recommendation algorithm consists of selecting trusted
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data, calculating the similarity between users and adding this similarity to the weight factor. To address
the data sparsity and the cold start problem, Bo Yang et al. [35] proposed a social-collaborative filtering
by utilizing the trust data to give high quality recommendations. The author used the matrix factorization
technique which maps users into small dimensional latent feature spaces a trust relationship (trustee and
truster model). This mapped model is combined into TrustMF model.

Usually e-commerce sites face a large amount of information which leads to sparsity in the data. This
causes low accuracy during recommendation. To solve this issue Li Ye et al. [36] proposed a collaborative
filtering recommendation which is based on a trust model with fused similar factors. This is nothing but
combining the trust model with the user similarity. Modified cosine similarity is introduced in this fused
similar factor. One of the key challenges in a recommender system is an accurate prediction of unknown
ratings of the target user. During prediction, selecting an appropriate set of users is the major issue in
Collaborative Filtering (CF). Hashem Parvin et al. [23] proposed a novel CF method called Trust-aware CF
by Ant Colony Optimization (TCF-ACO) to predict missing ratings. First using available ratings and social
trust relationship, the users are ranked. Next, proper weight values are assigned to users using ACO. Finally,
a set of top-k similar users are filtered out and are used for predicting unknown ratings of the target user.
To solve the sparsity and low recommendation accuracy in CF, Kejia & Junyi [34] proposed an improved CF
algorithm. This algorithm calculates the user’s attribute preference, trust relationships and weight of interest
based on time and recommends the items with the highest prediction score. A Graph Convolutional Net-
work via a Reliable and Informative Motif-based Attention Model (CNRIM) [20] is developed to investigate
user-user heterogeneous trust relationships and user-item heterogeneous interactivity. Varying reliability and
informative motifs introduce heterogeneity. The experiments on publicly available real-world datasets, and
empirical analyses present the superiority of our model over popular baselines.

Rad D et al. [24] focus on the study of how socioeconomic status affects trust in recommender sys-
tems. It shapes users’ perceptions of accuracy, fairness, and transparency in recommender systems. This
study is done by exploring the curvilinear effects of the predictor variables on the outcome variable using
quadratic regression analysis. The positive and negative aspect of traditional recommendation approaches
namely collaborative, content-based and Demographic filtering as discussed in [18]. Also, the potential bi-
ases, theoretical insights, design implications and practical solutions for the cold start problem are discussed.
Richa and Punam developed a Cross Domain Recommender System (CDRS) [25], which employs data from
multiple domains to reduce the problem of sparsity. This model uses a combination of trust as well as distrust
which helps in improving trustworthiness of generated recommendation. By incorporating knowledge about
the malicious users, the distrust measure shows higher accuracy. This CDRS is developed using JADE and
Java technology for the tourism domain. Knowledge graph based trustworthy recommendation system was
developed by Nidhi and Richa [7]. Pu Li et al. proposed a scholarly recommendation method by high-order
propagation of knowledge graph (HoPKG) [17]. This HoPKG analyzes the high-order semantic information
in the KG and generates richer entity representations to obtain users’ potential interest by distinguishing
the importance of different entities. In current scenario, the demand for senior care services is high. From
the crowded data, it has become more difficult to get matching services. This paper proposed a service
recommendation framework PCE-CF [33] based on an embedded user portrait model. An automated and
personalized meal plan generation was introduced by George and Tekli [26]. This method adapted to the
transportation optimization problem. This is a simulation of the human thought process in generating a daily
meal plan. The relation between nodes in online social network is filtered out with the help of an ontology.
This paper proposed a recommender system using ontology [3]. Choosing a best fit elective course for a
student is a challenging task especially at the higher education level. This issue is solved in this paper by
utilizing the versatile ontology and sequence prediction algorithm and compact prediction tree [12].

Many works on trust-based collaborative filtering have been carried out to solve the cold start and data
sparsity problem. There exist only a few works that attempt to improve accuracy and error minimization.
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Most of the work simply uses the similarity score for recommendation without enhancing it. The proposed
trust-boosted recommender system recommends the top-k users with minimized error.

3 Proposed Trust Boosted Recommendation System

An architecture of the proposed TBRS is shown in Figure 2. It consists of two major modules. The first
module is the provenance based user classification using Fuzzy Decision Tree (FDT) and second module is
the recommendation of Top-k trustworthy users. Here users refer to book reviewers. This article depicts an
overview of the first module which is given in the following subsection and subsequent section discuss about
the proposed trust boosted recommender system.

Figure 2: Architecture of trust boosted recommender system

3.1 Overview of Provenance Based User Classification Using Fuzzy Decision Tree (FDT)

This section gives an overview of a classifier built using FDT [31] which is able to solve the first two issues
mentioned in the introduction section. The process flow is shown in the top portion of Figure 2.
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3.1.1 Provenance Based Trust Quantification

The user’s trust in social networks is guaranteed by provenance of web resources [5] The W7 is a provenance
model which examines the data in semantic perspective. The plus point of W7 model is that, domain specific
provenance requirements are easily adapted. The seven provenance elements are (WHAT,WHEN,WHERE,
WHO,HOW,WHICH,WHY ) [30]. Therefore the trust value of the content creator is assessed using this
model. From Goodreads book domain, the reviewer’s data are collected by invoking ad-hoc APIs (Application
Programming Interface) and HTML scrapping. The Table 1 shows the sample data collected.

Table 1: An example provenance relevant fields

S.No Field_Name Example
1 Review Text(RT) Ever hear people talk about wanting to write the ”‘Great American

Novel”’? Well, it’s already done and this is it.This novel is one of my
longest standing favorites. It’s a profound meditation on the nature
of freedom,full of clever Southern folk wisdom, deeply sensitive
and insightful.

2 Year Month of Joining(YMJ) August 2006
3 Review Postdate(RPDT) September 27, 2013
4 Rate of Review (RVR) 5
5 Likes Received(NLK) 14
6 Post Count(PCNT) 1
7 Comments Received(NCMT) 0
8 Reply Received(NRPY) 90
9 Average Review Rate(ARR) 3.79
10 Key Terms(KT) (Since the slouch, blame, bowie, buckle, bullyragged, cairo, doxolojer,

terms are exhaustive, only erysipelas, fan, tod, rod, fox, fire, gabble, gingham, barlow,
partial terms are given here) knife, bars, bilgewater, black, galoot, gar, habob, allycumpain,

harrow, teeth, toned, hived, irish, potato, jackstaff, jimpson,
weed, juice, harp, langudoc, ambuscade, liberty, pole, melodeum,
mesmerism, methusalem, mud, cat, muddy, mug, mulatter, mullen,
stalk, mushmelon,calico,camp, capet, bag ,congress, water, corn,
consumption, pone, curry, comb,dauphin, delirium, tremens, dog,
fennel, doggery, irons, bills, nation, navarre, …

11 Matched Reviews(MR) I was surprised by how much I liked this book.There were a couple
of parts that dragged for me a bit, but all in all I though it
was a very clever, entertaining read. I’m glad I read it as an
adult, because I think I liked a lot more now than I would have
in high school, especially being the mother of a boy. And I can
only hope that my son never is, or has a friend, like Tom Sawyer.

12 Matched Review Postdate(MRPDT) March 26,2011
13 Time of System Initialization(TSI) January 2007

The actual description of provenance element as per Bunge’s Ontology is given in Table 2. The Table 3
shows the description in the context of trust and its relevant fields are given in Table 4.

