

Vol. 2, Issue 4, Winter 2025

 Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision

Processes and Attention-Based Deep Reinforcement Learning
Abbas Mirzaei, Naser Mikaeilvand, Babak Nouri-Moghaddam, Sajjad Jahanbakhsh
Gudakahriz, Ailin Khosravani, Fatemeh Tahmasebizade, Ali Seifi, Hosein Hatami

 A Review of Feature Selection
Jafar Abdollahi, Babak Nouri-Moghaddam, Naser Mikaeilvand, Sajjad Jahanbakhsh
Gudakahriz, Ailin Khosravani, Abbas Mirzaei

 Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using

Support Vector Machine
Kaveh Kumarci

 Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

Peyman Babaei

 Investigating and sensitivity analyzing the of operating microgrids in the presence of
electric vehicles
Yaser Ebazadeh, Reza Alayi, Eskandar Jamali

 Optimal use of photovoltaic systems in the distribution network considering the
variable load and production profile of Kerman city
Fahimeh Sayadi Shahraki, Shaghayegh Bakhtiari Chehelcheshmeh, Alireza Zamani Nouri

1

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (1-15), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Real-Time Scalable Task Offloading in Edge Computing Using Semi-

Markov Decision Processes and Attention-Based Deep Reinforcement

Learning
Abbas Mirzaei1, Naser Mikaeilvand2, Babak Nouri-Moghaddam1, Sajjad Jahanbakhsh Gudakahriz3,

Ailin Khosravani1, Fatemeh Tahmasebizade1, Ali Seifi1, Hosein Hatami1
1. Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2. Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3. Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi, Iran

Article Info Abstract

Article History:
Received: 2024/11/28
Revised: 2025/01/05

Accepted: 2025/02/02

DOI:

 Edge computing has emerged as a dynamic framework where

computational tasks are offloaded to distributed edge servers (ESs) to

provide low-latency and efficient services. As edge systems grow in

scale and complexity, leveraging Deep Reinforcement Learning (DRL)

has become a prominent approach to optimize task offloading and

Resource management. However, traditional DRL-based

methodologies encounter several challenges: (1) Discrete-time

decision frameworks, such as Markov Decision Processes (MDPs),

often enforce offloading in fixed timeslots, leading to scheduling

delays and inefficient Resource utilization. (2) Static computational

structures struggle to adapt to varying numbers of edge servers or user

devices, resulting in scalability issues and system inefficiencies. To

overcome these limitations, we introduce a novel DRL-driven real-time

offloading mechanism tailored for dynamic and scalable edge

environments. Our approach reformulates the offloading problem

within a Semi-Markov Decision Process (SMDP) framework and

introduces an adaptive optimization mechanism utilizing attention-

based graph operations for heterogeneous Resource environments. This

system, like how we prioritize tasks and divide resources, figures out

how much attention to pay to each task and which server should handle

it, to make things work smoothly. To make this work even better in the

real world, we use a special method to adjust the rewards, which helps

the system learn and improve its performance over time

Keywords:
Edge Computing; Task

Scheduling; Reinforcement

Learning; System Scalability.

*Corresponding Author’s Email

Address:

mirzaei_class_87@yahoo.com

1. Introduction

The rapid expansion of mobile networks and the

proliferation of connected devices have

transformed modern computing environments.

From autonomous vehicles to immersive

augmented reality applications, the demand for

high-speed, low-latency services has surged.

Traditional cloud computing architectures, despite

their powerful centralized Resources, often fall

short in meeting these latency-sensitive

requirements due to long transmission distances

and centralized processing bottlenecks [1]-[5]. This

gap has driven the evolution of edge computing,

which brings computation and storage closer to

end-users by deploying edge servers (ESs) within

the network's proximity. Within this paradigm,

tasks may be executed locally or offloaded to

nearby ESs. While ESs are equipped with more

robust computational capabilities compared to

UDs, the process of uploading tasks to ESs

introduces additional energy consumption and

latency. Moreover, the computational capacity of

ESs remains constrained compared to centralized

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

2

cloud servers, making them unsuitable for handling

large volumes of concurrent tasks. Resource

contention among multiple tasks can degrade

system performance and quality of service (QoS)

[6], [7]. Consequently, devising an efficient

scheduling mechanism for task offloading has

become critical. Such mechanisms aim to optimize

the selection of offloading targets and Resource

allocation strategies [8], often framed as mixed-

integer nonlinear programming (MINLP)

problems, which are known to be NP-hard [9].

Initially, mathematical approaches [10] were

developed to solve these optimization problems.

However, these model-based methods struggle

with generalization across diverse edge systems

characterized by heterogeneous transmission

technologies, application requirements, and

computational Resources. To address this

limitation, model-free metaheuristic algorithms

[11, 12] were introduced for task offloading.

Despite their flexibility, these algorithms face

significant challenges, including large search

spaces and poor adaptability to dynamic edge

environments. In recent years, Deep

Reinforcement Learning (DRL) has demonstrated

exceptional capabilities across various domains,

such as robotics control, autonomous driving, and

natural language processing. Leveraging deep

neural networks, DRL combines high-dimensional

data analysis with model-free learning, making it a

compelling choice for dynamic edge systems. Its

online learning capabilities enable adaptive policy

updates through continuous interaction with the

environment, offering real-time adaptability to

evolving edge conditions. As a result, DRL-based

methods have shown promising results in

optimizing task offloading and Resource allocation

in edge computing [13]-[16]. Despite its

advantages, DRL-based approaches face inherent

limitations, as illustrated in Fig. 1. Firstly, these

methods typically rely on discrete-time Markov

Decision Processes (MDPs), where decisions are

made at fixed intervals. This framework

necessitates batch processing of tasks, causing

delays as tasks wait for the next decision interval to

be scheduled [17]. Such wait-for-scheduling

latency increases Resource contention and lowers

task completion rates, particularly in systems with

stringent delay requirements. Secondly, traditional

DRL methods lack scalability [18, 19]. The fixed

computational graph of deep neural networks

requires consistent input and output dimensions,

making it challenging to adapt to varying system

scales [20]. For instance, in mobile edge

environments, the dynamic nature of vehicular

edge systems—with frequent arrivals and

departures of service or user vehicles—renders

non-scalable DRL approaches infeasible.

Retaining scalability under these conditions is

crucial but often necessitates retraining models, a

process that is both time-intensive and

computationally expensive.

Figure 1. Challenges in DRL-Based Offloading

Approaches.

Transitioning from a batched offloading

framework to a real-time approach, where tasks are

immediately scheduled upon arrival, intuitively

minimizes waiting time and avoids dimensional

mismatches caused by fluctuating task volumes.

However, the discrete-time MDP framework

utilized by classical DRL algorithms is inherently

unsuitable for such scenarios [21]-[23].

Additionally, scalability challenges, such as

mismatches in the dimensions of inputs and outputs

caused by dynamic variations in the number of

edge servers (ESs) and user devices (UDs), remain

unresolved. To address these challenges, we

propose a Real-time and Scalable Task Offloading

framework (ReSTO), leveraging a DRL-based

methodology.

In ReSTO, the task offloading problem is modeled

as a Semi-Markov Decision Process (Semi-MDP)

to enable decision-making at arbitrary task arrival

times. The framework introduces the Scalable

Continuous Proximal Policy Optimization

(SCPPO) algorithm, specifically designed to align

with the

Semi-MDP framework. To ensure scalability,

SCPPO employs a heterogeneous graph attention

mechanism for feature extraction, translating task-

specific characteristics into adaptive attention

scores for decision-making. Moreover, we develop

a hybrid reward mechanism that integrates model-

based and real-time feedback, referred to as the

homotopy reward. This reward scheme bridges the

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

3

gap between theoretical models and real-world

dynamics while enhancing exploration efficiency

during learning.

This paper aims to address the limitations of

existing DRL-based task offloading approaches in

edge computing environments. Specifically, we

focus on:

 1- Overcoming the limitations of discrete-time

MDPs: We propose a novel continuous-time DRL

framework that enables real-time, event-triggered

task scheduling, eliminating the need for batch

processing and reducing wait-for-scheduling

latency.

 2- Improving scalability in dynamic environments:

We introduce a scalable DRL architecture that can

adapt to varying numbers of tasks and edge servers

without requiring extensive model retraining.

By achieving these objectives, we aim to:

 Enhance task completion rates and

reduce latency in edge computing

systems with stringent performance

requirements.

 Improve resource utilization by

enabling more efficient task

scheduling and allocation.

 Increase the adaptability and

robustness of DRL-based offloading

solutions in dynamic and

unpredictable edge environments.

The key contributions of this work are as follows:

 Introduction of ReSTO

Framework:
We propose ReSTO, a novel real-time and

scalable task offloading framework. ReSTO

models the offloading problem using a Semi-

MDP and introduces the SCPPO algorithm for

real-time decision-making, eliminating the

latency associated with traditional batched

scheduling.

 Scalability via Graph Attention

Mechanism:
SCPPO employs heterogeneous graph

attention operations to extract task and

Resource features dynamically, enabling

adaptive attention score generation. This

approach prevents dimensional mismatches as

the number of ESs or UDs changes, ensuring

scalability.

 Development of Homotopy

Reward:
We formulate a hybrid reward system

combining theoretical model rewards with

real-time feedback. This homotopy reward

reduces the disparity between theoretical

assumptions and real-world conditions,

improving both performance and exploration

efficiency.

The remainder of this paper is organized as

follows: Section II reviews related works,

particularly focusing on real-time and scalable

RL/DRL-based approaches. Section III presents

the system model for real-time offloading and the

corresponding optimization problem. In Section

IV, we detail the ReSTO framework, including the

Semi-MDP formulation and the SCPPO algorithm

design. Section V evaluates ReSTO’s performance

against state-of-the-art algorithms, highlighting its

scalability and efficiency. Finally, Section VI

concludes the paper with insights and potential

future directions.

2. Related Works

In this section, we provide a comprehensive review

of DRL-based task offloading methods. Following

this, we delve into existing RL/DRL approaches

for real-time or scalable task offloading, analyzing

their achievements and limitations in comparison

to our proposed framework.

A. DRL-Based Task Offloading in Edge

Computing

Over the past decade, task offloading in edge

computing systems has increasingly relied on Deep

Reinforcement Learning (DRL) algorithms due to

their capacity for dynamic decision-making and

adaptability to complex environments. These

algorithms leverage the ability of neural networks

to process high-dimensional inputs and learn

optimal policies directly through interaction with

the environment. Numerous studies have tailored

DRL methods to address the unique challenges of

edge systems, such as Resource constraints,

latency requirements, and dynamic user demands.

One notable example is the work of Wang et al.

[12], who utilize Deep Q-Learning (DQN) to

optimize both task offloading and Resource

configuration in a blockchain-enabled edge

computing framework. Their approach introduces

trust mechanisms and leverages blockchain for

secure and efficient offloading. Similarly, Huang et

al. [13] employ a Twin Delayed Deep

Deterministic Policy Gradient (TD3) algorithm for

partial offloading systems, where tasks can be split

between local and edge processing. This method

improves decision-making by accounting for the

variability in task size and Resource availability,

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

4

demonstrating the potential of DRL in adaptive

task allocation.

Building on these foundational approaches,

subsequent research has focused on enhancing the

performance and robustness of DRL-based task

offloading. For instance, Xu et al. [14] and Ma et

al. [15] introduce temporal feature extraction to

capture the dynamic nature of edge environments,

utilizing historical state information to better

model system behavior and predict the effects of

various actions. This temporal awareness allows

the system to adapt to changing workloads and

network conditions, leading to more effective

offloading strategies.

Moreover, Xu et al. [16] propose an exploration-

exploitation strategy tailored to the training

process. By prioritizing exploration during the

early stages of training and gradually shifting

towards the exploitation of learned policies, their

approach strikes a balance between discovering

new solutions and refining existing ones. This

adaptive strategy improves policy performance and

ensures more reliable decision-making over time.

To address the computational complexity and

convergence challenges associated with large

action spaces, researchers have also explored

hybrid approaches that integrate DRL with

traditional optimization techniques. For example,

Chen et al. [17] enhance DQN-based task

offloading with sequential quadratic programming

for Resource allocation. This combination reduces

the dimensionality of the problem and accelerates

convergence, enabling more efficient use of edge

Resources.

Li et al. [18] take a multi-agent approach,

employing a Parameterized Multi-Agent Soft

Actor-Critic (SAC) algorithm to address the

interdependence of actions across agents. By

categorizing actions into those that affect other

agents and those that do not, they effectively

manage Resource contention in collaborative edge

environments. The use of a genetic algorithm

further refines Resource allocation decisions,

ensuring optimal system performance.

Despite these advancements, existing DRL-based

methods face inherent limitations due to their

reliance on the discrete-time Markov Decision

Process (MDP) framework. This framework

enforces decision-making at fixed intervals,

leading to batch processing of tasks. Such a

structure introduces scheduling delays, as tasks

must wait until the next decision point before

offloading can occur [24], [25]. This wait-for-

scheduling latency becomes particularly

problematic in latency-sensitive applications,

where even slight delays can significantly degrade

performance. Additionally, most DRL approaches

encode system states into a one-dimensional input

vector for processing by a multi-layer perceptron

(MLP). While this design simplifies

implementation, it limits scalability. Fixed input-

output dimensions in MLPs cannot adapt to

changes in the number of edge servers (ESs) or user

devices (UDs), resulting in dimensional

mismatches. This lack of flexibility hampers the

applicability of DRL algorithms in dynamic edge

environments, such as vehicular networks or large-

scale IoT systems, where the network topology and

Resource availability frequently change.

These challenges underscore the need for novel

frameworks and algorithms that overcome the

constraints of discrete-time MDPs and enable real-

time, scalable task offloading in edge computing

systems. Future solutions must address both the

latency introduced by batch processing and the

scalability issues arising from static neural network

architectures, paving the way for more adaptive

and efficient DRL applications in edge

environments.

 Categorization by Objective:

1. Latency Minimization: Focus on

methods specifically designed to

minimize task completion time or

end-to-end delay.

2. Energy Efficiency: Analyze methods

that prioritize minimizing energy

consumption at the device and

network levels.

3. Resource Allocation: Discuss

approaches that optimize resource

allocation among UDs and ESs,

considering factors like CPU,

memory, and bandwidth.

4. Load Balancing: Examine methods

that aim to distribute the

computational load evenly across the

available ESs.

B. Real-Time RL/DRL for Task Scheduling

Real-time decision-making is a critical component

of task scheduling in edge computing and

numerous other domains, where rapid responses to

dynamic changes are essential for maintaining

system performance and efficiency. However, the

discrete-time Markov Decision Process (MDP)

framework, which underpins most traditional

RL/DRL methods, introduces inherent constraints

when applied to real-time applications. By

requiring fixed decision intervals, the discrete-time

MDP framework creates bottlenecks, such as

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

5

delays in task execution, that compromise the

responsiveness and adaptability of RL-based

solutions. Alternative frameworks, such as the

multi-armed bandit [26]-[30], have been explored

to address some of these challenges. While these

models are computationally simpler and focus on

optimizing immediate rewards, they often fail to

account for the temporal dependencies and

cumulative effects of actions. This omission can

lead to suboptimal decision-making, particularly in

complex and dynamic environments where long-

term outcomes must be carefully balanced with

short-term gains [31]-[33].

In contrast, the Semi-Markov Decision Process

(Semi-MDP) framework is particularly well-suited

for real-time scheduling tasks. Unlike the discrete-

time MDP, Semi-MDP allows for variable

intervals between decision points, making it more

flexible and capable of handling tasks as they

arrive. This flexibility enables the development of

policies that optimize long-term performance while

addressing the immediate requirements of real-

time systems. For instance, Liang et al. [20] and

Hao et al. [21] successfully use Semi-MDPs to

model real-time scheduling problems,

demonstrating the framework’s potential to

accommodate dynamic workloads and varying

system conditions. Despite its advantages, adapting

existing algorithms to the Semi-MDP framework

poses unique challenges due to its structural

differences from the traditional MDP approach.

One common strategy involves normalization,

which converts Semi-MDP problems into an MDP-

compatible format, allowing established DRL

algorithms to be applied. For example, Liang et al.

[22] normalize Semi-MDP problems by estimating

theoretical model-based Q-values for supervised

pre-training [34]-[36]. This approach provides a

starting point for the policy, which is then refined

through interactions with the environment.

Similarly, Wu et al. [23] utilize state transition

probabilities during the normalization process to

transform Semi-MDPs into a form solvable by

value iteration techniques.

An alternative to normalization-based methods is

the direct design of algorithms tailored to the Semi-

MDP framework. These approaches avoid the

approximations and assumptions inherent in

normalization, enabling more accurate modeling of

real-world scenarios. For example, Van Huynh et

al. [24] propose a Dueling Double Deep Q-

Network (DDQN) approach that maximizes

cumulative single rewards without incorporating

discount factors, focusing instead on immediate

benefits within a Semi-MDP structure. Wei et al.

[9] employ an exponential decay model to compute

cumulative discounted returns, deriving a Bellman

optimality equation to guide decision-making with

DQN. Kim et al. [25] adapt the Soft Actor-Critic

(SAC) algorithm for the Semi-MDP framework,

introducing modifications that account for the

variable time intervals and cumulative reward

structures characteristic of Semi-MDPs. Despite

these advancements, existing methods still exhibit

notable limitations. Normalization-based

approaches often rely heavily on theoretical

assumptions, such as idealized transition models or

fixed state representations, which reduce their

generalizability to real-world, complex

environments [37]-[40]. These assumptions can

lead to performance degradation when applied to

heterogeneous and highly dynamic edge systems,

where practical constraints and unpredictable

factors frequently deviate from theoretical models.

On the other hand, model-free DRL approaches

[41]-[45] that bypass theoretical dependencies also

face challenges. These methods commonly employ

simplistic neural network architectures, such as

basic feedforward models, that lack the scalability

needed to adapt to dynamic edge network

conditions. In systems where the number of edge

servers (ESs) and user devices (UDs) can fluctuate

significantly, fixed input-output dimensions lead to

dimensional mismatches, requiring costly

retraining of the models to accommodate changes

[46]-[48]. This inflexibility limits the practical

deployment of model-free DRL solutions in

scenarios characterized by high variability and

evolving system requirements. Overall, while the

Semi-MDP framework offers significant potential

for enabling real-time decision-making in edge

computing, achieving effective and scalable

solutions necessitates innovative algorithmic

designs that address both the limitations of

normalization-based methods and the scalability

constraints of traditional DRL models. Future work

must focus on bridging these gaps to develop

robust and adaptable frameworks capable of

supporting real-time, scalable task scheduling in

edge environments.

 Weaknesses of Current Semi-MDP

Methods:

1. Normalization-Based Approaches:

2. Reliance on Theoretical Assumptions:

Often rely on idealized models and

assumptions, which can limit their

applicability in real-world scenarios

with high variability and uncertainty.

3. Potential for Accuracy Loss: The

normalization process can introduce

approximations that may lead to

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

6

suboptimal solutions or reduced

accuracy.

4. Limited Exploration of Direct Semi-

MDP Algorithms: While some direct

approaches exist, the field is still

relatively under-explored compared to

normalization-based methods.

5. Scalability Challenges: As the

complexity of the environment and the

number of tasks increase, solving

Semi-MDPs can become

computationally expensive, especially

for complex DRL algorithms.

6. Handling of Uncertainty: Many

existing methods may not adequately

address the inherent uncertainty and

stochasticity present in real-world

scheduling problems.

3. System Model and Problem Formulation

We consider a crowdsourcing-inspired MEC

system, as illustrated in Fig. 1, comprising multiple

applications and edge servers (ESs) with diverse

configurations and characteristics. These

applications may vary significantly in their

requirements, encompassing delay-sensitive

services such as networked gaming, autonomous

driving, and AR/VR, as well as resource-intensive

tasks like big data analytics, scientific computing,

and video surveillance [49]. Similarly, ESs can

range from micro data centers and edge clouds to

high-capacity computing servers or even gateways

deployed in residential or office settings. For

generality, we assume these ESs are managed and

operated by distinct edge service providers. To

maximize resource utilization and enhance system

performance in terms of scalability, reliability, and

other metrics, a third-party platform is introduced

to coordinate ES operations and handle workload

dispatch from end users. Acting as an intermediary,

this platform serves as a front-end interface for

edge computing services, bridging the gap between

clients submitting tasks and ESs providing

computational resources. Upon receiving a task,

the platform assigns it to the most suitable ES

hosting the requested service and ensures the

computation result is returned to the client

seamlessly. This interaction is transparent to users,

provided the system meets their application

performance expectations, such as low latency and

high computation quality.

Both application providers and ESs must undergo

an onboarding process with the platform before

accessing or delivering edge services. This

formalized process involves signing agreements

with the platform to define roles and

responsibilities. For application providers, this

includes specifying service requirements such as

task rates, task valuation, budget constraints,

computational demands, QoS parameters (e.g.,

maximum tolerable delay), and security or

compliance needs. Similarly, ESs seeking to

participate in the system are subject to a

comprehensive evaluation by the platform. This

involves reviewing their security protocols,

compliance certifications, and data management

practices to ensure adherence to industry standards

and regulatory requirements [50]. Additionally, a

risk assessment is often conducted to identify

potential vulnerabilities. ESs must provide detailed

information regarding their resource capacities,

operational costs, and revenue expectations.

Using this information, the platform optimizes task

offloading strategies and resource allocation for

ESs, subsequently formalizing agreements with

both parties. Once agreements are in place, ESs

configure the necessary accounts and

infrastructure, enabling application providers to

deploy their services. Importantly, ongoing

monitoring and auditing mechanisms are

established to ensure all parties adhere to the

agreed-upon terms, with regular performance and

compliance evaluations conducted throughout the

service lifecycle.

This study considers a scenario where application

providers make advance payments to the platform,

which, in turn, allocates a portion of these

payments to incentivize contributions from edge

servers (ESs). The platform's key decisions

include: (1) whether to accept both the application

providers and ESs into the system, (2) determining

the amount of resources each ES should allocate to

applications, and (3) devising an efficient task

dispatching strategy to distribute tasks among the

backend ESs hosting the services. To simplify

notation, we define the set of ESs and

applications/services in the system as M and N,

respectively, with the corresponding cardinalities

denoted by ∣M∣ and ∣N∣. For clarity, the terms

"applications" and "application providers" are used

interchangeably in this paper unless otherwise

specified. The primary notations employed

throughout this work are summarized in Table 1.

Each application 𝑖 ∈ 𝑁𝑖 is characterized by a tuple

(𝑝𝑖 , 𝑣𝑖, 𝛼𝑖 , 𝐷𝑖, 𝑠𝑖),where:
1. 𝑝𝑖: The payment made by application

provider iii to the platform for task

offloading.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

7

2. 𝑣𝑖: The utility gained by i from offloading

a task, such as reduced energy consumption

at user devices, enhanced computational

quality, or shorter response times.

Generally, 𝑝𝑖 ≤ 𝑣𝑖 Offloading offers net

benefits to the application.

3. 𝛼𝑖: The arrival rate of tasks for application

i.

4. 𝑠𝑖: The workload (measured in CPU cycles)

required to process a task.

5. 𝐷𝑖: The maximum latency tolerable by

application i.

Given the stochastic nature of the system and the

uncertainty in resource allocation at ESs, the actual

value derived by an application from task

offloading depends on the quality of the edge

computing service. We represent this with a utility

function 𝑢𝑖𝑗 ∈ [0,1], which quantifies the

satisfaction level of application i when offloading

tasks to 𝐸𝑆𝑗. This utility function is an abstract

representation and can vary depending on the

application's requirements.

For instance, for delay-sensitive applications,

𝑢𝑖𝑗may be defined based on reductions in task

latency. For resource-intensive applications,

𝑢𝑖𝑗could reflect the computational quality, such as

compression ratios or prediction accuracy.

Moreover, the form of 𝑢𝑖𝑗 can differ even within

the same application category. For example, in

delay-sensitive applications, 𝑢𝑖𝑗 could be a step

function to model satisfaction levels in the

presence of hard deadlines.

𝑢𝑖𝑗 = {
1, if 𝑡𝑖𝑗 ≤ 𝐷𝑖

0, otherwise
 (1)

A. Platform Model
The platform operates under the following assumptions:

1. The platform employs a probabilistic task

dispatching mechanism, where each

application task is routed to a specific ES

based on predefined probabilities.

2. The payment 𝑝𝑖 made by application iii is

distributed between the platform and the

ES executing the task. Specifically, the

ES receives a reward of (1 − 𝜆𝑖)𝑝𝑖,

where 𝜆𝑖 ≤ 1, while the platform retains

𝜆𝑖𝑝𝑖 as its service charge or maintenance

fee. The parameter 𝜆𝑖 , a critical system

variable, is determined by the platform

and forms part of the contractual

agreement with the ES.

4. Real-time and Scalable Task Offloading

Framework

Before detailing the algorithm, we first describe the

calculation of 𝑢𝑖𝑗 and 𝑡𝑖𝑗 under a fixed resource

allocation 𝐹𝑖𝑗 = 𝐹0. The following assumptions,

drawn from prior studies, are applied:

1. Tasks from each application arrive

according to a Poisson process [46].

Consequently, the arrival of tasks from

application i at 𝐸𝑆𝑗 also follows a Poisson

process with a rate of 𝑟𝑖𝑗 = 𝛼𝑖𝑥𝑖𝑗 , where

𝛼𝑖 represents the task arrival rate, and 𝑥𝑖𝑗

denotes the probability of task dispatch to

𝐸𝑆𝑗 .

2. The workload of tasks from each

application is assumed to follow an

exponential distribution (in CPU cycles)

[27][36]. This implies that the processing

time for a task from application i at 𝐸𝑆𝑗

also follows an exponential distribution

with a mean of 1/wij1/w where 𝑤𝑖𝑗 =

𝐹𝑖𝑗(0) and 𝑠𝑖 represents the workload of

the task.

Based on these assumptions, the task processing

system for an application i at 𝐸𝑆𝑗 can be modeled

as an M/M/1queue. The probability density

function (pdf) for the task delay 𝑡𝑖𝑗 this system is

then expressed as:

𝑓𝑇(𝑡𝑖𝑗 ≤ 𝑡) = (𝑤𝑖𝑗 − 𝑟𝑖𝑗) ∙ 𝑒−(𝑤𝑖𝑗−𝑟𝑖𝑗)𝑡 (2)

Assuming 𝑢𝑖𝑗 is defined as in Eq. (2) and 𝑥𝑖𝑗 > 0

(indicating that tasks from application i are

offloaded to 𝐸𝑆𝑗), the relationship derived from

constraint (3b) is as follows:

Pr (𝑡𝑖𝑗 < (1 −
𝑝𝑖

𝑣𝑖
) 𝐷𝑖) ≥ prob𝑖

 (3)

Combining (7) and (8), we get:

𝑥𝑖𝑗 ≤
1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1−
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+
𝐹𝑖𝑗

0

𝑠𝑖
] (4)

Let 𝑥𝑖𝑗𝐻𝑥 denote the right-hand side (RHS) of the

inequality mentioned above, defined as:

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

8

𝑥𝑖𝑗
𝐻 ≜

1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1−
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+
𝐹𝑖𝑗

0

𝑠𝑖
] (5)

Clearly, 𝑥𝑖𝑗𝐻𝑥 represents the upper bound of the

offloading probability for which application

provider i is satisfied with offloading its tasks to

𝐸𝑆𝑗 , meeting the QoS requirements. Notably, this

upper bound is independent of 𝜆𝑖 and is solely

determined by 𝐹𝑖𝑗 (0) and the workload profiles.

Similarly, from constraint (3c) and assuming 𝑥𝑖𝑗 >

0, we derive:

𝑥𝑖𝑗 ≥
(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗

0)

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 , (6)

Let the right-hand side (RHS) of the above

inequality be denoted as 𝑥𝑖𝑗
𝐿 , defined as:

𝑥𝑖𝑗
𝐿 ≜

(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗
0)

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 . (7)

Algorithm 1 Deriving the optimal resource

allocation, task offloading probabilities, and ratios

under a given resource allocation 𝐹𝑖𝑗
0 ′

s.

 Input: Task profiles (𝛼𝑖
′𝑠, 𝑝𝑖

′𝑠, 𝑣𝑖
′𝑠, 𝐷𝑖

′𝑠, 𝑠𝑖
′𝑠); ES

profiles (𝑐𝑗(𝐹𝑖𝑗)
′
𝑠, 𝐹𝑗

′𝑠, 𝛽𝑗𝑖
′ 𝑠); Initial resource

allocations 𝐹𝑖𝑗
0 ′

𝑠;

 Output: Resource allocations 𝐹𝑖𝑗
0,~′

𝑠; Ratios

𝜆𝑖
0,~′

𝑠; Task offloading probabilities 𝑥𝑖𝑗
0,~′

𝑠;

1 for 𝑖 ∈ 𝒩 𝒅𝒐

2 for 𝑗 ∈ ℳ 𝒅𝒐

3 Derive 𝑥𝑖𝑗
𝐻 and 𝜆𝑖𝑗

0 according to Eq 5.

