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 Edge computing has emerged as a dynamic framework where 

computational tasks are offloaded to distributed edge servers (ESs) to 

provide low-latency and efficient services. As edge systems grow in 

scale and complexity, leveraging Deep Reinforcement Learning (DRL) 

has become a prominent approach to optimize task offloading and 

Resource management. However, traditional DRL-based 

methodologies encounter several challenges: (1) Discrete-time 

decision frameworks, such as Markov Decision Processes (MDPs), 

often enforce offloading in fixed timeslots, leading to scheduling 

delays and inefficient Resource utilization. (2) Static computational 

structures struggle to adapt to varying numbers of edge servers or user 

devices, resulting in scalability issues and system inefficiencies. To 

overcome these limitations, we introduce a novel DRL-driven real-time 

offloading mechanism tailored for dynamic and scalable edge 

environments. Our approach reformulates the offloading problem 

within a Semi-Markov Decision Process (SMDP) framework and 

introduces an adaptive optimization mechanism utilizing attention-

based graph operations for heterogeneous Resource environments. This 

system, like how we prioritize tasks and divide resources, figures out 

how much attention to pay to each task and which server should handle 

it, to make things work smoothly. To make this work even better in the 

real world, we use a special method to adjust the rewards, which helps 

the system learn and improve its performance over time 
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1. Introduction 

The rapid expansion of mobile networks and the 

proliferation of connected devices have 

transformed modern computing environments. 

From autonomous vehicles to immersive 

augmented reality applications, the demand for 

high-speed, low-latency services has surged. 

Traditional cloud computing architectures, despite 

their powerful centralized Resources, often fall 

short in meeting these latency-sensitive 

requirements due to long transmission distances 

and centralized processing bottlenecks [1]-[5]. This 

gap has driven the evolution of edge computing, 

which brings computation and storage closer to 

end-users by deploying edge servers (ESs) within 

the network's proximity. Within this paradigm, 

tasks may be executed locally or offloaded to 

nearby ESs. While ESs are equipped with more 

robust computational capabilities compared to 

UDs, the process of uploading tasks to ESs 

introduces additional energy consumption and 

latency. Moreover, the computational capacity of 

ESs remains constrained compared to centralized 
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cloud servers, making them unsuitable for handling 

large volumes of concurrent tasks. Resource 

contention among multiple tasks can degrade 

system performance and quality of service (QoS) 

[6], [7]. Consequently, devising an efficient 

scheduling mechanism for task offloading has 

become critical. Such mechanisms aim to optimize 

the selection of offloading targets and Resource 

allocation strategies [8], often framed as mixed-

integer nonlinear programming (MINLP) 

problems, which are known to be NP-hard [9]. 

Initially, mathematical approaches [10] were 

developed to solve these optimization problems. 

However, these model-based methods struggle 

with generalization across diverse edge systems 

characterized by heterogeneous transmission 

technologies, application requirements, and 

computational Resources. To address this 

limitation, model-free metaheuristic algorithms 

[11, 12] were introduced for task offloading. 

Despite their flexibility, these algorithms face 

significant challenges, including large search 

spaces and poor adaptability to dynamic edge 

environments. In recent years, Deep 

Reinforcement Learning (DRL) has demonstrated 

exceptional capabilities across various domains, 

such as robotics control, autonomous driving, and 

natural language processing. Leveraging deep 

neural networks, DRL combines high-dimensional 

data analysis with model-free learning, making it a 

compelling choice for dynamic edge systems. Its 

online learning capabilities enable adaptive policy 

updates through continuous interaction with the 

environment, offering real-time adaptability to 

evolving edge conditions. As a result, DRL-based 

methods have shown promising results in 

optimizing task offloading and Resource allocation 

in edge computing [13]-[16]. Despite its 

advantages, DRL-based approaches face inherent 

limitations, as illustrated in Fig. 1. Firstly, these 

methods typically rely on discrete-time Markov 

Decision Processes (MDPs), where decisions are 

made at fixed intervals. This framework 

necessitates batch processing of tasks, causing 

delays as tasks wait for the next decision interval to 

be scheduled [17]. Such wait-for-scheduling 

latency increases Resource contention and lowers 

task completion rates, particularly in systems with 

stringent delay requirements. Secondly, traditional 

DRL methods lack scalability [18, 19]. The fixed 

computational graph of deep neural networks 

requires consistent input and output dimensions, 

making it challenging to adapt to varying system 

scales [20]. For instance, in mobile edge 

environments, the dynamic nature of vehicular 

edge systems—with frequent arrivals and 

departures of service or user vehicles—renders 

non-scalable DRL approaches infeasible. 

Retaining scalability under these conditions is 

crucial but often necessitates retraining models, a 

process that is both time-intensive and 

computationally expensive. 

 

 
Figure 1. Challenges in DRL-Based Offloading 

Approaches. 

 

 

Transitioning from a batched offloading 

framework to a real-time approach, where tasks are 

immediately scheduled upon arrival, intuitively 

minimizes waiting time and avoids dimensional 

mismatches caused by fluctuating task volumes. 

However, the discrete-time MDP framework 

utilized by classical DRL algorithms is inherently 

unsuitable for such scenarios [21]-[23]. 

Additionally, scalability challenges, such as 

mismatches in the dimensions of inputs and outputs 

caused by dynamic variations in the number of 

edge servers (ESs) and user devices (UDs), remain 

unresolved. To address these challenges, we 

propose a Real-time and Scalable Task Offloading 

framework (ReSTO), leveraging a DRL-based 

methodology. 

In ReSTO, the task offloading problem is modeled 

as a Semi-Markov Decision Process (Semi-MDP) 

to enable decision-making at arbitrary task arrival 

times. The framework introduces the Scalable 

Continuous Proximal Policy Optimization 

(SCPPO) algorithm, specifically designed to align 

with the  

 

Semi-MDP framework. To ensure scalability, 

SCPPO employs a heterogeneous graph attention 

mechanism for feature extraction, translating task-

specific characteristics into adaptive attention 

scores for decision-making. Moreover, we develop 

a hybrid reward mechanism that integrates model-

based and real-time feedback, referred to as the 

homotopy reward. This reward scheme bridges the 
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gap between theoretical models and real-world 

dynamics while enhancing exploration efficiency 

during learning. 

 

This paper aims to address the limitations of 

existing DRL-based task offloading approaches in 

edge computing environments. Specifically, we 

focus on: 

 1- Overcoming the limitations of discrete-time 

MDPs: We propose a novel continuous-time DRL 

framework that enables real-time, event-triggered 

task scheduling, eliminating the need for batch 

processing and reducing wait-for-scheduling 

latency. 

 2- Improving scalability in dynamic environments: 

We introduce a scalable DRL architecture that can 

adapt to varying numbers of tasks and edge servers 

without requiring extensive model retraining. 

By achieving these objectives, we aim to: 

 Enhance task completion rates and 

reduce latency in edge computing 

systems with stringent performance 

requirements. 

 Improve resource utilization by 

enabling more efficient task 

scheduling and allocation. 

 Increase the adaptability and 

robustness of DRL-based offloading 

solutions in dynamic and 

unpredictable edge environments.

The key contributions of this work are as follows: 

 

 Introduction of ReSTO 

Framework:  
We propose ReSTO, a novel real-time and 

scalable task offloading framework. ReSTO 

models the offloading problem using a Semi-

MDP and introduces the SCPPO algorithm for 

real-time decision-making, eliminating the 

latency associated with traditional batched 

scheduling. 

 Scalability via Graph Attention 

Mechanism:  
SCPPO employs heterogeneous graph 

attention operations to extract task and 

Resource features dynamically, enabling 

adaptive attention score generation. This 

approach prevents dimensional mismatches as 

the number of ESs or UDs changes, ensuring 

scalability. 

 Development of Homotopy 

Reward:  
We formulate a hybrid reward system 

combining theoretical model rewards with 

real-time feedback. This homotopy reward 

reduces the disparity between theoretical 

assumptions and real-world conditions, 

improving both performance and exploration 

efficiency. 

 

The remainder of this paper is organized as 

follows: Section II reviews related works, 

particularly focusing on real-time and scalable 

RL/DRL-based approaches. Section III presents 

the system model for real-time offloading and the 

corresponding optimization problem. In Section 

IV, we detail the ReSTO framework, including the 

Semi-MDP formulation and the SCPPO algorithm 

design. Section V evaluates ReSTO’s performance 

against state-of-the-art algorithms, highlighting its 

scalability and efficiency. Finally, Section VI 

concludes the paper with insights and potential 

future directions.  

 

2. Related Works  

In this section, we provide a comprehensive review 

of DRL-based task offloading methods. Following 

this, we delve into existing RL/DRL approaches 

for real-time or scalable task offloading, analyzing 

their achievements and limitations in comparison 

to our proposed framework. 

 

A. DRL-Based Task Offloading in Edge 

Computing 

Over the past decade, task offloading in edge 

computing systems has increasingly relied on Deep 

Reinforcement Learning (DRL) algorithms due to 

their capacity for dynamic decision-making and 

adaptability to complex environments. These 

algorithms leverage the ability of neural networks 

to process high-dimensional inputs and learn 

optimal policies directly through interaction with 

the environment. Numerous studies have tailored 

DRL methods to address the unique challenges of 

edge systems, such as Resource constraints, 

latency requirements, and dynamic user demands. 

One notable example is the work of Wang et al. 

[12], who utilize Deep Q-Learning (DQN) to 

optimize both task offloading and Resource 

configuration in a blockchain-enabled edge 

computing framework. Their approach introduces 

trust mechanisms and leverages blockchain for 

secure and efficient offloading. Similarly, Huang et 

al. [13] employ a Twin Delayed Deep 

Deterministic Policy Gradient (TD3) algorithm for 

partial offloading systems, where tasks can be split 

between local and edge processing. This method 

improves decision-making by accounting for the 

variability in task size and Resource availability, 
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demonstrating the potential of DRL in adaptive 

task allocation. 

Building on these foundational approaches, 

subsequent research has focused on enhancing the 

performance and robustness of DRL-based task 

offloading. For instance, Xu et al. [14] and Ma et 

al. [15] introduce temporal feature extraction to 

capture the dynamic nature of edge environments, 

utilizing historical state information to better 

model system behavior and predict the effects of 

various actions. This temporal awareness allows 

the system to adapt to changing workloads and 

network conditions, leading to more effective 

offloading strategies. 

Moreover, Xu et al. [16] propose an exploration-

exploitation strategy tailored to the training 

process. By prioritizing exploration during the 

early stages of training and gradually shifting 

towards the exploitation of learned policies, their 

approach strikes a balance between discovering 

new solutions and refining existing ones. This 

adaptive strategy improves policy performance and 

ensures more reliable decision-making over time. 

To address the computational complexity and 

convergence challenges associated with large 

action spaces, researchers have also explored 

hybrid approaches that integrate DRL with 

traditional optimization techniques. For example, 

Chen et al. [17] enhance DQN-based task 

offloading with sequential quadratic programming 

for Resource allocation. This combination reduces 

the dimensionality of the problem and accelerates 

convergence, enabling more efficient use of edge 

Resources. 

Li et al. [18] take a multi-agent approach, 

employing a Parameterized Multi-Agent Soft 

Actor-Critic (SAC) algorithm to address the 

interdependence of actions across agents. By 

categorizing actions into those that affect other 

agents and those that do not, they effectively 

manage Resource contention in collaborative edge 

environments. The use of a genetic algorithm 

further refines Resource allocation decisions, 

ensuring optimal system performance. 

Despite these advancements, existing DRL-based 

methods face inherent limitations due to their 

reliance on the discrete-time Markov Decision 

Process (MDP) framework. This framework 

enforces decision-making at fixed intervals, 

leading to batch processing of tasks. Such a 

structure introduces scheduling delays, as tasks 

must wait until the next decision point before 

offloading can occur [24], [25]. This wait-for-

scheduling latency becomes particularly 

problematic in latency-sensitive applications, 

where even slight delays can significantly degrade 

performance. Additionally, most DRL approaches 

encode system states into a one-dimensional input 

vector for processing by a multi-layer perceptron 

(MLP). While this design simplifies 

implementation, it limits scalability. Fixed input-

output dimensions in MLPs cannot adapt to 

changes in the number of edge servers (ESs) or user 

devices (UDs), resulting in dimensional 

mismatches. This lack of flexibility hampers the 

applicability of DRL algorithms in dynamic edge 

environments, such as vehicular networks or large-

scale IoT systems, where the network topology and 

Resource availability frequently change. 

These challenges underscore the need for novel 

frameworks and algorithms that overcome the 

constraints of discrete-time MDPs and enable real-

time, scalable task offloading in edge computing 

systems. Future solutions must address both the 

latency introduced by batch processing and the 

scalability issues arising from static neural network 

architectures, paving the way for more adaptive 

and efficient DRL applications in edge 

environments. 

 Categorization by Objective: 

1. Latency Minimization: Focus on 

methods specifically designed to 

minimize task completion time or 

end-to-end delay. 

2. Energy Efficiency: Analyze methods 

that prioritize minimizing energy 

consumption at the device and 

network levels. 

3. Resource Allocation: Discuss 

approaches that optimize resource 

allocation among UDs and ESs, 

considering factors like CPU, 

memory, and bandwidth. 

4. Load Balancing: Examine methods 

that aim to distribute the 

computational load evenly across the 

available ESs. 
 

B.  Real-Time RL/DRL for Task Scheduling 

Real-time decision-making is a critical component 

of task scheduling in edge computing and 

numerous other domains, where rapid responses to 

dynamic changes are essential for maintaining 

system performance and efficiency. However, the 

discrete-time Markov Decision Process (MDP) 

framework, which underpins most traditional 

RL/DRL methods, introduces inherent constraints 

when applied to real-time applications. By 

requiring fixed decision intervals, the discrete-time 

MDP framework creates bottlenecks, such as 
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delays in task execution, that compromise the 

responsiveness and adaptability of RL-based 

solutions. Alternative frameworks, such as the 

multi-armed bandit [26]-[30], have been explored 

to address some of these challenges. While these 

models are computationally simpler and focus on 

optimizing immediate rewards, they often fail to 

account for the temporal dependencies and 

cumulative effects of actions. This omission can 

lead to suboptimal decision-making, particularly in 

complex and dynamic environments where long-

term outcomes must be carefully balanced with 

short-term gains [31]-[33]. 

In contrast, the Semi-Markov Decision Process 

(Semi-MDP) framework is particularly well-suited 

for real-time scheduling tasks. Unlike the discrete-

time MDP, Semi-MDP allows for variable 

intervals between decision points, making it more 

flexible and capable of handling tasks as they 

arrive. This flexibility enables the development of 

policies that optimize long-term performance while 

addressing the immediate requirements of real-

time systems. For instance, Liang et al. [20] and 

Hao et al. [21] successfully use Semi-MDPs to 

model real-time scheduling problems, 

demonstrating the framework’s potential to 

accommodate dynamic workloads and varying 

system conditions. Despite its advantages, adapting 

existing algorithms to the Semi-MDP framework 

poses unique challenges due to its structural 

differences from the traditional MDP approach. 

One common strategy involves normalization, 

which converts Semi-MDP problems into an MDP-

compatible format, allowing established DRL 

algorithms to be applied. For example, Liang et al. 

[22] normalize Semi-MDP problems by estimating 

theoretical model-based Q-values for supervised 

pre-training [34]-[36]. This approach provides a 

starting point for the policy, which is then refined 

through interactions with the environment. 

Similarly, Wu et al. [23] utilize state transition 

probabilities during the normalization process to 

transform Semi-MDPs into a form solvable by 

value iteration techniques. 

An alternative to normalization-based methods is 

the direct design of algorithms tailored to the Semi-

MDP framework. These approaches avoid the 

approximations and assumptions inherent in 

normalization, enabling more accurate modeling of 

real-world scenarios. For example, Van Huynh et 

al. [24] propose a Dueling Double Deep Q-

Network (DDQN) approach that maximizes 

cumulative single rewards without incorporating 

discount factors, focusing instead on immediate 

benefits within a Semi-MDP structure. Wei et al. 

[9] employ an exponential decay model to compute 

cumulative discounted returns, deriving a Bellman 

optimality equation to guide decision-making with 

DQN. Kim et al. [25] adapt the Soft Actor-Critic 

(SAC) algorithm for the Semi-MDP framework, 

introducing modifications that account for the 

variable time intervals and cumulative reward 

structures characteristic of Semi-MDPs. Despite 

these advancements, existing methods still exhibit 

notable limitations. Normalization-based 

approaches often rely heavily on theoretical 

assumptions, such as idealized transition models or 

fixed state representations, which reduce their 

generalizability to real-world, complex 

environments [37]-[40]. These assumptions can 

lead to performance degradation when applied to 

heterogeneous and highly dynamic edge systems, 

where practical constraints and unpredictable 

factors frequently deviate from theoretical models. 

On the other hand, model-free DRL approaches 

[41]-[45] that bypass theoretical dependencies also 

face challenges. These methods commonly employ 

simplistic neural network architectures, such as 

basic feedforward models, that lack the scalability 

needed to adapt to dynamic edge network 

conditions. In systems where the number of edge 

servers (ESs) and user devices (UDs) can fluctuate 

significantly, fixed input-output dimensions lead to 

dimensional mismatches, requiring costly 

retraining of the models to accommodate changes 

[46]-[48]. This inflexibility limits the practical 

deployment of model-free DRL solutions in 

scenarios characterized by high variability and 

evolving system requirements. Overall, while the 

Semi-MDP framework offers significant potential 

for enabling real-time decision-making in edge 

computing, achieving effective and scalable 

solutions necessitates innovative algorithmic 

designs that address both the limitations of 

normalization-based methods and the scalability 

constraints of traditional DRL models. Future work 

must focus on bridging these gaps to develop 

robust and adaptable frameworks capable of 

supporting real-time, scalable task scheduling in 

edge environments. 

 Weaknesses of Current Semi-MDP 

Methods: 

1. Normalization-Based Approaches: 

2. Reliance on Theoretical Assumptions: 

Often rely on idealized models and 

assumptions, which can limit their 

applicability in real-world scenarios 

with high variability and uncertainty. 

3. Potential for Accuracy Loss: The 

normalization process can introduce 

approximations that may lead to 
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suboptimal solutions or reduced 

accuracy. 

4. Limited Exploration of Direct Semi-

MDP Algorithms: While some direct 

approaches exist, the field is still 

relatively under-explored compared to 

normalization-based methods. 

5. Scalability Challenges: As the 

complexity of the environment and the 

number of tasks increase, solving 

Semi-MDPs can become 

computationally expensive, especially 

for complex DRL algorithms. 

6. Handling of Uncertainty: Many 

existing methods may not adequately 

address the inherent uncertainty and 

stochasticity present in real-world 

scheduling problems. 
 

 

3. System Model and Problem Formulation 

We consider a crowdsourcing-inspired MEC 

system, as illustrated in Fig. 1, comprising multiple 

applications and edge servers (ESs) with diverse 

configurations and characteristics. These 

applications may vary significantly in their 

requirements, encompassing delay-sensitive 

services such as networked gaming, autonomous 

driving, and AR/VR, as well as resource-intensive 

tasks like big data analytics, scientific computing, 

and video surveillance [49]. Similarly, ESs can 

range from micro data centers and edge clouds to 

high-capacity computing servers or even gateways 

deployed in residential or office settings. For 

generality, we assume these ESs are managed and 

operated by distinct edge service providers. To 

maximize resource utilization and enhance system 

performance in terms of scalability, reliability, and 

other metrics, a third-party platform is introduced 

to coordinate ES operations and handle workload 

dispatch from end users. Acting as an intermediary, 

this platform serves as a front-end interface for 

edge computing services, bridging the gap between 

clients submitting tasks and ESs providing 

computational resources. Upon receiving a task, 

the platform assigns it to the most suitable ES 

hosting the requested service and ensures the 

computation result is returned to the client 

seamlessly. This interaction is transparent to users, 

provided the system meets their application 

performance expectations, such as low latency and 

high computation quality. 

Both application providers and ESs must undergo 

an onboarding process with the platform before 

accessing or delivering edge services. This 

formalized process involves signing agreements 

with the platform to define roles and 

responsibilities. For application providers, this 

includes specifying service requirements such as 

task rates, task valuation, budget constraints, 

computational demands, QoS parameters (e.g., 

maximum tolerable delay), and security or 

compliance needs. Similarly, ESs seeking to 

participate in the system are subject to a 

comprehensive evaluation by the platform. This 

involves reviewing their security protocols, 

compliance certifications, and data management 

practices to ensure adherence to industry standards 

and regulatory requirements [50]. Additionally, a 

risk assessment is often conducted to identify 

potential vulnerabilities. ESs must provide detailed 

information regarding their resource capacities, 

operational costs, and revenue expectations. 

Using this information, the platform optimizes task 

offloading strategies and resource allocation for 

ESs, subsequently formalizing agreements with 

both parties. Once agreements are in place, ESs 

configure the necessary accounts and 

infrastructure, enabling application providers to 

deploy their services. Importantly, ongoing 

monitoring and auditing mechanisms are 

established to ensure all parties adhere to the 

agreed-upon terms, with regular performance and 

compliance evaluations conducted throughout the 

service lifecycle. 