PWHAT : The trust score of the reviewer is assessed based on the review(s) that are relevant to the title of
the book.
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Table 2: Description of provenance elements as per Bunge’s ontology

Provenance Elements Description
WHAT An event that occurred to the data during its lifetime.
WHEN The time of the event.

WHERE Location of the event.
WHO An organization or agent involved in the event.
HOW The one or more actions that lead to the event.

WHICH The software or instruments used in the event.
WHY The reason behind the occurrence of an event.

Table 3: Description of provenance elements in the context of trust

Provenance Elements Description
PWHAT Describes the review content that is relevant to the topic.
PWHEN Represents the effective time spent by the reviewer.
PWHERE Refers to the location (IP_Address, Domain_name) from where review is posted.
PWHO Refers to the reviewer who is an author (creator) of the review (originator).
PHOW Describes how review content is deviated from the rating given by the reviewer.
PWHICH Refers to the application or device used to post the review.
PWHY Describes the intention behind the post of review content.

PHOW : The reviewer’s the trust score of is judged based on how much the RT is deviated from the RVR.

PWHO: Here, based on the originality of the review, the trust score of the reviewer is evaluated.

PWHY : The trust score of the reviewer is assessed based on the truthfulness of the review.

PWHEN : Here, trust scores of the reviewer is assessed based on following three factors.These are

• Activity_Factor (PWHENAF
):- Measures the active participation or involvement of the reviewer

• Presence_Factor (PWHENPF
):- Measures how long the reviewer is present in the domain.

• Frequency_Factor (PWHENFF
):- Calculates how frequently reviewer makes an interaction at awaited

frequency constant (π). The π can take the value as one week, two week, three week and upto seven
week.

• Final trust score (PWHENTF
) : −(Wt1)PWHENAF

+ (Wt2)PWHENPF
+ (Wt3)PWHENFF

.
Here, Wt1, Wt2 and Wt3 are weight values of PWHENAF

, PWHENPF
, and PWHENFF

respectively. The
weight values can be from 0 to 1 and sum of weight should be 1. For eaxmple, Wt1 = 0.6, Wt2 = 0.25
and Wt3 = 0.15.

A sample quantified value (trust score) of these five provenance elements is shown in Table 5. The score
PWHAT=0.222 means RT is highly relevant to the title or concept. The trust score PHOW=0.827 shows that
there is not much deviation between RT and his/her RVR whereas PHOW=2.836 shows the more deviation.
The PWHEN = 0.3296 and PWHEN =0.1222 means that the effective time spent by the reviewer is more in
former case and less in latter case.
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Table 4: Required fields of provenance elements

Provenance Elements Required Fields
PWHAT RT, KT
PWHEN RPDT, YMJ, NLK, NCMT, NRPY, TSI, PCNT
PWHO RT, RPDT
PHOW RT, RVR
PWHY RT, RVR

Finally, the trust score of each reviewer is given as input to the learning model to classify reviewers with
gradual trust levels.

Table 5: Sample quantified value

Reviewer_ID PWHO PHOW PWHY PWHAT PWHEN

1 0.0403 2.761 1.351 0.094 0.3296
2 0.0125 2.831 1.421 0.11 0.1222
3 0.0896 0.827 1.417 0.182 0.1344
4 0.0062 2.836 1.426 0.222 0.2812
5 0.0023 1.791 1.799 0.066 0.1278

3.1.2 Fuzzy Decision Tree Based Classification

The classification process comprises of four major steps.

• Fuzzification of Trust Score

• Fuzzy Rule Base Generation

• Fuzzy Decision Tree Construction and

• Rule Conversion

(a) Fuzzification of Trust Score The quantified trust value derived above is taken as a training data
for fuzzification process which converts it into linguistic terms. The proposed model uses the Triangular
Membership Function(TMF) for fuzzification process, since it allows a maximum number of instances to fall
into this class than any other MF. Each attribute (PWHAT , PWHAT , PWHAT , PWHAT , PWHAT ) is partitioned
into 5 regions as R1 to R5 and the corresponding linguistic space is given in Equation 1.

LinguisticSpace =


PWHAT = [HIR,MIR,NR,MR,HR]
PHOW = [HSM,MSM,NSM,MD,HD]
PWHEN = [HITM,MITM,NETM,METM,HETM ]
PWHY = [HTR,MTR,NTR,MUTR,HUTR]
PWHO = [HDSML,MDSML,NDSML,MSML,HSML]

 (1)
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(b) Fuzzy Rule Base Generation Fuzzy sets and fuzzy logic are used as tools for representing the
knowledge in Fuzzy Rule Based System (FRBS). The fuzzy knowledge base comprises vague facts and vague
rules. Each rule contains an antecedent (’IF’ part) and a consequent (’THEN’ part). Now, this fuzzy input
is then transformed into a set of fuzzy rules (rule base) using Mamdani’s ’If...Then’ interpretation. The two
major steps for deriving a rule base are (i) T-norm to evaluate the firing strength of a rule and (ii) S-norm
to compute the qualified membership value. The sample fuzzy rule base is as follows.
PWHO(HSML) ∧ PWHEN (HITM) ∧ PHOW (HD) ∧ PWHY (MUTR) ∧ PWHAT (HR) =⇒ UTRUST (LT)

(c) Fuzzy Decision Tree Construction FDT takes the rule base and generates decision trees using a
fuzzy ID3 [22] algorithm. In FDT, provenance element having highest information gain is chosen as a root
node and trust decisions are denoted in a leaf node. Each distinctive path from root to a leaf gives distinct
rule. The predecessor part (’IF’) of the rule contains node(s) and edge(s) of a path excluding leaf. If more
than one node exists in ’IF’ part, then they are joined by AND/OR operator or both. The consequent
part (’THEN’) of the rule contains a leaf node alone. A Degree of Truth (DoT) [28] is assigned to each
generated rule to state that how much truth value it holds. DoT is computed using (i) Certainty Factor and
(ii) Subsethood based approaches. The range of DoT from 0 to 0.5 represents the false degree and 0.6 to 0.9
denotes the truth degree. If DoT is 1, it means the rule is absolutely true which (i) takes a minimum number
of nodes and hence reduced rule generation time and (ii) acquire the knowledge with the least number of
feature itself. The sample decision tree is shown in Figure 3.

Figure 3: Sample fuzzy decision tree

(d) Rule Conversion The rule is an easy and comprehensive form of knowledge representation than any
other representation The corresponding fuzzy rule is shown in Figure 4. Each distinct path from a root to a
leaf is called a rule.

3.2 Recommendation of Top-k Trustworthy Users
The three major steps of the recommendation process are (i) User profile modeling, (ii) Formation of FVSP
and (iii) Prediction and recommendation. Let the user UT is a target user who sends a request for recom-
mendations. If UT is an existing user then the details such as name, number of ratings given, number of
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Figure 4: Corresponding Fuzzy rules

reviews given, average rating, the interest and trust score of the user are known and can directly access the
trust network. If UT is new user then profile of the user needs to be learned prior to network access. The
contents of the profile learned are name, location, join date, favorite books. Initially UT ’s area of interest
and training example, or already labeled items are collected and sent to the profile learner. Then the set of
feedback and request are merged with the output of profile learner. This forms the UT ’s file database and
sets as user preference.

3.2.1 Formation of FVSP

The fuzzy rules extracted from the trust network as discussed in section 3.1 are partitioned into conditional
attribute sets and decision attributes set. The conditional attributes consist of all the trust attributes
PHOW , PWHY , PWHEN , PWHAT , and PWHO. The decision attributes consists of trust decision VLWT, LT,
MT, HT and VHGT. The following steps explain how to form FVSP using conditional attribute set.