4 for 𝑖 ∈ 𝒩 𝒅𝒐

5 Get 𝜆𝑖
0 and 𝑥𝑖𝑗

0

6 for 𝑗 ∈ ℳ 𝒅𝒐

7 Get 𝒴𝑖𝑗
0 �́�

8 Obtain 𝜆𝑖
0,∼ �́�, 𝐹𝑖𝑗

0,∼�́� and 𝑥𝑖𝑗
0,∼𝑠 ́

5. Simulation Experiments

A. Experimental Setup

The simulation framework was developed using

Python 3.9 and PyTorch 2.3.0, running on a high-

performance desktop system powered by an Intel

Core i9-13900K processor and an Nvidia GeForce

RTX 3090 GPU. This computational setup was

chosen to ensure efficient processing of the

complex algorithms and large-scale datasets

involved. The simulation leverages vehicle

trajectory data from the Peachtree Street section of

the Next Generation Simulation (NGSIM) dataset

[36]. This dataset provides detailed and realistic

representations of urban traffic flow, making it

suitable for modeling dynamic user-device

behaviors in edge computing scenarios.

In our simulation environment, user devices (UDs)

are designed to move along stochastic trajectories

generated from the NGSIM dataset. These

trajectories simulate real-world mobility patterns,

such as vehicles traveling through a busy

metropolitan area. UDs are assumed to exit the

system once their respective trajectories conclude,

reflecting the dynamic entry and exit behavior

typical in edge networks. Edge nodes (ENs) are

deployed strategically at random locations along

these trajectories, ensuring adequate coverage of

user mobility patterns while capturing the inherent

randomness of real-world deployments. The

system parameters used in the simulation are

comprehensively detailed in Table II. These

include network characteristics, Resource

configurations, and mobility patterns, ensuring that

the simulation accurately reflects the operational

constraints and requirements of modern edge

computing environments.

Training Process and Network Design

The training process was meticulously designed to

optimize the learning performance of the proposed

algorithm. The neural network architecture

incorporates several specialized components to

handle the complexity of real-time task offloading

and Resource allocation. The hidden feature

dimension d was set to 256, balancing

computational efficiency with model

expressiveness. The attention mechanism

employed K=4 attention heads, enabling the model

to capture intricate relationships between tasks and

edge nodes across multiple dimensions.

Three encoder components—𝐻𝐸𝑁, 𝐻𝐶𝑒𝑙𝑙, and

𝐻𝑇𝑎𝑠𝑘 —were implemented as two-layer

multilayer perceptrons (MLPs), each employing

Tanh activation functions. These encoders

transform raw input data into high-dimensional

representations suitable for downstream

processing. The MLP Dc, responsible for

computing Resource allocation, was configured

with two layers, ensuring lightweight and efficient

computation. In contrast, the MLP Dv within the

critic network was designed with four layers to

enhance its capacity for estimating value functions,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

9

which are critical for effective policy evaluation

and improvement.

Key Parameters for the Continuous-Time PPO

Algorithm

To align the training process with the Semi-

Markov Decision Process (Semi-MDP)

framework, we tailored the continuous-time

Proximal Policy Optimization (PPO) algorithm

with carefully selected hyperparameters. The

discount factor α was set to 0.1, ensuring a

balanced emphasis on immediate rewards and

long-term gains. The importance sampling ratio ϵ,

set to 0.2, controlled the degree of policy updates

to maintain stability during training. The

Generalized Advantage Estimation (GAE)

hyperparameter λ was configured as 0.98 to

improve the estimation of advantages, enhancing

the convergence rate and overall learning

efficiency.

B. Training Configuration and Iterations

The training process spanned 400 episodes,

providing sufficient iterations for the algorithm to

converge to an optimal policy. Each episode was

further divided into a maximum of 200 iterations,

allowing the model to explore diverse states and

actions comprehensively. During training, the

model continually interacted with the simulated

environment, refining its policy through trial and

error while leveraging feedback from the

homotopy reward mechanism. This hybrid reward

system combined theoretical insights with real-

time observations, bridging the gap between

simulated models and practical deployments.

The overall design of the simulation environment,

coupled with the robust training setup, ensures that

the proposed algorithm is well-equipped to handle

dynamic and scalable edge computing scenarios.

By incorporating realistic mobility patterns,

stochastic task generation, and advanced neural

network architectures, the simulation framework

provides a reliable foundation for evaluating the

effectiveness of real-time task offloading and

Resource allocation strategies in next-generation

edge systems.

TABLE I.

PARAMETER SETTINGS OF SIMULATION

Notations
Simulation

Value
Notations

Simulation

Value

M 8 𝛼 U(1.0, 1.2)

MB U (0.8,

1.0) GCycle

U (1, 2)

Second

𝒇𝒎
U (2, 4)

GHz
β

𝒅𝒎 50 Meter ϑ

N 30 p

1 Watt

𝒒𝒎𝒂𝒙 3 𝜍 -3

𝜾 1 𝜎2
-114

dBm/MHz

X 0.1 B 1 MHz

𝒇𝒏
U (1, 2)

GHz
Ω 1

ϒ 4 Κ 10−27

The data reuse frequency was configured to 10

iterations. For the actor-network, the learning rate

was set to 1 × 10−4, while the critic network

utilized a higher learning rate of 1 × 10−3.The

Adam optimizer, with 𝜀 = 1 × 10−5,was

employed for parameter updates.

To evaluate the performance of the proposed

method, we conducted a comparative analysis with

four state-of-the-art DRL-based methods designed

to address scalability, as well as a single-step

greedy method. A brief overview of these

approaches is as follows:

 Single-Step Greedy (SSG): This method

selects actions greedily based on

immediate task benefits. While intuitive, it

focuses exclusively on short-term gains,

neglecting long-term system optimization.

 Sequence to Sequence (S2S) [11]:

This approach leverages recurrent neural

networks (RNNs) for sequential system

feature extraction and multi-action

generation. However, it operates under a

batched offloading framework and

struggles to adapt action dimensions to

dynamic variations in the number of edge

nodes (ENs).

 Self-Attention (SA) [10]:
Using a self-attention mechanism, this

method integrates task features and

generates actions in parallel. Despite this,

it inherits the limitations of S2S, including

reliance on batched offloading and the

inability to adapt to changes in EN counts

due to its concatenation of EN states as

input.

 Event-Driven DQN (EDQ) [9]:

This real-time approach employs an event-

driven Deep Q-learning framework based

on task and EN states. However, its

reliance on a multilayer perceptron (MLP)

architecture for the Q-network constrains

scalability, particularly in large-scale

systems.

 GNN-based Multi-agent DRL (GMD)

[30]:

This method utilizes a distributed multi-

agent DRL framework with graph neural

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

10

networks (GNNs), allowing user devices

(UDs) to independently select actions. By

representing offloading targets as positive

integers instead of one-hot vectors, it

offers significant scalability. However,

multi-agent DRL frameworks are

challenging to train in large-scale

environments, often leading to diminished

performance.

For a fair comparison, we set the batch interval to

0.2 in subsequent experiments for the S2S, SA, and

GMD methods, which follow a batched offloading

framework.

Notably, the ReSTO framework outperformed all

baselines in terms of system cost, even under zero-

shot transfer scenarios, surpassing re-trained

methods as well. This underscores the exceptional

scalability and efficiency of ReSTO. Interestingly,

we observed that the system costs of SA and EDQ

remained stable or even increased as additional

ENs became available. This phenomenon is

attributable to their reliance on concatenated EN

states as input, which inflates the input dimensions,

causing the critic network to struggle with accurate

evaluations. For EDQ, the increase in selectable

actions further complicates Q-network

convergence, exacerbating its limitations in larger

systems.

C. Batched Offloading V.S. Real-Time

Offloading

To highlight the performance benefits of

transitioning from batched offloading to real-time

offloading, we compare the proposed ReSTO

method with existing approaches under two load

scenarios. The results, as illustrated in Fig. 2,

consider a normal scenario with baseline system

settings and a harsh scenario where the load factor

𝛽 ∈ 𝑢(1.2,1.4). For consistency, we introduce

artificial delays in task execution to emulate

batched offloading for ReSTO, SSG, and EDQ,

which inherently support real-time offloading.

Other methods, lacking real-time capabilities, are

excluded from this analysis. Batched offloading is

tested with four discrete timeslot intervals: 0.8, 0.6,

0.4, and 0.2.

The experimental findings indicate that reducing

the interval duration in batched offloading

substantially lowers system costs under both load

scenarios, with the real-time offloading approach

consistently achieving the best performance. This

improvement is especially pronounced under

higher load conditions, as shorter decision intervals

minimize the delay between task arrival and

scheduling, allowing for more effective Resource

management. Conversely, under increased system

loads, extended waiting periods in batched

offloading sharply reduce the scope for scheduling

adjustments, leading to greater performance

degradation. Notably, at elevated load levels with

larger timeslot intervals, DRL-based methods

display inferior performance compared to the SSG

approach. This can be attributed to challenges in

learning from delayed and sparse rewards during

training, particularly when task failures dominate

the early learning phase. As a result, many DRL-

based methods converge to suboptimal solutions,

unable to recover effectively. In contrast, the

ReSTO framework, supported by the homotopy

reward mechanism, provides more immediate and

structured reward feedback during early training

stages. This design facilitates more efficient

exploration and allows ReSTO to avoid local

optima, delivering significantly better performance

even under harsh conditions.

D. Ablation Study

An ablation study was conducted to investigate the

impact of the homotopy reward design and graph-

based cell state aggregation on the performance of

the proposed framework. The experiments were

carried out under both normal and harsh scenarios

to provide a comprehensive evaluation across

varying load levels. Two key components were

evaluated: (1) the reward mechanism, with three

configurations considered—model-based reward,

reality reward, and the proposed homotopy

reward—and (2) the user device (UD) state fusion

method, comparing direct aggregation of UD states

independently versus graph-based aggregation of

cell states. These configurations were

systematically combined into multiple algorithm

variants, and their performance was assessed.

The study revealed significant differences in

performance across the reward settings. Among the

configurations, the reality reward (blue line)

exhibited the largest fluctuations during training.

These fluctuations can be attributed to the reward

mechanism's reliance on real-time feedback, which

is inherently noisy and less predictable. The lack of

robust guidance in the early training stages often

led to instability in task success rates, particularly

under harsh scenarios where Resource constraints

are more pronounced. Additionally, this

configuration struggled to balance immediate

performance with long-term optimization,

highlighting its limitations in dynamic and

unpredictable environments.

Conversely, the model-based reward demonstrated

greater stability but was less effective in capturing

the complexities of real-world conditions. This

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

11

resulted in suboptimal exploration, limiting its

ability to adapt to diverse scenarios. The proposed

homotopy reward bridged the gap between the

model-based and reality rewards, effectively

integrating theoretical guidance with real-time

feedback. This hybrid approach significantly

improved exploration efficiency, enabling the

algorithm to converge faster and achieve better

performance across both normal and harsh

scenarios. The homotopy reward design also

mitigated the challenges of sparse rewards,

ensuring consistent progress during training.

The study further examined the effects of state

aggregation methods. Directly aggregating UD

states independently often resulted in subpar

system performance due to the lack of contextual

understanding of Resource and task interactions

within the network. In contrast, the graph-based

cell state aggregation effectively captured spatial

and temporal dependencies, enhancing the

framework's ability to adapt to changes in system

dynamics. By leveraging graph structures to model

interactions between tasks and edge servers (ESs),

this method provided a holistic view of the

network, leading to more informed and efficient

decision-making.

The analysis also sheds light on the limitations of

the GMD algorithm, which demonstrated a

tendency to prioritize tasks with higher energy

consumption. This behavior can be traced to its

distributed multi-agent DRL framework, where

each agent operates with limited visibility into the

overall system state. Without a comprehensive

view of the network, agents often opted to process

tasks at a higher frequency to minimize CPU

occupancy and avoid Resource contention. While

this strategy may reduce immediate delays, it

inadvertently increases energy consumption and

diminishes the overall system efficiency.

In summary, the results highlight the advantages of

the proposed homotopy reward design and graph-

based cell state aggregation in improving system

performance and scalability. By addressing the

shortcomings of traditional reward mechanisms

and state aggregation methods, the proposed

approach achieves superior stability, faster

convergence, and enhanced adaptability,

particularly under challenging operational

conditions.

E. Comparisons under Different Environmental

Settings

This section evaluates the performance of our

proposed algorithm against other methods under

varying simulation parameters, specifically

focusing on the task generation interval parameter

(𝛺) of the exponential distribution and the user

preference for required CPU cycles 𝛽). These

parameters influence the system load by altering

the task arrival rate and the computational demand

of each task. Our analytics illustrate the system

costs across different values of 𝛺. A reduction in 𝛺

corresponds to an increased number of tasks and a

heavier overall system load. The results reveal that

DRL-based methods consistently outperform the

SSG approach in all scenarios. This is due to the

long-term optimization capabilities inherent in

DRL, which enable proactive and foresight-driven

decision-making. In contrast, the SSG method

prioritizes immediate task optimization without

accounting for future system demands, leading to

significant queue delays and higher overall costs.

Among the DRL-based methods, the S2S approach

exhibits comparatively higher system costs. This

can be attributed to its vulnerability to the memory-

forgetting issue associated with processing long

task sequences. As 𝛺 decreases, the number of

tasks requiring scheduling within each discrete

timeslot increases, further amplifying this

limitation. In contrast, the proposed ReSTO

framework achieves the lowest system cost across

all scenarios, with the performance gap widenthe

ing as 𝛺 decreases. This superior performance

stems from the fundamental differences between

real-time and batched offloading. As the system

load intensifies with a higher task arrival rate, the

limitations of batched offloading become more

pronounced, leading to greater performance

degradation for methods relying on discrete

scheduling intervals. These findings reaffirm the

advantages of the real-time offloading strategy

employed in ReSTO, particularly under high-load

conditions.

Our analytics compares the performance of the

algorithms across different values of 𝛽, which

represents the computational load associated with

tasks. Higher 𝛽 values indicate that tasks demand

more CPU cycles for processing, thereby

increasing the system load. The results reveal that

under low-load scenarios, DRL-based methods

demonstrate a clear advantage over the Single-Step

Greedy (SSG) approach, achieving significantly

lower system costs. This improvement is attributed

to the long-term optimization capabilities of DRL,

which enable more efficient Resource allocation

and task scheduling by anticipating future system

states. In contrast, SSG focuses solely on

immediate task optimization, often resulting in

suboptimal Resource utilization and increased

queuing delays. As the system load intensifies with

higher 𝛽 values, the performance gap between

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

12

DRL-based methods and SSG narrows. This

reduction in effectiveness stems from the

challenges introduced by the more demanding

environment. Heavier system loads generate

delayed and sparse rewards, complicating the

training process for DRL algorithms and limiting

their ability to converge to optimal policies. Under

these conditions, traditional DRL-based

approaches are more likely to become trapped in

local optima, as the sparse feedback makes it

difficult to identify and reinforce effective

scheduling strategies.

The proposed ReSTO framework, however,

addresses these limitations through its innovative

homotopy reward mechanism. By combining

model-based and reality-based rewards, the

homotopy reward provides consistent and

structured feedback throughout the training

process. This design enables ReSTO to navigate

complex and dynamic system states more

effectively, avoiding local optima and guiding the

algorithm toward globally optimized solutions.

The ability to adapt to varying load conditions is

further enhanced by the real-time offloading

strategy employed in ReSTO, which eliminates the

delays associated with batched scheduling. This

combination of timely decision-making and robust

reward feedback allows ReSTO to maintain

superior performance across all load conditions.

Moreover, the advantages of ReSTO become

increasingly pronounced as the system load rises.

In high-load scenarios, where tasks require

significant computational Resources and delays are

more detrimental, the benefits of real-time

offloading are particularly evident. By reducing the

waiting time between task arrival and execution,

ReSTO not only minimizes queuing delays but also

maximizes Resource utilization efficiency. These

factors collectively contribute to ReSTO’s

consistent outperformance of competing methods,

demonstrating its scalability, adaptability, and

resilience under diverse operational conditions.

In summary, the integration of the homotopy

reward mechanism and real-time offloading in

ReSTO provides a significant edge over existing

DRL-based approaches and heuristic methods like

SSG. The framework’s ability to maintain low

system costs under both low and high system loads

highlights its robustness and makes it a promising

solution for real-time and scalable task offloading

in dynamic edge computing environments.

Fig 2. System Costs Across Algorithms for Varying Task

CPU Cycle Requirements.

6. Conclusions

While DRL-based algorithms have demonstrated

exceptional capabilities in optimizing task

offloading for edge computing, several persistent

challenges limit their potential for broader practical

deployment. Key among these is the waiting time

associated with batched decision-making and the

dimensional mismatches arising from dynamic

system scales. These limitations not only impede

performance improvements but also hinder the

scalability and adaptability of such methods in real-

world applications. To address these critical issues,

we introduce ReSTO, a DRL-driven real-time and

scalable offloading framework designed to

overcome the inherent challenges of existing

methods. ReSTO redefines the task-offloading

paradigm by shifting from a batched scheduling

approach to a real-time offloading framework.

Tasks are scheduled immediately upon arrival,

eliminating waiting times and enabling more

efficient Resource utilization. This is achieved by

modeling the offloading problem as a Semi-

Markov Decision Process (Semi-MDP), allowing

decision-making at arbitrary task arrival times

rather than fixed intervals. To effectively solve the

problem, ReSTO employs a novel continuous-time

Proximal Policy Optimization (PPO) algorithm,

enhanced with specially designed scalable actor

and critic networks that adapt seamlessly to

varying numbers of edge nodes (ENs) and user

devices (UDs). This architecture ensures robust

performance across dynamic system conditions.

In addition to its innovative decision-making

framework, ReSTO introduces two key

mechanisms to further enhance its performance.

First, the homotopy reward mechanism integrates

model-based and reality-based rewards to bridge

the gap between theoretical assumptions and real-

world dynamics. This approach improves learning

efficiency, enabling the algorithm to avoid local

optima and converge toward globally optimal

policies. Second, ReSTO clusters UDs into cells,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

13

aggregating state information to reduce

dimensional complexity and improve decision

accuracy. This clustering approach ensures

scalability and effective Resource allocation even

in large-scale systems with high task loads.

Extensive experimental evaluations highlight the

significant advantages of ReSTO over state-of-the-

art algorithms. The results demonstrate that ReSTO

consistently achieves lower system costs while

exhibiting better scalability as the number of ENs

and UDs fluctuates. These findings underscore the

robustness and adaptability of the proposed

framework, making it well-suited for the dynamic

and heterogeneous environments characteristic of

modern edge computing systems. However,

transitioning from batch to real-time offloading

also brings new challenges, particularly in terms of

the computational overhead associated with state

acquisition and decision-making processes. The

need for rapid, real-time decisions places greater

importance on minimizing time complexity to

ensure the practical viability of ReSTO in large-

scale deployments. Future work will focus on

exploring and developing algorithms with reduced

time complexity, capable of operating under

partially updated or approximate state information.

By addressing these challenges, we aim to further

enhance the efficiency and scalability of real-time

offloading solutions, paving the way for their

widespread adoption in edge computing.

 Experimental Results and Validation:

Extensive simulations demonstrate the

superior performance of ReSTO compared to

state-of-the-art methods. Specifically, ReSTO

consistently achieves lower system costs (e.g.,

energy consumption, latency) while exhibiting

better scalability as the number of ENs and

UDs fluctuates. These results validate the

effectiveness of ReSTO in optimizing resource

allocation and adapting to dynamic system

conditions.

Conceptual Explanations:

 Addressing Batching Limitations: By

moving to a real-time framework,

ReSTO eliminates the inherent delay

associated with batched decision-

making, leading to more responsive

and efficient resource allocation.
References
[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B.

Letaief, “A survey on mobile edge computing: The

communication perspective,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,

2017.

[2] Mirzaei, A. and Najafi Souha, A., 2021.

Towards optimal configuration in MEC Neural

networks: deep learning-based optimal resource

allocation. Wireless Personal Communications, 121(1),

pp.221-243.

[3] Zhou, Guoliang, and Amin Mohajer. "Blind

reconfigurable intelligent surfaces for dynamic

offloading in fixed-NOMA mobile edge networks."

International Journal of Sensor Networks 46, no. 3

(2024): 142-160.

[4] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A

survey on space-airground- sea integrated network

security in 6g,” IEEE Communications Surveys &

Tutorials, vol. 24, no. 1, pp. 53–87, 2022.

[5] Duan, H., & Mirzaei, A. (2023). Adaptive Rate

Maximization and Hierarchical Resource Management

for Underlay Spectrum Sharing NOMA HetNets with

Hybrid Power Supplies. Mobile Networks and

Applications, 1-17.

[6] Zhou, Nan, Ya Nan Li, and Amin Mohajer.

"Distributed capacity optimisation and resource

allocation in heterogeneous mobile networks using

advanced serverless connectivity strategies."

International Journal of Sensor Networks 45, no. 3

(2024): 127-147.

[7] X. Huang, Y. Chen, J. Liu, M. Wang, P. Li,

and Q. Zhao, “Joint interdependent task scheduling and

energy balancing for multi-uav enabled aerial edge

computing: A multi-objective optimization approach,”

IEEE Internet of Things Journal, vol. 10, no. 4, pp.

3147–3160, 2023.

[8] Z. Yang, C. Pan, K. Wang, and M. Shikh-

Bahaei, “Energy efficient Resource allocation in uav

enabled mobile edge computing networks,”IEEE

Transactions on Wireless Communications, vol. 18, no.

9, pp. 4576–4589, 2019.

[9] Mohajer, Amin, Mohammad Yousefvand,

Ehsan Noori Ghalenoo, Parviz Mirzaei, and Ali Zamani.

"Novel approach to sub-graph selection over coded

wireless networks with QoS constraints." IETE Journal

of Research 60, no. 3 (2014): 203-210.

[10] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. Wei,

and H. Li, “Energyefficient multi-uav-enabled

multiaccess edge computing incorporating noma,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 5613–5627,

2020.

[11] Mirzaei, A. (2022). A novel approach to QoS‐

aware resource allocation in NOMA cellular HetNets

using multi‐layer optimization. Concurrency and

Computation: Practice and Experience, 34(21), e7068.

[12] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and

Y. Zhao, “Joint computation and communication design

for uav-assisted mobile edge computing in iot,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 8,

pp. 5505–5516, 2020.

[13] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,

and Q. Zhao, “An energyefficient selection mechanism

of relay and edge computing in uavassisted cellular

networks,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 3, pp.

1306–1318, 2021.

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

14

[14] Mohajer, Amin, Javad Hajipour, and Victor

CM Leung. "Dynamic Offloading in Mobile Edge

Computing with Traffic-Aware Network Slicing and

Adaptive TD3 Strategy." IEEE Communications Letters

(2024).

[15] Yang, Jiuting, and Amin Mohajer. "Multi

objective constellation optimization and dynamic link

utilization for sustainable information delivery using

PD-NOMA deep reinforcement learning." Wireless

Networks (2024): 1-21.

[16] Somarin, A. M., Barari, M., & Zarrabi, H.

(2018). Big data based self-optimization networking in

next generation mobile networks. Wireless Personal

Communications, 101(3), 1499-1518.

[17] Kuang, Shuhong, Jiyong Zhang, and Amin

Mohajer. "Reliable information delivery and dynamic

link utilization in MANET cloud using deep

reinforcement learning." Transactions on Emerging

Telecommunications Technologies 35, no. 9 (2024):

e5028.

[18] Hua, Yuxiu, Rongpeng Li, Zhifeng Zhao,

Xianfu Chen, and Honggang Zhang. "GAN-powered

deep distributional reinforcement learning for resource

management in network slicing." IEEE Journal on

Selected Areas in Communications 38, no. 2 (2019):

334-349.

[19] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint

Resource allocation and trajectory optimization for

multi-uav-assisted multi-access mobile edge

computing,” IEEE Wireless Communications Letters,

vol. 10, no. 7, pp. 1400–1404, 2021.

[20] Wang, Qianxing, Wei Li, and Amin Mohajer.

"Load-aware continuous-time optimization for multi-

agent systems: Toward dynamic resource allocation and

real-time adaptability." Computer Networks 250 (2024):

110526.

[21] H. Hu, Z. Chen, F. Zhou, Z. Han, and H. Zhu,

“Joint Resource and trajectory optimization for

heterogeneous-uavs enabled aerial-ground cooperative

computing networks,” IEEE Transactions on Vehicular

Technology, vol. 72, no. 6, pp. 7119–7133, 2023.

[22] Mirzaei, A., Barari, M., & Zarrabi, H. (2019).

Efficient resource management for non-orthogonal

multiple access: A novel approach towards green

hetnets. Intelligent Data Analysis, 23(2), 425-447.

[23] Gu, LiFen, and Amin Mohajer. "Joint

throughput maximization, interference cancellation, and

power efficiency for multi-IRS-empowered UAV

communications." Signal, Image and Video Processing

18, no. 5 (2024): 4029-4043.

[24] G. Chen, Q. Wu, R. Liu, J. Wu, and C. Fang,

“Irs aided mec systems with binary offloading: A

unified framework for dynamic irs beamforming,”IEEE

Journal on Selected Areas in Communications, vol. 41,

no. 2, pp. 349–365, 2023.

[25] X. Li, Y. Qin, J. Huo, and W. Huangfu,

“Computation offloading and trajectory planning of

multi-uav-enabled mec: A knowledge-assisted

multiagent reinforcement learning approach, IEEE

Internet of Things Journal, 2023.

[26] Yang, Ting, Jiabao Sun, and Amin Mohajer.

"Queue stability and dynamic throughput maximization

in multi-agent heterogeneous wireless networks."

Wireless Networks (2024): 1-27.

[27] Mirzaei, A., & Rahimi, A. (2019). A Novel

Approach for Cluster Self-Optimization Using Big Data

Analytics. Information Systems & Telecommunication,

50.

[28] Y. Gu, C. Yin, Y. Guo, B. Xia, and Z. Chen,

“Communicationcomputation- aware user association in

mec hetnets: A meta-analysis,” IEEE Transactions on

Wireless Communications, vol. 22, no. 9, pp. 6090–

6105, 2023.

[29] Zhang, Qi, Zhigang Li, Zhenteng Qin,

Xiaochuan Sun, and Haijun Zhang. "Temporal Feature-

Enhanced Deep Reinforcement Learning for RAN

Slicing with User Mobility." IEEE Communications

Letters (2023).

[30] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian,

“Computation rate maximization in uav-enabled

wireless-powered mobile-edge computing systems,”

IEEE Journal on Selected Areas in Communications,

vol. 36, no. 9, pp. 1927–1941, 2018.

[31] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G.

Y. Li, “Joint offloading and trajectory design for uav-

enabled mobile edge computing systems,”IEEE Internet

of Things Journal, vol. 6, no. 2, pp. 1879–1892, 2019.

[32] Zhao, Zhongyong, Yu Chen, Jiangnan Liu,

Yingying Cheng, Chao Tang, and Chenguo Yao.

"Evaluation of operating state for smart electricity

meters based on transformer–encoder–BiLSTM." IEEE

Transactions on Industrial Informatics 19, no. 3 (2022):

2409-2420.

[33] Mohajer, Amin, Maryam Bavaghar, Rashin

Saboor, and Ali Payandeh. "Secure dominating set-

based routing protocol in MANET: Using reputation."

In 2013 10th International ISC Conference on

Information Security and Cryptology (ISCISC), pp. 1-7.

IEEE, 2013.

[34] Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao,

and M. Tao, “Cellular connected multi-uav mec

networks: An online stochastic optimization approach,”

IEEE Transactions on Communications, vol. 70, no. 10,

pp. 6630–6647, 2022.

[35] Nemati, Z., Mohammadi, A., Bayat, A., &

Mirzaei, A. (2024). Metaheuristic and Data Mining

Algorithms-based Feature Selection Approach for

Anomaly Detection. IETE Journal of Research, 1-15.

[36] Li, Rongpeng, Chujie Wang, Zhifeng Zhao,

Rongbin Guo, and Honggang Zhang. "The LSTM-based

advantage actor-critic learning for resource

management in network slicing with user

mobility." IEEE Communications Letters 24, no. 9

(2020): 2005-2009.

[37] L. Zhang, J. Li, Y. Wang, Z. Chen, Q. Liu, and

Y. Sun, “Task offloading and trajectory control for uav-

assisted mobile edge computing using deep

reinforcement learning,” IEEE Access, vol. 9, pp. 53

708–53 719, 2021.