This study considers a scenario where application 

providers make advance payments to the platform, 

which, in turn, allocates a portion of these 

payments to incentivize contributions from edge 

servers (ESs). The platform's key decisions 

include: (1) whether to accept both the application 

providers and ESs into the system, (2) determining 

the amount of resources each ES should allocate to 

applications, and (3) devising an efficient task 

dispatching strategy to distribute tasks among the 

backend ESs hosting the services. To simplify 

notation, we define the set of ESs and 

applications/services in the system as M and N, 

respectively, with the corresponding cardinalities 

denoted by ∣M∣ and ∣N∣. For clarity, the terms 

"applications" and "application providers" are used 

interchangeably in this paper unless otherwise 

specified. The primary notations employed 

throughout this work are summarized in Table 1. 

Each application 𝑖 ∈ 𝑁𝑖 is characterized by a tuple 

(𝑝𝑖 , 𝑣𝑖, 𝛼𝑖 , 𝐷𝑖, 𝑠𝑖),where: 
1. 𝑝𝑖: The payment made by application 

provider iii to the platform for task 

offloading. 
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2. 𝑣𝑖: The utility gained by i from offloading 

a task, such as reduced energy consumption 

at user devices, enhanced computational 

quality, or shorter response times. 

Generally, 𝑝𝑖 ≤ 𝑣𝑖  Offloading offers net 

benefits to the application. 

3. 𝛼𝑖: The arrival rate of tasks for application 

i. 

4. 𝑠𝑖: The workload (measured in CPU cycles) 

required to process a task. 

5. 𝐷𝑖: The maximum latency tolerable by 

application i. 

 

Given the stochastic nature of the system and the 

uncertainty in resource allocation at ESs, the actual 

value derived by an application from task 

offloading depends on the quality of the edge 

computing service. We represent this with a utility 

function 𝑢𝑖𝑗 ∈ [0,1], which quantifies the 

satisfaction level of application i when offloading 

tasks to 𝐸𝑆𝑗. This utility function is an abstract 

representation and can vary depending on the 

application's requirements. 

For instance, for delay-sensitive applications, 

𝑢𝑖𝑗may be defined based on reductions in task 

latency. For resource-intensive applications, 

𝑢𝑖𝑗could reflect the computational quality, such as 

compression ratios or prediction accuracy. 

Moreover, the form of 𝑢𝑖𝑗 can differ even within 

the same application category. For example, in 

delay-sensitive applications, 𝑢𝑖𝑗 could be a step 

function to model satisfaction levels in the 

presence of hard deadlines.  

 

𝑢𝑖𝑗 = {
1,   if   𝑡𝑖𝑗 ≤ 𝐷𝑖 

0,   otherwise  
     (1) 

 

 

A. Platform Model 
The platform operates under the following assumptions: 

1. The platform employs a probabilistic task 

dispatching mechanism, where each 

application task is routed to a specific ES 

based on predefined probabilities. 

2. The payment 𝑝𝑖  made by application iii is 

distributed between the platform and the 

ES executing the task. Specifically, the 

ES receives a reward of (1 − 𝜆𝑖)𝑝𝑖, 

where 𝜆𝑖 ≤ 1, while the platform retains 

𝜆𝑖𝑝𝑖  as its service charge or maintenance 

fee. The parameter 𝜆𝑖 , a critical system 

variable, is determined by the platform 

and forms part of the contractual 

agreement with the ES. 

 

4. Real-time and Scalable Task Offloading 

Framework 

Before detailing the algorithm, we first describe the 

calculation of 𝑢𝑖𝑗  and 𝑡𝑖𝑗 under a fixed resource 

allocation 𝐹𝑖𝑗 =  𝐹0. The following assumptions, 

drawn from prior studies, are applied: 

1. Tasks from each application arrive 

according to a Poisson process [46]. 

Consequently, the arrival of tasks from 

application i at 𝐸𝑆𝑗 also follows a Poisson 

process with a rate of 𝑟𝑖𝑗 = 𝛼𝑖𝑥𝑖𝑗  , where 

𝛼𝑖 represents the task arrival rate, and 𝑥𝑖𝑗  

denotes the probability of task dispatch to 

𝐸𝑆𝑗 . 

 

2. The workload of tasks from each 

application is assumed to follow an 

exponential distribution (in CPU cycles) 

[27][36]. This implies that the processing 

time for a task from application i at 𝐸𝑆𝑗 

also follows an exponential distribution 

with a mean of 1/wij1/w where 𝑤𝑖𝑗 =

𝐹𝑖𝑗(0)  and 𝑠𝑖 represents the workload of 

the task. 

Based on these assumptions, the task processing 

system for an application i at 𝐸𝑆𝑗 can be modeled 

as an M/M/1queue. The probability density 

function (pdf) for the task delay 𝑡𝑖𝑗 this system is 

then expressed as: 

 

𝑓𝑇(𝑡𝑖𝑗 ≤ 𝑡) = (𝑤𝑖𝑗 − 𝑟𝑖𝑗) ∙ 𝑒−(𝑤𝑖𝑗−𝑟𝑖𝑗)𝑡              (2) 

 

Assuming 𝑢𝑖𝑗  is defined as in Eq. (2) and 𝑥𝑖𝑗 > 0 

(indicating that tasks from application i are 

offloaded to 𝐸𝑆𝑗 ), the relationship derived from 

constraint (3b) is as follows: 

Pr (𝑡𝑖𝑗 < (1 −  
𝑝𝑖

𝑣𝑖
) 𝐷𝑖)  ≥  prob𝑖  

 (3) 

 

Combining (7) and (8), we get: 

𝑥𝑖𝑗 ≤  
1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1− 
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+  
𝐹𝑖𝑗

0

𝑠𝑖
]  (4) 

 

Let 𝑥𝑖𝑗𝐻𝑥  denote the right-hand side (RHS) of the 

inequality mentioned above, defined as: 
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𝑥𝑖𝑗
𝐻  ≜  

1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1− 
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+  
𝐹𝑖𝑗

0

𝑠𝑖
]  (5) 

 

Clearly, 𝑥𝑖𝑗𝐻𝑥 represents the upper bound of the 

offloading probability for which application 

provider i is satisfied with offloading its tasks to 

𝐸𝑆𝑗 , meeting the QoS requirements. Notably, this 

upper bound is independent of 𝜆𝑖 and is solely 

determined by 𝐹𝑖𝑗 (0) and the workload profiles. 

Similarly, from constraint (3c) and assuming 𝑥𝑖𝑗 >

0, we derive: 

 

𝑥𝑖𝑗 ≥  
(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗

0 )

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 ,  (6) 

 

Let the right-hand side (RHS) of the above 

inequality be denoted as 𝑥𝑖𝑗
𝐿  , defined as: 

 

𝑥𝑖𝑗
𝐿  ≜  

(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗
0 )

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 .  (7) 

 
 

Algorithm 1 Deriving the optimal resource 

allocation, task offloading probabilities, and ratios 

under a given resource allocation 𝐹𝑖𝑗
0 ′

s. 

 Input: Task profiles (𝛼𝑖
′𝑠, 𝑝𝑖

′𝑠, 𝑣𝑖
′𝑠, 𝐷𝑖

′𝑠, 𝑠𝑖
′𝑠); ES 

profiles (𝑐𝑗(𝐹𝑖𝑗)
′
𝑠, 𝐹𝑗

′𝑠, 𝛽𝑗𝑖
′ 𝑠); Initial resource 

allocations 𝐹𝑖𝑗
0 ′

𝑠; 

 Output: Resource allocations 𝐹𝑖𝑗
0,~′

𝑠; Ratios 

𝜆𝑖
0,~′

𝑠; Task offloading probabilities 𝑥𝑖𝑗
0,~′

𝑠; 

1 for 𝑖 ∈  𝒩 𝒅𝒐 

2  for 𝑗 ∈  ℳ 𝒅𝒐 

3   Derive 𝑥𝑖𝑗
𝐻 and 𝜆𝑖𝑗 

0 according to Eq 5. 

4 for 𝑖 ∈ 𝒩 𝒅𝒐 

5  Get 𝜆𝑖
0  and  𝑥𝑖𝑗

0  

6 for 𝑗 ∈ ℳ 𝒅𝒐 

7  Get 𝒴𝑖𝑗
0  �́�  

8 Obtain 𝜆𝑖
0,∼ �́�,  𝐹𝑖𝑗

0,∼�́�  and 𝑥𝑖𝑗
0,∼𝑠  ́  

 

 

5. Simulation Experiments  

 

A. Experimental Setup 

The simulation framework was developed using 

Python 3.9 and PyTorch 2.3.0, running on a high-

performance desktop system powered by an Intel 

Core i9-13900K processor and an Nvidia GeForce 

RTX 3090 GPU. This computational setup was 

chosen to ensure efficient processing of the 

complex algorithms and large-scale datasets 

involved. The simulation leverages vehicle 

trajectory data from the Peachtree Street section of 

the Next Generation Simulation (NGSIM) dataset 

[36]. This dataset provides detailed and realistic 

representations of urban traffic flow, making it 

suitable for modeling dynamic user-device 

behaviors in edge computing scenarios. 

In our simulation environment, user devices (UDs) 

are designed to move along stochastic trajectories 

generated from the NGSIM dataset. These 

trajectories simulate real-world mobility patterns, 

such as vehicles traveling through a busy 

metropolitan area. UDs are assumed to exit the 

system once their respective trajectories conclude, 

reflecting the dynamic entry and exit behavior 

typical in edge networks. Edge nodes (ENs) are 

deployed strategically at random locations along 

these trajectories, ensuring adequate coverage of 

user mobility patterns while capturing the inherent 

randomness of real-world deployments. The 

system parameters used in the simulation are 

comprehensively detailed in Table II. These 

include network characteristics, Resource 

configurations, and mobility patterns, ensuring that 

the simulation accurately reflects the operational 

constraints and requirements of modern edge 

computing environments. 

 

Training Process and Network Design 

The training process was meticulously designed to 

optimize the learning performance of the proposed 

algorithm. The neural network architecture 

incorporates several specialized components to 

handle the complexity of real-time task offloading 

and Resource allocation. The hidden feature 

dimension d was set to 256, balancing 

computational efficiency with model 

expressiveness. The attention mechanism 

employed K=4 attention heads, enabling the model 

to capture intricate relationships between tasks and 

edge nodes across multiple dimensions. 

Three encoder components—𝐻𝐸𝑁, 𝐻𝐶𝑒𝑙𝑙, and 

𝐻𝑇𝑎𝑠𝑘 —were implemented as two-layer 

multilayer perceptrons (MLPs), each employing 

Tanh activation functions. These encoders 

transform raw input data into high-dimensional 

representations suitable for downstream 

processing. The MLP Dc, responsible for 

computing Resource allocation, was configured 

with two layers, ensuring lightweight and efficient 

computation. In contrast, the MLP Dv within the 

critic network was designed with four layers to 

enhance its capacity for estimating value functions, 
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which are critical for effective policy evaluation 

and improvement. 

 

Key Parameters for the Continuous-Time PPO 

Algorithm 

 

To align the training process with the Semi-

Markov Decision Process (Semi-MDP) 

framework, we tailored the continuous-time 

Proximal Policy Optimization (PPO) algorithm 

with carefully selected hyperparameters. The 

discount factor α was set to 0.1, ensuring a 

balanced emphasis on immediate rewards and 

long-term gains. The importance sampling ratio ϵ, 

set to 0.2, controlled the degree of policy updates 

to maintain stability during training. The 

Generalized Advantage Estimation (GAE) 

hyperparameter λ was configured as 0.98 to 

improve the estimation of advantages, enhancing 

the convergence rate and overall learning 

efficiency. 

 

B. Training Configuration and Iterations 

The training process spanned 400 episodes, 

providing sufficient iterations for the algorithm to 

converge to an optimal policy. Each episode was 

further divided into a maximum of 200 iterations, 

allowing the model to explore diverse states and 

actions comprehensively. During training, the 

model continually interacted with the simulated 

environment, refining its policy through trial and 

error while leveraging feedback from the 

homotopy reward mechanism. This hybrid reward 

system combined theoretical insights with real-

time observations, bridging the gap between 

simulated models and practical deployments. 

The overall design of the simulation environment, 

coupled with the robust training setup, ensures that 

the proposed algorithm is well-equipped to handle 

dynamic and scalable edge computing scenarios. 

By incorporating realistic mobility patterns, 

stochastic task generation, and advanced neural 

network architectures, the simulation framework 

provides a reliable foundation for evaluating the 

effectiveness of real-time task offloading and 

Resource allocation strategies in next-generation 

edge systems. 

 
TABLE I. 

PARAMETER SETTINGS OF SIMULATION 

Notations 
Simulation 

Value 
Notations 

Simulation 

Value 

M 8 𝛼 U(1.0, 1.2) 

MB U (0.8, 

1.0) GCycle 

U (1, 2) 

Second 

𝒇𝒎 
U (2, 4) 

GHz 
β 

𝒅𝒎 50 Meter ϑ 

N 30 p 

1 Watt 

𝒒𝒎𝒂𝒙 3 𝜍 -3 

𝜾 1 𝜎2 
-114 

dBm/MHz 

X 0.1 B 1 MHz 

𝒇𝒏 
U (1, 2) 

GHz 
Ω 1 

ϒ 4 Κ 10−27 
 

The data reuse frequency was configured to 10 

iterations. For the actor-network, the learning rate 

was set to 1 × 10−4, while the critic network 

utilized a higher learning rate of 1 × 10−3.The 

Adam optimizer, with 𝜀 = 1 × 10−5,was 

employed for parameter updates. 

To evaluate the performance of the proposed 

method, we conducted a comparative analysis with 

four state-of-the-art DRL-based methods designed 

to address scalability, as well as a single-step 

greedy method. A brief overview of these 

approaches is as follows: 

 Single-Step Greedy (SSG): This method 

selects actions greedily based on 

immediate task benefits. While intuitive, it 

focuses exclusively on short-term gains, 

neglecting long-term system optimization. 

 Sequence to Sequence (S2S) [11]:  

This approach leverages recurrent neural 

networks (RNNs) for sequential system 

feature extraction and multi-action 

generation. However, it operates under a 

batched offloading framework and 

struggles to adapt action dimensions to 

dynamic variations in the number of edge 

nodes (ENs). 

 Self-Attention (SA) [10]:  
Using a self-attention mechanism, this 

method integrates task features and 

generates actions in parallel. Despite this, 

it inherits the limitations of S2S, including 

reliance on batched offloading and the 

inability to adapt to changes in EN counts 

due to its concatenation of EN states as 

input. 

 Event-Driven DQN (EDQ) [9]:  

This real-time approach employs an event-

driven Deep Q-learning framework based 

on task and EN states. However, its 

reliance on a multilayer perceptron (MLP) 

architecture for the Q-network constrains 

scalability, particularly in large-scale 

systems. 

 GNN-based Multi-agent DRL (GMD) 

[30]: 

This method utilizes a distributed multi-

agent DRL framework with graph neural 
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networks (GNNs), allowing user devices 

(UDs) to independently select actions. By 

representing offloading targets as positive 

integers instead of one-hot vectors, it 

offers significant scalability. However, 

multi-agent DRL frameworks are 

challenging to train in large-scale 

environments, often leading to diminished 

performance. 

 

For a fair comparison, we set the batch interval to 

0.2 in subsequent experiments for the S2S, SA, and 

GMD methods, which follow a batched offloading 

framework. 

Notably, the ReSTO framework outperformed all 

baselines in terms of system cost, even under zero-

shot transfer scenarios, surpassing re-trained 

methods as well. This underscores the exceptional 

scalability and efficiency of ReSTO. Interestingly, 

we observed that the system costs of SA and EDQ 

remained stable or even increased as additional 

ENs became available. This phenomenon is 

attributable to their reliance on concatenated EN 

states as input, which inflates the input dimensions, 

causing the critic network to struggle with accurate 

evaluations. For EDQ, the increase in selectable 

actions further complicates Q-network 

convergence, exacerbating its limitations in larger 

systems. 

 

C. Batched Offloading V.S. Real-Time 

Offloading 

To highlight the performance benefits of 

transitioning from batched offloading to real-time 

offloading, we compare the proposed ReSTO 

method with existing approaches under two load 

scenarios. The results, as illustrated in Fig. 2, 

consider a normal scenario with baseline system 

settings and a harsh scenario where the load factor 

𝛽 ∈ 𝑢(1.2,1.4). For consistency, we introduce 

artificial delays in task execution to emulate 

batched offloading for ReSTO, SSG, and EDQ, 

which inherently support real-time offloading. 

Other methods, lacking real-time capabilities, are 

excluded from this analysis. Batched offloading is 

tested with four discrete timeslot intervals: 0.8, 0.6, 

0.4, and 0.2. 

The experimental findings indicate that reducing 

the interval duration in batched offloading 

substantially lowers system costs under both load 

scenarios, with the real-time offloading approach 

consistently achieving the best performance. This 

improvement is especially pronounced under 

higher load conditions, as shorter decision intervals 

minimize the delay between task arrival and 

scheduling, allowing for more effective Resource 

management. Conversely, under increased system 

loads, extended waiting periods in batched 

offloading sharply reduce the scope for scheduling 

adjustments, leading to greater performance 

degradation. Notably, at elevated load levels with 

larger timeslot intervals, DRL-based methods 

display inferior performance compared to the SSG 

approach. This can be attributed to challenges in 

learning from delayed and sparse rewards during 

training, particularly when task failures dominate 

the early learning phase. As a result, many DRL-

based methods converge to suboptimal solutions, 

unable to recover effectively. In contrast, the 

ReSTO framework, supported by the homotopy 

reward mechanism, provides more immediate and 

structured reward feedback during early training 

stages. This design facilitates more efficient 

exploration and allows ReSTO to avoid local 

optima, delivering significantly better performance 

even under harsh conditions. 

 

D. Ablation Study 

An ablation study was conducted to investigate the 

impact of the homotopy reward design and graph-

based cell state aggregation on the performance of 

the proposed framework. The experiments were 

carried out under both normal and harsh scenarios 

to provide a comprehensive evaluation across 

varying load levels. Two key components were 

evaluated: (1) the reward mechanism, with three 

configurations considered—model-based reward, 

reality reward, and the proposed homotopy 

reward—and (2) the user device (UD) state fusion 

method, comparing direct aggregation of UD states 

independently versus graph-based aggregation of 

cell states. These configurations were 

systematically combined into multiple algorithm 

variants, and their performance was assessed.  

The study revealed significant differences in 

performance across the reward settings. Among the 

configurations, the reality reward (blue line) 

exhibited the largest fluctuations during training. 

These fluctuations can be attributed to the reward 

mechanism's reliance on real-time feedback, which 

is inherently noisy and less predictable. The lack of 

robust guidance in the early training stages often 

led to instability in task success rates, particularly 

under harsh scenarios where Resource constraints 

are more pronounced. Additionally, this 

configuration struggled to balance immediate 

performance with long-term optimization, 

highlighting its limitations in dynamic and 

unpredictable environments. 

Conversely, the model-based reward demonstrated 

greater stability but was less effective in capturing 

the complexities of real-world conditions. This 
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resulted in suboptimal exploration, limiting its 

ability to adapt to diverse scenarios. The proposed 

homotopy reward bridged the gap between the 

model-based and reality rewards, effectively 

integrating theoretical guidance with real-time 

feedback. This hybrid approach significantly 

improved exploration efficiency, enabling the 

algorithm to converge faster and achieve better 

performance across both normal and harsh 

scenarios. The homotopy reward design also 

mitigated the challenges of sparse rewards, 

ensuring consistent progress during training. 

The study further examined the effects of state 

aggregation methods. Directly aggregating UD 

states independently often resulted in subpar 

system performance due to the lack of contextual 

understanding of Resource and task interactions 

within the network. In contrast, the graph-based 

cell state aggregation effectively captured spatial 

and temporal dependencies, enhancing the 

framework's ability to adapt to changes in system 

dynamics. By leveraging graph structures to model 

interactions between tasks and edge servers (ESs), 

this method provided a holistic view of the 

network, leading to more informed and efficient 

decision-making. 

The analysis also sheds light on the limitations of 

the GMD algorithm, which demonstrated a 

tendency to prioritize tasks with higher energy 

consumption. This behavior can be traced to its 

distributed multi-agent DRL framework, where 

each agent operates with limited visibility into the 

overall system state. Without a comprehensive 

view of the network, agents often opted to process 

tasks at a higher frequency to minimize CPU 

occupancy and avoid Resource contention. While 

this strategy may reduce immediate delays, it 

inadvertently increases energy consumption and 

diminishes the overall system efficiency. 

In summary, the results highlight the advantages of 

the proposed homotopy reward design and graph-

based cell state aggregation in improving system 

performance and scalability. By addressing the 

shortcomings of traditional reward mechanisms 

and state aggregation methods, the proposed 

approach achieves superior stability, faster 

convergence, and enhanced adaptability, 

particularly under challenging operational 

conditions. 