Step 1: For each trust attributes in the conditional attribute set, assign attribute grade. This is based on the
position of the TMF. For example, in PWHAT attribute the position of ’HIR’ has low grade, i.e. 1 and
’HR’ has high grades, i.e. 5. Similarly, for other trust attributes.

Step 2: Now, assign the fuzzy number for each linguistic term based on the grade. Since it follows the triangular
fuzzy logic, the fuzzy number assigned for each grade is shown in Table 6.

Table 6: Fuzzy number for each grade

Grade Fuzzy Number
1 (0.0, 0.0, 0.25)
2 (0.0, 0.25, 0.50)
3 (0.25, 0.50, 0.75)
4 (0.50, 0.75, 1.0)
5 (0.75, 1.0, 1.0)

For example, the fuzzy number of the linguistic term for the attribute PHOW is shown in Table 7.
Similarly for other attributes, fuzzy number is same as that shown in Table 7. The corresponding fuzzy
number line is given in Figure 5.

Step 3: The fuzzy number for each attribute is now represented as a vector in FVSP. The FVSP for each rule
is represented as < AK , FNAK >.
where,
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Table 7: Linguistic values of PHOW Fuzzy number

Linguistic Term Fuzzy Number
HSM (Highly Same) (0.0, 0.0, 0.25)
MSM (Moderately Same) (0.0, 0.25, 0.50)
NSM (Neutrally Same) (0.25, 0.50, 0.75)
MD (Moderately Deviated) (0.50, 0.75, 1.0)
HD (Highly Deviated) (0.75, 1.0, 1.0)

Figure 5: Fuzzy line of PHOW attribute.

– K is the number of attributes (Here, 5)
– AK is the current attribute and
– FNAK is the fuzzy number for the specified attribute AK

That is FVSP = < A1, (a11, a12, a13) >,< A2, (a21, a22, a23) > · · · < A5, (a51, a52, a53) >. The
(a11, a12, a13) is a triplet used in TMF to define the fuzzy number and the range of value is 0 ≤
a11 ≤ a12 ≤ a13 ≤ 1.

For example, consider the following fuzzy rule.

If PHOW is MD ∧ PWHY is NTR ∧ PWHEN is HITM ∧ PWHAT is MIR ∧ PWHO is MDSML → TV LWT .

The FVSP for the above fuzzy rule is < PHOW , (0.5, 0.7, 1) >,< PWHY , (0.25, 0.5, 0.7) >,<
PWHEN , (0, 0, 0.25) >,< PWHAT , (0, 0.25, 0.5) > and < PWHO, (0, 0.25, 0.5) >. Here, MD (Moderately Devi-
ated), NTR (Neutrally Truthful), HITM (Highly Ineffective Time Spent), MIR (Moderately Irrelevant) and
MDSML (Moderately Dissimilar) are the linguistic terms of the PHOW , PWHY , PWHEN , PWHAT , and PWHO

attributes respectively.
This FVSP is taken as input to calculate the vector similarity and to suggest the top-k trustworthy users.

3.2.2 Prediction and Recommendation

Some of the similarity measures in vector space have been positively applied in fields such as pattern recog-
nition, decision making problems and classification complex objects. The familiar vector similarity measures
are Jaccard, Dice and Cosine. The proposed recommender system uses these three measures separately to
compute the similarity score between two vectors as shown in Equations 2, 3 and 4. The weighted similarity
is obtained by taking the gain value of each attribute (AG) as weight.
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Let X = UT = (a1, a2, a3) and Y = UN = (b1, b2, b3) be the fuzzy number of the target user UT and the
other user UN from the trust network respectively, then

S = Jaccard(UT , UN ) =
∑5

k=1AGk
∗∑3

f=1(FNATkf
.FNANkf

)∑3
f=1(FN2

ATkf
)+

∑3
f=1(FN2

ANkf
)−

∑3
f=1(FNATkf

.FNANkf
)

(2)

S = Dice(UT , UN ) =

5∑
k=1

AGk

2
∑3

f=1(FNATkf
.FNANkf

)∑3
f=1(FN

2
ATkf

) +
∑3

f=1(FN
2
ANkf

)
(3)

S = Cosine(UT , UN ) =
5∑

k=1

AGk

∑3
f=1(FNATkf

.FNANkf
)√∑3

f=1(FN
2
ATkf

).
√∑3

f=1(FN
2
ANkf

)
(4)

where,

• AG- Represents the attribute gain

• f - Represents the fuzzy number of values in each fuzzy number

• a1, a3, b2, b3 are the endpoints and a2, b2 are the peak point of fuzzy numbers

After finding the similarity (S), boost this value by corresponding trust score (Twt) of the user UN as
shown in Equation 5.

Sb = S ∗ STwt−1 (5)
Using this boosted similarity (Sb), prediction of the target user’s trust score is carried out. The prediction

formula is given in Equation 6.

Pred(UT , Ij) =


trUT

, if Sb = 0 or if trUN ,Ij = ¯trUN

trUT
+

∑
UN∈NBSb(UN ,UT )x(trUN,Ij

− ¯trUN∑
UN∈NB|Sb(UN ,UT )| , Else

(6)

where,

• tr - Represents the trust value

• Ij – Represents items (books) which are not given any review

• NB – Represents the number of neighbors chosen

Consider the randomly chosen reviewer say reviewer 631 (R631) requesting for the recommendation of k
users (Let k=15) as shown in Table 8. The similarity (S) between the requester and the rest of the users is
calculated. Then it is boosted using Equation 5. The Table 8 shows the similarity and boosted similarity
(Sb) score of the top-15 reviewer where the reviewers are sorted based on similarity scores from highest to
lowest. Though both similarities show the highest score for the top reviewers, the trust level differs. The
trust level of highly matched reviewer with R631 is ’LT’. The top 2 reviewers for both the case, i.e. with and
without boost are same. In the case without boosting, top 3rd to 11th and 13th reviewers have other trust
level (’MT’) instead of ’LT’. But, in case of boosting 3rd to 6th and 13th reviewer has ’VLWT’ trust level.
Also, 8th and 12th reviewer has ’MT’ trust level. This shows that there is an error while carrying out the
prediction of trust levels.

Though both without boost and with boost method shows some kind of prediction error, the percentage
of the prediction error is less in a later case (46.66%) than the former case (66.66%).
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Table 8: Similarity score with and without boost

Without Boost With Boost Top-k
Reviewer

Reviewer S Trust Level Reviewer Sb Trust Level
Number Number

531 0.86012 LT 50 0.94150 LT 1
50 0.86012 LT 531 0.94150 LT 2
630 0.83144 MT 837 0.92353 VLWT 3
26 0.80813 MT 988 0.92353 VLWT 4

1123 0.78135 MT 618 0.90491 VLWT 5
973 0.77931 MT 947 0.90491 VLWT 6
942 0.77931 MT 453 0.90411 LT 7
842 0.77931 MT 630 0.89515 MT 8
356 0.77931 MT 500 0.89250 LT 9
257 0.77931 MT 650 0.89250 LT 10
236 0.77931 MT 678 0.89250 LT 11
453 0.77725 LT 26 0.88001 MT 12
119 0.76748 MT 662 0.87366 VLWT 13
678 0.75253 LT 637 0.87018 LT 14
650 0.75253 LT 679 0.87018 LT 15

3.2.3 Illustrative Example

Let us take random users for whom the recommendation need to be done. The fuzzy rule for Target User
(UT ) and user from the trust network (UN )is given below.

Rule of UN If PHOW is MD ∧ PWHY is HUTR ∧ PWHEN is NETM ∧ PWHAT is MIR ∧ PWHO is
HDSML → TLT .