[38] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. Wei,

and H. Li, “Energy efficient multi-uav-enabled

multiaccess edge computing incorporating noma,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 5613–5627,

2020.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

15

[39] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam,

and L. Hanzo, “Multiagent deep reinforcement learning-

based trajectory planning for multiuav assisted mobile

edge computing,” IEEE Transactions on Cognitive

Communications and Networking, vol. 7, no. 1, pp. 73–

84, 2021.

[40] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and

Y. Zhao, “Joint computation and communication design

for uav-assisted mobile edge computing in iot,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 8,

pp. 5505–5516, 2020.

[41] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,

and Q. Zhao, “An energy efficient selection mechanism

of relay and edge computing in uavassisted cellular

networks,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 3, pp.

1306–1318, 2021.

[42] Yan, Dandan, Benjamin K. Ng, Wei Ke, and

Chan-Tong Lam. "Deep reinforcement learning based

resource allocation for network slicing with massive

MIMO." IEEE Access (2023).

[43] C.-Y. Hsieh, Y. Ren, and J.-C. Chen, “Edge-

cloud offloading: Knapsack potential game in 5g multi-

access edge computing,” IEEE Transactions on

Wireless Communications, vol. 22, no. 4, pp. 3124–

3136, 2023.

[44] N. Zhao, C. Xu, W. Zhang, S. Yang, G.-M.

Muntean, and F. Zhou,“5g-enabled uav-to community

offloading: Joint trajectory design and task scheduling,”

IEEE Journal on Selected Areas in Communications,

vol. 39, no. 11, pp. 3306–3320, 2021.

[45] H. Guo and J. Liu, “Uav-enhanced intelligent

offloading for internet of things at the edge, IEEE

Transactions on Industrial Informatics, vol. 16, no. 4,

pp. 2737–2746, 2020.

[46] Wang, Zhaoying, Yifei Wei, F. Richard Yu,

and Zhu Han. "Utility optimization for resource

allocation in multi-access edge network slicing: A twin-

actor deep deterministic policy gradient

approach." IEEE Transactions on Wireless

Communications 21, no. 8 (2022): 5842-5856.

[47] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint

Resource allocation and trajectory optimization for

multi-uav-assisted multi-access mobile edge

computing,” IEEE Wireless Communications Letters,

vol. 10, no. 7, pp. 1400–1404, 2021.

[48] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao,

and X. Shen, “Energyefficient uav-assisted mobile edge

computing: Resource allocation and trajectory

optimization,” IEEE Transactions on Vehicular

Technology, vol. 69, no. 3, pp. 3424–3438, 2020.

[49] Wang, Yue, Yu Gu, and Xiaofeng Tao. "Edge

network slicing with statistical QoS

provisioning." IEEE Wireless Communications

Letters 8, no. 5 (2019): 1464-1467.

[50] H. Guo and J. Liu, “Uav-enhanced intelligent

offloading for internet of things at the edge, IEEE

Transactions on Industrial Informatics, vol. 16, no. 4,

pp. 2737–2746, 2020.

J. Abdollahi et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 16-20, 2024

16

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (16-20), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

A Review of Feature Selection

Sajjad Jahanbakhsh , 2Naser Mikaeilvand, 1Moghaddam-Babak Nouri, 1Jafar Abdollahi
1Abbas Mirzaei, 1Ailin Khosravani, 3Gudakahriz

1. Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2. Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3. Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi, Iran

Article Info Abstract

Article History:
Received: 2024/11/28

Revised: 2024/12/29

Accepted: 2025/03/13

DOI:

 Feature selection is a preprocessing technique that identifies the salient

features of a given scenario. It has been used in the past for a wide range

of problems, including intrusion detection systems, financial problems,

and the analysis of biological data. Feature selection has been

especially useful in medical applications, where it may help identify

the underlying reasons for an illness in addition to reducing

dimensionality. We provide some basic concepts of medical

applications and the necessary background information on feature

selection. We review the most recent feature selection methods

developed for and applied to medical problems, covering a broad

spectrum of applications including medical imaging, DNA microarray

data analysis, and biomedical signal processing. A case study of two

medical applications utilizing actual patient data is used to demonstrate

the usefulness of applying feature selection techniques to medical

challenges and to highlight how these methods function in practical

scenarios.

Keywords:
Data Mining; Medical

Applications; Dimension

Reduction; Feature Selection

*Corresponding Author’s Email
Address:

1. Introduction

Feature selection is one way to reduce

dimensionality; in this strategy, only significant

traits are retained while superfluous and redundant

ones are discarded. Two ways that a reduction in

input dimensionality might improve performance

are either decreasing learning time and model

complexity or increasing generalization

capabilities and classification accuracy. Using the

right features might improve problem

understanding and reduce measurement expenses.

In certain situations, the impact of feature selection

may be substantial; for example, in microarray data

analysis, just two of the 7129 features may be used

to improve classification performance [1].

There are two kinds of feature selection models:

• Supervised Models: The technique that selects

features based on the output label class is known
as supervised feature selection.

• Unsupervised Models: An approach that selects
features without requiring knowledge of the
output label class is known as unsupervised
feature selection.

In many applications, it has been necessary to

combine pattern recognition algorithms with FS

techniques, since many of them were not designed

to handle large amounts of irrelevant data at first.

Preventing overfitting and enhancing model

performance—more specifically, prediction

performance in supervised classification and

improved cluster detection in clustering—are the

primary objectives of feature selection. Other

objectives include (a) producing faster and more

efficient models and (b) gaining a deeper

comprehension of the underlying processes that

generated the data. Nevertheless, the advantages of

feature selection strategies are not without a price,

as the search for a subset of pertinent

characteristics raises the bar for modeling

complexity. We must now determine the model's

A Review of Feature Selection

17

optimal parameters for the optimal feature subset

in addition to optimizing its parameters for the full

feature subset, since there is no guarantee that the

model's ideal parameters for the entire feature set

will also be optimal for the optimal feature subset.

Thus, identifying the optimal subset of pertinent

attributes expands the scope of the search within

the model hypothesis space. Every feature

selection technique uses a different technique to

include this search in the extra space of feature

subsets when choosing a model [2, 4, 5].

Filter approaches assess the significance of the

features by concentrating on the intrinsic properties

of the data. Generally, features are ranked

according to their relevance, and those with lower

scores are ignored. This selection of attributes is

then given as input to the classification algorithm.

Because of the advantages of filter approaches—

which include their simplicity and speed in

computation, their independence from the

classification algorithm, and their ability to scale to

extremely high-dimensional datasets—only one

feature selection process is needed before multiple

classifiers can be evaluated [2,].

Unlike filter techniques, which tackle the problem

of finding a suitable feature subset independently

of the model selection phase, wrapper approaches

incorporate the model hypothesis search into the

feature subset search. In this scenario, various

feature subsets are generated and evaluated in the

space of possible feature subsets utilizing a

predefined search method [2].

Figure 1: Overview of Feature Selection Strategies [2]

2. Choosing Feature

Medical image and healthcare analysis, including

diabetes [15, 24, 32], breast cancer [16, 25],

healthcare system [17], forecasting [18], stock

market [19], stroke [20], COVID-19 [21], types of

epidemic [22], medicinal plants [23], heart [26],

lung cancer [27, 30], social networks [28],

prediction of diphenhydramine [29], and bupro,

have all benefited from the successful application

of artificial intelligence, which includes machine

learning and deep learning. We present a

comprehensive review of feature selection methods

applied in medicine over the past five years, some

developed on the fly to tackle specific problems.

Specifically, feature selection has been applied in

three main medical fields: biomedical signal

processing, DNA microarray data, and medical

imaging. We then go on to discuss current

advancements in each of these fields. Then, we

discuss how feature selection is applied to two

actual medical image analysis situations and show

the benefits that follow from doing so [1,39, 44].

The following is a summary of feature choices.

• Feature Selection: Select a subset of input

features from the dataset.

• Unsupervised: Do not use the target variable

(e.g. remove redundant variables).

• Correlation

• Supervised: Use the target variable (e.g.

remove irrelevant variables).

• Wrapper: Search for well-performing subsets

of features.

• RFE

• Filter: Select subsets of features based on their

relationship with the target.

• Statistical Methods

• Feature Importance Methods

J. Abdollahi et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 16-20, 2024

18

• Intrinsic: Algorithms that conduct automated

feature selection during training.

• Decision Trees

• Dimensionality Reduction: Project input data

into a lower-dimensional feature space.

The figure above offers an overview of the

hierarchy of feature selection strategies.

A. Primary Concepts

In line with how they combine the selection

algorithm and the model development, the feature

selection strategies are frequently categorized into

three forms.

B. Filter Method

Filtering strategy for picking features: Methods of

the filter type pick variables without attention to

the model. They are just reliant on universal

qualities like the correlation with the expected

variable. Filtering strategies reduce the least

fascinating aspects. The following variables will be

added to a regression model or classification

scheme used to classify or forecast data. These

approaches offer good computational efficiency

and are resistant to overfitting. When filter

algorithms do not take into consideration the

relationships between variables, duplicated

variables are typically picked. However, more

complicated features, like the Fast Correlation

Based Filter (FCBF) algorithm, aim to decrease

this problem by removing variables that are highly

linked with one another.

Figure 2: The Hierarchy of Feature Selection

Methods [29]

C. Wrapper Method

Wrapper approach for feature selection: Wrapper

techniques, in contrast to filter operations, look at

subsets of variables, which makes it possible to

find any possible interactions between variables.

Overfitting becomes more likely when there are

insufficient observations, and computation time

grows dramatically as there are more variables [41,

42, 43].

Figure 2: Wrapper Method in Feature Selection

[43]

D. Embedded Methodology

Choosing features using the embedded method:

Embedded strategies have recently been created

with the goal of combining the advantages of the

two previous approaches. A learning algorithm,

such as the FRMT technique, uses its own variable

selection mechanism to carry out feature selection

and classification simultaneously [40, 45].

3. Finding

In many bioinformatics applications, feature

selection algorithms are needed. Dedicated

bioinformatics applications have yielded a wide

range of recently proposed methods to supplement

the large body of previously developed methods in

the fields of data mining and machine learning [2,

46]. In recent years, there has been a notable

increase in the use of feature selection approaches

in medical datasets. The challenging task in feature

selection is to identify the perfect subset of relevant

and non-redundant qualities that will provide an

optimal solution without adding to the complexity

of the modeling process. Therefore, it's critical to

draw attention to recent advancements in this area

and educate practitioners on feature selection

strategies that have worked well with medical data

sets. The findings demonstrate that most feature

selection methods now in use are based on

univariate ranking, which overlooks the stability of

the selection algorithms, interactions between

variables, and the requirement for additional

features to attain very high accuracy. Less

attributes may still lead to maximum classification

accuracy, but more work has to be done in this area

[3, 14, 33-38, 47].

A Review of Feature Selection

19

Tables1: Summary of Feature Selection Methods

[47]

4. Conclusion

Feature selection is a fundamental technique for

enhancing machine learning models by reducing

dimensionality, improving accuracy, and

optimizing computational efficiency. This review

has highlighted the significance of feature selection

in various medical applications, including

biomedical signal processing, DNA microarray

analysis, and medical imaging. While existing

methods provide effective solutions for reducing

irrelevant and redundant features, many challenges

remain in achieving an optimal subset of features

that balances performance and computational cost.

Recent advances have shown that hybrid models

combining filter, wrapper, and embedded

approaches yield promising results. However,

issues such as model stability, feature interaction,

and scalability need further exploration. Future

research should focus on developing more robust

feature selection techniques tailored for complex

medical datasets, ensuring better diagnostic

accuracy and predictive performance in healthcare

applications.

References
[1] Remeseiro, B., & Bolon-Canedo, V. (2019). A

review of feature selection methods in medical

applications. Computers in biology and medicine, 112,

103375.

[2] Saeys, Y., Inza, I., & Larranaga, P. (2007). A

review of feature selection techniques in bioinformatics.

bioinformatics, 23(19), 2507-2517.

[3] Mwadulo, M. W. (2016). A review on feature

selection methods for classification tasks.

[4] Li, J., Cheng, K., Wang, S., Morstatter, F.,

Trevino, R. P., Tang, J., & Liu, H. (2017). Feature

selection: A data perspective. ACM computing surveys

(CSUR), 50(6), 1-45.

[5] Duan, H., & Mirzaei, A. (2023). Adaptive Rate

Maximization and Hierarchical Resource Management for

Underlay Spectrum Sharing NOMA HetNets with Hybrid

Power Supplies. Mobile Networks and Applications, 1-17.

[6] Chandrashekar, G., & Sahin, F. (2014). A

survey on feature selection methods. Computers &

Electrical Engineering, 40(1), 16-28.

[7] Dash, M., & Liu, H. (1997). Feature selection

for classification. Intelligent data analysis, 1(1-4), 131-

156.

[8] Somarin, A. M., Barari, M., & Zarrabi, H. (2018).

Big data based self-optimization networking in next

generation mobile networks. Wireless Personal

Communications, 101(3), 1499-1518.

[9] Liu, H., & Motoda, H. (Eds.). (2007).

Computational methods of feature selection. CRC press.

[10] Koller, D., & Sahami, M. (1996, July). Toward

optimal feature selection. In ICML (Vol. 96, No. 28, p.

292).

[11] Venkatesh, B., & Anuradha, J. (2019). A

review of feature selection and its methods. Cybernetics

and information technologies, 19(1), 3-26.

[12] Cai, J., Luo, J., Wang, S., & Yang, S. (2018).

Feature selection in machine learning: A new

perspective. Neurocomputing, 300, 70-79.

[13] Zhao, Z., Morstatter, F., Sharma, S., Alelyani,

S., Anand, A., & Liu, H. (2010). Advancing feature

selection research. ASU feature selection repository, 1-

28.

[14] Saeys, Y., Abeel, T., & Van de Peer, Y. (2008).

Robust feature selection using ensemble feature

selection techniques. In Machine Learning and

Knowledge Discovery in Databases: European

Conference, ECML PKDD 2008, Antwerp, Belgium,

September 15-19, 2008, Proceedings, Part II 19 (pp.

313-325). Springer Berlin Heidelberg.

[15] Abdollahi, J., Moghaddam, B. N., & Parvar, M.

E. (2019). Improving diabetes diagnosis in smart health

using genetic-based Ensemble learning algorithm.

Approach to IoT Infrastructure. Future Gen Distrib

Systems J, 1, 23-30.

[16] Abdollahi, J., Keshandehghan, A., Gardaneh,

M., Panahi, Y., & Gardaneh, M. (2020). Accurate

detection of breast cancer metastasis using a hybrid

model of artificial intelligence algorithm. Archives of

Breast Cancer, 22-28.

[17] Nematollahi, M., Ghaffari, A., & Mirzaei, A.

(2024). Task and resource allocation in the internet of

things based on an improved version of the moth-flame

optimization algorithm. Cluster Computing, 27(2),

1775-1797.

[18] Abdollahi, J., Irani, A. J., & Nouri-

Moghaddam, B. (2021). Modeling and forecasting

Spread of COVID-19 epidemic in Iran until Sep 22,

2021, based on deep learning. arXiv preprint

arXiv:2103.08178.

[19] Abdollahi, J., & Mahmoudi, L. Investigation of

artificial intelligence in stock market prediction studies.

In 10th International Conference on Innovation and

Research in Engineering Science.

[20] Narimani, Y., Zeinali, E., & Mirzaei, A.

(2022). QoS-aware resource allocation and fault tolerant

operation in hybrid SDN using stochastic network

calculus. Physical Communication, 53, 101709.

[21] Abdollahi, J. (2020). A review of Deep

learning methods in the study, prediction and

J. Abdollahi et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 16-20, 2024

20

management of COVID-19. In 10th International

Conference on Innovation and Research in Engineering

Science.

[22] Abdollahi, J., & Mahmoudi, L. (2022,

February). An Artificial Intelligence System for

Detecting the Types of the Epidemic from X-rays:

Artificial Intelligence System for Detecting the Types of

the Epidemic from X-rays. In 2022 27th International

Computer Conference, Computer Society of Iran

(CSICC) (pp. 1-6). IEEE.

[23] Abdollahi, J. (2022, February). Identification

of medicinal plants in ardabil using deep learning:

identification of medicinal plants using deep learning. In

2022 27th International Computer Conference,

Computer Society of Iran (CSICC) (pp. 1-6). IEEE.

[24] Abdollahi, J., & Nouri-Moghaddam, B. (2022).

Hybrid stacked ensemble combined with genetic

algorithms for diabetes prediction. Iran Journal of

Computer Science, 5(3), 205-220.

[25] Abdollahi, J., Davari, N., Panahi, Y., &

Gardaneh, M. (2022). Detection of Metastatic Breast

Cancer from Whole-Slide Pathology Images Using an

Ensemble Deep-Learning Method: Detection of Breast

Cancer using Deep-Learning. Archives of Breast

Cancer, 364-376.

[26] Jahanbakhsh Gudakahriz, S., Momtaz, V.,

Nouri-Moghadam, B., Mirzaei, A., & Vajed Khiavi, M.

(2025). Link life time and energy-aware stable routing

for MANETs. International Journal of Nonlinear

Analysis and Applications.

[27] Javadzadeh Barzaki, M. A., Negaresh, M.,

Abdollahi, J., Mohammadi, M., Ghobadi, H.,

Mohammadzadeh, B., & Amani, F. (2022, July).

USING DEEP LEARNING NETWORKS FOR

CLASSIFICATION OF LUNG CANCER NODULES

IN CT IMAGES. In Iranian Congress of Radiology

(Vol. 37, No. 2, pp. 34-34). Iranian Society of

Radiology.

[28] Khavandi, H., Moghadam, B. N., Abdollahi, J., &

Branch, A. (2023). Maximizing the Impact on Social

Networks using the Combination of PSO and GA

Algorithms. Future Generation in Distributed Systems,

5, 1-13.

[28] Mehrpour, O., Saeedi, F., Abdollahi, J.,

Amirabadizadeh, A., & Goss, F. (2023). The value of

machine learning for prognosis prediction of

diphenhydramine exposure: National analysis of 50,000

patients in the United States. Journal of Research in

Medical Sciences, 28(1), 49.

[29] Rad, K. J., & Mirzaei, A. (2022). Hierarchical

capacity management and load balancing for HetNets using

multi-layer optimisation methods. International Journal of Ad

Hoc and Ubiquitous Computing, 41(1), 44-57.

[30] Mehrpour, O., Saeedi, F., Vohra, V.,

Abdollahi, J., Shirazi, F. M., & Goss, F. (2023). The role

of decision tree and machine learning models for

outcome prediction of bupropion exposure: A

nationwide analysis of more than 14 000 patients in the

United States. Basic & Clinical Pharmacology &

Toxicology, 133(1), 98-110.

[31] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2024). The impact of financial ratio reduction on

supervised methods' ability to detect financial statement fraud.

Karafan Quarterly Scientific Journal.

[32] Tajidini, F., & Kheiri, M. J. (2023). Recent

advancement in Disease Diagnostic using machine

learning: Systematic survey of decades, comparisons,

and challenges. arXiv preprint arXiv:2308.01319.

[33] Zargar, H. H., Zargar, S. H., Mehri, R., &

Tajidini, F. (2023). Using VGG16 Algorithms for

classification of lung cancer in CT scans Image. arXiv

preprint arXiv:2305.18367.

[34] Mirzaei, A., Barari, M., & Zarrabi, H. (2019).

Efficient resource management for non-orthogonal multiple

access: A novel approach towards green hetnets. Intelligent

Data Analysis, 23(2), 425-447.

[35] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2023). Financial Ratios and Efficient Classification

Algorithms for Fraud Risk Detection in Financial Statements.

International Journal of Industrial Mathematics.

[36] Tajidini, F., & Mehri, R. A survey of using

Deep learning algorithms for the Covid-19 (SARS-

CoV-2) pandemic: A review.

[37] Tajidini, F., & Piri, M. Machine Learning

Methods for prediction of Diabetes: A Narrative.

[38] Mirzaei, A., & Najafi Souha, A. (2021).

Towards optimal configuration in MEC Neural

networks: deep learning-based optimal resource

allocation. Wireless Personal Communications, 121(1),

221-243.

[39] Nematollahi, M., Ghaffari, A., & Mirzaei, A.

(2024). Task offloading in Internet of Things based on

the improved multi-objective aquila optimizer. Signal,

Image and Video Processing, 18(1), 545-552.

[40] Nemati, Z., Mohammadi, A., Bayat, A., &

Mirzaei, A. (2024). Metaheuristic and Data Mining

Algorithms-based Feature Selection Approach for

Anomaly Detection. IETE Journal of Research, 1-15.

[41] Nematia, Z., Mohammadia, A., Bayata, A., &

Mirzaeib, A. (2024). Predicting fraud in financial statements

using supervised methods: An analytical comparison.

International Journal of Nonlinear Analysis and Applications,

15(8), 259-272.

[42] Jahandideh, Y., & Mirzaei, A. (2021).

Allocating Duplicate Copies for IoT Data in Cloud

Computing based on Harmony Search Algorithm. IETE

Journal of Research, 1-14.

[43] Mikaeilvand, N., Ojaroudi, M., & Ghadimi, N.

(2015). Band-Notched Small Slot Antenna Based on

Time-Domain Reflectometry Modeling for UWB

Applications. The Applied Computational

Electromagnetics Society Journal (ACES), 682-687.

[44] Mikaeilvand, N. (2011). On solvability of

fuzzy system of linear matrix equations. J Appl Sci Res,

7(2), 141-153.

[45] Allahviranloo, T., & Mikaeilvand, N. (2011).

Non zero solutions of the fully fuzzy linear systems.

Appl. Comput. Math, 10(2), 271-282.

[46] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2024). Fraud Risk Prediction in Financial Statements

through Comparative Analysis of Genetic Algorithm, Grey

Wolf Optimization, and Particle Swarm Optimization. Iranian

Journal of Finance, 8(1), 98-130.

21

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (21-27), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Optimal Shape Investigation of Masonry Arch Bridges under Dynamic

Loads Using Support Vector Machine
Kaveh Kumarci1

1. College of skills and entrepreneurship, Shahrekord branch, Islamic Azad University, Shahrekord, Iran

Article Info Abstract

Article History:
Received: 2024/12/05

Revised: 2025/02/13

Accepted: 2025/02/15

DOI:

 The objective of this study is to determine the optimal shape of

masonry arches under dynamic loads using the Support Vector

Machine (SVM) technique. This approach utilizes the principles of

Structural Risk Minimization (SRM), which demonstrate superior

performance compared to methods based on Empirical Risk

Minimization (ERM). The research particularly focuses on the types

of arches commonly used in traditional structures and their

significance in ensuring structural stability and performance. The

modeling, dynamic analysis, and shape optimization of a semi-circular

arch are comprehensively explained using ANSYS 11 software and the

SVM method. The necessity of this study lies in the critical role that

the optimal shape of arches plays in enhancing the resilience and

reducing the vulnerability of masonry structures against dynamic

loads, especially given their widespread application in both historical

and modern constructions. The main innovation of this research is the

application of the Support Vector Machine as an advanced and less

commonly employed method for arch shape optimization. For the first

time, SRM principles are integrated with dynamic modeling and

computational analysis, offering a novel framework for optimizing

traditional structures.

Keywords:
Masonry Arches, Dynamic Loads,

Support Vector Machine (SVM),

Structural Risk Minimization

(SRM), Shape Optimization

*Corresponding Author’s Email
Address:kumarci_kaveh@yahoo.com

1. Introduction

Masonry arch bridges have been integral

components of architectural and engineering

heritage for centuries, known for their aesthetic

appeal and structural efficiency. These structures,

prevalent in both historical and modern

applications, require meticulous analysis to ensure

their resilience, particularly under dynamic loads

such as seismic activity and vehicular traffic. A

critical aspect of their performance lies in the

optimization of their geometric shape, which

significantly influences their ability to withstand

dynamic forces while maintaining stability and

durability [1].

Dynamic analysis is a comprehensive time-history

analytical method that evaluates the responses of

structures to time-dependent excitations, such as

earthquakes. By numerically integrating the

equations of motion, this method provides a

detailed understanding of time-varying

displacements, strains, stresses, and forces within a

structure. Such insights are essential for predicting

the behavior of masonry arches under dynamic

loads, enabling engineers to design and optimize

structures that meet safety and performance

requirements [2].

Previous research has explored various aspects of

modeling, dynamic analysis, and shape

optimization of masonry arches. These studies

have demonstrated the significance of employing

advanced computational tools like ANSYS

software for conducting dynamic analyses.

However, these methods are often computationally

intensive, requiring significant time and resources

to achieve accurate results. The reliance on

traditional optimization techniques, primarily

based on Empirical Risk Minimization (ERM), has

further limited the efficiency and applicability of

these approaches [3].

K. Kumarci / Journal of Optimization of Soft Computing (JOSC), 2(4): 21-27, 2024

22

Despite the progress made, a notable gap exists in

the integration of advanced machine learning

techniques, such as Support Vector Machines

(SVM), into the dynamic analysis and optimization

of masonry arches. Traditional methods have

struggled to balance computational efficiency with

the precision required for analyzing complex

structural behaviors. Furthermore, existing studies

have not fully leveraged the principles of Structural

Risk Minimization (SRM), which offer a more

robust framework for predictive modeling

compared to ERM-based techniques [4].

To address these limitations, the present study

introduces an innovative framework that combines

SVM with SRM principles for the dynamic

analysis and shape optimization of masonry arches.

By employing this approach, the computational

burden of dynamic analysis is significantly reduced

while maintaining high accuracy in results.

Additionally, the integration of SVM into the

optimization process represents a novel application

in the field, filling a critical void in the current body

of knowledge. This research not only advances the

methodological tools available for structural

optimization but also sets a precedent for future

studies aiming to enhance the resilience and

performance of masonry arch bridges under

dynamic loads.

2. Literature review

This section discusses related research on Masonry

Arch Bridges under Dynamic Loads. In [5],

Authors developed a hybrid optimization

framework combining genetic algorithms with

finite element analysis to investigate the

optimal shapes of masonry arches. Although

this approach demonstrated improvements in

optimization outcomes, it faced challenges in

handling high-dimensional design spaces

efficiently. Our SVM-based methodology

addresses this limitation by offering robust

performance in high-dimensional settings and

ensuring scalability.Another noteworthy

contribution by [6] utilized deep learning

models to predict the dynamic stability of

semicircular masonry arches. While their

neural network models achieved high

accuracy, the need for extensive training data

and the risk of overfitting limited the practical

application of their approach. Our method

overcomes these issues by leveraging SVM,

which requires smaller datasets and inherently

avoids overfitting through SRM principles.In

[7], the influence of material properties on the

seismic performance of masonry arches was

investigated using parametric analyses.

Although the research provided a detailed

understanding of material behavior, it lacked a

systematic framework for shape optimization.

Our research extends beyond material analysis

to include comprehensive shape optimization,

enhancing the overall resilience of masonry

arches. Finally, in [8] authors examined the

impact of geometric irregularities on the

dynamic performance of masonry arches

through numerical simulations. While the

study highlighted critical geometric factors

affecting stability, it did not incorporate

advanced optimization methodologies. Our

work fills this gap by integrating machine

learning techniques directly into the

optimization process, providing a more

efficient and effective framework for

analyzing and improving structural

performance. Despite the progress made, a

notable gap exists in the integration of

advanced machine learning techniques, such as

Support Vector Machines (SVM), into the

dynamic analysis and optimization of masonry

arches. Traditional methods have struggled to

balance computational efficiency with the

precision required for analyzing complex

structural behaviors. Furthermore, existing

studies have not fully leveraged the principles

of Structural Risk Minimization (SRM), which

offer a more robust framework for predictive

modeling compared to ERM-based

techniques.To address these limitations, the

present study introduces an innovative

framework that combines SVM with SRM

principles for the dynamic analysis and shape

optimization of masonry arches. By employing

this approach, the computational burden of

dynamic analysis is significantly reduced

while maintaining high accuracy in results.

Additionally, the integration of SVM into the

optimization process represents a novel

application in the field, filling a critical void in

the current body of knowledge. This research

not only advances the methodological tools

available for structural optimization but also

sets a precedent for future studies aiming to

enhance the resilience and performance of

masonry arch bridges under dynamic loads.

Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using Support Vector Machine

23

3. Modeling, Analysis, and Shape Optimization

of Arches Using ANSYS 11

Considering that in the optimization section, design

variables, namely the thickness of the base and the

thickness of the crown, need to be defined as

parameters, key points in the modeling of the arch

must be defined as follows[9].