 

E. Comparisons under Different Environmental 

Settings 

This section evaluates the performance of our 

proposed algorithm against other methods under 

varying simulation parameters, specifically 

focusing on the task generation interval parameter 

(𝛺) of the exponential distribution and the user 

preference for required CPU cycles 𝛽). These 

parameters influence the system load by altering 

the task arrival rate and the computational demand 

of each task. Our analytics illustrate the system 

costs across different values of 𝛺. A reduction in 𝛺 

corresponds to an increased number of tasks and a 

heavier overall system load. The results reveal that 

DRL-based methods consistently outperform the 

SSG approach in all scenarios. This is due to the 

long-term optimization capabilities inherent in 

DRL, which enable proactive and foresight-driven 

decision-making. In contrast, the SSG method 

prioritizes immediate task optimization without 

accounting for future system demands, leading to 

significant queue delays and higher overall costs. 

Among the DRL-based methods, the S2S approach 

exhibits comparatively higher system costs. This 

can be attributed to its vulnerability to the memory-

forgetting issue associated with processing long 

task sequences. As 𝛺 decreases, the number of 

tasks requiring scheduling within each discrete 

timeslot increases, further amplifying this 

limitation. In contrast, the proposed ReSTO 

framework achieves the lowest system cost across 

all scenarios, with the performance gap widenthe 

ing as 𝛺 decreases. This superior performance 

stems from the fundamental differences between 

real-time and batched offloading. As the system 

load intensifies with a higher task arrival rate, the 

limitations of batched offloading become more 

pronounced, leading to greater performance 

degradation for methods relying on discrete 

scheduling intervals. These findings reaffirm the 

advantages of the real-time offloading strategy 

employed in ReSTO, particularly under high-load 

conditions. 

Our analytics compares the performance of the 

algorithms across different values of 𝛽, which 

represents the computational load associated with 

tasks. Higher 𝛽 values indicate that tasks demand 

more CPU cycles for processing, thereby 

increasing the system load. The results reveal that 

under low-load scenarios, DRL-based methods 

demonstrate a clear advantage over the Single-Step 

Greedy (SSG) approach, achieving significantly 

lower system costs. This improvement is attributed 

to the long-term optimization capabilities of DRL, 

which enable more efficient Resource allocation 

and task scheduling by anticipating future system 

states. In contrast, SSG focuses solely on 

immediate task optimization, often resulting in 

suboptimal Resource utilization and increased 

queuing delays. As the system load intensifies with 

higher 𝛽 values, the performance gap between 
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DRL-based methods and SSG narrows. This 

reduction in effectiveness stems from the 

challenges introduced by the more demanding 

environment. Heavier system loads generate 

delayed and sparse rewards, complicating the 

training process for DRL algorithms and limiting 

their ability to converge to optimal policies. Under 

these conditions, traditional DRL-based 

approaches are more likely to become trapped in 

local optima, as the sparse feedback makes it 

difficult to identify and reinforce effective 

scheduling strategies. 

The proposed ReSTO framework, however, 

addresses these limitations through its innovative 

homotopy reward mechanism. By combining 

model-based and reality-based rewards, the 

homotopy reward provides consistent and 

structured feedback throughout the training 

process. This design enables ReSTO to navigate 

complex and dynamic system states more 

effectively, avoiding local optima and guiding the 

algorithm toward globally optimized solutions. 

The ability to adapt to varying load conditions is 

further enhanced by the real-time offloading 

strategy employed in ReSTO, which eliminates the 

delays associated with batched scheduling. This 

combination of timely decision-making and robust 

reward feedback allows ReSTO to maintain 

superior performance across all load conditions. 

Moreover, the advantages of ReSTO become 

increasingly pronounced as the system load rises. 

In high-load scenarios, where tasks require 

significant computational Resources and delays are 

more detrimental, the benefits of real-time 

offloading are particularly evident. By reducing the 

waiting time between task arrival and execution, 

ReSTO not only minimizes queuing delays but also 

maximizes Resource utilization efficiency. These 

factors collectively contribute to ReSTO’s 

consistent outperformance of competing methods, 

demonstrating its scalability, adaptability, and 

resilience under diverse operational conditions. 

In summary, the integration of the homotopy 

reward mechanism and real-time offloading in 

ReSTO provides a significant edge over existing 

DRL-based approaches and heuristic methods like 

SSG. The framework’s ability to maintain low 

system costs under both low and high system loads 

highlights its robustness and makes it a promising 

solution for real-time and scalable task offloading 

in dynamic edge computing environments. 

 

 
Fig 2. System Costs Across Algorithms for Varying Task 

CPU Cycle Requirements. 

 

6. Conclusions 

While DRL-based algorithms have demonstrated 

exceptional capabilities in optimizing task 

offloading for edge computing, several persistent 

challenges limit their potential for broader practical 

deployment. Key among these is the waiting time 

associated with batched decision-making and the 

dimensional mismatches arising from dynamic 

system scales. These limitations not only impede 

performance improvements but also hinder the 

scalability and adaptability of such methods in real-

world applications. To address these critical issues, 

we introduce ReSTO, a DRL-driven real-time and 

scalable offloading framework designed to 

overcome the inherent challenges of existing 

methods. ReSTO redefines the task-offloading 

paradigm by shifting from a batched scheduling 

approach to a real-time offloading framework. 

Tasks are scheduled immediately upon arrival, 

eliminating waiting times and enabling more 

efficient Resource utilization. This is achieved by 

modeling the offloading problem as a Semi-

Markov Decision Process (Semi-MDP), allowing 

decision-making at arbitrary task arrival times 

rather than fixed intervals. To effectively solve the 

problem, ReSTO employs a novel continuous-time 

Proximal Policy Optimization (PPO) algorithm, 

enhanced with specially designed scalable actor 

and critic networks that adapt seamlessly to 

varying numbers of edge nodes (ENs) and user 

devices (UDs). This architecture ensures robust 

performance across dynamic system conditions. 

In addition to its innovative decision-making 

framework, ReSTO introduces two key 

mechanisms to further enhance its performance. 

First, the homotopy reward mechanism integrates 

model-based and reality-based rewards to bridge 

the gap between theoretical assumptions and real-

world dynamics. This approach improves learning 

efficiency, enabling the algorithm to avoid local 

optima and converge toward globally optimal 

policies. Second, ReSTO clusters UDs into cells, 
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aggregating state information to reduce 

dimensional complexity and improve decision 

accuracy. This clustering approach ensures 

scalability and effective Resource allocation even 

in large-scale systems with high task loads. 

Extensive experimental evaluations highlight the 

significant advantages of ReSTO over state-of-the-

art algorithms. The results demonstrate that ReSTO 

consistently achieves lower system costs while 

exhibiting better scalability as the number of ENs 

and UDs fluctuates. These findings underscore the 

robustness and adaptability of the proposed 

framework, making it well-suited for the dynamic 

and heterogeneous environments characteristic of 

modern edge computing systems. However, 

transitioning from batch to real-time offloading 

also brings new challenges, particularly in terms of 

the computational overhead associated with state 

acquisition and decision-making processes. The 

need for rapid, real-time decisions places greater 

importance on minimizing time complexity to 

ensure the practical viability of ReSTO in large-

scale deployments. Future work will focus on 

exploring and developing algorithms with reduced 

time complexity, capable of operating under 

partially updated or approximate state information. 

By addressing these challenges, we aim to further 

enhance the efficiency and scalability of real-time 

offloading solutions, paving the way for their 

widespread adoption in edge computing. 

 Experimental Results and Validation: 

Extensive simulations demonstrate the 

superior performance of ReSTO compared to 

state-of-the-art methods. Specifically, ReSTO 

consistently achieves lower system costs (e.g., 

energy consumption, latency) while exhibiting 

better scalability as the number of ENs and 

UDs fluctuates. These results validate the 

effectiveness of ReSTO in optimizing resource 

allocation and adapting to dynamic system 

conditions. 

Conceptual Explanations: 

 Addressing Batching Limitations: By 

moving to a real-time framework, 

ReSTO eliminates the inherent delay 

associated with batched decision-

making, leading to more responsive 

and efficient resource allocation. 
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1. Introduction 

Feature selection is one way to reduce 

dimensionality; in this strategy, only significant 

traits are retained while superfluous and redundant 

ones are discarded. Two ways that a reduction in 

input dimensionality might improve performance 

are either decreasing learning time and model 

complexity or increasing generalization 

capabilities and classification accuracy. Using the 

right features might improve problem 

understanding and reduce measurement expenses. 

In certain situations, the impact of feature selection 

may be substantial; for example, in microarray data 

analysis, just two of the 7129 features may be used 

to improve classification performance [1].  

 

There are two kinds of feature selection models: 

 
• Supervised Models: The technique that selects 

features based on the output label class is known 
as supervised feature selection.  

• Unsupervised Models: An approach that selects 
features without requiring knowledge of the 
output label class is known as unsupervised 
feature selection.  

In many applications, it has been necessary to 

combine pattern recognition algorithms with FS 

techniques, since many of them were not designed 

to handle large amounts of irrelevant data at first. 

Preventing overfitting and enhancing model 

performance—more specifically, prediction 

performance in supervised classification and 

improved cluster detection in clustering—are the 

primary objectives of feature selection. Other 

objectives include (a) producing faster and more 

efficient models and (b) gaining a deeper 

comprehension of the underlying processes that 

generated the data. Nevertheless, the advantages of 

feature selection strategies are not without a price, 

as the search for a subset of pertinent 

characteristics raises the bar for modeling 

complexity. We must now determine the model's 
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optimal parameters for the optimal feature subset 

in addition to optimizing its parameters for the full 

feature subset, since there is no guarantee that the 

model's ideal parameters for the entire feature set 

will also be optimal for the optimal feature subset. 

Thus, identifying the optimal subset of pertinent 

attributes expands the scope of the search within 

the model hypothesis space. Every feature 

selection technique uses a different technique to 

include this search in the extra space of feature 

subsets when choosing a model [2, 4, 5]. 

  

Filter approaches assess the significance of the 

features by concentrating on the intrinsic properties 

of the data. Generally, features are ranked 

according to their relevance, and those with lower 

scores are ignored. This selection of attributes is 

then given as input to the classification algorithm. 

Because of the advantages of filter approaches—

which include their simplicity and speed in 

computation, their independence from the 

classification algorithm, and their ability to scale to 

extremely high-dimensional datasets—only one 

feature selection process is needed before multiple 

classifiers can be evaluated [2,]. 

 

Unlike filter techniques, which tackle the problem 

of finding a suitable feature subset independently 

of the model selection phase, wrapper approaches 

incorporate the model hypothesis search into the 

feature subset search. In this scenario, various 

feature subsets are generated and evaluated in the 

space of possible feature subsets utilizing a 

predefined search method [2]. 

Figure 1:  Overview of Feature Selection Strategies [2]

2. Choosing Feature 

Medical image and healthcare analysis, including 

diabetes [15, 24, 32], breast cancer [16, 25], 

healthcare system [17], forecasting [18], stock 

market [19], stroke [20], COVID-19 [21], types of 

epidemic [22], medicinal plants [23], heart [26], 

lung cancer [27, 30], social networks [28], 

prediction of diphenhydramine [29], and bupro, 

have all benefited from the successful application 

of artificial intelligence, which includes machine 

learning and deep learning. We present a 

comprehensive review of feature selection methods 

applied in medicine over the past five years, some 

developed on the fly to tackle specific problems. 

Specifically, feature selection has been applied in 

three main medical fields: biomedical signal 

processing, DNA microarray data, and medical 

imaging. We then go on to discuss current 

advancements in each of these fields. Then, we 

discuss how feature selection is applied to two 

actual medical image analysis situations and show 

the benefits that follow from doing so [1,39, 44]. 

The following is a summary of feature choices.  

 

• Feature Selection: Select a subset of input 

features from the dataset.  

• Unsupervised: Do not use the target variable 

(e.g. remove redundant variables).  

• Correlation  

• Supervised: Use the target variable (e.g. 

remove irrelevant variables).  

• Wrapper: Search for well-performing subsets 

of features. 

• RFE  

• Filter: Select subsets of features based on their 

relationship with the target.  

• Statistical Methods  

• Feature Importance Methods  
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• Intrinsic: Algorithms that conduct automated 

feature selection during training.  

• Decision Trees  

• Dimensionality Reduction: Project input data 

into a lower-dimensional feature space. 

 

The figure above offers an overview of the 

hierarchy of feature selection strategies. 

 

 

A. Primary Concepts  

In line with how they combine the selection 

algorithm and the model development, the feature 

selection strategies are frequently categorized into 

three forms.  

 

B. Filter Method 

Filtering strategy for picking features: Methods of 

the filter type pick variables without attention to 

the model. They are just reliant on universal 

qualities like the correlation with the expected 

variable. Filtering strategies reduce the least 

fascinating aspects. The following variables will be 

added to a regression model or classification 

scheme used to classify or forecast data. These 

approaches offer good computational efficiency 

and are resistant to overfitting. When filter 

algorithms do not take into consideration the 

relationships between variables, duplicated 

variables are typically picked. However, more 

complicated features, like the Fast Correlation 

Based Filter (FCBF) algorithm, aim to decrease 

this problem by removing variables that are highly 

linked with one another. 

 

Figure 2: The Hierarchy of Feature Selection 

Methods [29] 

C. Wrapper Method 

Wrapper approach for feature selection: Wrapper 

techniques, in contrast to filter operations, look at 

subsets of variables, which makes it possible to 

find any possible interactions between variables. 

Overfitting becomes more likely when there are 

insufficient observations, and computation time 

grows dramatically as there are more variables [41, 

42, 43]. 

 

 

Figure 2: Wrapper Method in Feature Selection 

[43] 

 

D. Embedded Methodology 

Choosing features using the embedded method: 

Embedded strategies have recently been created 

with the goal of combining the advantages of the 

two previous approaches. A learning algorithm, 

such as the FRMT technique, uses its own variable 

selection mechanism to carry out feature selection 

and classification simultaneously [40, 45]. 

 

3. Finding 

In many bioinformatics applications, feature 

selection algorithms are needed. Dedicated 

bioinformatics applications have yielded a wide 

range of recently proposed methods to supplement 

the large body of previously developed methods in 

the fields of data mining and machine learning [2, 

46]. In recent years, there has been a notable 

increase in the use of feature selection approaches 

in medical datasets. The challenging task in feature 

selection is to identify the perfect subset of relevant 

and non-redundant qualities that will provide an 

optimal solution without adding to the complexity 

of the modeling process. Therefore, it's critical to 

draw attention to recent advancements in this area 

and educate practitioners on feature selection 

strategies that have worked well with medical data 

sets. The findings demonstrate that most feature 

selection methods now in use are based on 

univariate ranking, which overlooks the stability of 

the selection algorithms, interactions between 

variables, and the requirement for additional 

features to attain very high accuracy. Less 

attributes may still lead to maximum classification 

accuracy, but more work has to be done in this area 

[3, 14, 33-38, 47]. 
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Tables1: Summary of Feature Selection Methods 

[47] 

 

 

4. Conclusion 

Feature selection is a fundamental technique for 

enhancing machine learning models by reducing 

dimensionality, improving accuracy, and 

optimizing computational efficiency. This review 

has highlighted the significance of feature selection 

in various medical applications, including 

biomedical signal processing, DNA microarray 

analysis, and medical imaging. While existing 

methods provide effective solutions for reducing 

irrelevant and redundant features, many challenges 

remain in achieving an optimal subset of features 

that balances performance and computational cost. 

Recent advances have shown that hybrid models 

combining filter, wrapper, and embedded 

approaches yield promising results. However, 

issues such as model stability, feature interaction, 

and scalability need further exploration. Future 

research should focus on developing more robust 

feature selection techniques tailored for complex 

medical datasets, ensuring better diagnostic 

accuracy and predictive performance in healthcare 

applications. 
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1. Introduction 

Masonry arch bridges have been integral 

components of architectural and engineering 

heritage for centuries, known for their aesthetic 

appeal and structural efficiency. These structures, 

prevalent in both historical and modern 

applications, require meticulous analysis to ensure 

their resilience, particularly under dynamic loads 

such as seismic activity and vehicular traffic. A 

critical aspect of their performance lies in the 

optimization of their geometric shape, which 

significantly influences their ability to withstand 

dynamic forces while maintaining stability and 

durability [1]. 

Dynamic analysis is a comprehensive time-history 

analytical method that evaluates the responses of 

structures to time-dependent excitations, such as 

earthquakes. By numerically integrating the 

equations of motion, this method provides a 

detailed understanding of time-varying 

displacements, strains, stresses, and forces within a 

structure. Such insights are essential for predicting 

the behavior of masonry arches under dynamic 

loads, enabling engineers to design and optimize 

structures that meet safety and performance 

requirements [2]. 

Previous research has explored various aspects of 

modeling, dynamic analysis, and shape 

optimization of masonry arches. These studies 

have demonstrated the significance of employing 

advanced computational tools like ANSYS 

software for conducting dynamic analyses. 

However, these methods are often computationally 

intensive, requiring significant time and resources 

to achieve accurate results. The reliance on 

traditional optimization techniques, primarily 

based on Empirical Risk Minimization (ERM), has 

further limited the efficiency and applicability of 

these approaches [3]. 
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Despite the progress made, a notable gap exists in 

the integration of advanced machine learning 

techniques, such as Support Vector Machines 

(SVM), into the dynamic analysis and optimization 

of masonry arches. Traditional methods have 

struggled to balance computational efficiency with 

the precision required for analyzing complex 

structural behaviors. Furthermore, existing studies 

have not fully leveraged the principles of Structural 

Risk Minimization (SRM), which offer a more 

robust framework for predictive modeling 

compared to ERM-based techniques [4]. 

To address these limitations, the present study 

introduces an innovative framework that combines 

SVM with SRM principles for the dynamic 

analysis and shape optimization of masonry arches. 

By employing this approach, the computational 

burden of dynamic analysis is significantly reduced 

while maintaining high accuracy in results. 

Additionally, the integration of SVM into the 

optimization process represents a novel application 

in the field, filling a critical void in the current body 

of knowledge. This research not only advances the 

methodological tools available for structural 

optimization but also sets a precedent for future 

studies aiming to enhance the resilience and 

performance of masonry arch bridges under 

dynamic loads. 

 

2. Literature review 

This section discusses related research on Masonry 

Arch Bridges under Dynamic Loads. In [5], 

Authors developed a hybrid optimization 

framework combining genetic algorithms with 

finite element analysis to investigate the 

optimal shapes of masonry arches. Although 

this approach demonstrated improvements in 

optimization outcomes, it faced challenges in 

handling high-dimensional design spaces 

efficiently. Our SVM-based methodology 

addresses this limitation by offering robust 

performance in high-dimensional settings and 

ensuring scalability.Another noteworthy 

contribution by [6] utilized deep learning 

models to predict the dynamic stability of 

semicircular masonry arches. While their 

neural network models achieved high 

accuracy, the need for extensive training data 

and the risk of overfitting limited the practical 

application of their approach. Our method 

overcomes these issues by leveraging SVM, 

which requires smaller datasets and inherently 

avoids overfitting through SRM principles.In 

[7], the influence of material properties on the 

seismic performance of masonry arches was 

investigated using parametric analyses. 

Although the research provided a detailed 

understanding of material behavior, it lacked a 

systematic framework for shape optimization. 

Our research extends beyond material analysis 

to include comprehensive shape optimization, 

enhancing the overall resilience of masonry 

arches. Finally, in [8] authors examined the 

impact of geometric irregularities on the 

dynamic performance of masonry arches 

through numerical simulations. While the 

study highlighted critical geometric factors 

affecting stability, it did not incorporate 

advanced optimization methodologies. Our 

work fills this gap by integrating machine 

learning techniques directly into the 

optimization process, providing a more 

efficient and effective framework for 

analyzing and improving structural 

performance. Despite the progress made, a 

notable gap exists in the integration of 

advanced machine learning techniques, such as 

Support Vector Machines (SVM), into the 

dynamic analysis and optimization of masonry 

arches. Traditional methods have struggled to 

balance computational efficiency with the 

precision required for analyzing complex 

structural behaviors. Furthermore, existing 

studies have not fully leveraged the principles 

of Structural Risk Minimization (SRM), which 

offer a more robust framework for predictive 

modeling compared to ERM-based 

techniques.To address these limitations, the 

present study introduces an innovative 

framework that combines SVM with SRM 

principles for the dynamic analysis and shape 

optimization of masonry arches. By employing 

this approach, the computational burden of 

dynamic analysis is significantly reduced 

while maintaining high accuracy in results. 

Additionally, the integration of SVM into the 

optimization process represents a novel 

application in the field, filling a critical void in 

the current body of knowledge. This research 

not only advances the methodological tools 

available for structural optimization but also 

sets a precedent for future studies aiming to 

enhance the resilience and performance of 

masonry arch bridges under dynamic loads. 
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3. Modeling, Analysis, and Shape Optimization 

of Arches Using ANSYS 11 

Considering that in the optimization section, design 

variables, namely the thickness of the base and the 

thickness of the crown, need to be defined as 

parameters, key points in the modeling of the arch 

must be defined as follows[9]. 

4. Geometrical Modeling 

For clarity, the semi-circular arch with the 

definition of key points as parameters is presented 

in (Figure 1), where the coordinates of the key 

points are defined as follows (Table1): 

 

Table 1: Coordinates of Key Points of the Semi-

Circular Arch 

point 1 2 3 4 5 6 7 

X 

coordinate

s 
0 R 

-

R 
0 

R+t

0 

-

(R+t0

) 

0 

Y 

coordinate

s 

0 0 0 R 0 0 

R+t

1 

 

 

Figure 1: Semi-Circular Arch [8] 

 

Modeling the arch in this way means that the 

gradual reduction in thickness from the base to the 

crown contributes to the stability of the arch. It is 

worth noting that in the modeled arch, the thickness 

decreases linearly from the base to the crown. 