Rule of UT If PHOW is HD ∧ PWHY is HUTR ∧ PWHEN is NETM ∧ PWHAT is NR ∧ PWHO is HDSML.

The Table 9 shows the fuzzy number of UN and UT . The similarity calculations are given in Table
10. The attribute gain value of PHOW , PWHY , PWHEN , PWHAT and PWHO are 0.3393, 0.2363, 0.1825,
0.1696 and 0.0723 respectively. The GainWtSim is calculated using these values. FinalSim is the sum of
GainWtSim of all the attributes. Finally, BoostedSim is calculated using Equation 5.

Table 9: Fuzzy number for sample input

LingValue (UN ) Fuzzy Number LingValue (UT ) Fuzzy Number
MD 0.5 0.75 1 HD 0.75 1 1

HUTR 0.75 1 1 HUTR 0.75 1 1
NETM 0.25 0.5 0.75 NETM 0.25 0.5 0.75
MIR 0 0.25 0.5 NR 0.25 0.25 0.25

HDSML 0 0 0.25 HDSML 0 0 0.25
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Table 10: Vector similarity score calculation

Similarity Measure Similarity GainWtSim FinalSim BoostedSim
0.986 0.335
1.00 0.236

Cosine 1.00 0.186 0.988 0.995
0.956 0.162
1.00 0.072
0.971 0.329
1.00 0.236

Dice 1.00 0.1825 0.963 0.985
0.842 0.143
1.00 0.072
0.944 0.320
1.00 0.236

Jaccard 1.00 0.183 0.935 0.973
0.727 0.123
1.00 0.072

4 Performance Evaluation and Result Discussion
To evaluate the performance of the proposed TBRS, experiments are conducted on the popular book based
social network called Goodreads.com. The performance measures such as Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and Average Precision (AP) are defined in the following subsection. Then,
an evaluation is carried out with other weight strategies and results are discussed. The proposed TBRS is
compared with other trust based recommender systems and the outcomes are described. Finally, the failure
scenarios of the proposed recommender system are discussed.

4.1 Performance Measures
The performance of the proposed recommendation strategy is measured with respect to quality of predictions
and quality of recommendations. The quality of prediction is done by measuring MAE and RMSE given in
Equation 7 and 8 respectively. Similarly the quality of recommendation is done by measuring AP as shown in
Equation 9. The TBRS uses the Leave-one-out method to evaluate recommendation systems. This technique
involves withholding one rating and trying to predict it with remaining ratings. Then the predicted rating
can be compared with the actual rating and the difference will be considered as the prediction error.

MAE =
1

NB

NB∑
i=1

| Yi − Ŷi | (7)

RMSE =

√√√√ 1

NB

NB∑
i=1

(Yi − Ŷi)2 (8)

where,

• yi – Represents the actual value and ŷi - Represents predicted value
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AP@N =
1

m

N∑
k=1

P (k).rel(k) (9)

AP is an average of the precision value obtained after each relevant document is retrieved and corresponds
to the area under the precision-recall curve. Here, N be the number of items to be recommended, m be the
number of relevant items and P(k) refers to precision at kth item.

4.2 Evaluation of Different Weight Approaches
The different weight approaches considered for evaluation are expected weight, preference based weight and
proposed gain weight. The three vector similarity measures, namely Cosine, Dice and Jaccard are carried out
on the above mentioned weight approaches. The Figures 6, 7 and 8 shows the MAE value obtained from the
above three similarity measures. The RMSE value obtained for the above three similarity methods is shown
in figures 9, 10 and 11. From the Figures 6, 7 and 8, it is observed that the proposed gain based method
shows the less MAE than the other two methods in all the three similarity cases. Also, the RMSE value of
the proposed method is less when compared with the expected weight method in all the three cases. The
preference based method shows more error rate than the other two methods.

Figure 6: Jaccard MAE measure

Figure 7: Dice MAE measure
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Figure 8: Cosine MAE measure

Figure 9: Jaccard RMSE measure

The average precision value is shown in Figures 12, 13 and 14 for all the three similarity methods. The
precision value for the proposed method is higher than the other two methods. In all the three cases the
average precision is almost same for top-5 and top-10 users. Up to top 20 users precision value is greater
than or equal to 0.90. After that the precision value is started decreasing gradually. For top-50th user, the
precision value is very less in preference based method.

The reason for low MAE, lowest RMSE and high AP in proposed gain based method is as follows.

• In preference based method, fuzzy numbers are ranked based on surface area measurement method. The
magnitude of the surface area depends on the location of each fuzzy number on the real line. Possible
surface values are 0, 0.25, 1, 2, · · ·n− 2. An overall evaluation of edge is calculated by arithmetic average
of the fuzzy weight of all the values of involved edges. The value of an edge is adjusted, i.e. rounded-up
or rounded-down to one of the above possible surface values. This result in almost equal weight for all
the five attributes.

• The expected weight method assigns a weight or grade for each linguistic term of an attribute on the
real line. For example, HSM, NTR, HITM, NR, HDSML assigned the weight of 5, 3, 1, 3, 5 as per
position on the real line. This method also results in almost equal weight for all five attributes.

• The proposed gain based method uses the information gain value as a weight. The information gain
is derived while constructing a fuzzy decision tree. This results in maximum gain for more significant
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Figure 10: Dice RMSE measure

Figure 11: Cosine RMSE measure

attribute PHOW and minimum gain value for least significant attribute PWHO.

Equal weights treats all the attributes as either most significant or least significant. But this is not the
case in fuzzy real time data. Therefore, the preference based and expected weight method unable to predict
the highly matched reviewer accurately. This compromises the quality of the prediction and hence it leads
to prediction error.

4.3 Comparing with Other Trust-Based Recommender System
The proposed recommender system is compared with other trust based recommender system. The evaluation
is done on MAE and RMSE measures. First, the proposed method (Boost) is compared against without
boosting the similarity. The MAE value of this comparison is shown in Figure 15. In case of NoBst the MAE
value for all the three measures are larger than a Boost (Proposed). In the Boost (proposed) the MAE value
is very less in Jaccard , slightly higher MAE in Dice followed by Cosine. The MAE and RMSE values of the
proposed approach when compared with other trust-based classifier is shown Figure 16 and 17 respectively.
The compared methods are Tidal Trust, Mole Trust, Fuzzy Trust Filtering (FTF), Ensemble and Hybrid.

The MAE value of the proposed method is minimized when compared to other methods. When compared
to mole trust the error value of the proposed method is slightly lesser. Similarly, the proposed approach
results in minimum RMSE value when compared with other approaches. The reason for lesser MAE and
RMSE of the proposed method is as follows.



Provenance Based Trust Boosted Recommender System
Using Boosted Vector Similarity Measure. Trans. Fuzzy Sets Syst. 2023; 2(2) 211

Figure 12: Jaccard AP measure

Figure 13: Dice AP measure

• The Tidal Trust method assigns greater weight for more trustworthy users in the prediction process.
For example, the trust score of Average Trust, High Trust, Very High Trust and Completely Trust are
0.50, 0.67, 0.83 and 1.00 respectively. This weight is based on the core of the corresponding triangular
fuzzy set. The proposed method also assigns more weight to higher trust users and less weight to the
low trust user, but the weights are uniformly assigned.

• Mole Trust works by aggregating all the trust statements to produce a trust network. The trust metric
is computed based on the maximum propagation distance (MPD). If MPD is 4, then trust metric is
1 (High Trust), 0.75, 0.5, 0.25 (Low Trust). If MPD is 5, then trust metric is 1 (High Trust), 0.833,
0.666, 0.5, 0.33, 0.16 (Low Trust). Since the trust weights are more or less same as proposed, the MAE
and RMSE values are slightly closer. But, if MPD is greater than 5, then certainly Mole Trust shows
higher MAE and RMSE.