4. Geometrical Modeling

For clarity, the semi-circular arch with the

definition of key points as parameters is presented

in (Figure 1), where the coordinates of the key

points are defined as follows (Table1):

Table 1: Coordinates of Key Points of the Semi-

Circular Arch

point 1 2 3 4 5 6 7

X

coordinate

s
0 R

-

R
0

R+t

0

-

(R+t0

)

0

Y

coordinate

s

0 0 0 R 0 0

R+t

1

Figure 1: Semi-Circular Arch [8]

Modeling the arch in this way means that the

gradual reduction in thickness from the base to the

crown contributes to the stability of the arch. It is

worth noting that in the modeled arch, the thickness

decreases linearly from the base to the crown.

Additionally, the thickness of the arch in the

longitudinal direction is equal to 20 units. The

displacements of the support nodes are set to zero,

and the shear force is unable to displace them.

Furthermore, the masonry consists of brick and

mortar, considered as homogeneous materials with

properties listed in Table 2, and the coefficients

involved in the nonlinear and non-elastic analysis

listed in Table 3 are taken into account.

Table 2: Characteristics of Masonry Materials

1460[6]
Density

 ρ

3/ mkg

8105 [7]

Elastic Modulus

 E

2/ mN

5105.0  [6,7,8]

Allowable Tensile Stress

 tf

2/ mN

0.17 [8] Poisson's Ratio
 

Table 3: Coefficients Influencing Nonlinear Non-

Elastic Analysis

0.1[6]
Shear Transfer Coefficient

for Open Crack

0.9[7]
Shear Transfer Coefficient

for closed Crack

4105 [6, 7, 8]

Allowable Tensile Stress
2/ mN  tf

5105 [6,7]

Allowable compress Stress
2/ mN  cf

5. Support Vector Machine:

 (SVM) is a machine learning method based on the

statistical learning theory proposed by Vapnik and

his colleagues in the 1990s. In SVM, the principles

of Structural Risk Minimization (SRM) are

employed, while other methods rely on Empirical

Risk Minimization (ERM). It has been

demonstrated that SRM principles perform better

than ERM in terms of functionality. SVM is

generally used for binary or multiclass

classification and regression problems [10].

Like many other machine learning methods, SVM

involves a model construction process consisting of

two stages: training and testing. At the end of the

training phase, the generalization capability of the

trained model is evaluated using test data. In

summary, the main operation of SVM in solving

regression problems can be stated as follows:

1. Support Vector Machine approximates the

regression function using a linear function.

2. Support Vector Machine performs regression

operations with a function where the deviation

from the actual value is less than ε (loss function).

3. By minimizing the structural risk, Support

Vector Machine provides the best solution [11].

In methods such as artificial neural networks,

empirical risk minimization principles are used to

achieve the best solution. Minimizing empirical

risk ensures the appropriate performance of the

model on training data, but there is no guarantee of

proper generalization. Therefore, in this method,

proper network design is necessary to improve the

generalization performance of the model. The goal

of structural risk minimization is to optimize the

K. Kumarci / Journal of Optimization of Soft Computing (JOSC), 2(4): 21-27, 2024

24

generalization capability of the model while

minimizing empirical risk simultaneously [12].

Solving the regression problem in SVM involves

approximating the regression function using a

linear function f(x) =˂w.x˃+b. on a set containing

a sample such as

{(x1,y1),….(x1,y1)ϵ Rn, yϵR} Translated

academically, it becomes: to be able to estimate

output values based on inputs. In the above

equation, x is the input vector

(w,b) ϵ RN×R The controlling parameters of the

function f are represented by ˂w.x˃, indicating the

inner product. For solving the regression problem,

the Vapnik loss function is used, where a minimum

error of ε can be ignored. This loss function is

defined in equation (1) as follows:

(1)

Lɛ(y) represents the loss function and ε is the

allowable error in the loss function. The controlling

parameters of the optimal regression function are

obtained by solving the following optimization

problem:

(2)

In the equation (2), ζ's are slack variables. These

variables, along with the loss function, are depicted

in Figure 2. To solve the optimization problem

above, the Lagrange function is written according

to equation (2) using the theory of Lagrange

multipliers.

Figure 2: Vapnik's Loss Function and Slack

Variables

With the maximization of the above function under

the following constraints, the values of a and a* are

obtained. These coefficients are referred to as

Lagrange multipliers.

 The optimization problem above can be solved

using Quadratic Programming (QP) methods, thus

achieving a definite global extremum.

Consequently, the risk of overfitting these data

points is higher. Therefore, support vectors do not

lie within the margin band. Hence, controls the

number of support vectors[13]. With the help of

Lagrange multipliers and support vectors, the

optimal response control parameters are calculated

as follows:

In Equation 7, Xr and Xs are two support vectors.

For constructing a Support Vector Machine (SVM)

model, the parameters C and are defined by the

user. Parameter C is a regularization parameter and

can take values from zero to infinity. Its role is to

balance between minimizing empirical risk and

maximizing generalization capability. Parameter

can also take values from zero to infinity. Its value

is crucial in the context of support vectors and

consequently, the model's performance. Linear

regression problem in SVM can be easily extended

to non-linear regression. For this purpose, kernel

functions are used [14]. Various kernels have been

recognized so far, but the successful application of

polynomial and radial basis function (rbf) kernels

in geotechnical engineering problems has been

reported. Thus, in the case of non-linear regression

in SVM, the control parameters of the optimal

function are calculated with the following

equations:

6. Modeling arches using Support Vector

Machines (SVM)

To generate and evaluate a Support Vector

Machine (SVM)-based model for predicting the

dynamic response of concrete arches under seismic

force, 300 arch samples analyzed by ANSYS

software are used. Each arch sample includes 3

independent variables: arch radius, base thickness,

and crown thickness, and one dependent variable:

maximum arch tensile stress. The range of these

parameters in this study is defined as follows: arch

radius (4 to 8 meters), base thickness (0.8 to 1.4

meters), and crown thickness (0.2 to 0.4 meters).

For creating the SVM model, the data are divided

into two sets, training and evaluation, with a ratio

of 70 to 30 (210 samples for training and 90

samples for evaluation). The desired model is

generated using the training dataset, and its

performance in predicting the desired population is

evaluated using data not experienced during the

model training (test dataset). Moreover, the radial

Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using Support Vector Machine

25

basis function (rbf) kernel, chosen as the best

kernel function in various research studies, is used

as the kernel function in this study[15]. To achieve

a better model, multiple models are created by

combining different combinations of kernel

function parameters (C, and ζ), and their

performance is evaluated. Additionally, the

prediction results of the model are presented using

statistical indices such as the correlation coefficient

(R) and the root mean square error (RMSE). The

correlation coefficient is a measure of the

conformity of predicted values to measured values

and is calculated according to the following

equation.

Moreover, the value of RMSE, which is a measure

for error estimation, is calculated according to the

following equation.

Tables 4 to 6 present the results obtained from the

generated models based on different combinations

of parameters C, , and ζ.

Table 4: Model evaluation for various values of the kernel function parameter ζ

ζ
Train Set Test Set

R RMSE R RMSE

0.5 0.8324 0.2134 0.6914 0.1424

1 0.8873 0.2542 0.7105 0.1804

10 0.9132 0.0422 0.8123 0.1924

50 0.9732 0.1393 0.8012 0.0834

100 0.9023 0.2059 0.9145 0.1425

200 0.9802 0.1942 0.9014 0.1804

300 0.8931 0.1954 0.7204 0.1643

ε = .002 C=120

Table 5: Model evaluation for various values of the kernel function parameter𝛆

ε
Train Set Test Set

R RMSE R RMSE

0.0001 0.8753 0.1246 0.7406 0.0245

0.001 0.8472 0.0754 0.8520 0.0810

0.005 0.9123 0.0864 0.9025 0.1149

0.01 0.7856 0.1825 0.8205 0.1820

0.05 0.7750 0.1342 0.7525 0.1025

0.1 0.8253 0.2305 0.8206 0.2150

ζ = 45 C=120

Table 6: Model evaluation for various values of the kernel function parameter 𝐜

C
Train Set Test Set

R RMSE R RMSE

0.1 0.6892 0.2025 0.6027 0.1486

1 0.8402 0.1840 0.8242 0.1085

10 0.7920 0.1820 0.8295 0.0895

50 0.8154 0.1234 0.7930 0.0702

100 0.8682 0.0804 0.8206 0.1079

150 0.9104 0.0865 0.9253 0.0802

200 0.9425 0.9104 0.9874 0.9795

ε = .002 ζ =45

7. Conclusion

The overall goal of this research is to utilize a

nonlinear Support Vector Machine (SVM) model

along with a radial basis function (rbf) kernel for

predicting the dynamic response of concrete arches

under seismic force. To this end, a dataset

consisting of 300 arch samples analyzed by

Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using Support Vector Machine

27

ANSYS software is divided into a 70 to 30 ratio for

training and evaluation datasets (Figure 3).

Finally, after determining the best SVM model,

which exhibits adequate accuracy in predicting the

dynamic responses of arches compared to actual

results, the kernel function parameters (C, , and ζ)

as well as the values of R (correlation coefficient)

and RMSE (root mean square error) are presented

as determinant parameters in selecting the best

SVM model. Figure 4 compares the maximum

tensile stress calculation by Support Vector

Machine and ANSYS software. The results of the

study indicate that the Support Vector Machine has

an error ranging from 11 to 17 compared to the

results obtained by ANSYS software.

Figure 3: Comparison plot of maximum tensile stress calculated by ANSYS software and SVM

Figure 4: Percentage error plot of maximum tensile stress calculation by

SVM software compared to ANSYS software

8. References

 [1] Alpaslan, E., Hacıefendioğlu, K., Yılmaz, M.

F., Demir, G., Mostofi, F., & Toğan, V. (2024).

Structural Modal Calibration of Historical

Masonry Arch Bridge by Using a Novel Deep

Neural Network Approach. Iranian Journal of

Science and Technology, Transactions of Civil

Engineering, 48(1), 329-352.

 [2] Cabanzo, C., Mendes, N., Akiyama, M.,

Lourenço, P. B., & Matos, J. C. (2025).

Probabilistic framework for seismic performance

assessment of a multi-span masonry arch bridge

Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using Support Vector Machine

27

employing surrogate modeling

techniques. Engineering Structures, 325, 119399.

 [3] Azar, A. B., & Sari, A. (2024). Blast resistance

of CFRP composite strengthened masonry arch

bridge under close-range explosion. Advances in

Bridge Engineering, 5(1), 26.

[4] PANTO, B., Ortega, J., Grosman, S., Oliveira,

D. V., Lourenço, P. B., Macorini, L., & Izzuddin,

B. A. Advanced Calibration of a 3d Masonry Arch

Bridge Model Using Non-Destructive Testing

Information and Numerical

Optimisation. Available at SSRN 4732134.

 [5] Yuan, Y., Chen, H., Wang, J., Wang, W., &

Chen, X. (2025). Additive manufacturing of

catenary arch structure design: microstructure,

mechanical properties and numerical

simulation. Journal of Materials Research and

Technology.

[6] Duan, J., Yan, H., Tao, C., Wang, X., Guan, S.,

& Zhang, Y. (2025). Integration of Finite Element

Analysis and Machine Learning for Assessing the

Spatial-Temporal Conditions of Reinforced

Concrete. Buildings, 15(3), 435.

 [7] Colmenarez, J. A., Dong, P., Lee, J., Wilson,

D. L., & Gu, L. (2025). Evaluating the Influence of

Morphological Features on the Vulnerability of

Lipid-Rich Plaques During Stenting. Journal of

Biomechanical Engineering, 147(2).

 [8] Liu, B., Collier, J., & Sarhosis, V. (2025).

Digital image correlation based crack monitoring

on masonry arch bridges. Engineering Failure

Analysis, 169, 109185.

 [9] Keßler, J., Pelka, C., & Marx, S. (2025).

Preservation of Masonry Arch Bridges in the

Network of Deutsche Bahn. In International Brick

and Block Masonry Conference (pp. 540-555).

Springer, Cham.

 [10] Bozyigit, B., & Acikgoz, S. (2022,

November). Dynamic amplification in masonry

arch railway bridges. In Structures (Vol. 45, pp.

1717-1728). Elsevier.

[11] Pantò, B., Grosman, S., Macorini, L., &

Izzuddin, B. A. (2022). A macro-modelling

continuum approach with embedded

discontinuities for the assessment of masonry arch

bridges under earthquake loading. Engineering

Structures, 269, 114722.

[12] Bagherzadeh Azar, A., & Sari, A. (2024).

Failure analysis and structural resilience of a

masonry arch Bridge subjected to blast loads: The

Case study, Halilviran Bridge. Mechanics of

Advanced Materials and Structures, 1-24.

[13]Vojislav Kecman: "Learning and Soft

Computing — Support Vector Machines, Neural

Networks, Fuzzy Logic Systems", The MIT Press,

Cambridge, MA, 2001

[14] Tapkın, S., Tercan, E., Motsa, S. M.,

Drosopoulos, G., Stavroulaki, M., Maravelakis, E.,

& Stavroulakis, G. (2022). Structural investigation

of masonry arch bridges using various nonlinear

finite-element models. Journal of Bridge

Engineering, 27(7), 04022053.

[15] Silva, R., Costa, C., & Arêde, A. (2022, May).

Numerical methodologies for the analysis of stone

arch bridges with damage under railway loading.

In Structures (Vol. 39, pp. 573-592). Elsevier.

28

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (28-39), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Edge-based Object Detection using Optimized Tiny YOLO

on Embedded Systems

Peyman Babaei
Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received: 2024/12/29

Revised: 2025/01/30

Accepted: 2025/03/05

DOI:

 Object detection at the edge has gained considerable attention for enabling

real-time, low-latency, and privacy-preserving solutions by processing data

locally on resource-constrained devices. This paper explores using Tiny

YOLO, a lightweight variant of the YOLO architecture, for object detection

on embedded systems. Tiny YOLO is specifically designed for edge devices

to run efficiently on constrained devices by utilizing a reduced architecture

with fewer parameters while maintaining good performance for real-time

object detection. The study examines the deployment of optimized Tiny

YOLO models on embedded systems, incorporating techniques like

quantization, pruning, and clustering to reduce model size, enhance speed,

and lower power consumption. Optimization methods show significant

improvements, with quantization speeding up inference, pruning eliminating

redundant parameters, and clustering enhancing accuracy. Specifically, the

study compares the performance of Tiny YOLO under these optimization

techniques, presenting results for both Pascal VOC and COCO datasets. The

results demonstrate that optimized Tiny YOLO models are effective for real-

time object detection on microcontrollers. These methods enable the efficient

deployment of deep learning models for edge computing, without relying on

cloud infrastructure.

Keywords:

Tiny YOLO, Model

optimization, Model

Deployment, Quantization,

Pruning, Weight Clustering,

Embedded Systems.

*Corresponding Author’s Email

Address: Peyman.Babaei@IAU.ac.ir

1. Introduction

In recent years, edge computing has emerged as a

key technology for processing data closer to where

it is generated, offering distinct advantages over

traditional cloud-based computing. At its core,

edge computing allows devices to process and

analyze data locally rather than sending it to

centralized servers or the cloud [1]. This localized

processing significantly reduces latency, decreases

reliance on network bandwidth, improves privacy,

and increases overall system efficiency, making it

particularly valuable for real-time applications

such as image classification and object detection.

Embedded systems, which are small, low-cost, and

energy-efficient computing units, are a key enabler

of edge computing and Internet of Things devices.

They are commonly used in applications where

space and power consumption are constrained,

such as in smart home devices, wearable

electronics, and industrial sensors. However,

microcontrollers are typically limited in terms of

computational power, memory, and storage,

making it challenging to run complex machine

learning models [2,3].

Traditional deep learning models require

substantial computational resources, especially in

terms of processing power and memory, which

makes it difficult to deploy them on embedded

systems. However, recent advancements in model

optimization techniques, such as quantization,

pruning, and the use of lightweight neural network

architectures (e.g., Tiny YOLO), have made it

possible to deploy deep learning-based object

detection models even on microcontrollers. These

optimization techniques help reduce the size of the

models, increase their inference speed, and reduce

power consumption, all while maintaining

acceptable levels of accuracy.

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

29

Deploying deep learning models on embedded

systems is a key step in bringing artificial

intelligence to the edge, where real-time decision-

making is critical [4,5]. While challenges such as

limited computational power, memory, and energy

resources remain, advancements in model

optimization techniques, lightweight architectures,

and specialized hardware accelerators are making

AI deployment on small devices more feasible

[6,7]. For example, Tiny YOLO, a compact version

of the well-known YOLO (You Only Look Once)

object detection model, has proven to be effective

for edge deployment due to its small size and

efficient performance. This is especially valuable

in applications such as autonomous systems,

security surveillance, and robotics, where real-time

object detection is needed on resource-constrained

devices. One of the key hurdles in deploying deep

learning on embedded systems is ensuring that

these models can operate efficiently while

maintaining a balance between performance and

resource consumption [8-10].

Model optimization methods like quantization,

pruning, and clustering help in reducing the

memory footprint, lowering computation

requirements, and speeding up inference times,

making these models more suitable for edge

devices like ESP32 [11]. Tools such as TensorFlow

Lite provide frameworks that make it easier to run

AI models on these constrained platforms,

optimizing them further for mobile and embedded

applications [12].

The rise of AI-powered microcontrollers is

transforming industries by enabling smarter,

decentralized systems [13,14]. In smart homes,

microcontrollers are being used for voice

recognition in virtual assistants and object

detection in security cameras. In healthcare,

wearable devices equipped with AI can monitor

vital signs and detect falls in real-time. In industrial

IoT, microcontrollers power predictive

maintenance systems that can analyze sensor data

like vibration and temperature to prevent

equipment failure. Additionally, environmental

monitoring using microcontrollers allows for the

processing of data to predict weather patterns, track

pollution levels, and monitor wildlife. The

agricultural sector benefits from AI-enabled

microcontrollers by enabling crop health

monitoring, soil condition analysis, and pest

detection, ultimately advancing precision farming

techniques [15,16]. These examples underscore the

versatility of microcontroller-based AI,

showcasing its potential to enhance various

domains by making intelligent decisions at the

edge [17,18].

This study conducted aimed to evaluate the

performance of the Tiny YOLO model on various

edge devices, including ESP32, ESP32-S3, Pico

W, and Jetson Nano, across different optimization

techniques such as quantization, weight pruning,

and clustering. The experiment utilized the COCO

[19] and Pascal VOC [20] datasets to assess the

model's mean Average Precision (mAP), frames

per second (FPS), model size, inference time.

Results showed that while ESP32 and Pico W

exhibited significant limitations in accuracy and

real-time performance due to their limited

computational power, applying optimizations did

provide some improvements in terms of model size

and inference speed. In contrast, Jetson Nano

demonstrated superior performance, achieving

high mAP values and fast inference times, even

with optimized models. This highlighted the

importance of hardware capabilities in achieving

real-time object detection, with Jetson Nano

proving to be the most suitable platform for

running optimized models like Tiny YOLO

efficiently on more complex datasets.

In the following, the Edge-based object detection is

presented in section 2, the YOLO and Tiny YOLO

architectures are presented in sections 3 and 4. The

optimization techniques of learning models are

presented in section 5, which also refers to the

proposed approach. In section 6, the

implementation of different scenarios of Tiny

YOLO model optimization are presented, and then

in section 7, the results of evaluation are compared.

Finally, the conclusion is presented in section 8.

2. Edge-based object detection

Deploying object detection models on embedded

systems for edge computing is a promising solution

for a wide range of real-time applications. As

optimization techniques improve, the ability to run

sophisticated object detection algorithms on

embedded systems will continue to advance,

opening up new possibilities in fields such as

healthcare, security, autonomous systems, and

environmental monitoring. The ability to perform

local image processing without relying on cloud

infrastructure is transforming industries and

enabling more intelligent, responsive, and energy-

efficient systems.

This breakthrough allows for real-time object

detection on devices with limited resources. The

ability to process images and classify objects at the

edge, without the need for cloud computing, opens

up a wide range of possibilities for various

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

30

applications [21-23]. Below are some key use cases

where microcontroller-based image processing is

particularly beneficial:

 Smart Home Automation:
o Object Detection: Embedded systems can be

used to deploy object detection models to

detect objects, faces, or gestures in smart home

environments. For example, a security camera

system could use a microcontroller to classify

objects in real-time, identifying potential

intruders or monitoring for specific actions.

o Gesture Recognition: In a smart home,

gesture recognition can be used to control

lighting or appliances with simple hand

movements, all processed on an embedded

system.

 Healthcare and Medical Devices:
o Medical Imaging: Embedded systems can

assist in analyzing medical images such as X-

rays, CT scans, or skin lesions directly on

medical devices, facilitating faster diagnosis

and reducing the need for data transmission to

the cloud.

o Wearable Health Devices: Image

classification models deployed on wearable

devices can monitor the health of individuals

by identifying changes in skin tone, detecting

the presence of medical conditions, or tracking

movement patterns for rehabilitation purposes.

 Industrial Automation and Monitoring:

o Defect Detection in Manufacturing:

Embedded systems with object detection

capabilities can be used in automated

inspection systems to identify defects in

products on an assembly line, improving

quality control and reducing human error.

o Predictive Maintenance: By analyzing visual

data from sensors, embedded systems can help

detect signs of wear or malfunction in

machinery, enabling predictive maintenance

and preventing downtime.

 Autonomous Systems:
o Robotics: Autonomous robots, drones, and

vehicles can leverage image classification at

the edge to understand and interpret their

environment, recognizing obstacles, people, or

objects in real-time for navigation and

decision-making.

o Agriculture and Environmental

Monitoring: Drones equipped with embedded

systems can analyze images of crops or forests

to monitor plant health, detect diseases, and

evaluate environmental conditions without

needing cloud-based processing.

 Smart Cities and Surveillance:

o Public Safety and Security: Microcontrollers

embedded in surveillance cameras can perform

face recognition or detect unusual behaviors,

enabling automated security systems that

operate in real-time without relying on cloud

servers.

o Traffic Monitoring: Embedded systems can

be used in traffic cameras to analyze road

conditions, detect traffic congestion, or

recognize vehicle types, all processed locally

for faster decision-making.

 Environmental Monitoring:
o Wildlife Monitoring: Edge devices equipped

with embedded systems can monitor wildlife,

detecting and identifying animals in remote

areas through camera traps, without needing to

transmit large image files to the cloud.

o Pollution Detection: Image classification

models can help detect pollution or other

environmental hazards through cameras,

enabling automated monitoring systems for air,

water, or land quality.

 Retail and Consumer Interaction:
o Product Recognition: Embedded systems can

be used in point-of-sale systems or vending

machines to recognize products through image

classification, enabling automatic stock

tracking or facilitating seamless customer

interactions.

o Customer Behavior Analysis: In retail

settings, embedded systems can process visual

data from in-store cameras to track customer

behavior, optimize store layouts, or improve

marketing strategies based on customer

interaction patterns.

3. YOLO architectures

YOLO (You Only Look Once) is a popular series

of deep learning models for object detection. It’s

known for its speed and efficiency, making it a best

choice for real-time object detection tasks. Over

the years, different versions of YOLO have been

released, each with improvements in accuracy,

speed, and architecture [24,25]. The summary of

YOLO’s evolution is shown in table 1. Below is an

overview of the main versions and their key

features:

 YOLOv1, introduced the idea of using a single

convolutional neural network to predict

bounding boxes and class probabilities in one

pass, making it incredibly fast for real-time

detection.

o Architecture: A single convolutional neural

network that simultaneously predicts bounding

boxes and class probabilities for all objects in

the image in one evaluation. The network

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

31

divides the image into a grid and for each grid

cell, it predicts:

 Bounding boxes (x, y, width, height)

 Confidence score (how likely the box

contains an object)

 Class probabilities (which object class the

box belongs to).

o Strengths: Very fast (real-time detection),

unified approach (object localization and

classification in one pass).

o Weaknesses: Struggles with detecting small

objects and handling overlapping objects, less

accurate in comparison to other models like

Faster R-CNN.

 YOLOv2, released in 2017, brought

significant improvements such as the

introduction of anchor boxes, batch

normalization, and multi-scale training, which

increased both speed and accuracy, especially

for larger objects.

o Architecture:

 Introduced improvements like a new

backbone network, Darknet-19, which was

more powerful than YOLOv1's architecture.

 Added anchor boxes for better bounding box

prediction, addressing the issue of poor

localization seen in YOLOv1.

 Used multi-scale training, where the model

was trained on different image sizes to

improve generalization.

 Introduced batch normalization to stabilize

and speed up training.

o Strengths: Faster and more accurate than

YOLOv1, improved handling of different

object scales, better generalization, and more

robust performance.

o Weaknesses: Still struggles with small object

detection.

 YOLOv3, released in 2018, the model was

further enhanced with a new backbone

(Darknet-53), multi-label classification, and

the use of three different scales for prediction,

allowing it to better detect small objects.

Despite these improvements, YOLOv3 still

had limitations when compared to more

complex models like Faster R-CNN.

o Architecture:

 YOLOv3 used a new backbone called

Darknet-53, which improved accuracy and

allowed for better feature extraction.

 Used multi-label classification to improve

the detection of objects with more than one

class.

 Introduced three different scales for

prediction (small, medium, and large),

allowing the network to detect objects at

various sizes.

 Introduced Residual Connections to help

deeper networks train better and avoid

vanishing gradients.

 The output layer was redesigned to use

logistic regression for bounding box

prediction.

o Strengths: Better detection of smaller objects,

significant performance improvement over v2

in terms of both speed and accuracy.

o Weaknesses: Still not as accurate as more

complex architectures like Faster R-CNN for

certain tasks, especially in cases of very dense

or small objects.

 YOLOv4 released in 2020, focused on

improving detection performance with a new

backbone (CSPDarknet53) and techniques like

Mosaic data augmentation and self-adversarial

training, leading to better accuracy, especially

for small and dense objects, while maintaining

fast inference times.

o Architecture:

 Built on the YOLOv3 model but

incorporated several new techniques for

better performance, including:

 CSPDarknet53 as the backbone network,

which balances accuracy and speed.

 Mosaic Data Augmentation to improve

generalization by combining multiple

images during training.

 Self-adversarial training for improved

robustness.

 DropBlock regularization for better

bounding box predictions.

 Improved performance on smaller objects

with better feature pyramids.

o Strengths: Higher accuracy than YOLOv3,

better at handling small and dense objects,

faster inference times, state-of-the-art

performance in real-time detection.

o Weaknesses: Larger model size compared to

earlier versions, requiring more computational

resources.

 YOLOv5, which was not developed by the

original YOLO creators but became very

popular due to its ease of use, modular design,

and efficient performance on a range of

hardware.
o Architecture:

 YOLOv5 is a separate project developed by

Ultralytics, which is not an official

continuation of the YOLO series but has

become very popular in the community.

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

32

 It focuses on speed and ease of use, and its

codebase is built in PyTorch (as opposed to

Darknet for the official YOLO models).

 YOLOv5 uses a modular design with

different model sizes (small, medium, large,

extra-large) to balance speed and accuracy.

o Strengths: Very easy to use, with a lot of built-

in features like model training, testing, and

deployment. Achieves state-of-the-art

performance with relatively lightweight

models.

o Weaknesses: It is not an official release from

the original YOLO authors, so it may differ in

implementation or long-term support

compared to the official YOLO versions.

 YOLOv6, released in 2022, continued the

trend of optimization, especially for edge

devices, by focusing on speed and efficiency.

o Architecture:

 YOLOv6 is optimized for both speed and

accuracy with improvements over YOLOv5,

particularly in handling dense and small

objects.

 Introduced a more efficient backbone

(CSPResNet) and neck (PP-YOLO) to

enhance detection performance.

 Focused on optimizing inference speed for

deployment on edge devices.

o Strengths: Real-time performance, better

accuracy with fewer resources.

o Weaknesses: Like YOLOv5, it's not an

official version, so community-driven

development may lead to less consistency over

time.

 YOLOv7, also released in 2022, utilized more

advanced techniques such as efficient

transformers and heterogeneous module

fusion, further enhancing both speed and

accuracy.

o Architecture:

 YOLOv7 continues improving on YOLOv5

and YOLOv6, focusing on both accuracy

and inference speed. It utilizes the efficient

transformer architecture for better handling

of spatial relationships in images.

 Improved backbone for better feature

extraction and information flow.

 Introduced Heterogeneous Module fusion

for better performance in terms of both

accuracy and speed.

o Strengths: One of the fastest YOLO versions

to date, highly optimized for real-time object

detection.

o Weaknesses: Complexity in tuning for

specific tasks, requires careful hyperparameter

tuning for optimal performance.