Additionally, the thickness of the arch in the 

longitudinal direction is equal to 20 units. The 

displacements of the support nodes are set to zero, 

and the shear force is unable to displace them. 

Furthermore, the masonry consists of brick and 

mortar, considered as homogeneous materials with 

properties listed in Table 2, and the coefficients 

involved in the nonlinear and non-elastic analysis 

listed in Table 3 are taken into account. 

 
Table 2: Characteristics of Masonry Materials 

1460[6] 
Density 

 ρ
 

3/ mkg
                     

8105 [7] 

Elastic Modulus 

 E
                       

2/ mN
 

5105.0  [6,7,8] 

Allowable Tensile Stress

 tf
                    

2/ mN  

0.17 [8] Poisson's Ratio 
 

 

 

Table 3: Coefficients Influencing Nonlinear Non-

Elastic Analysis 

0.1[6] 
Shear Transfer Coefficient 

for Open Crack 

0.9[7] 
Shear Transfer Coefficient 

for closed Crack 

4105 [6, 7, 8] 

Allowable Tensile Stress 
2/ mN           tf  

5105 [6,7] 

Allowable compress Stress 
2/ mN         cf  

 

 

5. Support Vector Machine: 

 (SVM) is a machine learning method based on the 

statistical learning theory proposed by Vapnik and 

his colleagues in the 1990s. In SVM, the principles 

of Structural Risk Minimization (SRM) are 

employed, while other methods rely on Empirical 

Risk Minimization (ERM). It has been 

demonstrated that SRM principles perform better 

than ERM in terms of functionality. SVM is 

generally used for binary or multiclass 

classification and regression problems [10]. 

Like many other machine learning methods, SVM 

involves a model construction process consisting of 

two stages: training and testing. At the end of the 

training phase, the generalization capability of the 

trained model is evaluated using test data. In 

summary, the main operation of SVM in solving 

regression problems can be stated as follows: 

1. Support Vector Machine approximates the 

regression function using a linear function. 

2. Support Vector Machine performs regression 

operations with a function where the deviation 

from the actual value is less than ε (loss function). 

3. By minimizing the structural risk, Support 

Vector Machine provides the best solution [11]. 

In methods such as artificial neural networks, 

empirical risk minimization principles are used to 

achieve the best solution. Minimizing empirical 

risk ensures the appropriate performance of the 

model on training data, but there is no guarantee of 

proper generalization. Therefore, in this method, 

proper network design is necessary to improve the 

generalization performance of the model. The goal 

of structural risk minimization is to optimize the 



K. Kumarci / Journal of Optimization of Soft Computing (JOSC), 2(4): 21-27, 2024 

 

24 

 

generalization capability of the model while 

minimizing empirical risk simultaneously [12]. 

Solving the regression problem in SVM involves 

approximating the regression function using a 

linear function f(x) =˂w.x˃+b. on a set containing 

a sample such as 

{(x1,y1),….(x1,y1)ϵ Rn, yϵR} Translated 

academically, it becomes: to be able to estimate 

output values based on inputs. In the above 

equation, x is the input vector 

(w,b) ϵ RN×R  The controlling parameters of the 

function f are represented by ˂w.x˃, indicating the 

inner product. For solving the regression problem, 

the Vapnik loss function is used, where a minimum 

error of ε can be ignored. This loss function is 

defined in equation (1) as follows: 

 

 
(1) 

 

Lɛ(y) represents the loss function and ε is the 

allowable error in the loss function. The controlling 

parameters of the optimal regression function are 

obtained by solving the following optimization 

problem: 

 

 

 

 

 

(2) 

 

In the equation (2), ζ's are slack variables. These 

variables, along with the loss function, are depicted 

in Figure 2. To solve the optimization problem 

above, the Lagrange function is written according 

to equation (2) using the theory of Lagrange 

multipliers. 

 

 

 
Figure 2: Vapnik's Loss Function and Slack 

Variables 

 

With the maximization of the above function under 

the following constraints, the values of a and a* are 

obtained. These coefficients are referred to as 

Lagrange multipliers. 

 The optimization problem above can be solved 

using Quadratic Programming (QP) methods, thus 

achieving a definite global extremum. 

Consequently, the risk of overfitting these data 

points is higher. Therefore, support vectors do not 

lie within the margin band. Hence, controls the 

number of support vectors[13]. With the help of 

Lagrange multipliers and support vectors, the 

optimal response control parameters are calculated 

as follows: 

In Equation 7, Xr and Xs are two support vectors. 

For constructing a Support Vector Machine (SVM) 

model, the parameters C and are defined by the 

user. Parameter C is a regularization parameter and 

can take values from zero to infinity. Its role is to 

balance between minimizing empirical risk and 

maximizing generalization capability. Parameter 

can also take values from zero to infinity. Its value 

is crucial in the context of support vectors and 

consequently, the model's performance. Linear 

regression problem in SVM can be easily extended 

to non-linear regression. For this purpose, kernel 

functions are used [14]. Various kernels have been 

recognized so far, but the successful application of 

polynomial and radial basis function (rbf) kernels 

in geotechnical engineering problems has been 

reported. Thus, in the case of non-linear regression 

in SVM, the control parameters of the optimal 

function are calculated with the following 

equations: 

6. Modeling arches using Support Vector 

Machines (SVM) 

To generate and evaluate a Support Vector 

Machine (SVM)-based model for predicting the 

dynamic response of concrete arches under seismic 

force, 300 arch samples analyzed by ANSYS 

software are used. Each arch sample includes 3 

independent variables: arch radius, base thickness, 

and crown thickness, and one dependent variable: 

maximum arch tensile stress. The range of these 

parameters in this study is defined as follows: arch 

radius (4 to 8 meters), base thickness (0.8 to 1.4 

meters), and crown thickness (0.2 to 0.4 meters). 

For creating the SVM model, the data are divided 

into two sets, training and evaluation, with a ratio 

of 70 to 30 (210 samples for training and 90 

samples for evaluation). The desired model is 

generated using the training dataset, and its 

performance in predicting the desired population is 

evaluated using data not experienced during the 

model training (test dataset). Moreover, the radial 
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basis function (rbf) kernel, chosen as the best 

kernel function in various research studies, is used 

as the kernel function in this study[15]. To achieve 

a better model, multiple models are created by 

combining different combinations of kernel 

function parameters (C, and ζ), and their 

performance is evaluated. Additionally, the 

prediction results of the model are presented using 

statistical indices such as the correlation coefficient 

(R) and the root mean square error (RMSE). The 

correlation coefficient is a measure of the 

conformity of predicted values to measured values 

and is calculated according to the following 

equation. 

Moreover, the value of RMSE, which is a measure 

for error estimation, is calculated according to the 

following equation. 

Tables 4 to 6 present the results obtained from the 

generated models based on different combinations 

of parameters C, , and ζ. 

 

 

 

 

 

 

 

 

 

Table 4: Model evaluation for various values of the kernel function parameter ζ 

ζ 
Train Set Test Set 

R RMSE R RMSE 

0.5 0.8324 0.2134 0.6914 0.1424 

1 0.8873 0.2542 0.7105 0.1804 

10 0.9132 0.0422 0.8123 0.1924 

50 0.9732 0.1393 0.8012 0.0834 

100 0.9023 0.2059 0.9145 0.1425 

200 0.9802 0.1942 0.9014 0.1804 

300 0.8931 0.1954 0.7204 0.1643 

ε = .002          C=120 

 

 

Table 5: Model evaluation for various values of the kernel function parameter𝛆 

ε 
Train Set Test Set 

R RMSE R RMSE 

0.0001 0.8753 0.1246 0.7406 0.0245 

0.001 0.8472 0.0754 0.8520 0.0810 

0.005 0.9123 0.0864 0.9025 0.1149 

0.01 0.7856 0.1825 0.8205 0.1820 

0.05 0.7750 0.1342 0.7525 0.1025 

0.1 0.8253 0.2305 0.8206 0.2150 

ζ = 45          C=120 

 

Table 6: Model evaluation for various values of the kernel function parameter 𝐜 

C 
Train Set Test Set 

R RMSE R RMSE 

0.1 0.6892 0.2025 0.6027 0.1486 

1 0.8402 0.1840 0.8242 0.1085 

10 0.7920 0.1820 0.8295 0.0895 

50 0.8154 0.1234 0.7930 0.0702 

100 0.8682 0.0804 0.8206 0.1079 

150 0.9104 0.0865 0.9253 0.0802 

200 0.9425 0.9104 0.9874 0.9795 

ε = .002          ζ =45 

 

 

7. Conclusion 
 

The overall goal of this research is to utilize a 

nonlinear Support Vector Machine (SVM) model 

along with a radial basis function (rbf) kernel for 

predicting the dynamic response of concrete arches 

under seismic force. To this end, a dataset 

consisting of 300 arch samples analyzed by 
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ANSYS software is divided into a 70 to 30 ratio for 

training and evaluation datasets (Figure 3). 

Finally, after determining the best SVM model, 

which exhibits adequate accuracy in predicting the 

dynamic responses of arches compared to actual 

results, the kernel function parameters (C, , and ζ) 

as well as the values of R (correlation coefficient) 

and RMSE (root mean square error) are presented 

as determinant parameters in selecting the best 

SVM model. Figure 4 compares the maximum 

tensile stress calculation by Support Vector 

Machine and ANSYS software. The results of the 

study indicate that the Support Vector Machine has 

an error ranging from 11 to 17 compared to the 

results obtained by ANSYS software. 

 
 

 

Figure 3: Comparison plot of maximum tensile stress calculated by ANSYS software and SVM 

 

 

Figure 4: Percentage error plot of maximum tensile stress calculation by  

SVM software compared to ANSYS software 
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1. Introduction 

In recent years, edge computing has emerged as a 

key technology for processing data closer to where 

it is generated, offering distinct advantages over 

traditional cloud-based computing. At its core, 

edge computing allows devices to process and 

analyze data locally rather than sending it to 

centralized servers or the cloud [1]. This localized 

processing significantly reduces latency, decreases 

reliance on network bandwidth, improves privacy, 

and increases overall system efficiency, making it 

particularly valuable for real-time applications 

such as image classification and object detection. 

Embedded systems, which are small, low-cost, and 

energy-efficient computing units, are a key enabler 

of edge computing and Internet of Things devices. 

They are commonly used in applications where 

space and power consumption are constrained, 

such as in smart home devices, wearable 

electronics, and industrial sensors. However, 

microcontrollers are typically limited in terms of 

computational power, memory, and storage, 

making it challenging to run complex machine 

learning models [2,3]. 

Traditional deep learning models require 

substantial computational resources, especially in 

terms of processing power and memory, which 

makes it difficult to deploy them on embedded 

systems. However, recent advancements in model 

optimization techniques, such as quantization, 

pruning, and the use of lightweight neural network 

architectures (e.g., Tiny YOLO), have made it 

possible to deploy deep learning-based object 

detection models even on microcontrollers. These 

optimization techniques help reduce the size of the 

models, increase their inference speed, and reduce 

power consumption, all while maintaining 

acceptable levels of accuracy. 
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Deploying deep learning models on embedded 

systems is a key step in bringing artificial 

intelligence to the edge, where real-time decision-

making is critical [4,5]. While challenges such as 

limited computational power, memory, and energy 

resources remain, advancements in model 

optimization techniques, lightweight architectures, 

and specialized hardware accelerators are making 

AI deployment on small devices more feasible 

[6,7]. For example, Tiny YOLO, a compact version 

of the well-known YOLO (You Only Look Once) 

object detection model, has proven to be effective 

for edge deployment due to its small size and 

efficient performance. This is especially valuable 

in applications such as autonomous systems, 

security surveillance, and robotics, where real-time 

object detection is needed on resource-constrained 

devices. One of the key hurdles in deploying deep 

learning on embedded systems is ensuring that 

these models can operate efficiently while 

maintaining a balance between performance and 

resource consumption [8-10].  

Model optimization methods like quantization, 

pruning, and clustering help in reducing the 

memory footprint, lowering computation 

requirements, and speeding up inference times, 

making these models more suitable for edge 

devices like ESP32 [11]. Tools such as TensorFlow 

Lite provide frameworks that make it easier to run 

AI models on these constrained platforms, 

optimizing them further for mobile and embedded 

applications [12]. 

The rise of AI-powered microcontrollers is 

transforming industries by enabling smarter, 

decentralized systems [13,14]. In smart homes, 

microcontrollers are being used for voice 

recognition in virtual assistants and object 

detection in security cameras. In healthcare, 

wearable devices equipped with AI can monitor 

vital signs and detect falls in real-time. In industrial 

IoT, microcontrollers power predictive 

maintenance systems that can analyze sensor data 

like vibration and temperature to prevent 

equipment failure. Additionally, environmental 

monitoring using microcontrollers allows for the 

processing of data to predict weather patterns, track 

pollution levels, and monitor wildlife. The 

agricultural sector benefits from AI-enabled 

microcontrollers by enabling crop health 

monitoring, soil condition analysis, and pest 

detection, ultimately advancing precision farming 

techniques [15,16]. These examples underscore the 

versatility of microcontroller-based AI, 

showcasing its potential to enhance various 

domains by making intelligent decisions at the 

edge [17,18]. 

This study conducted aimed to evaluate the 

performance of the Tiny YOLO model on various 

edge devices, including ESP32, ESP32-S3, Pico 

W, and Jetson Nano, across different optimization 

techniques such as quantization, weight pruning, 

and clustering. The experiment utilized the COCO 

[19] and Pascal VOC [20] datasets to assess the 

model's mean Average Precision (mAP), frames 

per second (FPS), model size, inference time. 

Results showed that while ESP32 and Pico W 

exhibited significant limitations in accuracy and 

real-time performance due to their limited 

computational power, applying optimizations did 

provide some improvements in terms of model size 

and inference speed. In contrast, Jetson Nano 

demonstrated superior performance, achieving 

high mAP values and fast inference times, even 

with optimized models. This highlighted the 

importance of hardware capabilities in achieving 

real-time object detection, with Jetson Nano 

proving to be the most suitable platform for 

running optimized models like Tiny YOLO 

efficiently on more complex datasets. 

In the following, the Edge-based object detection is 

presented in section 2, the YOLO and Tiny YOLO 

architectures are presented in sections 3 and 4. The 

optimization techniques of learning models are 

presented in section 5, which also refers to the 

proposed approach. In section 6, the 

implementation of different scenarios of Tiny 

YOLO model optimization are presented, and then 

in section 7, the results of evaluation are compared. 

Finally, the conclusion is presented in section 8. 

2. Edge-based object detection 

Deploying object detection models on embedded 

systems for edge computing is a promising solution 

for a wide range of real-time applications. As 

optimization techniques improve, the ability to run 

sophisticated object detection algorithms on 

embedded systems will continue to advance, 

opening up new possibilities in fields such as 

healthcare, security, autonomous systems, and 

environmental monitoring. The ability to perform 

local image processing without relying on cloud 

infrastructure is transforming industries and 

enabling more intelligent, responsive, and energy-

efficient systems. 

This breakthrough allows for real-time object 

detection on devices with limited resources. The 

ability to process images and classify objects at the 

edge, without the need for cloud computing, opens 

up a wide range of possibilities for various 
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applications [21-23]. Below are some key use cases 

where microcontroller-based image processing is 

particularly beneficial: 

 Smart Home Automation: 
o Object Detection: Embedded systems can be 

used to deploy object detection models to 

detect objects, faces, or gestures in smart home 

environments. For example, a security camera 

system could use a microcontroller to classify 

objects in real-time, identifying potential 

intruders or monitoring for specific actions. 

o Gesture Recognition: In a smart home, 

gesture recognition can be used to control 

lighting or appliances with simple hand 

movements, all processed on an embedded 

system. 

 Healthcare and Medical Devices: 
o Medical Imaging: Embedded systems can 

assist in analyzing medical images such as X-

rays, CT scans, or skin lesions directly on 

medical devices, facilitating faster diagnosis 

and reducing the need for data transmission to 

the cloud. 

o Wearable Health Devices: Image 

classification models deployed on wearable 

devices can monitor the health of individuals 

by identifying changes in skin tone, detecting 

the presence of medical conditions, or tracking 

movement patterns for rehabilitation purposes. 

 Industrial Automation and Monitoring: 

o Defect Detection in Manufacturing: 

Embedded systems with object detection 

capabilities can be used in automated 

inspection systems to identify defects in 

products on an assembly line, improving 

quality control and reducing human error. 

o Predictive Maintenance: By analyzing visual 

data from sensors, embedded systems can help 

detect signs of wear or malfunction in 

machinery, enabling predictive maintenance 

and preventing downtime. 

 Autonomous Systems: 
o Robotics: Autonomous robots, drones, and 

vehicles can leverage image classification at 

the edge to understand and interpret their 

environment, recognizing obstacles, people, or 

objects in real-time for navigation and 

decision-making. 

o Agriculture and Environmental 

Monitoring: Drones equipped with embedded 

systems can analyze images of crops or forests 

to monitor plant health, detect diseases, and 

evaluate environmental conditions without 

needing cloud-based processing. 

 Smart Cities and Surveillance: 

o Public Safety and Security: Microcontrollers 

embedded in surveillance cameras can perform 

face recognition or detect unusual behaviors, 

enabling automated security systems that 

operate in real-time without relying on cloud 

servers. 

o Traffic Monitoring: Embedded systems can 

be used in traffic cameras to analyze road 

conditions, detect traffic congestion, or 

recognize vehicle types, all processed locally 

for faster decision-making. 

 Environmental Monitoring: 
o Wildlife Monitoring: Edge devices equipped 

with embedded systems can monitor wildlife, 

detecting and identifying animals in remote 

areas through camera traps, without needing to 

transmit large image files to the cloud. 

o Pollution Detection: Image classification 

models can help detect pollution or other 

environmental hazards through cameras, 

enabling automated monitoring systems for air, 

water, or land quality. 

 Retail and Consumer Interaction: 
o Product Recognition: Embedded systems can 

be used in point-of-sale systems or vending 

machines to recognize products through image 

classification, enabling automatic stock 

tracking or facilitating seamless customer 

interactions. 

o Customer Behavior Analysis: In retail 

settings, embedded systems can process visual 

data from in-store cameras to track customer 

behavior, optimize store layouts, or improve 

marketing strategies based on customer 

interaction patterns. 

 

3. YOLO architectures 

YOLO (You Only Look Once) is a popular series 

of deep learning models for object detection. It’s 

known for its speed and efficiency, making it a best 

choice for real-time object detection tasks. Over 

the years, different versions of YOLO have been 

released, each with improvements in accuracy, 

speed, and architecture [24,25]. The summary of 

YOLO’s evolution is shown in table 1. Below is an 

overview of the main versions and their key 

features: 

 YOLOv1, introduced the idea of using a single 

convolutional neural network to predict 

bounding boxes and class probabilities in one 

pass, making it incredibly fast for real-time 

detection.  

o Architecture: A single convolutional neural 

network that simultaneously predicts bounding 

boxes and class probabilities for all objects in 

the image in one evaluation. The network 
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divides the image into a grid and for each grid 

cell, it predicts: 

 Bounding boxes (x, y, width, height) 

 Confidence score (how likely the box 

contains an object) 

 Class probabilities (which object class the 

box belongs to). 

o Strengths: Very fast (real-time detection), 

unified approach (object localization and 

classification in one pass). 

o Weaknesses: Struggles with detecting small 

objects and handling overlapping objects, less 

accurate in comparison to other models like 

Faster R-CNN. 

 YOLOv2, released in 2017, brought 

significant improvements such as the 

introduction of anchor boxes, batch 

normalization, and multi-scale training, which 

increased both speed and accuracy, especially 

for larger objects.  

o Architecture: 

 Introduced improvements like a new 

backbone network, Darknet-19, which was 

more powerful than YOLOv1's architecture. 

 Added anchor boxes for better bounding box 

prediction, addressing the issue of poor 

localization seen in YOLOv1. 

 Used multi-scale training, where the model 

was trained on different image sizes to 

improve generalization. 

 Introduced batch normalization to stabilize 

and speed up training. 

o Strengths: Faster and more accurate than 

YOLOv1, improved handling of different 

object scales, better generalization, and more 

robust performance. 

o Weaknesses: Still struggles with small object 

detection. 

 YOLOv3, released in 2018, the model was 

further enhanced with a new backbone 

(Darknet-53), multi-label classification, and 

the use of three different scales for prediction, 

allowing it to better detect small objects. 

Despite these improvements, YOLOv3 still 

had limitations when compared to more 

complex models like Faster R-CNN.  

o Architecture: 

 YOLOv3 used a new backbone called 

Darknet-53, which improved accuracy and 

allowed for better feature extraction. 

 Used multi-label classification to improve 

the detection of objects with more than one 

class. 

 Introduced three different scales for 

prediction (small, medium, and large), 

allowing the network to detect objects at 

various sizes. 

 Introduced Residual Connections to help 

deeper networks train better and avoid 

vanishing gradients. 

 The output layer was redesigned to use 

logistic regression for bounding box 

prediction. 

o Strengths: Better detection of smaller objects, 

significant performance improvement over v2 

in terms of both speed and accuracy. 

o Weaknesses: Still not as accurate as more 

complex architectures like Faster R-CNN for 

certain tasks, especially in cases of very dense 

or small objects. 