• FTF chose only item rater who are above a certain threshold. That is, it filters neighbors prior to
recommendation so that, only the High Trust, Very High Trust and Completely Trust users can partic-
ipate in the recommendation process. Because of the threshold restriction, the MAE and RMSE values
are very large.
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Figure 14: Cosine AP measure

Figure 15: MAE with and without boost

• The ensemble method takes all possible ways to obtain a positive weight for the rater. Thus, it aims
to increase the percentage of predictions made by the RS called coverage.

• The hybrid method combines explicit and implicit ratings. Explicit ratings are derived using the Mole
Trust method. An implicit rating is computed based on similarity and knowledge factors. It finds the
rating difference between two users and assigns weights. If the difference is 0 to 0.5 then weights of
5 is assigned. If the difference is 2 to 3 then weights of 2 is assigned. If it is >3 then weights of 1 is
assigned.

To conclude, each method applies a different trust metric for different level of trust. Since the trust metric is
not uniformly distributed in the compared trust based recommender systems, it shows the higher MAE and
RMSE than proposed.
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Figure 16: MAE compare

Figure 17: RMSE compare

4.4 Failure Scenarios of Recommender System

To analyze the failure of prediction, let us take a sample from the population. With the margin of error 5%
and confidence interval of 95%, the required sample size is obtained. The Figures 18, 19 and 20 shows the
prediction score of Best Case, Average Case and Worst Case scenario respectively. The x-axis represents the
active users (here, reviewers), y-axis refer to percentage of correct prediction, BJ refers to Boosted Jaccard,
BD refers to Boosted Dice and BC refers to Boosted Cosine.

The best prediction score is obtained when the recommendation is made for the Moderately Trusted
Users. Here more than 90% of score is achieved in all the three similarity measures. The reason for high
prediction score is the highest number of reviewers are classified into this category. An average prediction
score is attained when the recommendation is made from Low Trusted and High Trusted users. In this
scenario maximum of 50% data is correctly predicted. Because, the number of reviewers classified into LT
and HT is lesser when compared with MT.

The recommendation made from the Very Low Trust and few cases of Low Trust users gives the worst
prediction score. The maximum of 23% and a minimum of 0% of data can be predicted here. For the user
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Figure 18: Best case scenario

Figure 19: Average case scenario

120 given in Figure 20, the recommender system is unable to recommend a none of the user. As the number
of VLWT users is very, very minimum the class becomes skewed and hence worst prediction performance.

To conclude, when the skewness of the data is normal, Jaccard similarity gives the excellent output (Best
Case). Similarly, when the data has less skewness, Dice similarity measure performs better than Jaccard and
Cosine (Average Case). All the three similarity measures perform poorly (Worst Case) when the skewness of
the data is more.

5 Conclusion and Future Work
The proposed TBRS aimed to recommend top-k trustworthy users using a vector similarity measure. To
model the user, the contents of the user profile are extracted and formed into a profile database. To find the
similarity the fuzzy rules are converted into fuzzy vector space by assigning a fuzzy number for each linguistic
term in the rule. To compute the similarity score, the proposed model uses the Jaccard, Dice and Cosine
vector similarity measures with information gain as weight. This weighted similarity score is boosted by the
trust level of the decision attribute. The performance of the proposed recommender system shows better
results in terms of MAE, RMSE and AP when compared with preference based method and expected weight
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Figure 20: Worst case scenario

methods. Also, the proposed recommender system shows less MAE and less RMSE when are compared with
other trust based recommender system. When the data is highly skewed the proposed system fails to give
better results.

The limitation of the proposed TBRS is that it needs to be improved to handle the highly skewed data.
For example, by applying the log transformation of the skewed data. Also, the TBRS can be extended to
recommend a group of users than a single user. For example, recommending the top-5 or top-10 restaurant
to the family members.
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Abstract. In fuzzy set theory, the concept of a non-membership function and the hesitation margin were not
considered while these two concepts have been included along with the membership function for intuitionistic fuzzy
sets. It is also to be noted that the intuitionistic fuzzy set is reflected as an extension of the fuzzy set accommodating
both membership and non-membership functions together with a hesitation margin. In the intuitionistic fuzzy set
theory, the sum of the membership function and the non-membership function is a value between 0 and 1. In
recent times, intuitionistic fuzzy rough set theory has emerged as a powerful tool for dealing with imprecision and
uncertain information in relational database theory. Measures of similarity between fuzzy rough sets as well as
intuitionistic fuzzy rough sets provide wide applications in real-life problems and that is why many researchers
paid more attention to this concept. Intuitionistic fuzzy rough set theory behaves like an excellent tool to tackle
impreciseness or uncertainties. In this paper, we propose a new approach of similarity measure on an intuitionistic
fuzzy rough set based on a set-theoretic approach. The proposed measure is able to give an exact result. In the
application part, we consider a real-life problem for selecting a fair play award-winning team in a cricket tournament
and describe the algorithm.
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1 Introduction

The Rough set theory introduced by Pawlak [13, 14] is an excellent and elegant mathematical tool for the
analysis of uncertainty, inconsistency and vague descriptions of objects. The basic idea of a rough set is based
upon the approximation of sets by a pair of sets known as lower approximation and upper approximation.
Here, the lower and upper approximation operators are based on equivalence relation. However, in many real-
life problems, a rough set model cannot be applied due to the restrictions of the requirement of equivalence
relation. For this reason, the rough set is generalized to fuzzy sets such as fuzzy rough set and rough fuzzy
set [9].
In 1965, L.A.Zadeh [17] first introduced the concept of a Fuzzy set. Atanassov [1] generalized this concept into
an intuitionistic fuzzy set in 1983. Since then many authors [3, 4] have been concentrating as well as developing
the concepts like algebraic laws of IFSs, basic operations on IFSs, modal operators and normalization of IFSs
etc. In fuzzy set theory it is taken into consideration that there exists a membership value for all the elements
of the set and we do not consider non-membership values of the elements of the set. But in real-life problems,
we feel the existence of hesitation. In fuzzy set theory, if µ(x) is the degree of membership of an element x,
then the degree of non-membership of x is calculated by 1 − µ(x). But this concept is not always applicable
to all real-life problems and that is why the notion of an intuitionistic fuzzy set is introduced. It may be
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mentioned that the intuitionistic fuzzy set theory reduces to fuzzy set theory if the in-deterministic part is
zero. Combining the fuzzy sets with the rough sets, Nanda and Majumdar [11] proposed the concept of fuzzy
rough sets in 1992. Subsequently, Coker [7] pointed out fuzzy rough sets are the intuitionistic L-fuzzy sets.
In this paper, we utilize the concept of the intuitionistic fuzzy rough set [16, 19] model to determine the
similarity measure between two given intuitionistic fuzzy rough sets. Furthermore, using this concept we
illustrate an example for selecting the procedure of fair play award in a cricket tournament.

2 Preliminaries

Definition 2.1. [2] Let X be a nonempty set. An intuitionistic fuzzy set A in X is an object having the
form A={⟨x, µA(x), νA(x)⟩ : x ∈ X}, where the functions µA, νA : x → [0, 1]define respectively, the degree of
membership and degree of non-membership of the element x ∈ X to the set A, which is a subset of X, and
for every element x ∈ X, it holds that 0 ≤ µA(x) + νA(x) ≤ 1.
Furthermore, we have πA(x)= 1− µA(x)−νA(x) called the intuitionistic fuzzy set index or hesitation margin
of x in A. πA(x) is the degree of indeterminacy of x ∈ X to the IFS A and πA(x) ∈ [0, 1] that is πA : X → [0, 1]
and 0 ≤ πA(x) ≤ 1 for every x ∈ X. πA(x) expresses the lack of knowledge of whether x belongs to IFS A or
not.