 YOLOv8, introduced in 2023, offers cutting-

edge performance with improvements in

backbone architectures, better handling of

various object detection tasks, and

optimization for real-time and embedded

systems.

o Architecture:

 YOLOv8 aims to offer even better accuracy,

speed, and efficiency than its predecessors. It

is designed to perform well on various object

detection tasks and includes newer backbone

and neck architectures, as well as better loss

functions for bounding box predictions.

 It also focuses on fine-tuning for specific

tasks like segmentation and key point

detection.

o Strengths: Cutting-edge performance, high

accuracy, and optimized for both real-time and

edge devices.

o Weaknesses: Requires more computational

resources than earlier versions but offers a

significant boost in performance.

Table 1: Summary of YOLO’s evolution.

Version Key Features

YOLOv1
First release; groundbreaking for real-time object
detection using a single CNN for bounding box and

classification predictions.

YOLOv2
Improved accuracy and speed; introduced anchor
boxes, batch normalization, and multi-scale

training. Better at handling larger objects.

YOLOv3

Significant improvements in architecture with
Darknet-53 backbone; better at detecting small

objects with multi-scale predictions and multi-label

classification.

YOLOv4
Focused on speed, accuracy, and robustness,

especially for real-time applications; introduced
Mosaic data augmentation and CSPDarknet53.

YOLOv5
A community-driven model; emphasizes ease of

use, modular design, and optimized for both speed
and accuracy, with multiple model sizes.

YOLO

v6 & v7

Optimized for edge devices and real-time

applications; further enhancements in speed,
accuracy, and performance, especially in dense or

small object detection.

YOLOv8
The latest version with cutting-edge performance
and optimizations for real-time and embedded

devices; handles various detection tasks.

The YOLO family continues to evolve with a

stronger emphasis on speed, accuracy, and

resource efficiency, making it a top choice for real-

time object detection in areas like autonomous

driving, surveillance and robotics. Each version of

YOLO has brought improvements in terms of

accuracy, speed, and efficiency, making it one of

the top choices for real-time object detection in

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

33

fields such as autonomous driving, robotics, and

surveillance.

4. Tiny YOLO

Tiny YOLO is a smaller, lighter version of the

YOLO model, specifically designed for

applications where computational resources are

limited, such as on edge devices or in real-time

systems that require fast processing speeds. It is a

trade-off between performance and efficiency,

sacrificing some accuracy for the sake of reduced

size and faster inference time. Tiny YOLO

simplifies the architecture of the original YOLO by

reducing the number of layers and parameters. For

example, in Tiny YOLO, the backbone network

(typically Darknet) has fewer convolutional layers

and a smaller number of filters. This results in

faster processing speeds and reduced memory

requirements, making it suitable for devices with

limited computational power, such as embedded

systems, mobile devices, and IoT applications.

Faster Inference: Tiny YOLO is much faster than

the standard YOLO models due to its smaller size

and fewer parameters. This makes it ideal for real-

time object detection applications, especially on

resource-constrained devices.

Lower Computational Requirements: The

reduced architecture allows Tiny YOLO to run

efficiently on devices with limited GPU or CPU

capabilities. It’s particularly useful for edge

devices, mobile phones, and embedded systems

where processing power is a concern.

Smaller Model Size: The smaller model size

makes it easier to deploy Tiny YOLO on devices

with limited storage capacity. This is important for

applications where storage space is constrained,

such as drones or IoT devices.

Good for Low-Latency Applications: Because of

its faster processing, Tiny YOLO is suited for low-

latency tasks where quick decision-making is

necessary, such as autonomous vehicles or real-

time video surveillance.

Lower Accuracy: Because of the simplified

architecture, Tiny YOLO generally achieves lower

accuracy compared to full YOLO versions (like

YOLOv3, YOLOv4, or YOLOv5). It may struggle

with detecting small objects or complex scenes

with a high degree of clutter.

Limited Detection Capabilities: While Tiny

YOLO is good for general object detection, its

performance can degrade in challenging scenarios,

such as detecting objects in high-density

environments or cases where fine-grained

classification is required.

Less Robust in Difficult Conditions: Tiny YOLO

might not perform as well under varying

conditions, such as different lighting, weather, or

occlusion, compared to more complex models.

Tiny YOLO is a powerful tool when you need

object detection on devices with limited resources,

where speed and efficiency are more critical than

achieving the highest possible accuracy. Its trade-

off between performance and resource usage

makes it suitable for real-time applications like

autonomous vehicles, drones, and mobile devices.

Key Characteristics of Tiny YOLO's Architecture

are:

o Fewer layers and filters: The network has

fewer layers and smaller filter sizes compared

to the full YOLO versions, making it faster but

less accurate.

o Simplified structure: By reducing the depth of

the network and the number of neurons in the

fully connected layers, Tiny YOLO is

optimized for speed and smaller model size.

o Max Pooling: Max pooling layers help reduce

the spatial resolution of feature maps, aiding in

faster processing and reducing overfitting by

discarding irrelevant details.

o Lower resolution input: Tiny YOLO generally

works with lower resolution input images,

which reduces computation time but may

decrease accuracy in detecting small objects.

Tiny YOLO sacrifices some complexity and

accuracy from the standard YOLO architecture in

exchange for faster processing and reduced

computational requirements. This makes it suitable

for real-time applications on edge devices and

embedded systems, where speed and low resource

consumption are prioritized over the highest

possible accuracy. The Tiny YOLO architecture

table is shown in table 2. The layers of this

architecture are described below:

Input Layer: Takes images of size 224x224x3,

commonly used for image classification and

detection tasks.

Convolutional Layers: These layers progressively

extract more abstract features from the image by

applying convolution with 3x3 filters. The number

of filters increases as the network deepens,

allowing for more complex representations.

Max Pooling Layers: Reduce the spatial

dimensions of the feature maps, making the model

more efficient and helping to avoid overfitting.

Fully Connected Layers: Compress the features

extracted from the convolutional layers and map

them to a higher-dimensional space, enabling the

prediction of object classes and bounding boxes.

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

34

Output Layer: Predicts both the class probabilities

and bounding box positions (class + 4 for bounding

box coordinates). The final output is structured to

handle N classes and the corresponding bounding

box for each object detected.

Table 2: Tiny YOLO architecture.

Layer
Number of

Filters

Filter

Dimensions

Output

Dimensions

Input Layer --- 224x224 224x224x3

Convolutional 1 16 3x3 224x224x16

MaxPooling 1 --- 2x2 112x112x16

Convolutional 2 32 3x3 112x112x32

MaxPooling 2 --- 2x2 56x56x32

Convolutional 3 64 3x3 56x56x64

MaxPooling 3 --- 2x2 28x28x64

Convolutional 4 128 3x3 28x28x128

MaxPooling 4 --- 2x2 14x14x128

Convolutional 5 256 3x3 14x14x256

MaxPooling 5 --- 2x2 7x7x256

Fully Connected 1 4096 N/A 1x1x4096

Fully Connected 2 Classes + 4 N/A 1x1x(N+4)

Output N/A N/A 1x1x(N+4)

This structure is a simplified version of the YOLO

architecture, designed for efficient image

classification and object detection with reduced

computational resources.

5. Model Optimization Techniques

Model optimization techniques aim to reduce the

size and computational demands of machine

learning models without compromising their

performance. This is crucial for deploying models

on small, resource-limited devices. Methods such

as pruning, quantization, and weight clustering are

commonly used to achieve this goal [26]. The main

objective is to enable large models to run smoothly

on edge devices with limited memory, processing

power, and battery life. These optimizations are

especially useful for applications requiring

continuous operation. The benefits of using

optimization techniques include:
Inference Speed: Large models take longer to

make predictions, which can be problematic for

real-time applications like video or audio

processing. Optimization enhances inference

speed, making models more suitable for time-

sensitive tasks.

Cost and Resource Efficiency: Training and

deploying large models demand substantial

computational resources, often resulting in high

costs. Optimization reduces these needs, enabling

faster and more efficient training and deployment.

Deployment Flexibility: Large model sizes can

hinder deployment on certain platforms or

environments. Optimization makes models more

portable and easier to deploy.

Quantization is a technique that reduces the size

and computational complexity of machine learning

models by using fewer bits to represent weights

and activations. It is particularly useful for devices

with limited memory and computational power,

like edge and IoT devices. The technique involves

reducing the precision of model weights, such as

converting 32-bit floating-point numbers to 8-bit

integers, which reduces model size and improves

inference speed but may slightly affect accuracy.

Quantization can be applied during or after

training, with post-training quantization being

simpler but potentially introducing errors, while

quantization-aware training simulates quantization

effects during training to preserve accuracy and

improve performance. The main benefits include

faster inference, reduced memory use, and lower

energy consumption, but balancing model size and

accuracy requires careful calibration [27,28].

Pruning is a method used to reduce model size by

removing unnecessary parameters, lowering

computational and storage needs, and improving

generalization. It involves setting certain weights

to zero, thus removing them from the model.

Pruning can be done before, during, or after

training and is effective for various models like

deep neural networks and decision trees. The

benefits of pruning include reduced size, simpler

interpretation, and easier deployment. Weight

pruning is commonly used, where less important

weights are set to zero, creating sparsity in the

model and reducing memory usage. While it

speeds up inference, excessive pruning may

degrade performance, requiring a balance between

model size and accuracy [29,30].

Weight clustering is another optimization

technique that reduces the number of unique

weight values in a model. Instead of storing each

individual weight, only unique values are saved,

minimizing memory usage. The technique groups

similar weights into clusters, often using the cluster

centroid as the representative value for all weights

in that group. By reducing the number of clusters,

the model becomes more compact, saving memory

and improving efficiency [31].

6. Implementation of Optimized Models

The objective of this experiment was to evaluate

the deployment performance of the Tiny YOLO

model on various embedded hardware platforms,

including the ESP32, ESP32-S3, Pico W, and

Jetson Nano. These platforms were chosen to

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

35

compare the feasibility of running a real-time

object detection model like Tiny YOLO on

resource-constrained devices, with a focus on the

impact of optimization techniques such as

quantization, weight pruning, and clustering.

The ESP32 and Pico W are microcontroller-based

platforms known for their low power consumption

and small form factors, making them suitable for

simple edge applications. However, their limited

computational power and memory impose

constraints when running more complex deep

learning models like Tiny YOLO. The ESP32-S3

variant was also included in the test, which offers

enhanced AI capabilities compared to the basic

ESP32 model, but still lacks the computational

resources required for high-performance tasks.

These microcontrollers were tested with

optimizations to reduce the size of the model,

improve inference time, and reduce latency.

Quantization was used to reduce the precision of

weights and activations, weight pruning removed

less important parameters to decrease model size,

and clustering grouped similar weights to further

optimize the model.

The Jetson Nano, a more powerful platform

equipped with a GPU and designed specifically for

AI applications, was also tested. It provides

significant computational power, making it better

suited for real-time deep learning tasks. The Jetson

Nano was used as a benchmark to compare the

performance of the microcontroller-based

platforms and to see how well Tiny YOLO can

perform with more robust hardware. The same

optimization methods were applied to the Jetson

Nano to assess their impact on performance,

although the higher computational power of the

device meant that the benefits of optimization were

less significant than on the microcontrollers.

The following metrics were measured across all

devices: mean Average Precision, Frames Per

Second, Model Size, Inference Time, and Latency.

These metrics were used to evaluate the trade-offs

between performance and computational

efficiency after applying the optimization

techniques. In the case of ESP32, ESP32-S3, and

Pico W, the models were optimized to fit within the

limited memory constraints of the devices. The

resulting models were small in size but showed

significant limitations in terms of accuracy, speed,

and real-time performance, as the inference time

remained high.

Overall, this experiment demonstrated that while

optimizations such as quantization, pruning, and

clustering can help make deep learning models

more feasible for microcontroller-based platforms,

the limited computational power of devices like

ESP32 and Pico W remains a major bottleneck for

real-time object detection tasks. On the other hand,

the Jetson Nano proved to be a much more capable

platform for deploying Tiny YOLO in real-time

applications.

Quantization is first applied by converting the

model’s 32-bit floating-point weights and

activations to 8-bit integers. This reduces the

model's size and boosts inference speed. The model

is then assessed for memory savings,

computational efficiency, and any slight loss in

accuracy due to the reduction in numerical

precision. Next, pruning is performed by

eliminating weights that have little impact on the

model’s performance during training, thus

reducing both the model size and computational

load. The pruned model is tested to evaluate the

balance between efficiency improvements and any

potential accuracy loss, which depends on the

extent of pruning. Lastly, weight clustering is

implemented, grouping similar weights into a

predefined number of clusters and replacing them

with shared centroids. This technique reduces

memory usage without affecting numerical

precision, and the clustered model is assessed for

memory savings and any accuracy degradation

caused by reduced weight granularity.

Deploying optimized models on hardware

platforms like ESP32, ESP32-S3, Pico W, and

Jetson Nano offers a range of possibilities, each

suited to different use cases based on the

computational power and application

requirements. By applying techniques like

quantization and pruning, the model's size and

inference time can be reduced, making it more

feasible for deployment on edge devices. Overall,

selecting the appropriate platform depends on the

balance between performance, power

consumption, and the complexity of the task at

hand.

7. Evaluation Results

Performance of each optimized model is compared

to the base model to evaluate the benefits and trade-

offs of each technique. The results of the combined

optimization methods are also analyzed to find the

best strategy for balancing performance and

efficiency. This evaluation provides valuable

insights for deploying Tiny YOLO in real-world

scenarios with limited resources. The evaluation

focuses on key metrics such as mean Average

Precision (mAP), Frames Per Second (FPS), and

Inference Time (ms), which collectively assess the

models' performance and suitability for resource-

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

36

constrained environments. When deploying Tiny

YOLO on embedded systems, it's essential to

consider various metrics. These metrics help

understand the trade-offs between efficiency and

accuracy, guiding the optimization process.

Table 3 focuses only on the Pascal VOC dataset for

the Tiny YOLO models deployed on ESP32,

ESP32-S3, Pico W, and Jetson Nano, providing a

comprehensive framework for evaluating the

optimized Tiny YOLO models. The models

balance high accuracy with smaller size, improved

efficiency, and reduced inference time, making

them suitable for image classification tasks in

resource-limited environments.

Table 3: Evaluation results for Pascal VOC dataset.

optimization

Method
Device

mAP

(%)
FPS

Inference

Time (ms)

Base

Model

ESP32 35.2 1.5 2750

ESP32-S3 27.3 2.5 1879

Pico W 35.0 1.0 2940

Jetson Nano 77.0 17.0 279

Quantization

ESP32 34.9 1.5 947

ESP32-S3 27.1 2.5 738

Pico W 33.8 1.0 1095

Jetson Nano 76.7 17.0 127

Pruning

ESP32 34.5 1.5 1030

ESP32-S3 26.8 2.5 712

Pico W 33.6 1.0 1240

Jetson Nano 76.5 17.0 145

Clustering

ESP32 34.2 1.5 968

ESP32-S3 26.6 2.5 780

Pico W 33.2 1.0 1155

Jetson Nano 76.2 17.0 132

In terms of mean Average Precision (figure 1),

ESP32 and Pico W show relatively low values,

ranging from 34.2% to 35.2%, even after applying

optimization techniques like quantization, pruning,

and clustering. These platforms struggle to achieve

high accuracy due to their limited processing

power. On the other hand, Jetson Nano

demonstrates significantly higher mAP values,

ranging from 76.2% to 77%, which is a clear

reflection of its superior computational

capabilities. Despite optimizations, the Jetson

Nano consistently maintains strong accuracy,

making it a better choice for tasks requiring higher

precision.
For inference time (figure 2), ESP32, ESP32-S3,

and Pico W have high values, ranging from 712ms

to 2940ms, due to their hardware constraints. This

long inference time is detrimental to real-time

object detection, as it introduces delays in

processing. Conversely, Jetson Nano achieves

much faster inference times, ranging from 127ms

to 145ms, depending on the optimization method

applied. This makes Jetson Nano an ideal platform

for real-time object detection.

Jetson Nano outperforms ESP32 and Pico W across

all evaluation metrics, including mAP, FPS,

inference time, and latency, making it the best

choice for real-time object detection tasks using

Tiny YOLO. While ESP32 and Pico W offer low-

cost and power-efficient solutions, their

performance for complex models like Tiny YOLO

is limited, making them unsuitable for real-time

applications that require high accuracy and speed.

Despite the modest improvements offered by

optimization techniques such as quantization,

pruning, and clustering, the hardware constraints of

the microcontroller-based platforms continue to

limit their ability to perform effectively for more

demanding tasks.

Figure 1: The mAP for Pascal VOC.

Figure 2: Inference time for Pascal VOC.

Table 4 focuses only on the COCO dataset for the

Tiny YOLO models deployed on ESP32, ESP32-

S3, Pico W, and Jetson Nano, providing a

comprehensive framework for evaluating the

optimized Tiny YOLO models. The models

balance high accuracy with smaller size, improved

efficiency, and reduced inference time, making

them suitable for image classification tasks in

resource-limited environments.

35
.2

27
.3 35

77

34
.9

27
.1 33

.8

76
.7

34
.5

26
.8 33

.6

76
.5

34
.2

26
.6 33

.2

76
.2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

M E A N A V E R A G E P R E C I S I O N

27
50

18
79

29
40

27
9

94
7

73
8 10

95

12
7

10
30

71
2 12

40

14
5

96
8

78
0 11

55

13
2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

I N F E R E N C E T I M E

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

37

In terms of mean Average Precision (figure 3),

ESP32 and Pico W show relatively low values,

with the highest mAP reaching around 27.5% even

after applying optimization techniques. The limited

computational resources on these microcontrollers

result in lower accuracy, which is a significant

challenge despite the optimizations. In contrast,

Jetson Nano consistently achieves much higher

mAP values, ranging from 66.9% to 67.7%,

demonstrating the platform’s ability to handle

more complex models like Tiny YOLO with

greater precision due to its superior hardware

capabilities.

Table 4: Evaluation results for COCO dataset.

Optimization

Method
Device

mAP

(%)
FPS

Inference

Time (ms)

Base
Model

ESP32 29.1 1.5 3142

ESP32-S3 35.5 2.5 2057

Pico W 27.2 1.0 3260

Jetson Nano 67.7 17.0 325

Quantization

ESP32 28.6 1.5 1180

ESP32-S3 34.6 2.5 875

Pico W 26.4 1.0 1308

Jetson Nano 67.5 17.0 117

Pruning

ESP32 28.2 1.5 1270

ESP32-S3 33.9 2.5 913

Pico W 25.8 1.0 1382

Jetson Nano 66.9 17.0 166

Clustering

ESP32 28.9 1.5 1195

ESP32-S3 35.1 2.5 897

Pico W 26.8 1.0 1336

Jetson Nano 67.6 17.0 132

Figure 3: The mAP for COCO.

Figure 4: Inference time for COCO.

In terms of inference time (figure 4), ESP32,

ESP32-S3, and Pico W exhibit high inference

times ranging from 875ms to 3260ms, which

makes these platforms unsuitable for real-time

applications where speed is crucial. In contrast,

Jetson Nano achieves much lower inference times,

between 117ms and 166ms, making it well-suited

for real-time tasks that demand faster processing.

Jetson Nano clearly outperforms both ESP32 and

Pico W across all evaluation metrics, making it the

optimal choice for real-time object detection with

Tiny YOLO on the COCO dataset. The ESP32 and

Pico W show significant limitations due to their

hardware constraints, even after optimization, and

are better suited for tasks of lower complexity or

for applications where real-time performance is not

as critical. These platforms can still be useful for

simpler AI tasks, but when it comes to real-time

detection requiring high accuracy, Jetson Nano is

the clear leader.

8. Conclusion

The experiment conducted to evaluate the

deployment of Tiny YOLO on a range of

embedded systems, including ESP32, ESP32-S3,

Pico W, and Jetson Nano, reveals key insights into

the feasibility of running optimized deep learning

models on resource-constrained devices. The

evaluation was carried out on two popular object

detection datasets, COCO and Pascal VOC, with

the focus on the performance impact of three model

optimization techniques: quantization, weight

pruning, and clustering. The results, detailed in the

tables, provide a comprehensive analysis of the

trade-offs between mean Average Precision,

frames per second, and inference time across

different hardware platforms.

Jetson Nano, with its powerful GPU and higher

computational resources, consistently

outperformed the other platforms in terms of both

29
.1 35

.5

27
.2

67
.7

28
.6 34

.6

26
.4

67
.5

28
.2 33

.9

25
.8

66
.9

28
.9 35

.1

26
.8

67
.6

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

M E A N A V E R A G E P R E C I S I O N

31
42

20
57

32
60

32
5

11
80

87
5

13
08

11
7

12
70

91
3

13
82

16
6

11
95

89
7

13
36

13
2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

I N F E R E N C E T I M E

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

38

mAP and real-time performance. This was

expected, as the Jetson Nano is designed for AI

applications, offering substantial processing power

and memory to handle complex models like Tiny

YOLO. It demonstrated an impressive mAP of

around 66.9% to 67.7% on the COCO dataset,

which is a significant advantage for more

computationally intensive tasks. The inference

time was also much lower compared to the

microcontroller-based platforms, further

emphasizing its suitability for real-time

applications. However, optimizations like

quantization, pruning, and clustering did lead to

slight improvements in inference time and latency,

showing that resource-efficient techniques can

make these platforms viable for simpler tasks.

One notable aspect of the experiment is the

importance of model optimization. While the

optimizations did not dramatically increase the

mAP on these low-power platforms, they did make

the models more feasible for deployment,

balancing the trade-off between computational

efficiency and accuracy.

The results underscore the importance of selecting

the right hardware for edge AI deployment, where

a balance between computational power, model

size, inference time, and energy consumption must

be considered. Future work could focus on further

optimizing the Tiny YOLO model for even smaller

and more power-efficient devices while

maintaining reasonable accuracy for a broader

range of real-world applications.

References
[1] Kotha, H.D. and Gupta, V.M., 2018. IoT application: a

survey. Int. J. Eng. Technol, 7(2.7), pp.891-896.

[2] Dian, F.J., Vahidnia, R. and Rahmati, A., 2020. Wearables

and the Internet of Things (IoT), applications, opportunities,

and challenges: A Survey. IEEE access, 8, pp.69200-69211.

[3] Asghari, P., Rahmani, A.M. and Javadi, H.H.S., 2019.

Internet of Things applications: A systematic

review. Computer Networks, 148, pp.241-261.

[4] Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge:

Deep learning for the Internet of Things with edge

computing. IEEE network, 32(1), pp.96-101.

[5] Liangzhen Lai and Naveen Suda. 2018. Enabling Deep

Learning at the IoT Edge. In Proceedings of the International

Conference on Computer-Aided Design (San Diego,

California) (ICCAD ’18). ACM, New York, NY, USA, Article

135, 6 pages.

[6] Singh, R. and Gill, S.S., 2023. Edge AI: a survey. Internet

of Things and Cyber-Physical Systems, 3, pp.71-92.

[7] Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X. and

Chen, X., 2020. Edge AI: Convergence of edge computing and

artificial intelligence (pp. 3-149). Singapore: Springer.

[8] David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N.,

Li, J., Kreeger, N., Nappier, I., Natraj, M., Wang, T. and

Warden, P., 2021. Tensorflow lite micro: Embedded machine

learning for tinyml systems. Proceedings of Machine Learning

and Systems, 3, pp.800-811.

[9] Rashidi, M., 2022. Application of TensorFlow lite on

embedded devices: A hands-on practice of TensorFlow model

conversion to TensorFlow Lite model and its deployment on

Smartphone to compare model’s performance.

[10] Mamtha, G.N., Sharma, S. and Sing, N., 2023, December.

Embedded Machine Learning with Tensorflow Lite Micro.

In 2023 International Conference on Power Energy,

Environment & Intelligent Control (PEEIC) (pp. 1480-1483).

[11] Berthelier, A., Chateau, T., Duffner, S., Garcia, C. and

Blanc, C., 2021. Deep model compression and architecture

optimization for embedded systems: A survey. Journal of

Signal Processing Systems, 93(8), pp.863-878.

[12] TensorFlow Lite, TensorFlow, 2021. Available online:

https://www.tensorflow.org/lite

[13] Hua, H., Li, Y., Dong, N., Li, W. and Cao, J., 2023. Edge

computing with artificial intelligence: A machine learning

perspective. ACM Computing Surveys, 55(9), pp.1-35.

[14] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S. and

Zomaya, A.Y., 2020. Edge intelligence: The confluence of

edge computing and artificial intelligence. IEEE Internet of

Things Journal, 7(8), pp.7457-7469.

[15] Grzesik, P. and Mrozek, D., 2024. Combining Machine

Learning and Edge Computing: Opportunities, Challenges,

Platforms, Frameworks, and Use Cases. Electronics, 13(3),

p.640.

[16] Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge:

Deep learning for the Internet of Things with edge

computing. IEEE network, 32(1), pp.96-101.

[17] Chang, Z., Liu, S., Xiong, X., Cai, Z. and Tu, G., 2021. A

survey of recent advances in edge-computing-powered

artificial intelligence of things. IEEE Internet of Things

Journal, 8(18), pp.13849-13875.

[18] Sivaganesan, D., 2019. Design and development ai-

enabled edge computing for intelligent-iot

applications. Journal of trends in Computer Science and Smart

technology (TCSST), 1(02), pp.84-94.

[19] Jain, S., Dash, S. and Deorari, R., 2022, October. Object

detection using coco dataset. In 2022 International Conference

on Cyber Resilience (ICCR) (pp. 1-4). IEEE.

[20] Shetty, S., 2016. Application of convolutional neural

network for image classification on Pascal VOC challenge

2012 dataset. arXiv preprint arXiv:1607.03785.

[21] Li, C., Wang, J., Wang, S. and Zhang, Y., 2024. A review

of IoT applications in healthcare. Neurocomputing, 565,

p.127017.

[22] Afzal, B., Umair, M., Shah, G.A. and Ahmed, E., 2019.

Enabling IoT platforms for social IoT applications: Vision,

feature mapping, and challenges. Future Generation Computer

Systems, 92, pp.718-731.

[23] Dian, F.J., Vahidnia, R. and Rahmati, A., 2020.

Wearables and the Internet of Things (IoT), applications,

opportunities, and challenges: A Survey. IEEE access, 8,

pp.69200-69211.

[24] Tripathi, A., Gupta, M.K., Srivastava, C., Dixit, P. and

Pandey, S.K., 2022, December. Object detection using YOLO:

A survey. In 2022 5th International Conference on

Contemporary Computing and Informatics (IC3I) (pp. 747-

752). IEEE.

[25] Hussain, M., 2024. Yolov1 to v8: Unveiling each variant–

a comprehensive review of yolo. IEEE Access, 12, pp.42816-

42833.

[26] Babaei, P., 2024, March. Convergence of Deep Learning

and Edge Computing using Model Optimization. In 2024 13th

Iranian/3rd International Machine Vision and Image

Processing Conference (MVIP) (pp. 1-6). IEEE.

[27] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W.

and Keutzer, K., 2022. A survey of quantization methods for

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

39

efficient neural network inference. In Low-Power Computer

Vision (pp. 291-326). Chapman and Hall/CRC.

[28] Rokh, B., Azarpeyvand, A. and Khanteymoori, A., 2023.

A comprehensive survey on model quantization for deep

neural networks in image classification. ACM Transactions on

Intelligent Systems and Technology, 14(6), pp.1-50.

[29] Liang, T., Glossner, J., Wang, L., Shi, S. and Zhang, X.,

2021. Pruning and quantization for deep neural network

acceleration: A survey. Neurocomputing, 461, pp.370-403.

[30] Madnur, P.V., Dabade, S.H., Khanapure, A., Rodrigues,

S., Hegde, S. and Kulkarni, U., 2023, November. Enhancing

Deep Neural Networks through Pruning followed by

Quantization Pipeline: A Comprehensive Review. In 2023 2nd

International Conference on Futuristic Technologies

(INCOFT) (pp. 1-8). IEEE.

[31] Choudhary, T., Mishra, V., Goswami, A. and

Sarangapani, J., 2020. A comprehensive survey on model

compression and acceleration. Artificial Intelligence

Review, 53, pp.5113-5155.

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

40

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (40-55), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Investigating and sensitivity analyzing the of operating microgrids in

the presence of electric vehicles

Yaser Ebazadeh1, Reza Alayi2* and Eskandar Jamali2

1. Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi, Iran.

2. Department of Mechanics, Germi Branch, Islamic Azad University, Germi, Iran.

Article Info Abstract

Article History:
Received: 2025/01/03

Revised: 2025/02/20
Accepted: 2025/03/05

DOI:

 The use of electric vehicles (EVs) is increasing daily owing to the lack

of fossil fuels on the one hand and the emission of pollution caused by

the burning of fossil fuels. In this research, to produce fuel for EVs from

renewable sources, a power grid with renewable energy sources such

as wind turbines and photovoltaic cells was considered. After

modeling, optimization was performed to supply the energy needed by

EVs using wind turbines and photovoltaic cells, and the main purpose

of this optimization was to reduce environmental pollution by

providing maximum energy. One of the important results is the

$1601941 investment cost of the wind turbine and photovoltaic cell

system.