 YOLOv4 released in 2020, focused on 

improving detection performance with a new 

backbone (CSPDarknet53) and techniques like 

Mosaic data augmentation and self-adversarial 

training, leading to better accuracy, especially 

for small and dense objects, while maintaining 

fast inference times.  

o Architecture: 

 Built on the YOLOv3 model but 

incorporated several new techniques for 

better performance, including: 

 CSPDarknet53 as the backbone network, 

which balances accuracy and speed. 

 Mosaic Data Augmentation to improve 

generalization by combining multiple 

images during training. 

 Self-adversarial training for improved 

robustness. 

 DropBlock regularization for better 

bounding box predictions. 

 Improved performance on smaller objects 

with better feature pyramids. 

o Strengths: Higher accuracy than YOLOv3, 

better at handling small and dense objects, 

faster inference times, state-of-the-art 

performance in real-time detection. 

o Weaknesses: Larger model size compared to 

earlier versions, requiring more computational 

resources. 

 YOLOv5, which was not developed by the 

original YOLO creators but became very 

popular due to its ease of use, modular design, 

and efficient performance on a range of 

hardware.  
o Architecture: 

 YOLOv5 is a separate project developed by 

Ultralytics, which is not an official 

continuation of the YOLO series but has 

become very popular in the community. 
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 It focuses on speed and ease of use, and its 

codebase is built in PyTorch (as opposed to 

Darknet for the official YOLO models). 

 YOLOv5 uses a modular design with 

different model sizes (small, medium, large, 

extra-large) to balance speed and accuracy. 

o Strengths: Very easy to use, with a lot of built-

in features like model training, testing, and 

deployment. Achieves state-of-the-art 

performance with relatively lightweight 

models. 

o Weaknesses: It is not an official release from 

the original YOLO authors, so it may differ in 

implementation or long-term support 

compared to the official YOLO versions. 

 YOLOv6, released in 2022, continued the 

trend of optimization, especially for edge 

devices, by focusing on speed and efficiency.  

o Architecture: 

 YOLOv6 is optimized for both speed and 

accuracy with improvements over YOLOv5, 

particularly in handling dense and small 

objects. 

 Introduced a more efficient backbone 

(CSPResNet) and neck (PP-YOLO) to 

enhance detection performance. 

 Focused on optimizing inference speed for 

deployment on edge devices. 

o Strengths: Real-time performance, better 

accuracy with fewer resources. 

o Weaknesses: Like YOLOv5, it's not an 

official version, so community-driven 

development may lead to less consistency over 

time. 

 YOLOv7, also released in 2022, utilized more 

advanced techniques such as efficient 

transformers and heterogeneous module 

fusion, further enhancing both speed and 

accuracy.  

o Architecture: 

 YOLOv7 continues improving on YOLOv5 

and YOLOv6, focusing on both accuracy 

and inference speed. It utilizes the efficient 

transformer architecture for better handling 

of spatial relationships in images. 

 Improved backbone for better feature 

extraction and information flow. 

 Introduced Heterogeneous Module fusion 

for better performance in terms of both 

accuracy and speed. 

o Strengths: One of the fastest YOLO versions 

to date, highly optimized for real-time object 

detection. 

o Weaknesses: Complexity in tuning for 

specific tasks, requires careful hyperparameter 

tuning for optimal performance. 

 

 YOLOv8, introduced in 2023, offers cutting-

edge performance with improvements in 

backbone architectures, better handling of 

various object detection tasks, and 

optimization for real-time and embedded 

systems.  

o Architecture: 

 YOLOv8 aims to offer even better accuracy, 

speed, and efficiency than its predecessors. It 

is designed to perform well on various object 

detection tasks and includes newer backbone 

and neck architectures, as well as better loss 

functions for bounding box predictions. 

 It also focuses on fine-tuning for specific 

tasks like segmentation and key point 

detection. 

o Strengths: Cutting-edge performance, high 

accuracy, and optimized for both real-time and 

edge devices. 

o Weaknesses: Requires more computational 

resources than earlier versions but offers a 

significant boost in performance. 

Table 1: Summary of YOLO’s evolution. 

Version Key Features 

YOLOv1 
First release; groundbreaking for real-time object 
detection using a single CNN for bounding box and 

classification predictions. 

YOLOv2 
Improved accuracy and speed; introduced anchor 
boxes, batch normalization, and multi-scale 

training. Better at handling larger objects. 

YOLOv3 

Significant improvements in architecture with 
Darknet-53 backbone; better at detecting small 

objects with multi-scale predictions and multi-label 

classification. 

YOLOv4 
Focused on speed, accuracy, and robustness, 

especially for real-time applications; introduced 
Mosaic data augmentation and CSPDarknet53. 

YOLOv5 
A community-driven model; emphasizes ease of 

use, modular design, and optimized for both speed 
and accuracy, with multiple model sizes.  

YOLO 

v6 & v7 

Optimized for edge devices and real-time 

applications; further enhancements in speed, 
accuracy, and performance, especially in dense or 

small object detection. 

YOLOv8 
The latest version with cutting-edge performance 
and optimizations for real-time and embedded 

devices; handles various detection tasks.  

The YOLO family continues to evolve with a 

stronger emphasis on speed, accuracy, and 

resource efficiency, making it a top choice for real-

time object detection in areas like autonomous 

driving, surveillance and robotics. Each version of 

YOLO has brought improvements in terms of 

accuracy, speed, and efficiency, making it one of 

the top choices for real-time object detection in 
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fields such as autonomous driving, robotics, and 

surveillance. 

 

4. Tiny YOLO 

Tiny YOLO is a smaller, lighter version of the 

YOLO model, specifically designed for 

applications where computational resources are 

limited, such as on edge devices or in real-time 

systems that require fast processing speeds. It is a 

trade-off between performance and efficiency, 

sacrificing some accuracy for the sake of reduced 

size and faster inference time. Tiny YOLO 

simplifies the architecture of the original YOLO by 

reducing the number of layers and parameters. For 

example, in Tiny YOLO, the backbone network 

(typically Darknet) has fewer convolutional layers 

and a smaller number of filters. This results in 

faster processing speeds and reduced memory 

requirements, making it suitable for devices with 

limited computational power, such as embedded 

systems, mobile devices, and IoT applications. 

Faster Inference: Tiny YOLO is much faster than 

the standard YOLO models due to its smaller size 

and fewer parameters. This makes it ideal for real-

time object detection applications, especially on 

resource-constrained devices. 

Lower Computational Requirements: The 

reduced architecture allows Tiny YOLO to run 

efficiently on devices with limited GPU or CPU 

capabilities. It’s particularly useful for edge 

devices, mobile phones, and embedded systems 

where processing power is a concern. 

Smaller Model Size: The smaller model size 

makes it easier to deploy Tiny YOLO on devices 

with limited storage capacity. This is important for 

applications where storage space is constrained, 

such as drones or IoT devices. 

Good for Low-Latency Applications: Because of 

its faster processing, Tiny YOLO is suited for low-

latency tasks where quick decision-making is 

necessary, such as autonomous vehicles or real-

time video surveillance. 

Lower Accuracy: Because of the simplified 

architecture, Tiny YOLO generally achieves lower 

accuracy compared to full YOLO versions (like 

YOLOv3, YOLOv4, or YOLOv5). It may struggle 

with detecting small objects or complex scenes 

with a high degree of clutter. 

Limited Detection Capabilities: While Tiny 

YOLO is good for general object detection, its 

performance can degrade in challenging scenarios, 

such as detecting objects in high-density 

environments or cases where fine-grained 

classification is required. 

Less Robust in Difficult Conditions: Tiny YOLO 

might not perform as well under varying 

conditions, such as different lighting, weather, or 

occlusion, compared to more complex models. 

Tiny YOLO is a powerful tool when you need 

object detection on devices with limited resources, 

where speed and efficiency are more critical than 

achieving the highest possible accuracy. Its trade-

off between performance and resource usage 

makes it suitable for real-time applications like 

autonomous vehicles, drones, and mobile devices. 

Key Characteristics of Tiny YOLO's Architecture 

are: 

o Fewer layers and filters: The network has 

fewer layers and smaller filter sizes compared 

to the full YOLO versions, making it faster but 

less accurate. 

o Simplified structure: By reducing the depth of 

the network and the number of neurons in the 

fully connected layers, Tiny YOLO is 

optimized for speed and smaller model size. 

o Max Pooling: Max pooling layers help reduce 

the spatial resolution of feature maps, aiding in 

faster processing and reducing overfitting by 

discarding irrelevant details. 

o Lower resolution input: Tiny YOLO generally 

works with lower resolution input images, 

which reduces computation time but may 

decrease accuracy in detecting small objects. 

Tiny YOLO sacrifices some complexity and 

accuracy from the standard YOLO architecture in 

exchange for faster processing and reduced 

computational requirements. This makes it suitable 

for real-time applications on edge devices and 

embedded systems, where speed and low resource 

consumption are prioritized over the highest 

possible accuracy. The Tiny YOLO architecture 

table is shown in table 2. The layers of this 

architecture are described below: 

Input Layer: Takes images of size 224x224x3, 

commonly used for image classification and 

detection tasks. 

Convolutional Layers: These layers progressively 

extract more abstract features from the image by 

applying convolution with 3x3 filters. The number 

of filters increases as the network deepens, 

allowing for more complex representations. 

Max Pooling Layers: Reduce the spatial 

dimensions of the feature maps, making the model 

more efficient and helping to avoid overfitting. 

Fully Connected Layers: Compress the features 

extracted from the convolutional layers and map 

them to a higher-dimensional space, enabling the 

prediction of object classes and bounding boxes. 
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Output Layer: Predicts both the class probabilities 

and bounding box positions (class + 4 for bounding 

box coordinates). The final output is structured to 

handle N classes and the corresponding bounding 

box for each object detected. 

 
Table 2: Tiny YOLO architecture. 

Layer 
Number of 

Filters 

Filter 

Dimensions 

Output 

Dimensions 

Input Layer --- 224x224 224x224x3 

Convolutional 1 16 3x3 224x224x16 

MaxPooling 1 --- 2x2 112x112x16 

Convolutional 2 32 3x3 112x112x32 

MaxPooling 2 --- 2x2 56x56x32 

Convolutional 3 64 3x3 56x56x64 

MaxPooling 3 --- 2x2 28x28x64 

Convolutional 4 128 3x3 28x28x128 

MaxPooling 4 --- 2x2 14x14x128 

Convolutional 5 256 3x3 14x14x256 

MaxPooling 5 --- 2x2 7x7x256 

Fully Connected 1 4096 N/A 1x1x4096 

Fully Connected 2 Classes + 4 N/A 1x1x(N+4) 

Output N/A N/A 1x1x(N+4) 

This structure is a simplified version of the YOLO 

architecture, designed for efficient image 

classification and object detection with reduced 

computational resources. 

 

5. Model Optimization Techniques   

Model optimization techniques aim to reduce the 

size and computational demands of machine 

learning models without compromising their 

performance. This is crucial for deploying models 

on small, resource-limited devices. Methods such 

as pruning, quantization, and weight clustering are 

commonly used to achieve this goal [26]. The main 

objective is to enable large models to run smoothly 

on edge devices with limited memory, processing 

power, and battery life. These optimizations are 

especially useful for applications requiring 

continuous operation. The benefits of using 

optimization techniques include: 
Inference Speed: Large models take longer to 

make predictions, which can be problematic for 

real-time applications like video or audio 

processing. Optimization enhances inference 

speed, making models more suitable for time-

sensitive tasks. 

Cost and Resource Efficiency: Training and 

deploying large models demand substantial 

computational resources, often resulting in high 

costs. Optimization reduces these needs, enabling 

faster and more efficient training and deployment. 

Deployment Flexibility: Large model sizes can 

hinder deployment on certain platforms or 

environments. Optimization makes models more 

portable and easier to deploy. 

Quantization is a technique that reduces the size 

and computational complexity of machine learning 

models by using fewer bits to represent weights 

and activations. It is particularly useful for devices 

with limited memory and computational power, 

like edge and IoT devices. The technique involves 

reducing the precision of model weights, such as 

converting 32-bit floating-point numbers to 8-bit 

integers, which reduces model size and improves 

inference speed but may slightly affect accuracy. 

Quantization can be applied during or after 

training, with post-training quantization being 

simpler but potentially introducing errors, while 

quantization-aware training simulates quantization 

effects during training to preserve accuracy and 

improve performance. The main benefits include 

faster inference, reduced memory use, and lower 

energy consumption, but balancing model size and 

accuracy requires careful calibration [27,28]. 

Pruning is a method used to reduce model size by 

removing unnecessary parameters, lowering 

computational and storage needs, and improving 

generalization. It involves setting certain weights 

to zero, thus removing them from the model. 

Pruning can be done before, during, or after 

training and is effective for various models like 

deep neural networks and decision trees. The 

benefits of pruning include reduced size, simpler 

interpretation, and easier deployment. Weight 

pruning is commonly used, where less important 

weights are set to zero, creating sparsity in the 

model and reducing memory usage. While it 

speeds up inference, excessive pruning may 

degrade performance, requiring a balance between 

model size and accuracy [29,30]. 

Weight clustering is another optimization 

technique that reduces the number of unique 

weight values in a model. Instead of storing each 

individual weight, only unique values are saved, 

minimizing memory usage. The technique groups 

similar weights into clusters, often using the cluster 

centroid as the representative value for all weights 

in that group. By reducing the number of clusters, 

the model becomes more compact, saving memory 

and improving efficiency [31]. 

 

6. Implementation of Optimized Models 

The objective of this experiment was to evaluate 

the deployment performance of the Tiny YOLO 

model on various embedded hardware platforms, 

including the ESP32, ESP32-S3, Pico W, and 

Jetson Nano. These platforms were chosen to 
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compare the feasibility of running a real-time 

object detection model like Tiny YOLO on 

resource-constrained devices, with a focus on the 

impact of optimization techniques such as 

quantization, weight pruning, and clustering. 

The ESP32 and Pico W are microcontroller-based 

platforms known for their low power consumption 

and small form factors, making them suitable for 

simple edge applications. However, their limited 

computational power and memory impose 

constraints when running more complex deep 

learning models like Tiny YOLO. The ESP32-S3 

variant was also included in the test, which offers 

enhanced AI capabilities compared to the basic 

ESP32 model, but still lacks the computational 

resources required for high-performance tasks. 

These microcontrollers were tested with 

optimizations to reduce the size of the model, 

improve inference time, and reduce latency. 

Quantization was used to reduce the precision of 

weights and activations, weight pruning removed 

less important parameters to decrease model size, 

and clustering grouped similar weights to further 

optimize the model. 

The Jetson Nano, a more powerful platform 

equipped with a GPU and designed specifically for 

AI applications, was also tested. It provides 

significant computational power, making it better 

suited for real-time deep learning tasks. The Jetson 

Nano was used as a benchmark to compare the 

performance of the microcontroller-based 

platforms and to see how well Tiny YOLO can 

perform with more robust hardware. The same 

optimization methods were applied to the Jetson 

Nano to assess their impact on performance, 

although the higher computational power of the 

device meant that the benefits of optimization were 

less significant than on the microcontrollers. 

The following metrics were measured across all 

devices: mean Average Precision, Frames Per 

Second, Model Size, Inference Time, and Latency. 

These metrics were used to evaluate the trade-offs 

between performance and computational 

efficiency after applying the optimization 

techniques. In the case of ESP32, ESP32-S3, and 

Pico W, the models were optimized to fit within the 

limited memory constraints of the devices. The 

resulting models were small in size but showed 

significant limitations in terms of accuracy, speed, 

and real-time performance, as the inference time 

remained high.  

Overall, this experiment demonstrated that while 

optimizations such as quantization, pruning, and 

clustering can help make deep learning models 

more feasible for microcontroller-based platforms, 

the limited computational power of devices like 

ESP32 and Pico W remains a major bottleneck for 

real-time object detection tasks. On the other hand, 

the Jetson Nano proved to be a much more capable 

platform for deploying Tiny YOLO in real-time 

applications. 

Quantization is first applied by converting the 

model’s 32-bit floating-point weights and 

activations to 8-bit integers. This reduces the 

model's size and boosts inference speed. The model 

is then assessed for memory savings, 

computational efficiency, and any slight loss in 

accuracy due to the reduction in numerical 

precision. Next, pruning is performed by 

eliminating weights that have little impact on the 

model’s performance during training, thus 

reducing both the model size and computational 

load. The pruned model is tested to evaluate the 

balance between efficiency improvements and any 

potential accuracy loss, which depends on the 

extent of pruning. Lastly, weight clustering is 

implemented, grouping similar weights into a 

predefined number of clusters and replacing them 

with shared centroids. This technique reduces 

memory usage without affecting numerical 

precision, and the clustered model is assessed for 

memory savings and any accuracy degradation 

caused by reduced weight granularity. 

Deploying optimized models on hardware 

platforms like ESP32, ESP32-S3, Pico W, and 

Jetson Nano offers a range of possibilities, each 

suited to different use cases based on the 

computational power and application 

requirements. By applying techniques like 

quantization and pruning, the model's size and 

inference time can be reduced, making it more 

feasible for deployment on edge devices. Overall, 

selecting the appropriate platform depends on the 

balance between performance, power 

consumption, and the complexity of the task at 

hand. 

 

7. Evaluation Results 

Performance of each optimized model is compared 

to the base model to evaluate the benefits and trade-

offs of each technique. The results of the combined 

optimization methods are also analyzed to find the 

best strategy for balancing performance and 

efficiency. This evaluation provides valuable 

insights for deploying Tiny YOLO in real-world 

scenarios with limited resources. The evaluation 

focuses on key metrics such as mean Average 

Precision (mAP), Frames Per Second (FPS), and 

Inference Time (ms), which collectively assess the 

models' performance and suitability for resource-
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constrained environments. When deploying Tiny 

YOLO on embedded systems, it's essential to 

consider various metrics. These metrics help 

understand the trade-offs between efficiency and 

accuracy, guiding the optimization process.  

Table 3 focuses only on the Pascal VOC dataset for 

the Tiny YOLO models deployed on ESP32, 

ESP32-S3, Pico W, and Jetson Nano, providing a 

comprehensive framework for evaluating the 

optimized Tiny YOLO models. The models 

balance high accuracy with smaller size, improved 

efficiency, and reduced inference time, making 

them suitable for image classification tasks in 

resource-limited environments. 

Table 3: Evaluation results for Pascal VOC dataset. 

optimization 

Method 
Device 

mAP 

(%) 
FPS 

Inference  

Time (ms) 

Base  

Model 

ESP32 35.2 1.5 2750 

ESP32-S3 27.3 2.5 1879 

Pico W 35.0 1.0 2940 

Jetson Nano 77.0 17.0 279 

Quantization 

ESP32 34.9 1.5 947 

ESP32-S3 27.1 2.5 738 

Pico W 33.8 1.0 1095 

Jetson Nano  76.7 17.0 127 

Pruning 

ESP32 34.5 1.5 1030 

ESP32-S3 26.8 2.5 712 

Pico W 33.6 1.0 1240 

Jetson Nano 76.5 17.0 145 

Clustering 

ESP32 34.2 1.5 968 

ESP32-S3 26.6 2.5 780 

Pico W 33.2 1.0 1155 

Jetson Nano  76.2 17.0 132 

In terms of mean Average Precision (figure 1), 

ESP32 and Pico W show relatively low values, 

ranging from 34.2% to 35.2%, even after applying 

optimization techniques like quantization, pruning, 

and clustering. These platforms struggle to achieve 

high accuracy due to their limited processing 

power. On the other hand, Jetson Nano 

demonstrates significantly higher mAP values, 

ranging from 76.2% to 77%, which is a clear 

reflection of its superior computational 

capabilities. Despite optimizations, the Jetson 

Nano consistently maintains strong accuracy, 

making it a better choice for tasks requiring higher 

precision. 
For inference time (figure 2), ESP32, ESP32-S3, 

and Pico W have high values, ranging from 712ms 

to 2940ms, due to their hardware constraints. This 

long inference time is detrimental to real-time 

object detection, as it introduces delays in 

processing. Conversely, Jetson Nano achieves 

much faster inference times, ranging from 127ms 

to 145ms, depending on the optimization method 

applied. This makes Jetson Nano an ideal platform 

for real-time object detection. 

Jetson Nano outperforms ESP32 and Pico W across 

all evaluation metrics, including mAP, FPS, 

inference time, and latency, making it the best 

choice for real-time object detection tasks using 

Tiny YOLO. While ESP32 and Pico W offer low-

cost and power-efficient solutions, their 

performance for complex models like Tiny YOLO 

is limited, making them unsuitable for real-time 

applications that require high accuracy and speed. 

Despite the modest improvements offered by 

optimization techniques such as quantization, 

pruning, and clustering, the hardware constraints of 

the microcontroller-based platforms continue to 

limit their ability to perform effectively for more 

demanding tasks. 

 

 
Figure 1: The mAP for Pascal VOC. 

 
Figure 2: Inference time for Pascal VOC. 