The definition of rough sets is based upon the approximation of a set by a pair of sets known as a lower
and an upper approximation. Let U be the universe of a finite non-empty set of objects. Let R ⊆ U × U
be an equivalence relation on U . The equivalence relation R partitions the set U into disjoint classes and it
is denoted as U/R. Let X be a subset of U . Therefore the target set X can be described by a lower and
an upper approximation as below, where RX and RX are R − lower and R − upper approximations of X
respectively.
RX = ∪{X ′ ∈ U/R : X

′ ⊆ X} and RX = ∪{X ′ ∈ U/R : X
′ ∩X ̸= ∅}

Boundary region of the set X, BNR(X), is the objects in X that can be distinguished neither as a member
nor as a non-member of x employing the relation R. It is denoted as BNR(X) = RX −RX.
A set X is said to be definable if RX = RX and the target set is a crisp set i.e., there is no boundary line
objects. Similarly, it is said to be rough if RX ̸= RX or equivalently BNR(X) ̸= ∅.

Definition 2.2. [4] Let U be a non-empty and finite universe of discourse and IFR be an intuitionistic
fuzzy relation defined on U × U . The pair (U, IFR) is called an intuitionistic fuzzy rough approximation
space. For any A ∈ IF (U), where IF(U) denotes the intuitionistic fuzzy power set of U, the lower and upper
approximations of A with respect to (U, IFR) denoted by IFR(A) and IFR(A) are defined as follows:
IFR(A) = {⟨x, µIFR(A)(x), νIFR(A)(x)⟩ : x ∈ U}
IFR(A) = {⟨x, µIFR(A)(x), νIFR(A)(x)⟩ : x ∈ U}
Where
µIFR(A)(x) = ∧y∈U [νIFR(x, y) ∨ µA(y)]
νIFR(A)(x) = ∨y∈U [µIFR(x, y) ∧ νA(y)]
µIFR(A)(x) = ∨y∈U [µIFR(x, y) ∧ µA(y)]

νIFR(A)(x) = ∧y∈U [νIFR(x, y) ∨ νA(y)]

The pair (IFR(A), IFR(A)) is called the intuitionistic fuzzy rough set associated with A denoted by IFR(A).
Then, an IF rough set A ∈ IF (U) could be denoted by A = {⟨x, µA(x), µA(x), νA(x), νA(x)⟩ : ∀x ∈ U}.

Definition 2.3. [3] Let U be a non-empty and finite universe of discourse and A,B ∈ IF (U).
Then (i) The complement of A = ⟨µA(x), µA(x), νA(x), νA(x)⟩ is defined as Ac = ⟨νA(x), νA(x), µA(x), µA(x)⟩,
for any x ∈ U .
(ii) A ⊆ B if for any x ∈ U , µA(x) ≤ µB(x), µA(x) ≤ µB(x) and νA(x) ≥ νB(x), νA(x) ≥ νB(x).
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Definition 2.4. [10, 15] Let U be a non-empty and finite universe of discourse and A ∈ IFR(U).
Then M : A × A → [0, 1] is called the similarity measure on A and M(x, y) is called the similarity degree
between the intuitionistic fuzzy rough values x = (µA(x), µA(x), νA(x), νA(x), πA(x), πA(x)),
y = (µA(y), µA(y), νA(y), νA, πA(y), πA(y)), if M satisfies the following conditions:

1. 0 ≤M(x, y) ≤ 1.

2. M(x, y) = M(y, x).

3. ∀x ∈ A,M(x, y) = M(x, z) ⇒M(y, z) = 1.

4. M(x, y) = M(xc, yc), where xc and yc are complements of x and y respectively.

5. If x ≤ y ≤ z, then M(x, z) ≤ min{M(x, y),M(y, z)}, ∀x, y, z ∈ A.

3 Similarity Measures

Many researchers [[6], [8], [10], [19], [18], [20]] have paid their concentration to develop the concept of similarity
measure between fuzzy sets, intuitionistic fuzzy sets and intuitionistic fuzzy rough sets. On the basis of the
set-theoretic approach, Pappis and Karacapilidis [12] defined the similarity measure between fuzzy sets A
and B with fuzzy values ai ∈ A and bi ∈ B as follows.

Mp(A,B) =
(|A ∩B|)
(|A ∪B|)

=

∑n
i=1(ai ∧ bi)∑n
i=1(ai ∨ bi)

(1)

In [5] Chen defined a similarity measure between two IF sets with IF values x and y ( from the set-theoretic
point of view) as follows:

MC(x, y) =
(min(µ(x), µ(y)) +min(ν(x), ν(y)) +min(π(x), π(y)))

(max(µ(x), µ(y)) +max(ν(x), ν(y)) +max(π(x), π(y)))
(2)

Atanassov [3] also gives a similarity measure between fuzzy rough values as follows: Let A be a fuzzy rough
set in X, x = ⟨µA(x), µA(x)⟩, y = ⟨µA(y), µA(y)⟩be the fuzzy rough values in A. The degree of similarity
between the fuzzy rough values x and y can be evaluated by the function MZ(x, y).

MZ(x, y) = 1 − 1

2
(
∣∣µA(x) − µA(y)

∣∣+
∣∣µA(x) − µA(y)

∣∣) (3)

Gangwal et.al. [10] also mentioned a similarity measure between IF rough values based on a set-theoretic
approach as mentioned below.
Let A be an IF rough set in X, x = ⟨µA(x), µA(x), νA(x), νA(x)⟩, y = ⟨µA(y), µA(y), νA(y), νA(y)⟩ be two
IF rough values in A. The degree of similarity between the IF rough values x and y can be defined by the
function M(x, y) as follows:

M(x, y) =
(
∣∣µA(x) ∧ µA(y) + µA(x) ∧ µA(y) + νA(x) ∧ νA(y) + νA(x) ∧ νA(y)

∣∣)
(
∣∣µA(x) ∨ µA(y) + µA(x) ∨ µA(y) + νA(x) ∨ νA(y) + νA(x) ∨ νA(y)

∣∣) (4)
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In the above definition, the IF rough values of 4-tuples are used. Instead of IF rough values of 4-tuples, we
consider IF rough values of 6-tuples in the rest of the paper.

Definition 3.1. Let A be an IF rough set in X,

x = ⟨µA(x), µA(x), νA(x), νA(x), πA(x), πA(x)⟩,

y = ⟨µA(y), µA(y), νA(y), νA(y), πA(y), πA(y)⟩

be two IF rough values in A. The degree of similarity between the IF rough values x and y can be defined by
the function MJ(x, y) as follows:

MJ(x, y) =
(µA(x) ∧ µA(y) + µA(x) ∧ µA(y) + νA(x) ∧ νA(y) + νA(x) ∧ νA(y) + πA(x) ∧ πA(y) + πA(x) ∧ πA(y))

(µA(x) ∨ µA(y) + µA(x) ∨ µA(y) + νA(x) ∨ νA(y) + νA(x) ∨ νA(y) + πA(x) ∨ πA(y) + πA(x) ∨ πA(y))
(5)

The larger the value of MJ(x, y), the more the similarity between the IF rough values x and y.