Keywords:
Renewable Energy,

Optimization, Electrical

Energy, Electric Vehicle.

*Corresponding Author’s Email

Address: reza.alayi@yahoo.com

1. Introduction

For a long time, the national electricity grid has

been used to supply the electric energy needed by

the cities, and the arrangement of the power plants

has always been of special importance about the

required loads. Become One of the solutions to

reduce losses is the use of scattered production with

the approach of using renewable energy sources,

and with the production of electric vehicles, this

device is also considered as a power grid. These

effects can include an increase in the maximum

load, an increase in losses, a decrease in the voltage

and load factor of the system, etc. [1].

Various research has been done in the field of how

to charge and discharge electrical vehicles by the

power grid [2]. In reference [3], has provided

voltage and energy control in distribution systems

in the presence of flexible loads considering

coordinated charging of EVs. The purpose of this

method is to charge in low load hours with low

energy prices and at the same time meet the

technical limitations of the network. Search

methods and neural networks are used to make

decisions in this system. Reference [4] study

provides a review of the existing coupler,

compensation topologies, and control schemes to

determine their effectiveness in achieving the

desired control objectives. In addition, it introduces

practical metrics for a system designer to consider

when developing the magnetics and power

electronics for a DWPT system to ensure good

controllability. It also shows how the delay in

communication can affect the control performance

and impact recommendations for high-speed

vehicle charging. In [5], this study analyses the

effectiveness of an off-grid solar photovoltaic

system for the charging of EVs in a long-term

parking lot. The effectiveness of charging is

investigated through analysis of the states of charge

(SoC) at the departure of EVs plugged in at the

parking lot over the simulated year.

References [6] and [7] have discussed the technical

and economic impact of the introduction of EVs on

the electric grid of the United States of America.

These articles show that the increase in the arrival

of vehicles can cause difficulty in the work of the

network operator and lower the reliability of the

network. In these articles, the use of intelligent

charging planning and also vehicle-to-grid (V2G)

mailto:reza.alayi@yahoo.com

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

41

capability is proposed as a way to overcome this

problem. In [8] and [9], have provided inductive

power transfer charging infrastructure for EVs: A

New Zealand case study. Reference [10] has

addressed the issue of the effect of EVs on the

reliability of the distribution network. In this study,

accumulators are considered battery exchange

stations. Here, an algorithm is used that divides the

time into different intervals in such a way that load

fluctuations can be ignored. Accordingly, in each

interval, the probability distribution function of the

batteries' energy has been taken into account,

taking into account the drivers' battery replacement

pattern. In this article, the behavior of drivers is

considered based on their behavior at gas stations.

The study is done on a 34-bus system IEEE [10].

Reference [11] has provided a Technical Review of

Advanced Approaches for EV Charging Demand

Management, Part I: Applications in Electric

Power Market and Renewable Energy Integration.

In reference [12], presented the Impact of EV

charging demand on distribution transformers in an

office area and determination of flexibility

potential. In Reference [13, 14], the coordinator

tries to find the most optimal charging program for

EVs by implementing an optimization problem

with the objective function of minimizing network

operation costs by satisfying the condition of

supplying the load required by vehicles. In this

article, both modes of modeling the coordinator as

a price receiver and affecting the price offered to

vehicle owners are considered.

An optimization-based approach is introduced in

[15] to properly allocate multiple wind turbine

generation systems (WTGS) in distribution

systems in the presence of (plug-in electric

vehicles) PEVs. The proposed approach considers

1) uncertainty models of WTGS, PEV, and loads,

2) DSTATCOM functionality of WTGS, and 3)

various system constraints. In [16], a dual-solver

framework based on model predictive control is

proposed, E-solver and L-solver. The economic

scheduling problem is formulated using mixed-

integer linear programming, which can be solved

efficiently way by using a commercial solver.

Recent research has shown that smart charging of

EVs could improve the synergy between

photovoltaic, EVs, and electricity consumption,

leading to both technical and economic advantages.

Reference [17] presents a reputation-based

framework for allocating power to plug-in EVs in

the smart grid. In this framework, the available

capacity of the distribution network measured by

distribution-level phasor measurement units is

divided in a proportionally fair manner among

connected EVs, considering their demands and

self-declared deadlines. In [18] main aspects of

smart charging reviewed are objectives,

configurations, algorithms, and mathematical

models, and the commonly employed optimization

techniques and rule-based algorithms for smart

charging are reviewed.

With the growing concerns about energy depletion

and the reduction of CO2 emissions, EVs have

gained popularity in the transport sector due to

clean and reliable energy sources. Reference [19]

aims to investigate the optimal EV coordination

with the V2G technology for the cost-benefit

analysis. Battery degradation cost is formulated for

real-time analysis taking the depth of discharge at

each time interval. The firefly algorithm has been

used to optimize the system cost.

Proper accommodation of EVs poses significant

challenges to distribution system planning and

operations. In [20] two scheduling strategies are

implemented considering active power dispatch

and reactive power dispatch from the EVs. The

objective of both strategies is to minimize losses in

the system by utilizing the V2G operation of the

EVs. In [21], the authors investigate the

achievement of energy management strategies in

the EV system, which reduces fuel consumption

and carbon dioxide emissions. The novelty of this

article is an update on the most advanced

technology in the field of V2G and energy

management strategy.

Many researchers try to optimize the charging and

discharging pattern of EVs by using a centralized

approach and considering a series of predetermined

criteria.

Simultaneous consideration of the effects of

distributed generation, especially of the renewable

type and types of EVs, is another important issue in

the studies of distribution networks. This point

affects the future power systems of many countries.

In this regard, some of the studies carried out are

given below.

When both renewable energy sources generation

and utilization occur simultaneously, energy

storage costs can be reduced, and voltage

oscillation and system instability caused by

renewable energy sources grid connection can be

reduced. Reference [22] constructs a microgrid

model that includes EVs, defines the charge and

discharge capacity of EVs, and uses the flexibility

of EVs to overcome the intermittency and volatility

of renewable energy sources.

Managing uncertainty is key to enhancing

robustness in microgrids. In [23], the authors focus

on the uncertainties in aggregated EVs and

establish a two-layer model predictive control

strategy for charging EVs with a microgrid. The

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

42

main concern related to renewable-based

distributed generators, especially photovoltaic and

wind turbine generators, is the continuous

variations in their output powers due to variations

in solar irradiance and wind speed, which leads to

uncertainties in the power system. Reference [24]

proposes an efficient stochastic framework for the

optimal planning of distribution systems with

optimal inclusion of renewable-based distributed

generators, considering the uncertainties of load

demands and the output powers of the distributed

generators.

The researchers in reference [25] stated that the

simultaneous presence of all types of EVs as well

as a large number of wind turbines with low

capacity has created many technical challenges for

distribution network operators to provide reliable

energy and optimize energy distribution. Three

different approaches for the simultaneous

distribution of these small generation sources

(wind turbines) and potential distributed reserves

(EVs) are introduced. The electricity in a microgrid

is such that this energy is provided in time intervals

with low load. For this purpose, a condition has

been added that it cannot be interrupted when the

vehicle charging process starts. The results of

applying this method to the sample network show

give that this method with this stipulation cannot

direct a load of vehicles in a direction that is most

compatible with the generation power of wind

turbines. In the second method used under the title

of interruptible distribution, the same goal as the

previous method is used. The vector is followed

with the difference that it can be in this approach

the process of charging vehicles intermittently in

studies. The third method, called the spread method

with different charging rates, like the previous two

methods, tries to optimize the charging process of

vehicles to have the most agreement with the

generation graph of wind turbines, with the

difference that it considers different charging rates

for different vehicles.

Reference [26] describes a two-level planning

model. In the proposed model, resource planning

has been done at the two levels of aggregators and

system operators. In the first stage, after the

aggregators have received all the information

related to vehicles and distributed renewable

generation sources, they inform the operator of the

amount of energy they need or their excess energy

by performing calculations. In the second stage, the

system operator plans energy generation and

storage to reduce costs. The results of this research

show that with the proper management of EVs, the

electric load of the network does not increase

sharply during peak hours, in other words, the use

of the proposed planning model has flattened the

network load curve.

Studies show that less research has been done on

the simultaneous management of distributed

generation resources and EVs as two completely

independent and private entities, and on the other

hand, the owners of distributed generation

resources and EVs are looking for maximum profit,

this factor can cause problems such as increasing

losses, line congestion, increasing network

strengthening costs, etc. in distribution networks.

Therefore, in this article, by presenting a two-stage

planning framework, EVs and dispersed generation

resources with private ownership, whose goal is to

maximize their respective profits, will be managed

in such a way that in addition to their high

satisfaction This important issue, i.e. reduction of

operating costs, should be addressed by

considering network limitations.

The innovative aspects of the article are described

as follows:

 A two-stage planning framework for

managing energy resources in a

distribution network is presented to

achieve an application and take into

account the demands and needs of

different agents.

 The optimization problem related to the

planning of charging and discharging

of EVs has been modeled from the

point of view of their owners and

considering their uncertainty.

 The optimization problem related to the

planning of distributed generation

resources has been modeled and

solved, and its effect has been included

in the planning problem of energy

resources of the distribution network.

 The problem of optimizing the use of

energy resources is linearized.
The article is organized in such a way that in the

second part of the problem statement, the proposed

planning framework and formulation of the

problem are discussed. The case study is described

in the third section and finally, the results are

presented in the fourth section.

2. Materials and Methods

2.1. Statements of the problem

In this part, the modeling process of energy

planning in the distribution network with the

proposed method is described. First, the planning

framework of the proposed model is described.

Then the formulation of the problem is given along

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

43

with the planning constraints.

Proposed energy planning framework

Due to the increase in the presence of EVs and

distributed sources of generation in distribution

networks, the need for a suitable control program

to control the process of charging and discharging

vehicles as a new load and sources of distributed

generation as a source of energy generation is felt

more and more [27, 28]. In the following, a two-

stage algorithm is presented to achieve a

comprehensive planning framework in which not

only the technical constraints of the network are

met, but also the privacy and convenience of EV

owners, distributed generation resources, and other

actors are considered. The proposed planning

framework consists of two stages.

In the first stage, the coordinators of EVs and the

owners of distributed generation resources try to

maximize their profit during the planning period by

implementing a separate optimization program,

taking into account their demands and limitations.

For this purpose, the owners of EVs provide the

coordinators with information such as the time to

arrive at the parking lot, the time to leave the

parking lot, the initial charging status, and the final

charging status, so that the optimal

charging/discharging program for the vehicles can

be obtained; And on the other hand, the owners of

distributed generation resources try to maximize

their profits by having information about

distributed generation resources and electricity

market prices. After the end of the first stage of the

proposed planning, the optimal

charging/discharging program related to the

vehicles and the generation pattern of the units will

be reported to the network operator.

In the second stage of the proposed energy

planning, after receiving the optimal

charge/discharge plan for vehicles and the plan for

the generation of distributed generation sources, in

each scenario, by purchasing energy from the

market, the network operator tries to change the

optimal generation plan of the distributed

generation sources and change The optimal vehicle

charging/discharging program will plan the energy

of the available resources in such a way as to

reduce the operating costs while providing the

required load of the network. The resource usage

pattern, EV charging/discharging schedule along

with the power purchased from the grid are the

primary outputs of this planning stage. Further,

although these outputs are optimal from the point

of view of vehicle owners and distributed

generation resources, they do not provide any

guarantee regarding the technical limitations of the

network. Therefore, the network operator checks

all the technical restrictions of the network after

carrying out the load distribution calculations and

if any of the restrictions are not met, he repeats the

second stage of optimization by applying new

restrictions. This work continues until all network

constraints are met. Below is the formulation for

each step.

2.2. Formulation of the problem

Formulation of the first stage of the proposed

planning

In the first stage of the planning framework,

coordinators and owners of distributed generation

resources seek to maximize their profits by

implementing optimization problems, below are

the relationships related to each.

Formulation related to the coordinator of

vehicles
The objective function related to maximizing the

profit of vehicles is calculated from Equation (1).
𝑓1,1

= 𝑚𝑎𝑥 (∑[∑{
𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × 𝑃𝑟𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

−𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡) × 𝑃𝑟𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑡)
}

𝑉

𝑣=1

]

𝑇

𝑡=1

× ∆𝑡)

(1

)

The restrictions related to vehicles are as follows

[26]:
In planning the charging and discharging of a

vehicle, it should be noted that the vehicle should

not be programmed in two charging and

discharging modes at the same time.
𝑋(𝑣, 𝑡) + 𝑌(𝑣, 𝑡) ≤ 1 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣

∈ {1,2, … , 𝑉}; 𝑋, 𝑌 ∈ {0,1}
(2)

The time continuity equation of vehicle charging

and discharging during the planning period is given

as the following relationship.

𝐸𝑠(𝑣, 𝑡) = 𝐸𝑠(𝑣, 𝑡 − 1) + 𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

× 𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡

−
1

𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

× (𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡)

∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣 ∈ {1,2, … , 𝑉}

(3)

The limit of chargeable power and battery

discharge of each vehicle in each period are as

follows:

𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) ≤ 𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝑣

𝑀𝑎𝑥 × 𝑋(𝑣, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉}

(4)

𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) ≤ 𝑃𝐷𝑐ℎ𝑎𝑟𝑔𝑒,𝑣

𝑀𝑎𝑥 × 𝑌(𝑣, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉}

(5)

Discharging the battery of an EV up to a certain

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

44

maximum value 𝜓𝑣
𝑀𝑖𝑛 and charging it up to a

certain maximum value 𝜓𝑣
𝑀𝑎𝑥 will prevent the

premature breakdown of the battery and increase

its useful life [26].
𝐸𝑠(𝑣, 𝑡) ≤ 𝜓𝑣

𝑀𝑎𝑥 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉}

(6)

𝐸𝑠(𝑣, 𝑡) ≥ 𝜓𝑣
𝑀𝑖𝑛 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣

∈ {1,2, … , 𝑉}

(7)

Where 𝜓𝑣
𝑀𝑖𝑛 and 𝜓𝑣

𝑀𝑎𝑥are calculated as follows:
𝜓𝑣
𝑀𝑎𝑥 = 𝜑𝑣

𝑀𝑎𝑥 × 𝐸𝐵𝑎𝑡𝐶𝑎𝑝,𝑣 ∀𝑣 ∈ {1,2, … , 𝑉} (8)

𝜓𝑣
𝑀𝑖𝑛 = 𝜑𝑣

𝑀𝑖𝑛 × 𝐸𝐵𝑎𝑡𝐶𝑎𝑝,𝑣 ∀𝑣 ∈ {1,2, … , 𝑉} (9)

The limitation of charging and discharging the

battery every hour is applied according to the

amount of energy stored in the battery in the

previous period and the maximum capacity of the

battery [26]:
1

𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒 × (𝑃𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡) ≤ 𝐸𝑠(𝑣, 𝑡

− 1) ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉}

(10)

𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

× 𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡

≤ (𝜓𝑣
𝑀𝑎𝑥

− 𝐸𝑠(𝑣, 𝑡 − 1)) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉}

(11)

The optimal amount of stored energy in the battery

of each vehicle at the time of leaving the parking

lot is given in the following equation:
𝑆𝑂𝐶𝑑𝑒𝑠

𝑣 = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑣

+ 𝑟𝑎𝑛𝑑𝑛𝑢𝑚𝑏𝑒𝑟(0, [1
− 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑣])∀𝑣
∈ {1,2, … , 𝑉}

(12)

The limit of the number of times the status changes

from charging to discharging and vice versa

according to the life of the vehicle battery is given

in the following equation [28]:
𝐷𝑣 ≤ 𝑁𝑆𝑀𝐴𝑋 (13)

By performing linear programming with binary

variables, the desired charge/discharge profile of

vehicles is obtained as follows.

P𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣) = [𝑃𝐸𝑉

𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)] 𝑣 ∈ [1 − 𝑉], 𝑡

∈ {1 − 𝑇}

(14)

P𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣) = [𝑃𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)] 𝑣

∈ [1 − 𝑉], 𝑡 ∈ {1 − 𝑇}

(15)

Formulation related to distributed non-

renewable generation sources
Since non-renewable distributed generation

resources are considered to be privately owned, the

objective function related to them (maximizing

profit) is in the form of Equation (16).

𝑓1,2 = 𝑚𝑎𝑥 (∑[∑{𝑃𝐷𝐺(𝑗, 𝑡) × 𝑃𝑟𝑀𝑅𝑇(𝑡)

𝐽

𝑗=1

𝑇

𝑡=1

− 𝐶𝐷𝐺(𝑗, 𝑡)}] × ∆𝑡)

(16)

The restrictions related to distributed non-

renewable generation sources are as follows:
The cost of non-renewable resources is modeled as

a function of their output power. To use the

optimization method of linear programming, the

cost functions with a suitable approximation are

considered as follows [28].
𝐶𝐷𝐺(𝑗, 𝑡) = 𝑎𝑗 + 𝑏𝑗 × 𝑃𝐷𝐺(𝑗, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽}

(17)

Limits on the maximum and minimum generation

capacity of distributed non-renewable generators

are in the form of the following equations:
𝑃𝐷𝐺(𝑗, 𝑡) ≤ 𝑃𝐷𝐺,𝑗

𝑀𝑎𝑥 × 𝑢(𝑗, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽}

(18)

𝑃𝐷𝐺(𝑗, 𝑡) ≥ 𝑃𝐷𝐺,𝑗
𝑀𝑖𝑛 × 𝑢(𝑗, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽}

(19)

The cost of setting up non-renewable distributed

generation generators is calculated as follows [28]:
𝑆𝑈(𝑗, 𝑡) = 𝑆𝑐𝑗 × (𝑢(𝑗, 𝑡) − 𝑢(𝑗, 𝑡 − 1)) (20)

𝑆𝑈(𝑗, 𝑡) ≥ 0 (21)

The limit of the rate of increase and decrease of

power related to non-renewable distributed

generation sources is as follows:

(𝑃𝐷𝐺(𝑗, 𝑡 + 1) − 𝑃𝐷𝐺(𝑗, 𝑡)) ≤ 𝑅𝑈𝑃𝐷𝐺
𝑗

 (22)

(𝑃𝐷𝐺(𝑗, 𝑡) − 𝑃𝐷𝐺(𝑗, 𝑡 + 1)) ≤ 𝑅𝐷𝑁𝐷𝐺
𝑗

 (23)

By performing linear programming with binary

variables, the optimal generation pattern of

distributed generation resources is obtained as

follows.
P𝐷𝑒𝑠
𝐷𝐺 (𝑗) = [𝑃𝐷𝐺(𝑗, 𝑡)] 𝑗 ∈ [1 − 𝐽], 𝑡 ∈ {1 − 𝑇} (24)

Formulation of the second stage of the proposed

planning

In the second stage, the network operator, after

receiving the information of the first stage (14, 15,

and 16 equations) in each scenario, tries to change

the optimal generation plan of distributed

generation resources and also change the optimal

charge/discharge profile of vehicles, by purchasing

energy from the market, planning energy resources

to do the existing in such a way as to guarantee the

supply of EV owners and distributed generation

resources, reduce the network's technical

limitations and operating costs. To achieve these

goals, the following optimization program is

performed by the system operator for all scenarios:

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

45

𝑓2

= 𝑚𝑖𝑛 (∑[𝑃𝑁𝑇𝑊(𝑡) × 𝑃𝑟𝑀𝑅𝑇(𝑡)

𝑇

𝑡=1

+ 𝑃𝐿𝑂𝑆𝑆(𝑡) × 𝑃𝑟𝐿𝑂𝑆𝑆(𝑡)

+ |∑{𝑃𝐷𝐺(𝑗, 𝑡) − 𝑃𝐷𝑒𝑠
𝐷𝐺 (𝑗, 𝑡)}

𝐽

𝑗=1

| × 𝐾𝐷𝐺

+ |∑{𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)

𝑉

𝑣=1

− 𝑃𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)}| × 𝐾𝐶ℎ𝑎𝑟𝑔𝑒

+ |∑{𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)

𝑉

𝑣=1

− 𝑃𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)}| × 𝐾𝐷𝑐ℎ𝑎𝑟𝑔𝑒] × ∆𝑡)

(25)

As it is clear from Equation (25), the objective

function of the optimization program at this stage

includes four parts. The first part shows the cost of

energy purchased from the market and the cost of

losses. The cost paid to owners of distributed

generation resources and EV owners Electric to

participate in the proposed program is given in the

second, third, and fourth parts.

2.3. Network restrictions

Adverb of power balance
The total power produced along with the power

purchased from the flash market should be equal to

the amount of consumption.

P𝑁𝑇𝑊(𝑡) + ∑ 𝑃𝑤(𝑡) +

𝑊

𝑤=1

∑ 𝑃𝑝𝑣(𝑡)

𝑃𝑉

𝑝𝑣=1

+∑𝑃𝐷𝐺(𝑗, 𝑡)

𝐽

𝑗=1

+∑𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)

𝑉

𝑣=1

=∑𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)

𝑉

𝑣=1

+ 𝑃𝐿𝑂𝐴𝐷(𝑣, 𝑡)
+ 𝑃𝐿𝑂𝑆𝑆(𝑡) ∀𝑡
∈ {1,2, … , 𝑇}

(26)

Network technical restrictions
The technical limitations related to the network are

given below [21]:
𝑃𝑛(𝑡)

= ∑|𝑉𝑛(𝑡)||𝑉𝑚(𝑡)||𝑌𝑛,𝑚(𝑡)| cos(𝛿𝑚(𝑡)

𝑁

𝑚=1

− 𝛿𝑛(𝑡) + 𝜃𝑛,𝑚) ∀𝑛, 𝑡

(27)

𝑄𝑛(𝑡)

= − ∑|𝑉𝑛(𝑡)||𝑉𝑚(𝑡)||𝑌𝑛,𝑚(𝑡)| sin(𝛿𝑚(𝑡)

𝑁

𝑚=1

− 𝛿𝑛(𝑡) + 𝜃𝑛,𝑚) ∀𝑛, 𝑡

(28)

|𝑆(𝑛,𝑚, 𝑡)| ≤ 𝑆𝑛,𝑚
𝑚𝑎𝑥 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑛,𝑚
∈ {1,2, … , 𝑁}

(29)

𝑉𝑛
𝑚𝑖𝑛 ≤ 𝑉(𝑛, 𝑡) ≤ 𝑉𝑛

𝑚𝑎𝑥 ∀𝑡
∈ {1,2, … , 𝑇}; ∀𝑛
∈ {1,2, … , 𝑁}

(30)

𝑃𝑁𝑇𝑊(𝑡) ≤ 𝑃𝑁𝑇𝑊
𝑚𝑎𝑥 ∀𝑡 ∈ {1,2, … ,24} (31)

𝑃𝑇𝑅𝐴𝑁𝑆(𝑛, 𝑡) ≤ 𝑃𝑇𝑅𝐴𝑁𝑆
𝑚𝑎𝑥 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑛
∈ {1,2, … , 𝑁}

(32)

Restrictions related to EVs
Equations 2-13 are constraints related to EVs that

should be considered in this phase of energy

planning.

2.4. Restrictions related to distributed

generation sources
Non-renewable resources
Equations 18-23 are constraints related to

distributed non-renewable generation sources that

must be considered in energy planning.

Renewable resources
Since the primary energy source of wind turbines

and photovoltaic units is the wind and the sun, in

the existing studies, probabilistic functions are

used to model their output power, which will be

described below.

Probability model of the photovoltaic system
In this study, the beta probability density function

is used to model the power of the photovoltaic

system [29].

𝑓(𝐼𝑟
𝑡) =

{

Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
× 𝐼𝑟

𝑡(𝛼−1) × (1 − 𝐼𝑟
𝑡)𝛽−1

𝑓𝑜𝑟 0 ≤ 𝐼𝑟
𝑡 ≤ 1, 𝛼 ≥ 0, 𝛽 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(33)

According to the radiation intensity distribution

predicted in each area and the radiation-to-power

conversion function, the output power of the

photovoltaic system can be calculated for each

radiation intensity at any time [30].
𝑃𝑝𝑣 = 𝜂

𝑝𝑣 × 𝑆𝑟
𝑝𝑣
× 𝐼𝑟

𝑡(1 − 0.005 × (𝑇𝑎
− 25))

(34)

Wind turbine probabilistic model
In this study, Rayleigh's probability density

function is used to model wind speed behavior

[31].

𝑓(𝑣𝑓
𝑡) = (𝑘 𝑐⁄) × (

𝑣𝑓
𝑡

𝑐⁄)

(𝑘−1)

𝑒
−(
𝑣𝑓
𝑡

𝑐
⁄)

𝑘

0

≤ 𝑣𝑓
𝑡 ≤ ∞

(35)

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

46

Also, the output power of the wind turbine at any

moment can be calculated using the power

conversion function given in the following

relationship [32].

𝑃𝑤 =

{

0 0 ≤ 𝑣𝑓

𝑡 ≤ 𝑣𝑐𝑖

P𝑟𝑎𝑡𝑒𝑑 ×
(𝑣𝑓

𝑡 − 𝑣𝑐𝑖)

(𝑣𝑟 − 𝑣𝑐𝑖)
 𝑣𝑐𝑖 ≤ 𝑣𝑓

𝑡 ≤ 𝑣𝑟

P𝑟𝑎𝑡𝑒𝑑 𝑣𝑟 ≤ 𝑣𝑓
𝑡 ≤ 𝑣𝑐𝑜

0 𝑣𝑐𝑜 ≤ 𝑣𝑓
𝑡

(36)

Figure 1 shows the flowchart of the proposed

energy planning. As it is clear, the coordinators and

owners of distributed generation resources have

obtained the charging/discharging profile of

vehicles and the generation pattern of distributed

generation resources by implementing the

optimization program. Then, for all scenarios, the

operator should implement non-linear

programming with binary variables (equation 25)

of the output power corresponding to each of the

distributed generation sources, the power

purchased from the network, and the charging

correction strategy to determine the discharge

related to the number of vehicles. Since the second

stage of optimization has non-linear terms (the

absolute value terms in equation 25), there is no

guarantee to extract the absolute optimal solution.

Therefore, at first, these relations are sub-linearized

[33].

Figure 1. Proposed energy planning flowchart.

Assuming that two variables 𝜀 and 𝛾 are positive:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒|𝑓(𝑥)| → 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾 + 𝜀
𝑓(𝑥) = 𝛾 − 𝜀
𝛾, 𝜀 ≥ 0

Finally, the network operator checks the technical

limitations of the network in Equations (29-32) by

implementing the load distribution. If any of the

restrictions are not met, the second stage of

planning is repeated by applying restrictions on the

amount of load related to sensitive parking lots

(sensitive tires) until the restrictions are fully met.

It should be noted that sensitivity analysis was used

to determine the sensitive parking lots, that is, for

each period, for each parking lot, the load of the

parking lot increased by 10%, and the changes

related to the voltage of the parking lots were

saved. After applying this algorithm, sensitive

parking lots are identified each period.

2.5. Case studies

Introduction of the studied system
The proposed planning framework has been tested

on a distribution network connected to bus 5 of the

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

47

RBTS sample network, which has 4 feeders at a

voltage of 20 kV [34]. For this network, the data

related to the type and number of subscribers

connected to different load points, the average load

of each of them are presented in table 1. This

network along with the division of the areas related

to the coordinators is shown in Figure 2. The

voltage limit of the bus bars is considered equal to

0.9-1.05 per unit.

Table 1. The type and average amount of load and the number of subscribers of different load points in the distribution

network under study.
Number of subscribers Average load (MW) Subscriber type Load points

180 0.4569 Residential 1-2-20-21

2 0.6646 Official 3-5-8-17-23

250 0.4771 Residential 4-6-15-25

2 0.4089 Commercial 7-14-18-22-24

210 0.2513 Residential 9-10-11-13-26

2 0.4086 Official 12-16-19

Figure 2. One-line diagram of the distribution network connected to bus 5 of the RBTS sample network.

The hourly price of the electricity market is given

in table 2 [35]. The capacity of medium-pressure

and low-pressure transformers of the network is

considered to be MVA 1 and MVA 15 respectively.

In this network, there are four coordinators named

A1, A2, A3, and A4 are considered. The predicted

hourly load of each of the coordinators in the 24-

hour planning period is shown in Figure 3.

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

48

Table 2. Hourly electricity market price.