Table 4 focuses only on the COCO dataset for the 

Tiny YOLO models deployed on ESP32, ESP32-

S3, Pico W, and Jetson Nano, providing a 

comprehensive framework for evaluating the 

optimized Tiny YOLO models. The models 

balance high accuracy with smaller size, improved 

efficiency, and reduced inference time, making 

them suitable for image classification tasks in 

resource-limited environments. 
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In terms of mean Average Precision (figure 3), 

ESP32 and Pico W show relatively low values, 

with the highest mAP reaching around 27.5% even 

after applying optimization techniques. The limited 

computational resources on these microcontrollers 

result in lower accuracy, which is a significant 

challenge despite the optimizations. In contrast, 

Jetson Nano consistently achieves much higher 

mAP values, ranging from 66.9% to 67.7%, 

demonstrating the platform’s ability to handle 

more complex models like Tiny YOLO with 

greater precision due to its superior hardware 

capabilities. 

Table 4: Evaluation results for COCO dataset. 

Optimization 

Method 
Device 

mAP 

(%) 
FPS 

Inference  

Time (ms) 

Base  
Model 

ESP32 29.1 1.5 3142 

ESP32-S3 35.5 2.5 2057 

Pico W 27.2 1.0 3260 

Jetson Nano 67.7 17.0 325 

Quantization 

ESP32 28.6 1.5 1180 

ESP32-S3 34.6 2.5 875 

Pico W 26.4 1.0 1308 

Jetson Nano  67.5 17.0 117 

Pruning 

ESP32 28.2 1.5 1270 

ESP32-S3 33.9 2.5 913 

Pico W 25.8 1.0 1382 

Jetson Nano 66.9 17.0 166 

Clustering 

ESP32 28.9 1.5 1195 

ESP32-S3 35.1 2.5 897 

Pico W 26.8 1.0 1336 

Jetson Nano  67.6 17.0 132 

 

 
Figure 3: The mAP for COCO. 

 
Figure 4: Inference time for COCO. 

In terms of inference time (figure 4), ESP32, 

ESP32-S3, and Pico W exhibit high inference 

times ranging from 875ms to 3260ms, which 

makes these platforms unsuitable for real-time 

applications where speed is crucial. In contrast, 

Jetson Nano achieves much lower inference times, 

between 117ms and 166ms, making it well-suited 

for real-time tasks that demand faster processing. 

Jetson Nano clearly outperforms both ESP32 and 

Pico W across all evaluation metrics, making it the 

optimal choice for real-time object detection with 

Tiny YOLO on the COCO dataset. The ESP32 and 

Pico W show significant limitations due to their 

hardware constraints, even after optimization, and 

are better suited for tasks of lower complexity or 

for applications where real-time performance is not 

as critical. These platforms can still be useful for 

simpler AI tasks, but when it comes to real-time 

detection requiring high accuracy, Jetson Nano is 

the clear leader. 

 

8. Conclusion 

The experiment conducted to evaluate the 

deployment of Tiny YOLO on a range of 

embedded systems, including ESP32, ESP32-S3, 

Pico W, and Jetson Nano, reveals key insights into 

the feasibility of running optimized deep learning 

models on resource-constrained devices. The 

evaluation was carried out on two popular object 

detection datasets, COCO and Pascal VOC, with 

the focus on the performance impact of three model 

optimization techniques: quantization, weight 

pruning, and clustering. The results, detailed in the 

tables, provide a comprehensive analysis of the 

trade-offs between mean Average Precision, 

frames per second, and inference time across 

different hardware platforms. 

Jetson Nano, with its powerful GPU and higher 

computational resources, consistently 

outperformed the other platforms in terms of both 
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mAP and real-time performance. This was 

expected, as the Jetson Nano is designed for AI 

applications, offering substantial processing power 

and memory to handle complex models like Tiny 

YOLO. It demonstrated an impressive mAP of 

around 66.9% to 67.7% on the COCO dataset, 

which is a significant advantage for more 

computationally intensive tasks. The inference 

time was also much lower compared to the 

microcontroller-based platforms, further 

emphasizing its suitability for real-time 

applications. However, optimizations like 

quantization, pruning, and clustering did lead to 

slight improvements in inference time and latency, 

showing that resource-efficient techniques can 

make these platforms viable for simpler tasks. 

One notable aspect of the experiment is the 

importance of model optimization. While the 

optimizations did not dramatically increase the 

mAP on these low-power platforms, they did make 

the models more feasible for deployment, 

balancing the trade-off between computational 

efficiency and accuracy. 

The results underscore the importance of selecting 

the right hardware for edge AI deployment, where 

a balance between computational power, model 

size, inference time, and energy consumption must 

be considered. Future work could focus on further 

optimizing the Tiny YOLO model for even smaller 

and more power-efficient devices while 

maintaining reasonable accuracy for a broader 

range of real-world applications. 
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1. Introduction 

For a long time, the national electricity grid has 

been used to supply the electric energy needed by 

the cities, and the arrangement of the power plants 

has always been of special importance about the 

required loads. Become One of the solutions to 

reduce losses is the use of scattered production with 

the approach of using renewable energy sources, 

and with the production of electric vehicles, this 

device is also considered as a power grid. These 

effects can include an increase in the maximum 

load, an increase in losses, a decrease in the voltage 

and load factor of the system, etc. [1]. 

Various research has been done in the field of how 

to charge and discharge electrical vehicles by the 

power grid [2]. In reference [3], has provided 

voltage and energy control in distribution systems 

in the presence of flexible loads considering 

coordinated charging of EVs. The purpose of this 

method is to charge in low load hours with low 

energy prices and at the same time meet the 

technical limitations of the network. Search 

methods and neural networks are used to make 

decisions in this system. Reference [4] study 

provides a review of the existing coupler, 

compensation topologies, and control schemes to 

determine their effectiveness in achieving the 

desired control objectives. In addition, it introduces 

practical metrics for a system designer to consider 

when developing the magnetics and power 

electronics for a DWPT system to ensure good 

controllability. It also shows how the delay in 

communication can affect the control performance 

and impact recommendations for high-speed 

vehicle charging. In [5], this study analyses the 

effectiveness of an off-grid solar photovoltaic 

system for the charging of EVs in a long-term 

parking lot. The effectiveness of charging is 

investigated through analysis of the states of charge 

(SoC) at the departure of EVs plugged in at the 

parking lot over the simulated year. 

References [6] and [7] have discussed the technical 

and economic impact of the introduction of EVs on 

the electric grid of the United States of America. 

These articles show that the increase in the arrival 

of vehicles can cause difficulty in the work of the 

network operator and lower the reliability of the 

network. In these articles, the use of intelligent 

charging planning and also vehicle-to-grid (V2G) 
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capability is proposed as a way to overcome this 

problem. In [8] and [9], have provided inductive 

power transfer charging infrastructure for EVs: A 

New Zealand case study. Reference [10] has 

addressed the issue of the effect of EVs on the 

reliability of the distribution network. In this study, 

accumulators are considered battery exchange 

stations. Here, an algorithm is used that divides the 

time into different intervals in such a way that load 

fluctuations can be ignored. Accordingly, in each 

interval, the probability distribution function of the 

batteries' energy has been taken into account, 

taking into account the drivers' battery replacement 

pattern. In this article, the behavior of drivers is 

considered based on their behavior at gas stations. 

The study is done on a 34-bus system IEEE [10]. 

Reference [11] has provided a Technical Review of 

Advanced Approaches for EV Charging Demand 

Management, Part I: Applications in Electric 

Power Market and Renewable Energy Integration. 

In reference [12], presented the Impact of EV 

charging demand on distribution transformers in an 

office area and determination of flexibility 

potential. In Reference [13, 14], the coordinator 

tries to find the most optimal charging program for 

EVs by implementing an optimization problem 

with the objective function of minimizing network 

operation costs by satisfying the condition of 

supplying the load required by vehicles. In this 

article, both modes of modeling the coordinator as 

a price receiver and affecting the price offered to 

vehicle owners are considered. 

An optimization-based approach is introduced in 

[15] to properly allocate multiple wind turbine 

generation systems (WTGS) in distribution 

systems in the presence of (plug-in electric 

vehicles) PEVs. The proposed approach considers 

1) uncertainty models of WTGS, PEV, and loads, 

2) DSTATCOM functionality of WTGS, and 3) 

various system constraints. In [16], a dual-solver 

framework based on model predictive control is 

proposed, E-solver and L-solver. The economic 

scheduling problem is formulated using mixed-

integer linear programming, which can be solved 

efficiently way by using a commercial solver. 

Recent research has shown that smart charging of 

EVs could improve the synergy between 

photovoltaic, EVs, and electricity consumption, 

leading to both technical and economic advantages. 

Reference [17] presents a reputation-based 

framework for allocating power to plug-in EVs in 

the smart grid. In this framework, the available 

capacity of the distribution network measured by 

distribution-level phasor measurement units is 

divided in a proportionally fair manner among 

connected EVs, considering their demands and 

self-declared deadlines. In [18] main aspects of 

smart charging reviewed are objectives, 

configurations, algorithms, and mathematical 

models, and the commonly employed optimization 

techniques and rule-based algorithms for smart 

charging are reviewed. 

With the growing concerns about energy depletion 

and the reduction of CO2 emissions, EVs have 

gained popularity in the transport sector due to 

clean and reliable energy sources. Reference [19] 

aims to investigate the optimal EV coordination 

with the V2G technology for the cost-benefit 

analysis. Battery degradation cost is formulated for 

real-time analysis taking the depth of discharge at 

each time interval. The firefly algorithm has been 

used to optimize the system cost. 

Proper accommodation of EVs poses significant 

challenges to distribution system planning and 

operations. In [20] two scheduling strategies are 

implemented considering active power dispatch 

and reactive power dispatch from the EVs. The 

objective of both strategies is to minimize losses in 

the system by utilizing the V2G operation of the 

EVs. In [21], the authors investigate the 

achievement of energy management strategies in 

the EV system, which reduces fuel consumption 

and carbon dioxide emissions. The novelty of this 

article is an update on the most advanced 

technology in the field of V2G and energy 

management strategy. 

Many researchers try to optimize the charging and 

discharging pattern of EVs by using a centralized 

approach and considering a series of predetermined 

criteria. 

Simultaneous consideration of the effects of 

distributed generation, especially of the renewable 

type and types of EVs, is another important issue in 

the studies of distribution networks. This point 

affects the future power systems of many countries. 

In this regard, some of the studies carried out are 

given below. 

When both renewable energy sources generation 

and utilization occur simultaneously, energy 

storage costs can be reduced, and voltage 

oscillation and system instability caused by 

renewable energy sources grid connection can be 

reduced. Reference [22] constructs a microgrid 

model that includes EVs, defines the charge and 

discharge capacity of EVs, and uses the flexibility 

of EVs to overcome the intermittency and volatility 

of renewable energy sources. 

Managing uncertainty is key to enhancing 

robustness in microgrids. In [23], the authors focus 

on the uncertainties in aggregated EVs and 

establish a two-layer model predictive control 

strategy for charging EVs with a microgrid. The 
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main concern related to renewable-based 

distributed generators, especially photovoltaic and 

wind turbine generators, is the continuous 

variations in their output powers due to variations 

in solar irradiance and wind speed, which leads to 

uncertainties in the power system. Reference [24] 

proposes an efficient stochastic framework for the 

optimal planning of distribution systems with 

optimal inclusion of renewable-based distributed 

generators, considering the uncertainties of load 

demands and the output powers of the distributed 

generators. 

The researchers in reference [25] stated that the 

simultaneous presence of all types of EVs as well 

as a large number of wind turbines with low 

capacity has created many technical challenges for 

distribution network operators to provide reliable 

energy and optimize energy distribution. Three 

different approaches for the simultaneous 

distribution of these small generation sources 

(wind turbines) and potential distributed reserves 

(EVs) are introduced. The electricity in a microgrid 

is such that this energy is provided in time intervals 

with low load. For this purpose, a condition has 

been added that it cannot be interrupted when the 

vehicle charging process starts. The results of 

applying this method to the sample network show 

give that this method with this stipulation cannot 

direct a load of vehicles in a direction that is most 

compatible with the generation power of wind 

turbines. In the second method used under the title 

of interruptible distribution, the same goal as the 

previous method is used. The vector is followed 

with the difference that it can be in this approach 

the process of charging vehicles intermittently in 

studies. The third method, called the spread method 

with different charging rates, like the previous two 

methods, tries to optimize the charging process of 

vehicles to have the most agreement with the 

generation graph of wind turbines, with the 

difference that it considers different charging rates 

for different vehicles. 

Reference [26] describes a two-level planning 

model. In the proposed model, resource planning 

has been done at the two levels of aggregators and 

system operators. In the first stage, after the 

aggregators have received all the information 

related to vehicles and distributed renewable 

generation sources, they inform the operator of the 

amount of energy they need or their excess energy 

by performing calculations. In the second stage, the 

system operator plans energy generation and 

storage to reduce costs. The results of this research 

show that with the proper management of EVs, the 

electric load of the network does not increase 

sharply during peak hours, in other words, the use 

of the proposed planning model has flattened the 

network load curve. 

Studies show that less research has been done on 

the simultaneous management of distributed 

generation resources and EVs as two completely 

independent and private entities, and on the other 

hand, the owners of distributed generation 

resources and EVs are looking for maximum profit, 

this factor can cause problems such as increasing 

losses, line congestion, increasing network 

strengthening costs, etc. in distribution networks. 

Therefore, in this article, by presenting a two-stage 

planning framework, EVs and dispersed generation 

resources with private ownership, whose goal is to 

maximize their respective profits, will be managed 

in such a way that in addition to their high 

satisfaction This important issue, i.e. reduction of 

operating costs, should be addressed by 

considering network limitations. 

The innovative aspects of the article are described 

as follows: 

 A two-stage planning framework for 

managing energy resources in a 

distribution network is presented to 

achieve an application and take into 

account the demands and needs of 

different agents. 

 The optimization problem related to the 

planning of charging and discharging 

of EVs has been modeled from the 

point of view of their owners and 

considering their uncertainty. 

 The optimization problem related to the 

planning of distributed generation 

resources has been modeled and 

solved, and its effect has been included 

in the planning problem of energy 

resources of the distribution network. 

 The problem of optimizing the use of 

energy resources is linearized. 
The article is organized in such a way that in the 

second part of the problem statement, the proposed 

planning framework and formulation of the 

problem are discussed. The case study is described 

in the third section and finally, the results are 

presented in the fourth section. 

 

2. Materials and Methods 

2.1. Statements of the problem 

In this part, the modeling process of energy 

planning in the distribution network with the 

proposed method is described. First, the planning 

framework of the proposed model is described. 

Then the formulation of the problem is given along 
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with the planning constraints. 

 

Proposed energy planning framework 

Due to the increase in the presence of EVs and 

distributed sources of generation in distribution 

networks, the need for a suitable control program 

to control the process of charging and discharging 

vehicles as a new load and sources of distributed 

generation as a source of energy generation is felt 

more and more [27, 28]. In the following, a two-

stage algorithm is presented to achieve a 

comprehensive planning framework in which not 

only the technical constraints of the network are 

met, but also the privacy and convenience of EV 

owners, distributed generation resources, and other 

actors are considered. The proposed planning 

framework consists of two stages. 

In the first stage, the coordinators of EVs and the 

owners of distributed generation resources try to 

maximize their profit during the planning period by 

implementing a separate optimization program, 

taking into account their demands and limitations. 

For this purpose, the owners of EVs provide the 

coordinators with information such as the time to 

arrive at the parking lot, the time to leave the 

parking lot, the initial charging status, and the final 

charging status, so that the optimal 

charging/discharging program for the vehicles can 

be obtained; And on the other hand, the owners of 

distributed generation resources try to maximize 

their profits by having information about 

distributed generation resources and electricity 

market prices. After the end of the first stage of the 

proposed planning, the optimal 

charging/discharging program related to the 

vehicles and the generation pattern of the units will 

be reported to the network operator. 

In the second stage of the proposed energy 

planning, after receiving the optimal 

charge/discharge plan for vehicles and the plan for 

the generation of distributed generation sources, in 

each scenario, by purchasing energy from the 

market, the network operator tries to change the 

optimal generation plan of the distributed 

generation sources and change The optimal vehicle 

charging/discharging program will plan the energy 

of the available resources in such a way as to 

reduce the operating costs while providing the 

required load of the network. The resource usage 

pattern, EV charging/discharging schedule along 

with the power purchased from the grid are the 

primary outputs of this planning stage. Further, 

although these outputs are optimal from the point 

of view of vehicle owners and distributed 

generation resources, they do not provide any 

guarantee regarding the technical limitations of the 

network. Therefore, the network operator checks 

all the technical restrictions of the network after 

carrying out the load distribution calculations and 

if any of the restrictions are not met, he repeats the 

second stage of optimization by applying new 

restrictions. This work continues until all network 

constraints are met. Below is the formulation for 

each step. 

 

2.2. Formulation of the problem 

Formulation of the first stage of the proposed 

planning 

In the first stage of the planning framework, 

coordinators and owners of distributed generation 

resources seek to maximize their profits by 

implementing optimization problems, below are 

the relationships related to each. 

 

Formulation related to the coordinator of 

vehicles 
The objective function related to maximizing the 

profit of vehicles is calculated from Equation (1). 
𝑓1,1

= 𝑚𝑎𝑥 (∑[∑{
𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × 𝑃𝑟𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

−𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡) × 𝑃𝑟𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑡)
}

𝑉

𝑣=1

]

𝑇

𝑡=1

× ∆𝑡) 

(1

) 

The restrictions related to vehicles are as follows 

[26]: 
In planning the charging and discharging of a 

vehicle, it should be noted that the vehicle should 

not be programmed in two charging and 

discharging modes at the same time. 
𝑋(𝑣, 𝑡) + 𝑌(𝑣, 𝑡) ≤ 1 ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣

∈ {1,2, … , 𝑉}; 𝑋, 𝑌 ∈ {0,1} 
(2) 

The time continuity equation of vehicle charging 

and discharging during the planning period is given 

as the following relationship. 

𝐸𝑠(𝑣, 𝑡) = 𝐸𝑠(𝑣, 𝑡 − 1) + 𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

× 𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡

−
1

𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

× (𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡) 

∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣 ∈ {1,2, … , 𝑉} 

(3) 

The limit of chargeable power and battery 

discharge of each vehicle in each period are as 

follows: 

𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) ≤ 𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝑣

𝑀𝑎𝑥 × 𝑋(𝑣, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉} 

(4) 

𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) ≤ 𝑃𝐷𝑐ℎ𝑎𝑟𝑔𝑒,𝑣

𝑀𝑎𝑥 × 𝑌(𝑣, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉} 

(5) 

Discharging the battery of an EV up to a certain 
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maximum value 𝜓𝑣
𝑀𝑖𝑛 and charging it up to a 

certain maximum value 𝜓𝑣
𝑀𝑎𝑥 will prevent the 

premature breakdown of the battery and increase 

its useful life [26]. 
𝐸𝑠(𝑣, 𝑡) ≤ 𝜓𝑣

𝑀𝑎𝑥  ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉} 

(6) 

𝐸𝑠(𝑣, 𝑡) ≥ 𝜓𝑣
𝑀𝑖𝑛  ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣

∈ {1,2, … , 𝑉} 

(7) 

Where 𝜓𝑣
𝑀𝑖𝑛 and 𝜓𝑣

𝑀𝑎𝑥are calculated as follows: 
𝜓𝑣
𝑀𝑎𝑥 = 𝜑𝑣

𝑀𝑎𝑥 × 𝐸𝐵𝑎𝑡𝐶𝑎𝑝,𝑣  ∀𝑣 ∈ {1,2, … , 𝑉} (8) 

𝜓𝑣
𝑀𝑖𝑛 = 𝜑𝑣

𝑀𝑖𝑛 × 𝐸𝐵𝑎𝑡𝐶𝑎𝑝,𝑣  ∀𝑣 ∈ {1,2, … , 𝑉} (9) 

The limitation of charging and discharging the 

battery every hour is applied according to the 

amount of energy stored in the battery in the 

previous period and the maximum capacity of the 

battery [26]: 
1

𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒 × (𝑃𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡) ≤ 𝐸𝑠(𝑣, 𝑡

− 1) ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉} 

(10) 

𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

× 𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡) × ∆𝑡

≤ (𝜓𝑣
𝑀𝑎𝑥

− 𝐸𝑠(𝑣, 𝑡 − 1)) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑣
∈ {1,2, … , 𝑉} 

(11) 

The optimal amount of stored energy in the battery 

of each vehicle at the time of leaving the parking 

lot is given in the following equation: 
𝑆𝑂𝐶𝑑𝑒𝑠

𝑣 = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑣

+ 𝑟𝑎𝑛𝑑𝑛𝑢𝑚𝑏𝑒𝑟(0, [1
− 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑣 ])∀𝑣
∈ {1,2, … , 𝑉} 

(12) 

The limit of the number of times the status changes 

from charging to discharging and vice versa 

according to the life of the vehicle battery is given 

in the following equation [28]: 
𝐷𝑣 ≤ 𝑁𝑆𝑀𝐴𝑋 (13) 

By performing linear programming with binary 

variables, the desired charge/discharge profile of 

vehicles is obtained as follows. 

P𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣) = [𝑃𝐸𝑉

𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)] 𝑣 ∈ [1 − 𝑉], 𝑡

∈ {1 − 𝑇} 

(14) 

P𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣) = [𝑃𝐸𝑉

𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)] 𝑣

∈ [1 − 𝑉], 𝑡 ∈ {1 − 𝑇} 

(15) 

 

Formulation related to distributed non-

renewable generation sources 
Since non-renewable distributed generation 

resources are considered to be privately owned, the 

objective function related to them (maximizing 

profit) is in the form of Equation (16). 

𝑓1,2 = 𝑚𝑎𝑥 (∑[∑{𝑃𝐷𝐺(𝑗, 𝑡) × 𝑃𝑟𝑀𝑅𝑇(𝑡)

𝐽

𝑗=1

𝑇

𝑡=1

− 𝐶𝐷𝐺(𝑗, 𝑡)}] × ∆𝑡) 

(16) 

The restrictions related to distributed non-

renewable generation sources are as follows: 
The cost of non-renewable resources is modeled as 

a function of their output power. To use the 

optimization method of linear programming, the 

cost functions with a suitable approximation are 

considered as follows [28]. 
𝐶𝐷𝐺(𝑗, 𝑡) = 𝑎𝑗 + 𝑏𝑗 × 𝑃𝐷𝐺(𝑗, 𝑡)  ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽} 

(17) 

Limits on the maximum and minimum generation 

capacity of distributed non-renewable generators 

are in the form of the following equations: 
𝑃𝐷𝐺(𝑗, 𝑡) ≤ 𝑃𝐷𝐺,𝑗

𝑀𝑎𝑥 × 𝑢(𝑗, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽} 

(18) 

𝑃𝐷𝐺(𝑗, 𝑡) ≥ 𝑃𝐷𝐺,𝑗
𝑀𝑖𝑛 × 𝑢(𝑗, 𝑡) ∀𝑡

∈ {1,2, … , 𝑇}; ∀𝑗
∈ {1,2, … , 𝐽} 

(19) 

The cost of setting up non-renewable distributed 

generation generators is calculated as follows [28]: 
𝑆𝑈(𝑗, 𝑡) = 𝑆𝑐𝑗 × (𝑢(𝑗, 𝑡) − 𝑢(𝑗, 𝑡 − 1)) (20) 

𝑆𝑈(𝑗, 𝑡) ≥ 0 (21) 

The limit of the rate of increase and decrease of 

power related to non-renewable distributed 

generation sources is as follows: 

(𝑃𝐷𝐺(𝑗, 𝑡 + 1) − 𝑃𝐷𝐺(𝑗, 𝑡)) ≤ 𝑅𝑈𝑃𝐷𝐺
𝑗

 (22) 

(𝑃𝐷𝐺(𝑗, 𝑡) − 𝑃𝐷𝐺(𝑗, 𝑡 + 1)) ≤ 𝑅𝐷𝑁𝐷𝐺
𝑗

 (23) 

By performing linear programming with binary 

variables, the optimal generation pattern of 

distributed generation resources is obtained as 

follows. 
P𝐷𝑒𝑠
𝐷𝐺 (𝑗) = [𝑃𝐷𝐺(𝑗, 𝑡)] 𝑗 ∈ [1 − 𝐽], 𝑡 ∈ {1 − 𝑇} (24) 

 

Formulation of the second stage of the proposed 

planning 

In the second stage, the network operator, after 

receiving the information of the first stage (14, 15, 

and 16 equations) in each scenario, tries to change 

the optimal generation plan of distributed 

generation resources and also change the optimal 

charge/discharge profile of vehicles, by purchasing 

energy from the market, planning energy resources 

to do the existing in such a way as to guarantee the 

supply of EV owners and distributed generation 

resources, reduce the network's technical 

limitations and operating costs. To achieve these 

goals, the following optimization program is 

performed by the system operator for all scenarios: 
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𝑓2

= 𝑚𝑖𝑛 (∑[𝑃𝑁𝑇𝑊(𝑡) × 𝑃𝑟𝑀𝑅𝑇(𝑡)

𝑇

𝑡=1

+ 𝑃𝐿𝑂𝑆𝑆(𝑡) × 𝑃𝑟𝐿𝑂𝑆𝑆(𝑡)

+ |∑{𝑃𝐷𝐺(𝑗, 𝑡) − 𝑃𝐷𝑒𝑠
𝐷𝐺 (𝑗, 𝑡)}

𝐽

𝑗=1

| × 𝐾𝐷𝐺

+ |∑{𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)

𝑉

𝑣=1

− 𝑃𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)}| × 𝐾𝐶ℎ𝑎𝑟𝑔𝑒

+ |∑{𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)

𝑉

𝑣=1

− 𝑃𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒(𝑣, 𝑡)}| × 𝐾𝐷𝑐ℎ𝑎𝑟𝑔𝑒] × ∆𝑡) 

(25) 

As it is clear from Equation (25), the objective 

function of the optimization program at this stage 

includes four parts. The first part shows the cost of 

energy purchased from the market and the cost of 

losses. The cost paid to owners of distributed 

generation resources and EV owners Electric to 

participate in the proposed program is given in the 

second, third, and fourth parts. 
 

2.3. Network restrictions 

Adverb of power balance 
The total power produced along with the power 

purchased from the flash market should be equal to 

the amount of consumption. 

P𝑁𝑇𝑊(𝑡) + ∑ 𝑃𝑤(𝑡) +

𝑊

𝑤=1

∑ 𝑃𝑝𝑣(𝑡)

𝑃𝑉

𝑝𝑣=1

+∑𝑃𝐷𝐺(𝑗, 𝑡)

𝐽

𝑗=1

+∑𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)

𝑉

𝑣=1

=∑𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡)

𝑉

𝑣=1

+ 𝑃𝐿𝑂𝐴𝐷(𝑣, 𝑡)
+ 𝑃𝐿𝑂𝑆𝑆(𝑡) ∀𝑡
∈ {1,2, … , 𝑇} 

(26) 

 

Network technical restrictions 
The technical limitations related to the network are 

given below [21]: 
𝑃𝑛(𝑡)

= ∑|𝑉𝑛(𝑡)||𝑉𝑚(𝑡)||𝑌𝑛,𝑚(𝑡)| cos(𝛿𝑚(𝑡)

𝑁

𝑚=1

− 𝛿𝑛(𝑡) + 𝜃𝑛,𝑚) ∀𝑛, 𝑡 

(27) 

𝑄𝑛(𝑡)

= − ∑|𝑉𝑛(𝑡)||𝑉𝑚(𝑡)||𝑌𝑛,𝑚(𝑡)| sin(𝛿𝑚(𝑡)

𝑁

𝑚=1

− 𝛿𝑛(𝑡) + 𝜃𝑛,𝑚) ∀𝑛, 𝑡 

(28) 

|𝑆(𝑛,𝑚, 𝑡)| ≤ 𝑆𝑛,𝑚
𝑚𝑎𝑥  ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑛,𝑚
∈ {1,2, … , 𝑁} 

(29) 

𝑉𝑛
𝑚𝑖𝑛 ≤ 𝑉(𝑛, 𝑡) ≤ 𝑉𝑛

𝑚𝑎𝑥  ∀𝑡
∈ {1,2, … , 𝑇}; ∀𝑛
∈ {1,2, … , 𝑁} 

(30) 

𝑃𝑁𝑇𝑊(𝑡) ≤ 𝑃𝑁𝑇𝑊
𝑚𝑎𝑥  ∀𝑡 ∈ {1,2, … ,24} (31) 

𝑃𝑇𝑅𝐴𝑁𝑆(𝑛, 𝑡) ≤ 𝑃𝑇𝑅𝐴𝑁𝑆
𝑚𝑎𝑥  ∀𝑡 ∈ {1,2, … , 𝑇}; ∀𝑛
∈ {1,2, … , 𝑁} 

(32) 

 

Restrictions related to EVs 
Equations 2-13 are constraints related to EVs that 

should be considered in this phase of energy 

planning. 
 

2.4. Restrictions related to distributed 

generation sources 
Non-renewable resources 
Equations 18-23 are constraints related to 

distributed non-renewable generation sources that 

must be considered in energy planning. 
 

Renewable resources 
Since the primary energy source of wind turbines 

and photovoltaic units is the wind and the sun, in 

the existing studies, probabilistic functions are 

used to model their output power, which will be 

described below. 
 

Probability model of the photovoltaic system 
In this study, the beta probability density function 

is used to model the power of the photovoltaic 

system [29]. 

𝑓(𝐼𝑟
𝑡) =

{
 

 
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
× 𝐼𝑟

𝑡(𝛼−1) × (1 − 𝐼𝑟
𝑡)𝛽−1

𝑓𝑜𝑟 0 ≤ 𝐼𝑟
𝑡 ≤ 1, 𝛼 ≥ 0, 𝛽 ≥ 0

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(33) 

According to the radiation intensity distribution 

predicted in each area and the radiation-to-power 

conversion function, the output power of the 

photovoltaic system can be calculated for each 

radiation intensity at any time [30]. 
𝑃𝑝𝑣 = 𝜂

𝑝𝑣 × 𝑆𝑟
𝑝𝑣
× 𝐼𝑟

𝑡(1 − 0.005 × (𝑇𝑎
− 25)) 

(34) 

 

Wind turbine probabilistic model 
In this study, Rayleigh's probability density 

function is used to model wind speed behavior 

[31]. 

𝑓(𝑣𝑓
𝑡) = (𝑘 𝑐⁄ ) × (

𝑣𝑓
𝑡

𝑐⁄ )

(𝑘−1)

𝑒
−(
𝑣𝑓
𝑡

𝑐
⁄ )

𝑘

0

≤ 𝑣𝑓
𝑡 ≤ ∞ 

(35) 
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Also, the output power of the wind turbine at any 

moment can be calculated using the power 

conversion function given in the following 

relationship [32]. 

𝑃𝑤 =

{
 
 

 
 
0                                       0 ≤ 𝑣𝑓

𝑡 ≤ 𝑣𝑐𝑖

P𝑟𝑎𝑡𝑒𝑑 ×
(𝑣𝑓

𝑡 − 𝑣𝑐𝑖)

(𝑣𝑟 − 𝑣𝑐𝑖)
    𝑣𝑐𝑖 ≤ 𝑣𝑓

𝑡 ≤ 𝑣𝑟

P𝑟𝑎𝑡𝑒𝑑                                𝑣𝑟 ≤ 𝑣𝑓
𝑡 ≤ 𝑣𝑐𝑜

0                                        𝑣𝑐𝑜 ≤ 𝑣𝑓
𝑡

 

(36) 

Figure 1 shows the flowchart of the proposed 

energy planning. As it is clear, the coordinators and 

owners of distributed generation resources have 

obtained the charging/discharging profile of 

vehicles and the generation pattern of distributed 

generation resources by implementing the 

optimization program. Then, for all scenarios, the 

operator should implement non-linear 

programming with binary variables (equation 25) 

of the output power corresponding to each of the 

distributed generation sources, the power 

purchased from the network, and the charging 

correction strategy to determine the discharge 

related to the number of vehicles. Since the second 

stage of optimization has non-linear terms (the 

absolute value terms in equation 25), there is no 

guarantee to extract the absolute optimal solution. 

Therefore, at first, these relations are sub-linearized 

[33]. 

 

 
Figure 1. Proposed energy planning flowchart. 

 
Assuming that two variables 𝜀 and 𝛾 are positive: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒|𝑓(𝑥)| → 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾 + 𝜀 
𝑓(𝑥) = 𝛾 − 𝜀  
𝛾, 𝜀 ≥ 0 

Finally, the network operator checks the technical 

limitations of the network in Equations (29-32) by 

implementing the load distribution. If any of the 

restrictions are not met, the second stage of 

planning is repeated by applying restrictions on the 

amount of load related to sensitive parking lots 

(sensitive tires) until the restrictions are fully met. 

It should be noted that sensitivity analysis was used 

to determine the sensitive parking lots, that is, for 

each period, for each parking lot, the load of the 

parking lot increased by 10%, and the changes 

related to the voltage of the parking lots were 

saved. After applying this algorithm, sensitive 

parking lots are identified each period. 
 

2.5. Case studies 

Introduction of the studied system 
The proposed planning framework has been tested 

on a distribution network connected to bus 5 of the 
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RBTS sample network, which has 4 feeders at a 

voltage of 20 kV [34]. For this network, the data 

related to the type and number of subscribers 

connected to different load points, the average load 

of each of them are presented in table 1. This 

network along with the division of the areas related 

to the coordinators is shown in Figure 2. The 

voltage limit of the bus bars is considered equal to 

0.9-1.05 per unit. 

 
Table 1. The type and average amount of load and the number of subscribers of different load points in the distribution 

network under study. 
Number of subscribers Average load (MW) Subscriber type Load points 

180 0.4569 Residential 1-2-20-21 

2 0.6646 Official 3-5-8-17-23 

250 0.4771 Residential 4-6-15-25 

2 0.4089 Commercial 7-14-18-22-24 

210 0.2513 Residential 9-10-11-13-26 

2 0.4086 Official 12-16-19 

 

 
Figure 2. One-line diagram of the distribution network connected to bus 5 of the RBTS sample network. 

 

The hourly price of the electricity market is given 

in table 2 [35]. The capacity of medium-pressure 

and low-pressure transformers of the network is 

considered to be MVA 1 and MVA 15 respectively. 

In this network, there are four coordinators named 

A1, A2, A3, and A4 are considered. The predicted 

hourly load of each of the coordinators in the 24-

hour planning period is shown in Figure 3. 
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Table 2. Hourly electricity market price. 

Hour 

Price 

($/kWh) 

Hour 

Price 

($/kWh) 

1 0.033 13 0.215 

2 0.027 14 0.572 

3 0.02 15 0.286 

4 0.017 16 0.279 

5 0.017 17 0.086 

6 0.029 18 0.059 

7 0.033 19 0.05 

8 0.054 20 0.061 

9 0.215 21 0.181 

10 0.572 22 0.077 

11 0.572 23 0.043 

12 0.572 24 0.037 

Also, three microturbine units and one fuel cell unit 

have been installed in this network. The 

specifications of the cost functions of each of the 

units are given in table 3. The maximum rate of 

increase and decrease of power related to each of 

the units in each period is equal to 20% of their 

maximum capacity. 

 
Table 3. Characteristics of distributed non-renewable 

generation units. 

Gen 

type 

a 

($) 

b 

($/kW) 

𝑷𝑫𝑮
𝑴𝒊𝒏 

(𝒌𝑾) 

𝑷𝑫𝑮
𝑴𝒂𝒙 

(𝒌𝑾) 

MT 20 0.2 50 350 

MT 40 0.3 50 250 

MT 20 0.2 50 350 

FC 90 0.35 50 250 

 

The pattern of using vehicles has been obtained 

according to a statistical study in the city of Tehran. 

The obtained information includes the entry and 

exit times of the vehicles, the amount of initial 

energy when entering the parking lots, and other 

information related to the vehicles. A summary of 

information on the behavior pattern of vehicle 

owners in using their vehicles is given in Table 4. 

 

  

  

Figure 3. Hourly load demand of coordinators. 

 
Table 4. Statistical information on EVs. 
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Type Arrival time (H) Departure time (H)  

Residential Norm (19, 5) Norm (7, 2) I [0.1, 0.5] 

Official Norm (7, 1) Norm (15, 1) I [0.5, 0.8] 

Commercial Norm (9, 2) Norm (20, 2) I [0.3, 0.6] 

To calculate the total number of vehicles, the first 

step is to know the number of residential 

subscribers covered by the network. In this regard, 

the information presented in table 1 was used and 

finally, for 35% penetration, the total number of 

vehicles in the network was estimated to be 4004 

vehicles. To conduct studies, in addition to the 

number of vehicles, their class is also according to 

[36] considered. 

Battery capacity is one of the important features of 

vehicles. According to [36], the range of battery 

capacity in each class is considered in Table 5. It 

should be noted that a uniform distribution has 

been used to distribute the capacity of batteries in 

each class. 
 

Table 5. Battery capacity range for each class. 

Class 

Minimum 

capacity (kWh) 

Maximum 

capacity (kWh) 

1 8 12 

2 10 14 

3 17 21 

4 19 24 

 
The maximum charging and discharging rate of 

vehicles is 4 kWh and the weighted coefficients of 

charging and discharging are equal to 60% of the 

market peak price. Usually, some energy is lost in 

the process of charging and discharging vehicle 

batteries, therefore, the efficiency coefficient of 

charging and discharging vehicles is considered to 

be 90% and 95% [26]. Also, to prevent premature 

aging of vehicle batteries, battery discharge is 

allowed up to 85%, and the number of switching 

times allowed is considered according to table 6. It 

should be noted for the vehicles under study; their 

battery life is randomly selected. 
 

Table 6. The number of times allowed to replace vehicle 

batteries according to their lifespan. 
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In this study, it is assumed that all the wind turbines 

installed in the network are of the same model and 

their specifications are according to table 7 [28]. 
 

Table 7. Information about wind turbines. 
Vco 

(m/s) 

Vr 

(m/s) 

Vci 

(m/s) 

Prated 

(kW) 

30 12 3 500 

 

Also, photovoltaic systems with a power of 100 

kW (10 panels of 10 kW) have been installed at the 

network level, whose specifications are given in 

Table 8 [26]. In all studies, it is assumed that the 

photovoltaic system and wind turbines are operated 

at the unit power factor. 
 

Table 8. Photovoltaic system information. 

𝜼 (%) S(m2) Ta (oC) 

18.6 10 25 

 

To generate scenarios for each planning interval, 

the distribution function of wind speed and solar 

radiation is divided into five intervals, so that these 

functions are converted from continuous to 

discrete. To reduce the execution time and the 

complexity of the program, the number of 

scenarios was first reduced with the help of the 

backward scenario reduction technique [37] and 

then the wind and solar power scenarios were 

combined to obtain the final scenarios. In this 

study, the number of final scenarios is 10. 
 

Simulation process 
The proposed programming method is coded in 

OpenDSS, GAMS, and MATLAB software. The 

first and second stages of this planning are linearly 

implemented and the CPLEX calculation method is 

used to solve the problem. 
 

3. Results and Discussion 

The results of the planning done in both stages of 

the proposed planning are shown in Figures 4 and 

5. The results show that the charging of most of the 

vehicles took place during the low load hours of the 

network (1-7 in the morning) because, during these 
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hours, the price of the electricity market is low. 

Also, the discharge of vehicles during peak hours 

of the network has reduced the peak load of the 

network and met the technical limitations of the 

network. It should be noted that according to 

figures 4 and 5, the highest cost paid to vehicles in 

the direction of participation was during peak 

hours. Figure 6 shows the planned power of 

distributed non-renewable generation resources for 

two stages of the proposed algorithm.

 

  

  

Stage 1                    Stage 2  

Figure 4: Charging profile of EVs in different areas after applying the proposed two-stage algorithm 
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Stage 1                    Stage 2  

Figure 5. Discharge profile of EVs in different areas after applying the proposed two-stage algorithm. 

 

  

  

Figure 6. The generation capacity of each non-renewable distributed generation source (first stage-second stage). 

 

(The dashed line curve represents the first stage of 

the proposed algorithm and the load curve 

corresponds to the second stage of the proposed 

algorithm). As it is known, non-renewable 

resources produce their maximum power during 

the peak hours of the network due to the high price 

of the energy market and in Low load hours due to 

the low price of the electricity market, the 

minimum power is produced and the available load 

is supplied by the upstream network. 

Figure 7 shows the network load profile for three 

different network operation situations. As it is 

clear, the presence of EVs as a new load has 

changed the shape of the network load profile (gray 

color curve - vehicles cause an increase of about 6 

megawatts have become the peak load of the 

network. The application of the proposed planning 

framework has caused the electric load of the 

network to not increase much during peak hours 

(dashed line curve). The load has increased, which 

has made the network load profile curve more 

uniform. 

Further, to check the efficiency of the proposed 

algorithm, studies have been carried out for cases 

where vehicles and distributed generation sources 

do not participate in the proposed plan. According 
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to the obtained results, it was found that the 

existing network is not sufficient to provide the 

load required by the vehicles (the peak load of the 

network has increased by almost 7 megawatts) and 

there is a need to strengthen the network. 

Therefore, for comparison, the costs related to one 

year of implementation of the proposed plan were 

compared with the costs related to the network 

strengthening plan. 

The network strengthening plan has been carried 

out in such a way that the studies related to the 

network strengthening plan with 35% penetration 

of vehicles for a 20-year horizon were carried out 

and the related costs were obtained. Finally, for 

comparison, the costs of strengthening the network 

were obtained by considering the interest rate of 

10% for one year of equalization. Table 9 shows 

the costs obtained after the implementation of the 

two plans, as it is clear that the increase in the costs 

of strengthening the network is more than 5 times 

the increase in the costs of implementing the 

proposed plan. 

 

 
Figure 7. Network load profiles for three different operating states. 