Example 3.2. Let x and y be two IF rough values, where x = ⟨0.6, 0.5, 0.3, 0.4, 0.1, 0.1⟩ and
y = ⟨0.7, 0.65, 0.25, 0.3, 0.05, 0.05⟩. Then the degree of similarity between x and y can be evaluated as

MJ(x, y) = min(0.6,0.7)+min(0.5,0.65)+min(0.3,0.25)+min(0.4,0.3)+min(0.1,0.05)+min(0.1,0.05)
max(0.6,0.7)+max(0.5,0.65)+max(0.3,0.25)+max(0.4,0.3)+max(0.1,0.05)+max(0.1,0.05)

= 0.6+0.5+0.25+0.3+0.05+0.05
0.7+0.65+0.3+0.4+0.1+0.1 = 1.75

2.25 ≈ 0.7778.

Example 3.3. Let x and y be two IF rough values, where x = ⟨0.6, 0.5, 0.3, 0.4, 0.1, 0.1⟩ and
y = ⟨0.7, 0.65, 0.25, 0.3, 0.05, 0.05⟩.
Then the complementary of x and y can be given by xc = ⟨0.3, 0.4, 0.6, 0.5, 0.1, 0.1⟩ and
yc = ⟨0.25, 0.3, 0.7, 0.65, 0.05, 0.05⟩.
Hence the degree of similarity between xc and yc can be evaluated as

MJ(xc, yc) = min(0.3,0.25)+min(0.4,0.3)+min(0.6,0.7)+min(0.5,0.65)+min(0.1,0.05)+min(0.1,0.05)
max(0.3,0.25)+max(0.4,0.3)+max(0.6,0.7)+max(0.5,0.65)+max(0.1,0.05)+max(0.1,0.05)

= 0.25+0.3+0.6+0.5+0.05+0.05
0.3+0.4+0.7+0.65+0.1+0.1 = 1.75

2.25 ≈ 0.7778.

From examples 3.2 and 3.3, it is observed that MJ(x, y) = MJ(xc, yc).

Example 3.4. Let x and y be two IF rough values, where x = ⟨0.6, 0.5, 0.3, 0.4, 0.1, 0.1⟩ and
y = ⟨0, 0, 0, 0, 0, 0⟩.

Hence the degree of similarity between x and y can be evaluated as

MJ(x, y) = min(0.6,0)+min(0.5,0)+min(0.3,0)+min(0.4,0)+min(0.1,0)+min(0.1,0)
max(0.6,0)+max(0.5,0)+max(0.3,0)+max(0.4,0)+max(0.1,0)+max(0.1,0) = 0.

Example 3.5. Let x and y be two IF rough values, where x = y = ⟨0.6, 0.5, 0.3, 0.4, 0.1, 0.1⟩

Hence the degree of similarity between x and y can be evaluated as

MJ(x, y) = min(0.6,0.6)+min(0.5,0.5)+min(0.3,0.3)+min(0.4,0.4)+min(0.1,0.1)+min(0.1,0.1)
max(0.6,0.6)+max(0.5,0.5)+max(0.3,0.3)+max(0.4,0.4)+max(0.1,0.1)+max(0.1,0.1) = 1.
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Example 3.6. Let x and y be two IF rough values, where x = ⟨0.6, 0.5, 0.3, 0.4, 0.1, 0.1⟩ and
y = ⟨1, 1, 0, 0, 0, 0⟩.

Hence the degree of similarity between x and y can be evaluated as

MJ(x, y) = min(0.6,1)+min(0.5,1)+min(0.3,0)+min(0.4,0)+min(0.1,0)+min(0.1,0)
max(0.6,1)+max(0.5,1)+max(0.3,0)+max(0.4,0)+max(0.1,0)+max(0.1,0) ≈ 0.3793.

Theorem 3.7. Let A be an IF rough set in X where x, y, z be the IF rough values in A. Then the following
statements are true:

1. MJ(x, y) is bounded i.e.; 0 ≤MJ(x, y) ≤ 1.

2. MJ(x, y) = MJ(y, x).

3. ∀x ∈ X,MJ(x, y) = MJ(x, z) ⇒MJ(y, z) = 1.

4. MJ(x, y) = MJ(xc, yc).

5. If x ≤ y ≤ z, then MJ(x, z) ≤ min{MJ(x, y),MJ(y, z)} for x, y, z ∈ X.

Proof. Let A be an IF rough set in X where x = ⟨µA(x), µA(x), νA(x), νA(x), πA(x), πA(x)⟩,
y = ⟨µA(y), µA(y), νA(y), νA(y), πA(y), πA(y)⟩ and z = ⟨µA(z), µA(z), νA(z), νA(z), πA(z), πA(z)⟩ be the IF
rough values in A. We may define the order relation of the intuitionistic fuzzy rough values as
x ≤ y ⇐⇒ (µA(x) ≤ µA(y), µA(x) ≤ µA(y)) and (νA(x) ≥ νA(y), νA(x) ≥ νA(y)).

1. The minimum value of (5) is 0 and the maximum is 1. In other cases, the value of the expression (5)
must be positive and lesser than one as the value of the numerator is less than the value of denominator.
Thus 0 ≤MJ(x, y) ≤ 1.

2. MJ is symmetric as min and max operations are both symmetric.

3. Since MJ(x, y) = MJ(x, z), ∀x ∈ X then for x = y we get that 1 = MJ(y, y) = MJ(y, z).
Similarly, for x = z, we get 1 = MJ(z, z) = MJ(z, y) = MJ(y, z).

4. In this case, xc = ⟨νA(x), νA(x), µA(x), µA(x), πA(x), πA(x)⟩
and yc = ⟨νA(y), νA(y), µA(y), µA(y), πA(y), πA(y)⟩ and hence point 4 holds.

5. Given, x ≤ y ≤ z.

Substituting πA(x), πA(x), πA(z), πA(z) we get MJ(x, z) =
1−Uxz+1−Uxz

1+Uxz+1+Uxz
,

where Uxz = (µA(z) − µA(x)) ∨ (νA(x) − νA(z)) and Uxz = (µA(z) − µA(x)) ∨ (νA(x) − νA(z)).

Similarly, MJ(x, y) =
1−Uxy+1−Uxy

1+Uxy+1+Uxy
, where Uxy = (µA(y)−µA(x))∨(νA(x)−νA(y)) and Uxy = (µA(y)−

µA(x)) ∨ (νA(x) − νA(y)).
Clearly, (1 − Uxz + 1 − Uxz) ≤ (1 − Uxy + 1 − Uxy) as Uxz ≥ Uxy and Uxz ≥ Uxy

And (1 + Uxz + 1 + Uxz) ≥ (1 + Uxy + 1 + Uxy) as Uxz ≥ Uxy and Uxz ≥ Uxy

Hence MJ(x, z) ≤MJ(x, y).
Similarly, it can be shown that MJ(x, z) ≤MJ(y, z).
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□
Now, the similarity measure between two given IF rough sets is generalized. Let A and B be two IF rough
sets in the universe of discourse U = {u1, u2, u3, , un}, where
A = ⟨µA(u1), µA(u1), νA(u1), νA(u1), πA(u1), πA(u1)⟩/u1 +
+ ⟨µA(un), µA(un), νA(un), νA(un), πA(un), πA(un)⟩/un
and B = ⟨µB(u1), µB(u1), νB(u1), νB(u1), πB(u1), πB(u1)⟩/u1 +
+ ⟨µB(un), µB(un), νB(un), νB(un), πB(un), πB(un)⟩/un

Then based on definition 3.1, the degree of similarity between the IF rough sets A and B can be defined
as follows:

TJ(A,B) = 1
n

∑n
i=1MJ(⟨µA(ui), µA(ui), νA(ui), νA(ui), πA(ui), πA(ui)⟩,

⟨µB(ui), µB(ui), νB(ui), νB(ui), πB(ui), πB(ui)⟩)

So, TJ(A,B) =

1
n

∑n
i=1

(min(µA(ui),µB(ui))+min(νA(ui),νB(ui))+min(πA(ui),πB(ui))+min(µA(ui),µB(ui))+min(νA(ui),νB(ui))+min(πA(ui),πB(ui))

(max(µA(ui),µB(ui))+max(νA(ui),νB(ui))+max(πA(ui),πB(ui))+max(µA(ui),µB(ui))+max(νA(ui),νB(ui))+max(πA(ui),πB(ui))

Here TJ(A,B) ∈ [0, 1]. The larger the value of TJ(A,B), the more similarity between the IF rough sets
A and B.