Hour

Price

($/kWh)

Hour

Price

($/kWh)

1 0.033 13 0.215

2 0.027 14 0.572

3 0.02 15 0.286

4 0.017 16 0.279

5 0.017 17 0.086

6 0.029 18 0.059

7 0.033 19 0.05

8 0.054 20 0.061

9 0.215 21 0.181

10 0.572 22 0.077

11 0.572 23 0.043

12 0.572 24 0.037

Also, three microturbine units and one fuel cell unit

have been installed in this network. The

specifications of the cost functions of each of the

units are given in table 3. The maximum rate of

increase and decrease of power related to each of

the units in each period is equal to 20% of their

maximum capacity.

Table 3. Characteristics of distributed non-renewable

generation units.

Gen

type

a

($)

b

($/kW)

𝑷𝑫𝑮
𝑴𝒊𝒏

(𝒌𝑾)

𝑷𝑫𝑮
𝑴𝒂𝒙

(𝒌𝑾)

MT 20 0.2 50 350

MT 40 0.3 50 250

MT 20 0.2 50 350

FC 90 0.35 50 250

The pattern of using vehicles has been obtained

according to a statistical study in the city of Tehran.

The obtained information includes the entry and

exit times of the vehicles, the amount of initial

energy when entering the parking lots, and other

information related to the vehicles. A summary of

information on the behavior pattern of vehicle

owners in using their vehicles is given in Table 4.

Figure 3. Hourly load demand of coordinators.

Table 4. Statistical information on EVs.

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
em

an
d

 (
kW

)

Time (Hour)

Load Profile-A1

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
em

an
d

 (
kW

)

Time (Hour)

Load Profile-A2

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
em

an
d

 (
kW

)

Time (Hour)

Load Profile-A3

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
em

an
d

 (
kW

)

Time (Hour)

Load Profile-A4

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

49

Type Arrival time (H) Departure time (H)

Residential Norm (19, 5) Norm (7, 2) I [0.1, 0.5]

Official Norm (7, 1) Norm (15, 1) I [0.5, 0.8]

Commercial Norm (9, 2) Norm (20, 2) I [0.3, 0.6]

To calculate the total number of vehicles, the first

step is to know the number of residential

subscribers covered by the network. In this regard,

the information presented in table 1 was used and

finally, for 35% penetration, the total number of

vehicles in the network was estimated to be 4004

vehicles. To conduct studies, in addition to the

number of vehicles, their class is also according to

[36] considered.

Battery capacity is one of the important features of

vehicles. According to [36], the range of battery

capacity in each class is considered in Table 5. It

should be noted that a uniform distribution has

been used to distribute the capacity of batteries in

each class.

Table 5. Battery capacity range for each class.

Class

Minimum

capacity (kWh)

Maximum

capacity (kWh)

1 8 12

2 10 14

3 17 21

4 19 24

The maximum charging and discharging rate of

vehicles is 4 kWh and the weighted coefficients of

charging and discharging are equal to 60% of the

market peak price. Usually, some energy is lost in

the process of charging and discharging vehicle

batteries, therefore, the efficiency coefficient of

charging and discharging vehicles is considered to

be 90% and 95% [26]. Also, to prevent premature

aging of vehicle batteries, battery discharge is

allowed up to 85%, and the number of switching

times allowed is considered according to table 6. It

should be noted for the vehicles under study; their

battery life is randomly selected.

Table 6. The number of times allowed to replace vehicle

batteries according to their lifespan.

A
O

B
<

4

4
<

=
A

O
B

<
6

6
<

=
A

O
B

<
8

8
<

=
A

O
B

B
a

tt
er

y
 l

if
e

8 6 4 2 NSMax

In this study, it is assumed that all the wind turbines

installed in the network are of the same model and

their specifications are according to table 7 [28].

Table 7. Information about wind turbines.
Vco

(m/s)

Vr

(m/s)

Vci

(m/s)

Prated

(kW)

30 12 3 500

Also, photovoltaic systems with a power of 100

kW (10 panels of 10 kW) have been installed at the

network level, whose specifications are given in

Table 8 [26]. In all studies, it is assumed that the

photovoltaic system and wind turbines are operated

at the unit power factor.

Table 8. Photovoltaic system information.

𝜼 (%) S(m2) Ta (oC)

18.6 10 25

To generate scenarios for each planning interval,

the distribution function of wind speed and solar

radiation is divided into five intervals, so that these

functions are converted from continuous to

discrete. To reduce the execution time and the

complexity of the program, the number of

scenarios was first reduced with the help of the

backward scenario reduction technique [37] and

then the wind and solar power scenarios were

combined to obtain the final scenarios. In this

study, the number of final scenarios is 10.

Simulation process
The proposed programming method is coded in

OpenDSS, GAMS, and MATLAB software. The

first and second stages of this planning are linearly

implemented and the CPLEX calculation method is

used to solve the problem.

3. Results and Discussion

The results of the planning done in both stages of

the proposed planning are shown in Figures 4 and

5. The results show that the charging of most of the

vehicles took place during the low load hours of the

network (1-7 in the morning) because, during these

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

50

hours, the price of the electricity market is low.

Also, the discharge of vehicles during peak hours

of the network has reduced the peak load of the

network and met the technical limitations of the

network. It should be noted that according to

figures 4 and 5, the highest cost paid to vehicles in

the direction of participation was during peak

hours. Figure 6 shows the planned power of

distributed non-renewable generation resources for

two stages of the proposed algorithm.

Stage 1 Stage 2

Figure 4: Charging profile of EVs in different areas after applying the proposed two-stage algorithm

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
h

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A1

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
h

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A2

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
h

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A3

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
h

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A4

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ch

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A1

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ch

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A2

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

51

Stage 1 Stage 2

Figure 5. Discharge profile of EVs in different areas after applying the proposed two-stage algorithm.

Figure 6. The generation capacity of each non-renewable distributed generation source (first stage-second stage).

(The dashed line curve represents the first stage of

the proposed algorithm and the load curve

corresponds to the second stage of the proposed

algorithm). As it is known, non-renewable

resources produce their maximum power during

the peak hours of the network due to the high price

of the energy market and in Low load hours due to

the low price of the electricity market, the

minimum power is produced and the available load

is supplied by the upstream network.

Figure 7 shows the network load profile for three

different network operation situations. As it is

clear, the presence of EVs as a new load has

changed the shape of the network load profile (gray

color curve - vehicles cause an increase of about 6

megawatts have become the peak load of the

network. The application of the proposed planning

framework has caused the electric load of the

network to not increase much during peak hours

(dashed line curve). The load has increased, which

has made the network load profile curve more

uniform.

Further, to check the efficiency of the proposed

algorithm, studies have been carried out for cases

where vehicles and distributed generation sources

do not participate in the proposed plan. According

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ch

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A3

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ch

ar
ge

 P
o

w
er

 (
kW

)

Time (Hour)

PDch-A4

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

)

Time (Hour)

P-DG-Lp7

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

)

Time (Hour)

P-DG-Lp12

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

)

Time (Hour)

P-DG-Lp17

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

)

Time (Hour)

P-DG-Lp24

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

52

to the obtained results, it was found that the

existing network is not sufficient to provide the

load required by the vehicles (the peak load of the

network has increased by almost 7 megawatts) and

there is a need to strengthen the network.

Therefore, for comparison, the costs related to one

year of implementation of the proposed plan were

compared with the costs related to the network

strengthening plan.

The network strengthening plan has been carried

out in such a way that the studies related to the

network strengthening plan with 35% penetration

of vehicles for a 20-year horizon were carried out

and the related costs were obtained. Finally, for

comparison, the costs of strengthening the network

were obtained by considering the interest rate of

10% for one year of equalization. Table 9 shows

the costs obtained after the implementation of the

two plans, as it is clear that the increase in the costs

of strengthening the network is more than 5 times

the increase in the costs of implementing the

proposed plan.

Figure 7. Network load profiles for three different operating states.

Table 9. Increase in costs.
Plan Increase in the annual cost of implementing the proposed plan ($)

Proposed plan 1601941

Network strengthening plan 9058207

4. Conclusions

In this article, a two-stage planning framework for

the optimal management of EVs and dispersed

generation resources with private ownership was

analyzed in a centralized manner. The basic

approach in this article was the optimal

charging/discharging planning of EVs along with

distributed generation sources to reduce operating

costs by considering the wishes of vehicle owners

and distributed generation sources. To implement

the proposed algorithm, at first EVs were modeled

probabilistically and the uncertainty related to

distributed renewable generation sources was

considered, then the CPLEX optimization method

was used for different scenarios to solve the

problem. Finally, as the results show, the use of the

proposed planning model, in addition to the high

satisfaction of EVs and distributed generation

resources, can on the one hand minimize the

operating costs and on the other hand reduce and

postpone the network strengthening costs.

Funding: No funding for this research.

Data Availability Statement: All data used to

support the findings of this study are included

within the article.

Conflicts of Interest: The authors declare no

conflict of interest.

References
[1] S. Shafiee, M. Fotuhi-Firuzabad, and M. Rastegar,

"Investigating the Impacts of Plug-in Hybrid

Electric Vehicles on Power Distribution Systems,"

IEEE Transactions on Smart Grid, vol. 4, pp. 1351-

1360, 2013.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
e

r
(k

W
)

×〖

1
0
〗^

(−
3

)

Time (Hour)

Without Evs Stage 2 Stage 1

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

53

[2] P.H. Divshali, B.J. Choi, “Electrical market

management considering power system constraints

in smart distribution grids,” Energies, vol. 9, 2016.

[3] Hemmatpour, M. H., Koochi, M. H. R., Dehghanian,

P., and Dehghanian, P. (2022). Voltage and energy

control in distribution systems in the presence of

flexible loads considering coordinated charging of

electric vehicles. Energy, 239, 121880.

[4] Bagchi, A. C., Kamineni, A., Zane, R. A., and

Carlson, R. (2021). Review and comparative

analysis of topologies and control methods in

dynamic wireless charging of electric vehicles.

IEEE Journal of Emerging and Selected Topics in

Power Electronics, 9(4), 4947-4962.

[5] Ghotge, R., van Wijk, A., and Lukszo, Z. (2021).

Off-grid solar charging of electric vehicles at long-

term parking locations. Energy, 227, 120356.

[6] Scott, M.J, et al., Impacts assessment of plug-in

hybrid vehicles on electric utilities and regional US

power grids: Part 2: an economic assessment.

Pacific Northwest National Laboratory (a), 2007.

[7] B. Falahati, Y. Fu, Z. Darabi, and L. Wu, "Reliability

assessment of power systems considering the large-

scale PHEV integration," IEEE Vehicle Power and

Propulsion Conference, pp. 1-6, 2011.

[8] Su, J., Lie, T. T., and Zamora, R. (2019). Modeling

of large-scale electric vehicles charging demand: A

New Zealand case study. Electric Power Systems

Research, 167, 171-182.

[9] Sheng, M. S., Sreenivasan, A. V., Covic, G. A.,

Wilson, D., and Sharp, B. (2019, June). Inductive

power transfer charging infrastructure for electric

vehicles: A new Zealand case study. In 2019 IEEE

PELS Workshop on Emerging Technologies:

Wireless Power Transfer (WoW) (pp. 53-58).

IEEE.

[10] H. Farzin, M. Moeini-Aghtaie, and M. Fotuhi-

Firuzabad, "Reliability Studies of Distribution

Systems Integrated With Electric Vehicles under

Battery-Exchange Mode," IEEE Transactions on

Power Delivery, vol. 31, pp. 2473-2482, 2016.

[11] Teng, F., Ding, Z., Hu, Z., and Sarikprueck, P.

(2020). Technical review on advanced approaches

for electric vehicle charging demand management,

Part I: Applications in the electric power market and

renewable energy integration. IEEE Transactions on

Industry Applications, 56(5), 5684-5694.

[12] Van den Berg, M. A., Lampropoulos, I., and

AlSkaif, T. A. (2021). Impact of electric vehicles

charging demand on distribution transformers in an

office area and determination of flexibility

potential. Sustainable Energy, Grids and Networks,

26, 100452.

[13] K. Clement-Nyns, E. Haesen, and J. Driesen, “The

impact of charging plug-in hybrid electric vehicles

on a residential distribution grid,” IEEE Trans.

Power Syst., vol. 25, no. 1, pp. 371–380, 2010.

[14] C. Pang, M. Kezunovic and M. Ehsani, “Demand

side management by using electric vehicles as

distributed energy resources,” Proc. of IEEE

Electric Vehicle Conf. (IEVC), Greenville, SC,

March 2012.

[15] Ali, Abdelfatah, et al. "Optimal allocation of

inverter-based WTGS complying with their

DSTATCOM functionality and PEV

requirements." IEEE Trans. Vehicular

Technology, vol. 69, no. 5, pp. 4763-4772, Mar

2020.

[16] Su, Wenzhe, et al. "An MPC-based dual-solver

optimization method for DC microgrids with

simultaneous consideration of operation cost and

power loss." IEEE Trans. Power Systems, vol. 36,

no. 2, pp. 936-947, 2020.

[17] Al Zishan, Abdullah, Moosa Moghimi Haji, and

Omid Ardakanian. "Reputation-based fair power

allocation to plug-in electric vehicles in the smart

grid." 2020 ACM/IEEE 11th International

Conference on Cyber-Physical Systems (ICCPS).

IEEE, 2020.

[18] Fachrizal, Reza, et al. "Smart charging of electric

vehicles considering photovoltaic power production

and electricity consumption: A

review." ETransportation vol. 4, pp. 100056, 2020.

[19] Sufyan, Muhammad, et al. "Charge coordination

and battery lifecycle analysis of electric vehicles

with V2G implementation." Electric Power

Systems Research, vol. 184, pp. 106307, 2020.

[20] Singh, Jyotsna, and Rajive Tiwari. "Cost-benefit

analysis for v2g implementation of electric vehicles

in the distribution system." IEEE Trans. Industry

Applications, vol. 56, no. 5, pp. 5963-5973, 2020.

[21] Alsharif, Abdulgader, et al. "A comprehensive

review of energy management strategy in Vehicle-

to-Grid technology integrated with renewable

energy sources." Sustainable Energy Technologies

and Assessments, vol. 47, pp. 101439, 2021.

[22] Chang, Shuo, Yugang Niu, and Tinggang Jia.

"Coordinate scheduling of electric vehicles in

charging stations supported by microgrids." Electric

Power Systems Research, vol. 199, pp. 107418,

2021.

[23] Wu, Chuanshen, et al. "A model predictive control

approach in microgrid considering multi-

uncertainty of electric vehicles." Renewable

Energy, vol. 163, pp. 1385-1396, 2021.

[24] Ramadan, Ashraf, et al. "Scenario-based stochastic

framework for optimal planning of distribution

systems including renewable-based DG

units." Sustainability, vol. 13, no. 6, pp. 3566, 2021.

[25] T. Wu, Q. Yang, Z. Bao, and W. Yan, “Coordinated

Energy Dispatching in Microgrid With Wind Power

Generation and Plug-in Electric Vehicles,” IEEE

Trans. Smart Grid, vol. 4, pp. 1453-1463, 2013.

[26] Zakariazadeh, Alireza, Shahram Jadid, and

Pierluigi Siano. "Integrated operation of electric

vehicles and renewable generation in a smart

distribution system." Energy Conversion and

Management, vol. 89 pp. 99-110, 2015.

[27] M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-

Firuzabad, and P. Dehghanian, "Optimized

Probabilistic PHEVs Demand Management in the

Context of Energy Hubs," IEEE Transactions on

Power Delivery, vol. 30, pp. 996-1006, 2015.

Y. Ebazadeh et al./ Journal of Optimization of Soft Computing (JOSC), 2(4): 40-55, 2024

54

[28] M. Honarmand, A. Zakariazadeh, and S. Jadid,

"Integrated scheduling of renewable generation and

electric vehicles parking lot in a smart microgrid,"

Energy Conversion and Management, vol. 86, pp.

745-755, 2014.

[29] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama,

and R. Seethapathy, "Optimal Renewable

Resources Mix for Distribution System Energy Loss

Minimization," IEEE Transactions on Power

Systems, vol. 25, pp. 360-370, 2010.

[30] A. Yona, T. Senjyu, and T. Funabashi, "Application

of Recurrent Neural Network to Short-Term-Ahead

Generating Power Forecasting for Photovoltaic

System," IEEE Power Engineering Society General

Meeting, pp. 1-6, 2007.

[31] G.Boyle, Renewable energy, Oxford, U.K.: Oxford

Univ, Press, 2004.

[32] B. S. Borowy and Z. M. Salameh, "Optimum

photovoltaic array size for a hybrid wind/PV

system," IEEE Transactions on Energy Conversion,

vol. 9, pp. 482-488, 1994.

[33] D. Bertsimas and J. N. Tsitsiklis, “Introduction to

Linear Optimization,” 1997.

[34] R. Billinton and S. Jonnavithula, "A test system for

teaching overall power system reliability

assessment," IEEE Transactions on Power Systems,

vol. 11, pp. 1670- 1676, 1996.

[35] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, "Smart

energy management system for optimal microgrid

economic operation," IET Renewable Power

Generation, vol. 5, pp. 258-267, 2011.

[36] S. W. Hadley and A. A. Tsvetkova, "Potential

Impacts of Plug-in Hybrid Electric Vehicles on

Regional Power Generation," The Electricity

Journal, vol. 22, pp. 56-68, 2009.

[37] N. M. M. Razali and A. H. Hashim, "Backward

reduction application for minimizing wind power

scenarios in stochastic programming," International

Power Engineering and Optimization Conference,

pp. 430-434, 2010.

List of symptoms:

Binary Variables
Electric vehicle charging and discharging status v at t hour X (v, t)/Y (v, t)

Generator on or off status j at t hour U (j, t)

Continuous variables

Electric vehicle discharge power v at t hour 𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)

Electric vehicle charging power v at t hour 𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)
Electric vehicle energy v at t hour ES (v, t)

Optimal charge profile for V electric vehicle 𝑃𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣)

Optimal discharge profile for V electric vehicle 𝑃𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣)
The number of switching states from charging to discharging or vice versa for a V electric vehicle Dv

Power purchased from the main grid per t hour PNTW (t)

Wind turbine power per t hour Pw (t)
Power of the photovoltaic system per t hour and s scenario Ppv (t)

The output power of distributed generation source j at t hour PDG (j, t)

Active power loss per t hour PLOSS (t)

Radiation intensity per t hour 𝐼𝑟
𝑟

Network load per t hour PLOAD (t)
Electricity market price per t hour PrMRT (t)

Price of electric vehicle charging per t hour 𝑃𝑟𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑡)

Price of electric vehicle discharge per t hour 𝑃𝑟𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑡)
Price of power loss per t hour PrLOSS (t)

Active power injected into the bus n per t hour Pn (t)
Reactive power injected into the bus n per t hour Qn (t)

The power transferring through the transformer n per t hour PTRANS (n, t)

Wind turbine speed per t hour 𝑉𝑓
𝑡

Objective function related to the profit of electric vehicles f1, 1

Objective function related to the profit of distributed production resources f1, 2
The objective function of operating costs f2

Voltage angle in the bus n per hour t 𝛿𝑛(𝑡)

The size of the array (m, n) in the network admittance matrix |𝛾𝑛,𝑚|

The angle of the array (m, n) in the network admittance matrix 𝜃𝑛,𝑚

Parameters
Wind turbine rated power Prated

Wind turbine rated speed Vr
Low cutoff speed of wind turbine Vci

High cutoff speed of wind turbine Vco

Efficiency coefficient of a photovoltaic system 𝜂𝑃𝑉
The entire surface of the photovoltaic system SPV

Ambient temperature Ta

Efficiency coefficient of electric V vehicle charging 𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

Efficiency coefficient of electric V vehicle discharge 𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

Maximum dischargeable power of the V electric vehicle 𝑃𝐷𝑐ℎ𝑎𝑟𝑔𝑒,𝑣
𝑀𝑎𝑥

Maximum chargeable power of the V electric vehicle 𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝑣
𝑀𝑎𝑥

The optimal charging level of the V electric vehicle 𝑆𝑂𝐶𝑑𝑒𝑠
𝑣

The initial charge level of the V electric vehicle's 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑣

Maximum limit of the battery capacity of the electric vehicle 𝜓𝑣
𝑀𝑎𝑥

Minimum limit of the battery capacity of the electric vehicle 𝜓𝑣
𝑀𝑖𝑛

Investigating and sensitivity analyzing the of operating micro grids in the presence of electric vehicles

55

Maximum usable percentage of the V electric vehicle's battery capacity 𝜑𝑣
𝑀𝑎𝑥

Minimum usable percentage of the V electric vehicle's battery capacity 𝜑𝑣
𝑀𝑖𝑛

The battery capacity of V electric vehicle EBatCap,v

The weighting factor related to electric vehicle charging Kcharge

The weighting factor related to the discharge of electric vehicles KDcharge
Maximum number of switching states from charge state to discharging or vice versa for any electric vehicle NSMax

Maximum allowed power that can be received from the upstream network 𝑃𝑁𝑇𝑊
𝑀𝑎𝑥

Maximum capacity of the transformer 𝑃𝑇𝑅𝐴𝑁𝑆
𝑀𝑎𝑥

The apparent power flowing from the bus n to m per hour t S(n,m,t)

Maximum lines capacity 𝑆𝑛,𝑚
𝑀𝑎𝑥

The voltage on the bus n V(n,t)

Minimum and maximum voltage allowed on the bus n 𝑉𝑛
𝑀𝑖𝑛/𝑉𝑛

𝑀𝑎𝑥

The maximum output power of the distributed generation source j 𝑃𝐷𝐺,𝑗
𝑀𝑎𝑥

The minimum output power of distributed generation source j 𝑃𝐷𝐺,𝑗
𝑀𝑖𝑛

The cost of setting up a distributed generation resource j Scj
Coefficients of the cost function of the distributed production source j a(j),b(j)

Power increase rate of distributed generation source j 𝑅𝑈𝑃𝐷𝐺
𝑗

The power reduction rate of distributed generation source j 𝑅𝐷𝑁𝐷𝐺
𝑗

Shape factor 𝛼, 𝛫

Scale factor 𝛽, 𝑐

The length of the time interval ∆𝑡
Collections

The index corresponding to the source number of distributed generation j

Index related to the number of network buses n, m
Index related to optimization time intervals t

The index corresponding to the scenario number s

Index related to the number of electric vehicles v

F. Sayadi Shahraki et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 56-65, 2024

56

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (56-65), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Optimal use of photovoltaic systems in the distribution network

considering the variable load and production profile of Kerman city

Fahimeh Sayadi Shahraki1, Shaghayegh Bakhtiari Chehelcheshmeh2* and Alireza Zamani nouri3

1. Department of Electrical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.

2. Department of Computer Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
3. Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received: 2025/01/01

Revised: 2025/03/15

Accepted: 2025/04/05

DOI:

 Photovoltaic systems are very important renewable energy sources, and

optimal use of their active and reactive power capacity is very useful in

improving the power quality of the distribution network. Therefore, it

is necessary to determine the optimal location, number, and capacity of

the solar system with appropriate optimization methods so that the

maximum reduction in network losses is achieved while considering

power quality constraints. Given the complexity and many limitations

of the problem, the need to use an appropriate optimization method is

evident. In this paper, using the P-PSO optimization algorithm, in the

IEEE 33-bus test network, the location and capacity of the active and

reactive power of the solar system are determined based on the variable

load profile of the network and the daily production curve of the solar

system in Kerman city to minimize losses and improve the voltage

profile of the electrical energy distribution networks. To increase the

accuracy of this optimization, each of the load and production curves

is divided into three different levels, according to the geographical

climate of Kerman city, in one year, and to evaluate the performance

of the proposed method, the relevant results in four different scenarios

are examined. The optimization results indicate a significant impact on

improving power quality indicators in the presence of photovoltaic

systems, especially when using the active and reactive power capacities

of these units simultaneously.

Keywords:
Photovoltaic systems,

 Optimization, distribution

network, power quality

*Corresponding Author’s Email
Address:
sh.bakhtiari@iaushk.ac.ir

1. Introduction

Increasing air pollution and shortage of fuel for

fossil power plants in the world have led to an

increasing interest in clean and renewable sources.

On the other hand, the electrical energy distribution

network has faced an increasing load demand,

which highlights the need to use local production

sources. Solar or photovoltaic systems are among

the renewable distributed generation sources that

include various advantages such as environmental

compatibility, flexibility, reliability, and economic

benefits [1]. So far, many studies have been

conducted on the connection of distributed

generation to the distribution network, and many

countries are turning to these sources due to the

environmental, economic, and reliability benefits

of these systems [2]. Research shows that the way

of use, type, capacity, and installation location of

these sources are very important in their efficiency

in improving the conditions of the distribution

system and power quality parameters [3]. Failure to

use properly and improper determination of the

capacity and installation location of these sources

can even lead to a decrease in power quality in the

distribution network [4]. In [5-8], the location of

distributed generation in the distribution network

has been carried out based on various optimization

Optimal use of photovoltaic systems in the distribution network considering the variable load

57

algorithms to reduce losses. The objective function

in [5-6] is to reduce losses and costs of distributed

generation units. In reference [6], in addition to

power losses and installation costs of distributed

generation sources, the cost of air pollution is also

included in the objective function. In [7-8], power

quality constraints have also been evaluated in the

process of installing and operating new and

renewable energy sources, and the optimal location

of distributed generation sources has been carried

out by an optimization problem. Although the load

and generation profiles of all distributed generation

sources in both studies are considered constant in

the distribution network. In [9], the effective use of

solar systems in a distribution network that is faced

with an increase in demand has been investigated.

The active power generation capacity has been

calculated using environmental conditions, but the

reactive power capacity of these sources has not

been used. In [10], recommendations and

guidelines for the location and capacity of solar

system installation in the existing network have

been provided for power companies. Given the

complexity of the optimization problem in many

past studies, this problem has been modeled with

various optimization methods, and researchers

have tried to optimize their response using newer

and more effective optimization methods and

considering more constraints [11-13]. In [11], the

optimization of the location of distributed

generation units is proposed using improved

optimization techniques, and finally, the efficiency

of the proposed method compared to traditional

methods has been shown.

In [12], the optimal placement of distributed

generation was carried out by considering high

harmonic loads in the network, and the harmonic

distortion index was also stated as one of the

constraints of the problem. The goal of

optimization is to improve the power quality

indicators in the system, and only the active power

capacity of photovoltaic systems was used. In [14],

the capacity and location of solar distributed

generation were optimized. To limit the search

space, the sensitive buses of the system were

initially determined through sensitivity analysis.

The load change profile and the production rate of

the solar system were not considered in the

presented model. In the reviewed studies, the load

profile of the network and the production of

distributed sources were not considered, but in

some studies such as [15], the information on the

consumed load in 24 hours and the average active

power produced by the solar system were used to

determine the optimal location and capacity of the

solar system to reduce losses and reduce voltage

deviation.

A review of previous studies reveals the following

weaknesses:

1- In studies of the use of distributed generation

sources from the point of view of the power quality

of the distribution network, the use of the average

load profile and the average production power of

hypothetical distributed generation systems is

completely unattainable, and naturally, due to the

variability of the load profile and production, the

use of the results in practice will not be very

effective.

2- In some distributed generation sources,

including photovoltaic systems, it is possible to use

reactive power capacity if accurately modeled and

the available range is determined, which has often

been ignored in previous studies.

In the present study, to determine the installation

location and the required active and reactive power

utilization capacity of photovoltaic sources, the

change in the actual annual load profile in Kerman

has been considered along with accurate

information on the active power production rate of

the existing solar system in Kerman. The leveling

method takes into account different levels of

annual load and production, and as a result of the

intersection of these levels, all different load and

production level states are extracted, and

optimization is carried out based on all levels to

reduce losses and network voltage deviation. The

answer to the optimization problem is the active

and reactive power capacity and the location of the

solar system at each load level. Also, the grid

voltage constraints, the active and reactive power

capacity of the photovoltaic system, and the total

power generated based on demand are also

considered in solving the optimization problem.

The rest of the paper is organized as follows. In

section 2 solution method consist of objective

function and constraints formulations are

presented. Section 3 Describes how to implement

the proposed method of intersecting load and

production levels and P-PSO method. Simulation

scenarios and results are provided in section IV and

section V discusses the results and concludes the

paper.

2. Solution method

2.1. Objective function

The goal of optimization is to reduce active losses

and maintain the bus voltage profile within the

desired range. The objective function 𝐹 is defined

as equation (1) which must be minimized. The

weighting coefficients 𝑘1 and 𝑘2 are chosen

between 0 and 1 and their sum is equal to one and

F. Sayadi Shahraki et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 56-65, 2024

58

shows the degree of influence of each objective

function on the overall objective function.

(1) 𝐹 = 𝑘1𝑓1 + 𝑘2𝑓2

The first objective function 𝑓1 is the total real losses

in the buses, which is obtained from equation (2).

The second objective function 𝑓2 is the

improvement rate of the voltage profile, which is

defined as the sum of the squares of the bus voltage

difference to the nominal value of one per unit, and

is obtained from equation (3).

(2)
 𝑓1 = ∑

𝑃𝑙𝑜𝑠𝑠𝑖 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡 𝐷𝐺

𝑃𝑙𝑜𝑠𝑠𝑖 𝑤𝑖𝑡ℎ 𝐷𝐺

𝑁𝑏𝑢𝑠

𝑖=1

(3)
 𝑓2 = ∑ (𝑣𝑖 − 𝑣𝑛𝑜𝑚)2

𝑁𝑏𝑢𝑠

𝑖=1

𝑃𝑙𝑜𝑠𝑠 is the total bus losses and 𝑁𝑏𝑢𝑠 is the number

of busses.

 In order to normalize the objective function of the

problem, in equation (2), the total bus losses

without installing distributed generation sources

are divided by the total losses in the presence of

distributed generation sources. 𝑣𝑖is the voltage of

the 𝑖th bus, 𝑣𝑛𝑜𝑚 is the nominal voltage in terms of

per unit.

2.2. Constraints

2.2.1. Power balance constraint

According to equation 4, where 𝑃𝐷𝑖, 𝑃𝑃𝑉𝑖 are the

active power generated by DG and the active power

consumed in the nth bus, respectively, and 𝑃𝐿

represents the active losses in the network in

question. 𝑃𝑠𝑙𝑎𝑐𝑘 is the transmitted power from the

upstream network.

(4)
 ∑ 𝑃𝑃𝑉𝑖

𝑁

𝑖=1

+ 𝑃𝑠𝑙𝑎𝑐𝑘 = ∑ 𝑃𝐷𝑖

𝑁

𝑖=1

+ 𝑃𝐿

2.2.2. Active and reactive power generation

range by solar DG

The active generation power limit of the jth

distributed generation unit is obtained from

equation (5).

(5) 𝑃𝑗𝑃𝑉𝑚𝑖𝑛 < 𝑃𝑗 < 𝑃𝑗𝑃𝑉𝑚𝑎𝑥 𝑗 = 1.2. … . 𝑁𝐷𝐺

𝑁𝐷𝐺 is the number of distributed generation, 𝑃𝑃𝑉𝑚𝑖𝑛

is the minimum active power generated, 𝑃𝑃𝑉𝑚𝑎𝑥 is

the maximum active power generated. In this

paper, the following method is used to obtain the

reactive power range:

At any time of the day, the reactive power

generated by the photovoltaic system is limited by

various constraints depending on the operating

point of the system, and the reactive power

exchanged between the grid and the photovoltaic

system converter. We assume that the PV system

with the maximum active power is in the system.

One of the most important constraints for the

reactive power of the system is determined by the

maximum apparent power of the inverter. The

reactive power of the PV depends on the maximum

voltage and current values of its converter, so to

calculate the controllable limit 𝑄𝑃𝑉-𝑃𝑃𝑉, the

maximum voltage and current values of the

converter 𝑉𝐶′𝑚𝑎𝑥and 𝐼𝐶′𝑚𝑎𝑥 must be considered.

The relationship between active and reactive power

considering the converter current is as follows:

(6) 𝑃𝑃𝑉
2 + 𝑄𝑃𝑉

2 = (𝐼𝐶𝑉𝑃𝑉)2

And the relationship between active and reactive

power, taking into account the voltage limitation of

the converter, is as follows:

(7) 𝑃𝑃𝑉
2 + (𝑄𝑃𝑉 +

𝑉𝑃𝑉
2

𝑋𝐶
)2 = (

𝑉𝐶𝑉𝑃𝑉

𝑋𝐶
)2

Using this relationship, the design value 𝑉𝐶′𝑚𝑎𝑥

can be calculated, which determines the maximum

inverter dc link voltage 𝑉𝑑𝑐𝑚𝑎𝑥and 𝐼𝐶′𝑚𝑎𝑥 [17-18].

The maximum converter current should be in the

following relationship using the values of PV

voltage, active and reactive power:

(8) 𝐼𝐶′𝑚𝑎𝑥 =
𝑃𝑃𝑉′𝑅

2 +(𝑉𝑃𝑉′𝑅 𝑡𝑎𝑛𝜃𝑅

𝑉𝑃𝑉′𝑚𝑖𝑛

The maximum converter voltage is also calculated

from the active and reactive power values and the

maximum PV voltage as follows:
(9) 𝑉𝐶′𝑚𝑎𝑥 =

𝑋𝐶

𝑉𝑃𝑉′𝑚𝑎𝑥
√𝑃𝑃𝑉′𝑅

2 + (𝑉𝑃𝑉′ 𝑡𝑎𝑛𝜃𝑅 +
𝑉𝑃𝑉′𝑚𝑎𝑥

2

𝑋𝐶
)2

Also, the PV reactive power, taking into account

the rated current and rated voltage of the PV

system, is:

(10)
𝑄𝑐′𝑃𝑉

𝑡 = √(𝑉𝑃𝑉𝐼𝐶′𝑚𝑎𝑥)2 − 𝑃𝑃𝑉
𝑡 2

𝑄𝑣′𝑉
𝑡 = √(

𝑉𝐶′𝑚𝑎𝑥𝑉𝑃𝑉

𝑋𝐶
)2 − 𝑃𝑃𝑉

𝑡 2
−

𝑉𝑃𝑉
2

𝑋𝐶

Finally, at each operating point, the maximum

reactive power at each hour t is obtained using the

following equation:

(11) 𝑄𝑃𝑉′𝑚𝑎𝑥
𝑡 = 𝑚𝑖𝑛{𝑄𝑐′𝑃𝑉

𝑡 ′𝑄𝑣′𝑃𝑉
𝑡 }

In this article, 𝑉𝑃𝑉′𝑚𝑎𝑥=1.05, 𝑉𝑃𝑉′𝑚𝑖𝑛=0.95, and

𝑋𝐶=0.3 are considered.

3.2.3. Bus voltage limit

Optimal use of photovoltaic systems in the distribution network considering the variable load

59

In equation (12), the minimum and maximum

allowable voltage limits for all buses are

considered to be 0.9 to 1.01 per unit. Where 𝑉𝑖is the

voltage of the i-th bus, 𝑉𝑖.𝑚𝑖𝑛, 𝑉𝑖.𝑚𝑎𝑥 are the

minimum and the maximum bus voltage

respectively.

(12) 𝑉𝑖.𝑚𝑖𝑛 < 𝑉𝑖 < 𝑉𝑖.𝑚𝑎𝑥 𝑖 = 1.2. … . 𝑁𝑏𝑢𝑠

3. Proposed intersection of load and production

levels method and solving by P-PSO

To bring the results of the optimization problem

closer to reality, changes in the load curve and solar

system production should be included in the

problem. In this paper, for more realistic results and

to increase the optimization accuracy, changes in

the load and production curve are considered in a

one-year period. Since temperature changes in the

seasons are the most important parameter affecting

the load in the short term, the annual load curve of

the Kerman city network is divided into three

conditions: maximum, minimum, and intermediate

temperatures, and as a result, load consumption.

Kerman's peak load occurs in the summer season

and the high load level occurs in this time period.

In winter, due to the city's temperate geographical

location and the major use of gas in heating

devices, the amount of electricity used is low and

the low load level occurs in this period. Finally, in

the temperate seasons of autumn and spring, load

consumption is considered as the medium load

level. Accordingly, the load curve of Kerman city

is divided into three low load, high load, and

medium load levels in a year based on seasonal

changes, as shown in Table 1. Also in Table 2, the

active and reactive power capacity of the

photovoltaic system is specified for each load level.

Table 1. Network load levels studied in one year

Load Levels month of the year

Low load November, December, January, February

Mid load April, May, October, March

High load June, July, August, September

Table 2. Active and reactive power of the photovoltaic

system for each load level

Reactive power Active power

Q P Test network

1.5Q 0.3P Low load

0.5Q 0.6P Mid load

Q P High load

Table 3. Yearly leveling the solar system production curve

Load Level months Capacity factor percentage Probability of occurrence per

year

Low load August, November,

December, January

74% 4

12

Mid load April, May, February,

March

90% 4

12

High load June, July, September,

October

100% 4

12

Solar cells rarely operate at their maximum
power point because the output power is
affected by radiation and ambient temperature.
Load changes also affect the shift of the
operating point and the power received from
the system. By studying the energy output of the
solar system in the geographical area of
Kerman, the production curve of the
photovoltaic system is obtained at three
different levels low load, medium load, and high
load according to Table 3.

3.1. Intersection of the load and production

curves

In this paper, to increase the accuracy of the

obtained results, it is used to consider different

states of the curve resulting from the intersection of

two load curves and the solar system production

curve. Since three levels (low load, medium load,

and high load) are considered for the load and

production curve, the resulting curve has 9 states,

but with the assumptions of the problem for the city

of Kerman, only 6 of these 9 states occur. The

intersection of the two curves is shown in Figure 1.

Title of Paper

60

Figure 1. The intersection of two annual load and production graphs of a solar system

The characteristics of the different states of the

graph resulting from the intersection of the two

load and production curves are presented in Table

4. Accordingly, in order to solve the problem in

question, by determining the loss objective

function for each of these 6 states, according to

equation (13), the objective function of the problem

is obtained by considering the changes in the load

curve and the changes in the production curve.

(13)

𝐹𝑇 =
3

12
𝑔1 +

3

12
𝑔2 +

3

12
𝑔3 +

1

12
𝑔4

+
1

12
𝑔5 +

1

12
𝑔6

First case: For the months of November-

December-January, the load curve and the

generation curve are at low load level. Therefore,

the coefficient of the corresponding loss function

𝑔1 is obtained as 3/12. The generation capacity

factor is 74%. (For load distribution) its active

power is considered to be 0.3 times the active

power of the test network load and its reactive

power is considered to be 1.5 times the reactive

power of the test network.

Second case: In the months of June, July, and

September, the load curve and the generation curve

are at medium load level, therefore the coefficient

of the corresponding loss function 𝑔2 is obtained as

3/12. The generation capacity factor is 90%. (For

load distribution) its active power is considered to

be 0.6 times the active power of the test network

load and its reactive power is considered to be 0.5

times the reactive power of the test network. The

table below describes the status of all 6 possible

cases.

Table 4. All possible load and production states and 6 possible states

Mid Mid High High Low Low Mid High Low Load Level

High Low Mid Low Mid High Mid High Low
Generation

Level

1

12
 0 0

1

12

1

12
 0

3

12

3

12

3

12
 Probability

October Don’t occure Don’t
occure August February Don’t

occure

April
May

March

June
July

September

November
December

January
Month

0.6P 0.6P P P 0.3P 0.3P 00.6P P 0.3P Active
power

0.5Q 0.5Q Q Q 1.5Q 1.5Q 0.5Q Q 1.5Q
Reactive

power

100% 74% 90% 74% 90% 100% 90% 100% 74% Capacity
factor

3.2. Problem-solving with the P-PSO algorithm

To solve the optimization problem described in this

section, a new and very effective and useful

algorithm, P-PSO, has been used, the capabilities

and implementation of which are shown in [17].

Despite the competitive performance of PSO, it is

noted the tendency of PSO swarm to converge

prematurely in the local optima, due to its rapid

convergence on the best position found so far at the

2 4 6 8 10 12
0

1

2

3

4

5

6

month

L
o
a
d
 l
e
v
e
l

solar

load

Optimal use of photovoltaic systems in the distribution network considering the variable load

61

early stage of optimization. Main challenging issue

that needs to be addressed is the proper control on

the exploration and exploitation searching of PSO.

Basic PSO Algorithm

In basic PSO, each particle that is roaming through

the D dimensional problem hyperspace represents

the potential solution for a specific problem. For

particle i two vectors, i.e. position vector Xi =

[Xi1، Xi2، … ،XiD] and velocity vector Vi =

[Vi1 ،Vi2، … ، ViD] are used to represent its current

state. Additionally, each particle i can memorize its

personal best experience ever encountered (i.e.

cognitive experience), represented by the personal

best position vector Pi = [Pi1، Pi2 … ، PiD]. The

position attained by the best particle in the society

(i.e. social experience) is represented asPg =

[Pg1، Pg2، … ، PgD]. Mathematically, at iteration (t

+ 1) of the searching process, the d-th dimension of

particle i's velocity, V id(t + 1) and position

X i,d(t + 1) are updated as follows:

Where 𝑐1and 𝑐2 are the acceleration coefficients; 𝑟1

and 𝑟2 are two random numbers generated from a

uniform distribution within the range of [0, 1].

Particles velocity is clamped to a maximum

magnitude of 𝑉𝑚𝑎𝑥 to prevent swarm explosion.

When minimizing the fitness function f in D

dimensional search space, particle i's 𝑃𝑖 position in

iteration (t + 1) is updated as follows [19]:

𝑃𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡 + 1) 𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) < 𝑓(𝑃𝑖(𝑡))

𝑃𝑖(𝑡) 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 (16) (13)

P-PSO Algorithm

Despite the competitive performance of PSO,

researchers have noted the tendency of PSO swarm

to converge prematurely in the local optima, due to

its rapid convergence on the best position found so

far at the early stage of optimization [20]. Once the

swarm congregates at such position, little

opportunity is afforded for the population to

explore for other solution possibilities by designing

perturbation module. This leads to the entrapment

of the swarm within the local optima of search

space and thus premature convergence occurs.

Another challenging issue that needs to be

addressed is the proper control on the exploration

and exploitation searching of the PSO. So P- PSO

which was proposed in [17] is characterized by:

3.2.1 Velocity calculation

In this model to achieve better control on the

algorithm’s exploration and exploitation

capabilities, particles velocity is dependent on both

particle’s fitness and time. More specifically,

particles with better (i.e. lower) fitness value are

assigned with lower 𝜔𝑖 that favour the exploitation,

whilst particles with worse (i.e. higher) fitness

value is encouraged for the exploration by

assigning them with higher 𝜔𝑖. Mathematically,

particle i’s inertia weight, i.e. 𝜔𝑖 is calculated as

follows:

𝜔𝑖 = 𝑐1((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ∗ 𝐺𝑖 + 𝜔𝑚𝑖𝑛)

+𝑐2 ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ∗
𝑚𝑎𝑥𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
+ 𝜔𝑚𝑖𝑛) (17)

Where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 represent the maximum

and minimum inertia weights, respectively,

i.e. 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 = 0.4; 𝐺𝑖 represents the

fitness dependent weight value that determines 𝜔𝑖

of particle i as shown:

𝐺𝑖 =
𝑓(𝑃𝑖)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 (18) (15)

Where 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 represent the maximum and

minimum personal best fitness values that exist in

the population. Equation (18) shows that the

particle with smaller fitness has smaller and thus is

assigned with smaller 𝜔𝑖 and vice versa. To this

end, we update the particle i's velocity, 𝑉𝑖 as

follows:
𝑉𝑖(𝑡 + 1) = 𝜔𝑖𝑉𝑖 + ∑ 𝑐𝑘𝑟𝑘(𝑃𝑘 − 𝑋𝑖)𝑃𝑘∈𝑁𝑖

 (19) (16)

where 𝑃𝑘 represents the personal best position of

neighboring particles that exist in particle i's

neighborhood; 𝑁𝑖 represents the number of

neighbouring particles available for particle i; 𝑐𝑘

represents the acceleration coefficient that equally

distributed among the 𝑁𝑖 neighboring particles,

calculated as, 𝑐𝑘 = 𝑐 𝑁𝑖⁄ where; 𝑐 = 4.1, 𝑟𝑘

represents the random number in the range of [0,

1].

3.2.2 Perturbation module

To alleviate the premature convergence issue, a

perturbation module is adopted to perform

perturbation on the 𝑃𝑔 particle and provide extra

diversity for it to jump out from local optima, if its

fitness is not improved for 𝑚 successive function

evaluations (FEs). The 𝑚 value that used to trigger

perturbation module should not be set too large or

too small, as the former wastes the computation

resources, whilst the latter degrades algorithm’s

convergence speed. Herein, 𝑚 is set as 5. In

perturbation module, one of the d-dimension of 𝑃𝑔

particle i.e. 𝑃𝑔𝑑 is first randomly selected and it is

then perturbed randomly by a normal distribution

as follows:

𝑉𝑖𝑑(𝑡 + 1) = 𝑉𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) +

𝑐2𝑟2(𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) (14)

𝑋𝑖𝑑(𝑡 + 1) = 𝑋𝑖𝑑(𝑡)+𝑉𝑖𝑑(𝑡 + 1) (15)

 𝑃𝑔𝑑
𝑝𝑒𝑟

=

{
𝑃𝑔𝑑 + 𝑟4(𝑋𝑚𝑎𝑥,𝑑 − 𝑋𝑚𝑖𝑛,𝑑) 𝑖𝑓 𝑟3 > 0.5

𝑃𝑔𝑑 − 𝑟4(𝑋𝑚𝑎𝑥,𝑑 − 𝑋𝑚𝑖𝑛,𝑑) 𝑖𝑓 𝑟3 ≤ 0.5

(20)

F. Sayadi Shahraki et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 56-65, 2024

62

Where 𝑃𝑔𝑑, is the perturbed 𝑃𝑔; 𝑟3 is a random

number with the range of [0, 1] and generated from

uniform distribution; 𝑟4 is a random number

generated from the normal distribution of

𝑁~(𝜇, 𝜎2) with mean value of 𝜇 = 0 and standard

deviation of 𝜎 = 𝑅, respectively. R represents the

perturbation range that linearly decreased with the

number of FEs as follows:

𝑅 = 𝑅𝑚𝑎𝑥 − (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)
𝑓𝑒𝑠

𝐹𝐸𝑚𝑎𝑥
 (21) (18)

Where 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are the maximum and

minimum perturbation ranges, respectively; 𝑓𝑒𝑠 is

the FEs number used; max FE is the predefined

maximum FEs. The newly perturbed 𝑃𝑔 particle,

i.e. 𝑃𝑔
𝑝𝑒𝑟

 is then evaluated and examined. It will

replace 𝑃𝑔 if 𝑓(𝑃𝑔
𝑝𝑒𝑟

) < 𝑓(𝑃𝑔).

 The process of solving the aforementioned

optimization problem is shown in the flowchart in

Figure 2.

Figure 2. Problem-solving algorithm

4. Numerical results

The maximum number of distributed generation

sources is four and the generation capacity range of

each DG unit is 1.2 MW and 1.2 MVAR.

To show the effect of using the reactive power

capacity of PV systems and also to evaluate the

proposed method on the selection of optimal

location and capacity, simulations have been

performed considering four scenarios:

1- The studied network without the presence of

distributed generation such as photovoltaic systems

2- The network in the presence of photovoltaic

systems and assuming only the use of active power

3- The network in the presence of photovoltaic

systems and assuming the production of active and

reactive power

4- Similar to case 3 but without leveling (assuming

the average load and production).

In this paper, the role of reducing losses and

improving the voltage profile in the equal objective

function is considered)K1=K2=0.5).

Figure 1. Intersection of two annual

Table 5. Voltage deviation changes in four scenarios

A
v

e
ra

g
e

v
o
lta

g
e

d
e
v

ia
tio

n

6 5 4 3 2 1 states

Load factor 0.3 0.6 1 0.3 0.6 1

S
c
e
n

a
r
io

Generation factor
0.9 1 0.74 0.74 0.9 1

0 5 10 15 20 25 30
0.9

0.95

1

1.05
load coff=1,Prod Coff=0.74

nodes

V
ol

ta
ge

 P
ro

fil
e

with DG

without DG

Optimal use of photovoltaic systems in the distribution network considering the variable load

63

V.D6 V.D5 V.D4 V.D3 V.D2 V.D1

- 0.0599 0.0402 0.1338 0.0599 0.0402 1

0.1947 0.1579 0.0314 0.4052 0.2500 0.0652 0.2654 2

0.0541

0.0002 0.0036 0.0245 0.0021 0.0012 0.0077 3

0.0583 0.0105 0.18 0.1374 0.0114 0.0847 0.028 4

Table 6. Capacity and location of installed PV units

Table 7. Power loss in four scenarios

The results of Table 5 show that the optimal use of

active and reactive power capacity can be effective

in reducing voltage deviation. So scenario 3 shows

the lowest voltage deviation. Table 6 shows the

results of the capacity and location of installed PV

units. To evaluate the results from the point of view

of losses, Table 7 summarizes the results of the

different objective functions and also reports the

average losses. As can be seen in scenario 1, losses

occur at the highest level and the use of the active

power capacity of the photovoltaic system leads to

a significant reduction in the level of power losses

in the network. Also, comparing the results of the

second and third scenarios shows the effect of

using the reactive power capacity of the

photovoltaic system in reducing losses. So at peak

load, losses are reduced to about one-third. To see

the effect of using the photovoltaic system, the

voltage results of all buses at peak load in the first

and third scenarios are shown in Figure 3.

According to the figure, in the third scenario, due

to the simultaneous use of the active and reactive

power capacity of the solar system, the bus voltage

deviation level is minimized. The results of Table

PV 4 PV 3 PV 2 PV 1

Scenario

Capacity

Location

Capacity

Location

Capacity

Location

Capacity

Location

P(kW) P(kW) P(kW) P(kW)
Q(kVAR) Q(kVAR

)
Q(kVAR) QkVAR

- - - - - - -

-

1

473.40 31 444.43 14 642.82 6 661.04 24 2
0 0 0 0

631.72 24 439.78 7 451.3 14 576.7 30 3
388.59 391.38 288.56 759.21

741.66 588.7 535.6 953.4
448.11

329.59

14 516.43

966.1

30 649.20

535.63

6 670.63

480.81

24

P
L

O
S

S
M

ID
.

P
L

O
S

S
av

e

Load 0.3 0.6 1 0.3 0.6 1

Scenario Generation 0.9 1 0.74 0.74 0.9 1

F6

F5

F4

F3

F2

F1

 - 159.52 63.91 210.99 159.52 63.91 210.99 1

0.5355

0.9575 0.286

0.475

0.9186

0.2688 0.3816 2

0.1888

0.2655

0.1987

0.2099

0.3074

0.1289

0.0941 3

0.1124 0.2136 0.1899 0.4232 0.1709 0.2188 0.2883 0.0858

F. Sayadi Shahraki et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 56-65, 2024

64

6 show that the use of reactive and active power

capacity simultaneously with the proposed leveling

method is effective in controlling the bus voltage

deviation, reducing losses, and reducing system

costs. To see the importance of using the proposed

leveling method, the results of the third and fourth

scenarios can be compared. As can be seen, the

voltage deviation at peak load in the third scenario

is about one-sixth of that in the fourth scenario, and

the power losses in the third scenario are less than

half of those in the fourth scenario.

These results reveal the importance of load and

generation leveling according to climate in the use

of distributed generation resources.

Figure 4 shows the convergence plot of the P-PSO

method compared to PSO. Comparing the two plots

reveals the optimization quality and escape from

the local convergence of P-PSO.

Figure 4. Convergence diagram of P-PSO and PSO

methods

5. Conclusion

In this paper, the location and capacity of the active

and reactive power of the photovoltaic system in

the distribution network were optimized based on

the load leveling required and the generation

capacity of the photovoltaic system. The aim of

optimizing the voltage and reactive power control

in the network under study was to reduce active

power losses and bus voltage deviations as the

main objectives. To use the leveling method, the

actual load and generation profile of Kerman was

used, and the results obtained indicate the

importance of proper use of distributed generation

resources and the advantage of using the reactive

power capacity of these systems. Observation of

the results shows that the use of the photovoltaic

system leads to a profound reduction in active

losses and bus voltage deviations in the system.

However, using the reactive power capacity of

these resources compensates the system voltage

level more appropriately. Of course, it is necessary

to consider the limitations of the active and reactive

power generated by these distributed generation

resources. Also, the use of the P-PSO optimization

method shows the appropriate quality of

optimization of this method and the escape from

local convergence in complex problems. The

results of the article show that the appropriate use

of the leveling method in a distribution system with

distributed generation resources will lead to

improved results and achieve the goal of improving

power quality in the network.

References
 [1] M. C. V. Suresh and E. J. Belwin, “Optimal DG

placement for benefit maximization in distribution

networks by using dragonfly algorithm,” Renewables

Wind Water and Solar, vol. 5, pp. 2–8, 2018.

[2] T. D. Pham, T. T. Nguyen, and B. H. Dinh,

“Find optimal capacity and location of distributed

generation units in radial distribution networks by using

enhanced coyote optimization algorithm,” Neural

Computing & Applications, vol. 33, pp. 4343–4371,

2021.

[3] A. Rathore and N. P. Patidar, “Optimal sizing

and allocation of renewable based distribution

generation with gravity energy storage considering

stochastic nature using particle swarm optimization in

radial distribution network,” Journal of Energy Storage,

vol. 35, p. 102282, 2021.

[4] P. C. Chen, V. Malbasa, Y. Dong, and M.

Kezunovic, “Sensitivity analysis of voltage sag-based

fault location with distributed generation,” IEEE

Transactions on Smart Grid, vol. 6, no. 4, pp. 2098–

2106, 2015.

[5] M. Kashyap, A. Mittal, and S. Kansal,

“Optimal placement of distributed generation using

genetic algorithm approach,” Lecture Notes in Electrical

Engineering, vol. 476, pp. 587–597, 2019.

[6] S. R. Ramavat, S. P. Jaiswal, N. Goel, and V.

Shrivastava, “Optimal location and sizing of DG in the

distribution system and its cost-benefit analysis,”

Advances in Intelligent Systems and Computing, vol.

698, pp. 103–112, 2019.

[7] T. S Tawfeek, A. H. Ahmed, and S. Hasan,

“Analytical and particle swarm optimization algorithms

for optimal allocation of four different distributed

generation types in radial distribution networks,”

Energy Procedia, vol. 153, pp. 86–94, 2018.

[8] S. Mirsaeidi, S. Li, S. Devkota et al.,

“Reinforcement of power system performance through

optimal allotment of distributed generators using

metaheuristic optimization algorithms,” Journal of

Electrical Engineering & Technology, vol. 17, no. 5, pp.

2617–2630, 2022.

[9] Adeagbo, A.; Olaniyi, E.; Ofoegbu, E.;

Abolarin, A. Solar photo-voltaic system efficiency

improvement using unitary-axis active tracking system.

Int. J. Sci. Eng. Res. 2020, 11, 502–508.

[10] Adewuyi, O.B.; Ahmadi, M.; Olaniyi, I.O.;

Senjyu, T.; Olowu, T.O.; Mandal, P. Voltage security-

constrained optimal generation rescheduling for

available transfer capacity enhancement in deregulated

electricity markets. Energies 2019, 12, 4371.

[11] Hemeida MG, Ibrahim AA, Mohamed AA, et

al. Optimal allocation of distributed generators DG

Optimal use of photovoltaic systems in the distribution network considering the variable load

65

based Manta Ray Foraging Optimization algorithm

(MRFO). Ain Shams Eng J, 2021, 12:609–619.

[12] Shradha SinghPariharNitinMalik, Analysing

the impact of optimally allocated solar PV-based DG in

harmonics polluted distribution network, Sustainable

Energy Technologies and Assessments Volume 49,

February 2022.

[13] Abou El-Ela AA, El-Sehiemy RA, Abbas AS.

Optimal placement and sizing of distributed generation

and capacitor banks in distribution systems using water

cycle algorithm. IEEE Syst J, 2018, 12:3629-3636.

[14] Varaprasad Janamala, K Radha Rani, Optimal

allocation of solar photovoltaic distributed generation in

electrical distribution networks using Archimedes

optimization algorithm Clean Energy, Volume 6, Issue

2, April 2022, Pages 271–287.

[15] G. Guerra, J. a Martinez, and S. Member, “A Monte

Carlo Method for Optimum Placement of Photovoltaic

Generation Using a Multicore Computing

Environment,” PES Gen. Meet. Conf. Expo. 2014

IEEE. IEEE, pp. 1–5, 2014.

[16] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia,

Two-layer volt/var/total harmonic distortion control in

distribution network based on PVs output and load

forecast errors, IET Generation, Transmission &

Distribution, Volume 11,2016.

[17] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia,

Feeder reconfiguration and capacitor allocation in the

presence of non-linear loads using new P-PSO

algorithm, IET Generation, Transmission &

Distribution, Volume 10, 2015.

[18] Calderaro V, Conio G, Galdi V, Massa G, Piccolo

A. Optimal decentralized voltage control for distribution

systems with inverter-based distributed generators.

IEEE Trans Power Syst 2014; 29:230–41.

[19] Van den Bergh, F., Engelbrecht, A., A

Cooperative approach to particle swarm

optimization. IEEE Transactions on Evolutionary

Computation: 225-239, 2004.