Theorem 3.8. Let X be the set of all IF rough sets on the fixed finite universe of discourse U and A, B, C
∈ X. Then the following statements are true:

1. TJ is bounded, i.e., 0 ≤ TJ(A,B) ≤ 1.

2. TJ(A,B) = TJ(B,A).

3. ∀A ∈ X, TJ(A,B) = TJ(A,C) ⇒ TJ(B,C) = 1.

4. TJ(A,B) = TJ(Ac, Bc).

5. If A ⊆ B ⊆ C, then TJ(A,C) ≤ min{TJ(A,B), TJ(B,C)} for A,B,C ∈ X.

Proof. Similar to the Theorem 3.7. □

4 Application

In this section, we are considering the selection procedure for a Fair Play award in a cricket tournament. The
fair play award is to make sure that the teams show the best behavior and sporting spirit while also being
competitive. The award motivates the teams to play the game fairly.
The main factors on which the fair play award for a team depends are described below.
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• Teams that uphold the spirit of the game→ e1

• Teams that respect the opposition team→ e2

• Teams that show respect towards the laws and rules of cricket→ e3

• Teams that respect the umpires and officials→ e4

4.1 Algorithm

The steps of the algorithm of this method are as follows:
First step: Construct an intuitionistic fuzzy rough set for a standard alternative.
Second step: Construct an intuitionistic fuzzy rough set for the available alternatives.
Third step: Calculate the similarity measure.
Fourth step: Arrange alternatives in order to their ranking.
Fifth step: Choose the best alternative.

4.2 Computation

Let U be the universal set where U = {TeamA, TeamB, TeamC, TeamD, TeamE, TeamF}
and S = {e1, e2, e3, e4} be the parameters.
Also let S be the standard alternative and A, B, C, D, E, and F are the available alternatives.
S =⟨1, 1, 0, 0, 0, 0⟩/e1+⟨0.9, 0.9, 0.05, 0.05, 0.05, 0.05⟩/e2+⟨1, 0.9, 0, 0.1, 0, 0⟩/e3+⟨0.95, 0.95, 0.05, 0.05, 0, 0⟩/e4
A = ⟨0.6, 0.5, 0.2, 0.3, 0.2, 0.2⟩/e1 + ⟨0.45, 0.5, 0.25, 0.4, 0.3, 0.1⟩/e2 + ⟨0.5, 0.6, 0.4, 0.4, 0.1, 0⟩/e3
+ ⟨0.75, 0.6, 0.2, 0.2, 0.05, 0.2⟩/e4
B =⟨0.8, 0.7, 0.2, 0.2, 0, 0.1⟩/e1 + ⟨0.7, 0.5, 0.2, 0.3, 0.1, 0.2⟩/e2 + ⟨0.55, 0.65, 0.35, 0.25, 0.1, 0.1⟩/e3
+ ⟨0.6, 0.4, 0.3, 0.5, 0.1, 0.1⟩/e4
C = ⟨0.8, 0.9, 0.1, 0.1, 0.1, 0⟩/e1 + ⟨0.75, 0.85, 0.15, 0.1, 0.1, 0.05⟩/e2 + ⟨0.85, 0.9, 0.1, 0.05, 0.05, 0.05⟩/e3
+ ⟨0.5, 0.6, 0.3, 0.3, 0.2, 0.1⟩/e4
D =⟨0.85, 0.6, 0.1, 0.2, 0.05, 0.2⟩/e1 + ⟨0.7, 0.65, 0.2, 0.3, 0.1, 0.05⟩/e2 + ⟨0.5, 0.5, 0.4, 0.4, 0.1, 0.1⟩/e3
+ ⟨0.6, 0.6, 0.3, 0.3, 0.1, 0.1⟩/e4
E = ⟨0.6, 0.8, 0.2, 0.2, 0.2, 0⟩/e1 + ⟨0.65, 0.75, 0.25, 0.2, 0.1, 0.05⟩/e2 + ⟨0.7, 0.7, 0.3, 0.3, 0, 0⟩/e3
+ ⟨0.8, 0.9, 0.1, 0.1, 0.1, 0⟩/e4
F =⟨0.9, 0.8, 0.05, 0.15, 0.05, 0.05⟩/e1 + ⟨0.7, 0.5, 0.2, 0.3, 0.1, 0.2⟩/e2 + ⟨0.8, 0.6, 0.1, 0.3, 0.1, 0.1⟩/e3
+ ⟨0.7, 0.6, 0.25, 0.35, 0.05, 0.05⟩/e4

Now using the formula of TJ(A,B), we can evaluate

TJ(S,A) = 1
4 [ min(1,0.6)+min(1,0.5)+min(0,0.2)+min(0,0.3)+min(0,0.2)+min(0,0.2)

max(1,0.6)+max(1,0.5)+max(0,0.2)+max(0,0.3)+max(0,0.2)+max(0,0.2) +

min(0.9,0.45)+min(0.9,0.5)+min(0.05,0.25)+min(0.05,0.4)+min(0.05,0.3)+min(0.05,0.1)
max(0.9,0.45)+max(0.9,0.5)+max(0.05,0.25)+max(0.05,0.4)+max(0.05,0.3)+max(0.05,0.1) +

min(1,0.5)+min(0.9,0.6)+min(0,0.4)+min(0.1,0.4)+min(0,0.1)+min(0,0)
max(1,0.5)+max(0.9,0.6)+max(0,0.4)+max(0.1,0.4)+max(0,0.1)+max(0,0) +
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min(0.95,0.75)+min(0.95,0.6)+min(0.05,0.2)+min(0.05,0.2)+min(0,0.05)+min(0,0.2)
max(0.95,0.75)+max(0.95,0.6)+max(0.05,0.2)+max(0.05,0.2)+max(0,0.05)+max(0,0.2) ]

= 0.4450.

Thus we get,

Similarity Measure Value

TJ(S,A) 0.4450

TJ(S,B) 0.4998

TJ(S,C) 0.7010

TJ(S,D) 0.5155

TJ(S,E) 0.6558

TJ(S, F ) 0.6040

This indicates that team C will receive the fair play trophy.

5 Conclusion

In this paper, we describe an intuitionistic fuzzy rough set model or approach to find the similarity measure
between intuitionistic fuzzy rough sets. The main feature of this model is that we have considered and
calculated the hesitation margin. We also establish some rules for measuring the degree of similarity between
elements and between intuitionistic fuzzy rough sets. Based on this concept we solve a problem related to
fair play winner in a cricket tournament. Many such problems also can be solved by applying this method.
As the proposed similarity measures have some good properties, they can provide a useful way for measuring
the similarity between intuitionistic fuzzy rough sets.
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