 

Table 9. Increase in costs. 
Plan Increase in the annual cost of implementing the proposed plan ($) 

Proposed plan 1601941 

Network strengthening plan 9058207 

 

4. Conclusions  

In this article, a two-stage planning framework for 

the optimal management of EVs and dispersed 

generation resources with private ownership was 

analyzed in a centralized manner. The basic 

approach in this article was the optimal 

charging/discharging planning of EVs along with 

distributed generation sources to reduce operating 

costs by considering the wishes of vehicle owners 

and distributed generation sources. To implement 

the proposed algorithm, at first EVs were modeled 

probabilistically and the uncertainty related to 

distributed renewable generation sources was 

considered, then the CPLEX optimization method 

was used for different scenarios to solve the 

problem. Finally, as the results show, the use of the 

proposed planning model, in addition to the high 

satisfaction of EVs and distributed generation 

resources, can on the one hand minimize the 

operating costs and on the other hand reduce and 

postpone the network strengthening costs. 
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List of symptoms: 

Binary Variables 
Electric vehicle charging and discharging status v at t hour      X (v, t)/Y (v, t) 

Generator on or off status j at t hour        U (j, t) 

Continuous variables 

Electric vehicle discharge power v at t hour       𝑃𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡) 

Electric vehicle charging power v at t hour       𝑃𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣, 𝑡) 
Electric vehicle energy v at t hour        ES (v, t) 

Optimal charge profile for V electric vehicle       𝑃𝐷𝑒𝑠
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑣) 

Optimal discharge profile for V electric vehicle       𝑃𝐷𝑒𝑠
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑣) 
The number of switching states from charging to discharging or vice versa for a V electric vehicle  Dv 

Power purchased from the main grid per t hour       PNTW (t) 

Wind turbine power per t hour        Pw (t) 
Power of the photovoltaic system per t hour and s scenario      Ppv (t) 

The output power of distributed generation source j at t hour      PDG (j, t) 

Active power loss per t hour        PLOSS (t) 

Radiation intensity per t hour        𝐼𝑟
𝑟 

Network load per t hour         PLOAD (t) 
Electricity market price per t hour        PrMRT (t) 

Price of electric vehicle charging per t hour       𝑃𝑟𝐸𝑉
𝐶ℎ𝑎𝑟𝑔𝑒

(𝑡) 

Price of electric vehicle discharge per t hour       𝑃𝑟𝐸𝑉
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

(𝑡) 
Price of power loss per t hour        PrLOSS (t) 

Active power injected into the bus n per t hour       Pn (t) 
Reactive power injected into the bus n per t hour       Qn (t) 

The power transferring through the transformer n per t hour      PTRANS (n, t) 

Wind turbine speed per t hour        𝑉𝑓
𝑡 

Objective function related to the profit of electric vehicles      f1, 1 

Objective function related to the profit of distributed production resources    f1, 2 
The objective function of operating costs       f2 

Voltage angle in the bus n per hour t        𝛿𝑛(𝑡) 

The size of the array (m, n) in the network admittance matrix      |𝛾𝑛,𝑚| 

The angle of the array (m, n) in the network admittance matrix     𝜃𝑛,𝑚 

Parameters 
Wind turbine rated power         Prated 

Wind turbine rated speed         Vr 
Low cutoff speed of wind turbine        Vci 

High cutoff speed of wind turbine        Vco 

Efficiency coefficient of a photovoltaic system       𝜂𝑃𝑉 
The entire surface of the photovoltaic system       SPV 

Ambient temperature         Ta 

Efficiency coefficient of electric V vehicle charging      𝜂𝑣
𝐶ℎ𝑎𝑟𝑔𝑒

 

Efficiency coefficient of electric V vehicle discharge      𝜂𝑣
𝐷𝑐ℎ𝑎𝑟𝑔𝑒

 

Maximum dischargeable power of the V electric vehicle      𝑃𝐷𝑐ℎ𝑎𝑟𝑔𝑒,𝑣
𝑀𝑎𝑥  

Maximum chargeable power of the V electric vehicle      𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝑣
𝑀𝑎𝑥  

The optimal charging level of the V electric vehicle      𝑆𝑂𝐶𝑑𝑒𝑠
𝑣  

The initial charge level of the V electric vehicle's       𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑣  

Maximum limit of the battery capacity of the electric vehicle      𝜓𝑣
𝑀𝑎𝑥 

Minimum limit of the battery capacity of the electric vehicle      𝜓𝑣
𝑀𝑖𝑛 
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Maximum usable percentage of the V electric vehicle's battery capacity     𝜑𝑣
𝑀𝑎𝑥 

Minimum usable percentage of the V electric vehicle's battery capacity     𝜑𝑣
𝑀𝑖𝑛 

The battery capacity of V electric vehicle       EBatCap,v 

The weighting factor related to electric vehicle charging      Kcharge 

The weighting factor related to the discharge of electric vehicles     KDcharge 
Maximum number of switching states from charge state to discharging or vice versa for any electric vehicle NSMax 

Maximum allowed power that can be received from the upstream network    𝑃𝑁𝑇𝑊
𝑀𝑎𝑥  

Maximum capacity of the transformer        𝑃𝑇𝑅𝐴𝑁𝑆
𝑀𝑎𝑥  

The apparent power flowing from the bus n to m per hour t       S(n,m,t) 

Maximum lines capacity         𝑆𝑛,𝑚
𝑀𝑎𝑥 

The voltage on the bus n         V(n,t) 

Minimum and maximum voltage allowed on the bus n      𝑉𝑛
𝑀𝑖𝑛/𝑉𝑛

𝑀𝑎𝑥 

The maximum output power of the distributed generation source j     𝑃𝐷𝐺,𝑗
𝑀𝑎𝑥 

The minimum output power of distributed generation source j      𝑃𝐷𝐺,𝑗
𝑀𝑖𝑛 

The cost of setting up a distributed generation resource j      Scj 
Coefficients of the cost function of the distributed production source j     a(j),b(j) 

Power increase rate of distributed generation source j      𝑅𝑈𝑃𝐷𝐺
𝑗

 

The power reduction rate of distributed generation source j      𝑅𝐷𝑁𝐷𝐺
𝑗

 

Shape factor          𝛼, 𝛫 

Scale factor          𝛽, 𝑐 

The length of the time interval        ∆𝑡 
Collections 

The index corresponding to the source number of distributed generation     j 

Index related to the number of network buses       n, m 
Index related to optimization time intervals       t 

The index corresponding to the scenario number       s 

Index related to the number of electric vehicles       v 
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 Photovoltaic systems are very important renewable energy sources, and 

optimal use of their active and reactive power capacity is very useful in 

improving the power quality of the distribution network. Therefore, it 

is necessary to determine the optimal location, number, and capacity of 

the solar system with appropriate optimization methods so that the 

maximum reduction in network losses is achieved while considering 

power quality constraints. Given the complexity and many limitations 

of the problem, the need to use an appropriate optimization method is 

evident. In this paper, using the P-PSO optimization algorithm, in the 

IEEE 33-bus test network, the location and capacity of the active and 

reactive power of the solar system are determined based on the variable 

load profile of the network and the daily production curve of the solar 

system in Kerman city to minimize losses and improve the voltage 

profile of the electrical energy distribution networks. To increase the 

accuracy of this optimization, each of the load and production curves 

is divided into three different levels, according to the geographical 

climate of Kerman city, in one year, and to evaluate the performance 

of the proposed method, the relevant results in four different scenarios 

are examined. The optimization results indicate a significant impact on 

improving power quality indicators in the presence of photovoltaic 

systems, especially when using the active and reactive power capacities 

of these units simultaneously. 
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1. Introduction 

Increasing air pollution and shortage of fuel for 

fossil power plants in the world have led to an 

increasing interest in clean and renewable sources. 

On the other hand, the electrical energy distribution 

network has faced an increasing load demand, 

which highlights the need to use local production 

sources. Solar or photovoltaic systems are among 

the renewable distributed generation sources that 

include various advantages such as environmental 

compatibility, flexibility, reliability, and economic 

benefits [1]. So far, many studies have been 

conducted on the connection of distributed 

generation to the distribution network, and many 

countries are turning to these sources due to the 

environmental, economic, and reliability benefits 

of these systems [2]. Research shows that the way 

of use, type, capacity, and installation location of 

these sources are very important in their efficiency 

in improving the conditions of the distribution 

system and power quality parameters [3]. Failure to 

use properly and improper determination of the 

capacity and installation location of these sources 

can even lead to a decrease in power quality in the 

distribution network [4]. In [5-8], the location of 

distributed generation in the distribution network 

has been carried out based on various optimization 



Optimal use of photovoltaic systems in the distribution network considering the variable load 

57 

 

algorithms to reduce losses. The objective function 

in [5-6] is to reduce losses and costs of distributed 

generation units. In reference [6], in addition to 

power losses and installation costs of distributed 

generation sources, the cost of air pollution is also 

included in the objective function. In [7-8], power 

quality constraints have also been evaluated in the 

process of installing and operating new and 

renewable energy sources, and the optimal location 

of distributed generation sources has been carried 

out by an optimization problem. Although the load 

and generation profiles of all distributed generation 

sources in both studies are considered constant in 

the distribution network. In [9], the effective use of 

solar systems in a distribution network that is faced 

with an increase in demand has been investigated. 

The active power generation capacity has been 

calculated using environmental conditions, but the 

reactive power capacity of these sources has not 

been used. In [10], recommendations and 

guidelines for the location and capacity of solar 

system installation in the existing network have 

been provided for power companies. Given the 

complexity of the optimization problem in many 

past studies, this problem has been modeled with 

various optimization methods, and researchers 

have tried to optimize their response using newer 

and more effective optimization methods and 

considering more constraints [11-13]. In [11], the 

optimization of the location of distributed 

generation units is proposed using improved 

optimization techniques, and finally, the efficiency 

of the proposed method compared to traditional 

methods has been shown.   

In [12], the optimal placement of distributed 

generation was carried out by considering high 

harmonic loads in the network, and the harmonic 

distortion index was also stated as one of the 

constraints of the problem. The goal of 

optimization is to improve the power quality 

indicators in the system, and only the active power 

capacity of photovoltaic systems was used. In [14], 

the capacity and location of solar distributed 

generation were optimized. To limit the search 

space, the sensitive buses of the system were 

initially determined through sensitivity analysis. 

The load change profile and the production rate of 

the solar system were not considered in the 

presented model. In the reviewed studies, the load 

profile of the network and the production of 

distributed sources were not considered, but in 

some studies such as [15], the information on the 

consumed load in 24 hours and the average active 

power produced by the solar system were used to 

determine the optimal location and capacity of the 

solar system to reduce losses and reduce voltage 

deviation. 

A review of previous studies reveals the following 

weaknesses: 

1- In studies of the use of distributed generation 

sources from the point of view of the power quality 

of the distribution network, the use of the average 

load profile and the average production power of 

hypothetical distributed generation systems is 

completely unattainable, and naturally, due to the 

variability of the load profile and production, the 

use of the results in practice will not be very 

effective. 

2- In some distributed generation sources, 

including photovoltaic systems, it is possible to use 

reactive power capacity if accurately modeled and 

the available range is determined, which has often 

been ignored in previous studies. 

In the present study, to determine the installation 

location and the required active and reactive power 

utilization capacity of photovoltaic sources, the 

change in the actual annual load profile in Kerman 

has been considered along with accurate 

information on the active power production rate of 

the existing solar system in Kerman. The leveling 

method takes into account different levels of 

annual load and production, and as a result of the 

intersection of these levels, all different load and 

production level states are extracted, and 

optimization is carried out based on all levels to 

reduce losses and network voltage deviation. The 

answer to the optimization problem is the active 

and reactive power capacity and the location of the 

solar system at each load level. Also, the grid 

voltage constraints, the active and reactive power 

capacity of the photovoltaic system, and the total 

power generated based on demand are also 

considered in solving the optimization problem. 

The rest of the paper is organized as follows. In 

section 2 solution method consist of objective 

function and constraints formulations are 

presented. Section 3 Describes how to implement 

the proposed method of intersecting load and 

production levels and P-PSO method. Simulation 

scenarios and results are provided in section IV and 

section V discusses the results and concludes the 

paper. 

2. Solution method 

2.1. Objective function 

The goal of optimization is to reduce active losses 

and maintain the bus voltage profile within the 

desired range. The objective function 𝐹 is defined 

as equation (1) which must be minimized. The 

weighting coefficients 𝑘1 and 𝑘2 are chosen 

between 0 and 1 and their sum is equal to one and 
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shows the degree of influence of each objective 

function on the overall objective function. 

 

(1) 𝐹 = 𝑘1𝑓1 + 𝑘2𝑓2   
 

The first objective function 𝑓1 is the total real losses 

in the buses, which is obtained from equation (2). 

The second objective function 𝑓2 is the 

improvement rate of the voltage profile, which is 

defined as the sum of the squares of the bus voltage 

difference to the nominal value of one per unit, and 

is obtained from equation (3). 

 

(2) 
 𝑓1 = ∑

𝑃𝑙𝑜𝑠𝑠𝑖 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡 𝐷𝐺

𝑃𝑙𝑜𝑠𝑠𝑖 𝑤𝑖𝑡ℎ 𝐷𝐺

𝑁𝑏𝑢𝑠

𝑖=1

 

(3) 
 𝑓2 = ∑ (𝑣𝑖 − 𝑣𝑛𝑜𝑚)2

𝑁𝑏𝑢𝑠

𝑖=1

 

𝑃𝑙𝑜𝑠𝑠 is the total bus losses and 𝑁𝑏𝑢𝑠 is the number 

of busses. 

 In order to normalize the objective function of the 

problem, in equation (2), the total bus losses 

without installing distributed generation sources 

are divided by the total losses in the presence of 

distributed generation sources. 𝑣𝑖is the voltage of 

the 𝑖th bus, 𝑣𝑛𝑜𝑚 is the nominal voltage in terms of 

per unit. 

 

2.2. Constraints 

2.2.1. Power balance constraint 

According to equation 4, where 𝑃𝐷𝑖, 𝑃𝑃𝑉𝑖 are the 

active power generated by DG and the active power 

consumed in the nth bus, respectively, and 𝑃𝐿 

represents the active losses in the network in 

question. 𝑃𝑠𝑙𝑎𝑐𝑘 is the transmitted power from the 

upstream network. 

(4) 
 ∑ 𝑃𝑃𝑉𝑖

𝑁

𝑖=1

+ 𝑃𝑠𝑙𝑎𝑐𝑘 = ∑ 𝑃𝐷𝑖

𝑁

𝑖=1

+ 𝑃𝐿 

 

2.2.2. Active and reactive power generation 

range by solar DG 

The active generation power limit of the jth 

distributed generation unit is obtained from 

equation (5). 

(5) 𝑃𝑗𝑃𝑉𝑚𝑖𝑛  <  𝑃𝑗  <  𝑃𝑗𝑃𝑉𝑚𝑎𝑥  𝑗 = 1.2. … . 𝑁𝐷𝐺 

 

𝑁𝐷𝐺 is the number of distributed generation, 𝑃𝑃𝑉𝑚𝑖𝑛 

is the minimum active power generated, 𝑃𝑃𝑉𝑚𝑎𝑥 is 

the maximum active power generated. In this 

paper, the following method is used to obtain the 

reactive power range: 

At any time of the day, the reactive power 

generated by the photovoltaic system is limited by 

various constraints depending on the operating 

point of the system, and the reactive power 

exchanged between the grid and the photovoltaic 

system converter. We assume that the PV system 

with the maximum active power is in the system. 

One of the most important constraints for the 

reactive power of the system is determined by the 

maximum apparent power of the inverter. The 

reactive power of the PV depends on the maximum 

voltage and current values of its converter, so to 

calculate the controllable limit 𝑄𝑃𝑉-𝑃𝑃𝑉, the 

maximum voltage and current values of the 

converter 𝑉𝐶′𝑚𝑎𝑥and 𝐼𝐶′𝑚𝑎𝑥 must be considered. 

The relationship between active and reactive power 

considering the converter current is as follows: 

 

(6) 𝑃𝑃𝑉
2 + 𝑄𝑃𝑉

2 = (𝐼𝐶𝑉𝑃𝑉)2       
 

And the relationship between active and reactive 

power, taking into account the voltage limitation of 

the converter, is as follows: 

 

(7) 𝑃𝑃𝑉
2 + (𝑄𝑃𝑉 +

𝑉𝑃𝑉
2

𝑋𝐶
)2 = (

𝑉𝐶𝑉𝑃𝑉

𝑋𝐶
)2  

Using this relationship, the design value 𝑉𝐶′𝑚𝑎𝑥 

can be calculated, which determines the maximum 

inverter dc link voltage 𝑉𝑑𝑐𝑚𝑎𝑥and 𝐼𝐶′𝑚𝑎𝑥 [17-18]. 

The maximum converter current should be in the 

following relationship using the values of PV 

voltage, active and reactive power: 

(8) 𝐼𝐶′𝑚𝑎𝑥 =
𝑃𝑃𝑉′𝑅

2 +(𝑉𝑃𝑉′𝑅 𝑡𝑎𝑛𝜃𝑅

𝑉𝑃𝑉′𝑚𝑖𝑛
  

The maximum converter voltage is also calculated 

from the active and reactive power values and the 

maximum PV voltage as follows: 
(9) 𝑉𝐶′𝑚𝑎𝑥 =

𝑋𝐶

𝑉𝑃𝑉′𝑚𝑎𝑥
√𝑃𝑃𝑉′𝑅

2 + (𝑉𝑃𝑉′ 𝑡𝑎𝑛𝜃𝑅 +
𝑉𝑃𝑉′𝑚𝑎𝑥

2

𝑋𝐶
)2  

 

Also, the PV reactive power, taking into account 

the rated current and rated voltage of the PV 

system, is: 

(10) 
𝑄𝑐′𝑃𝑉

𝑡 = √(𝑉𝑃𝑉𝐼𝐶′𝑚𝑎𝑥)2 − 𝑃𝑃𝑉
𝑡 2

  

𝑄𝑣′𝑉
𝑡 = √(

𝑉𝐶′𝑚𝑎𝑥𝑉𝑃𝑉

𝑋𝐶
)2 − 𝑃𝑃𝑉

𝑡 2
−

𝑉𝑃𝑉
2

𝑋𝐶
 

Finally, at each operating point, the maximum 

reactive power at each hour t is obtained using the 

following equation: 

(11) 𝑄𝑃𝑉′𝑚𝑎𝑥
𝑡 = 𝑚𝑖𝑛{𝑄𝑐′𝑃𝑉

𝑡 ′𝑄𝑣′𝑃𝑉
𝑡 }  

 

In this article, 𝑉𝑃𝑉′𝑚𝑎𝑥=1.05, 𝑉𝑃𝑉′𝑚𝑖𝑛=0.95, and 

𝑋𝐶=0.3 are considered. 

3.2.3. Bus voltage limit 
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In equation (12), the minimum and maximum 

allowable voltage limits for all buses are 

considered to be 0.9 to 1.01 per unit. Where 𝑉𝑖is the 

voltage of the i-th bus, 𝑉𝑖.𝑚𝑖𝑛, 𝑉𝑖.𝑚𝑎𝑥 are the 

minimum and the maximum bus voltage 

respectively. 

(12) 𝑉𝑖.𝑚𝑖𝑛  <  𝑉𝑖  <  𝑉𝑖.𝑚𝑎𝑥 𝑖 = 1.2. … . 𝑁𝑏𝑢𝑠 
  

3. Proposed intersection of load and production 

levels method and solving by P-PSO  

To bring the results of the optimization problem 

closer to reality, changes in the load curve and solar 

system production should be included in the 

problem. In this paper, for more realistic results and 

to increase the optimization accuracy, changes in 

the load and production curve are considered in a 

one-year period. Since temperature changes in the 

seasons are the most important parameter affecting 

the load in the short term, the annual load curve of 

the Kerman city network is divided into three 

conditions: maximum, minimum, and intermediate 

temperatures, and as a result, load consumption. 

Kerman's peak load occurs in the summer season 

and the high load level occurs in this time period. 

In winter, due to the city's temperate geographical 

location and the major use of gas in heating 

devices, the amount of electricity used is low and 

the low load level occurs in this period. Finally, in 

the temperate seasons of autumn and spring, load 

consumption is considered as the medium load 

level. Accordingly, the load curve of Kerman city 

is divided into three low load, high load, and 

medium load levels in a year based on seasonal 

changes, as shown in Table 1. Also in Table 2, the 

active and reactive power capacity of the 

photovoltaic system is specified for each load level. 

Table 1. Network load levels studied in one year 

Load Levels month of the year 

Low load November, December, January, February 

Mid load April, May, October, March 

High load June, July, August, September 

Table 2. Active and reactive power of the photovoltaic 

system for each load level 

Reactive power Active power  

Q P Test network 

1.5Q 0.3P Low load 

0.5Q 0.6P Mid load 

Q P High load 

Table 3. Yearly leveling the solar system production curve 

Load Level months Capacity factor percentage Probability of occurrence per 

year 

Low load August, November, 

December, January 

74% 4

12
 

Mid load April, May, February, 

March 

90% 4

12
 

High load June, July, September, 

October 

100% 4

12
 

Solar cells rarely operate at their maximum 
power point because the output power is 
affected by radiation and ambient temperature. 
Load changes also affect the shift of the 
operating point and the power received from 
the system. By studying the energy output of the 
solar system in the geographical area of 
Kerman, the production curve of the 
photovoltaic system is obtained at three 
different levels low load, medium load, and high 
load according to Table 3. 
 

3.1. Intersection of the load and production 

curves 

In this paper, to increase the accuracy of the 

obtained results, it is used to consider different 

states of the curve resulting from the intersection of 

two load curves and the solar system production 

curve. Since three levels (low load, medium load, 

and high load) are considered for the load and 

production curve, the resulting curve has 9 states, 

but with the assumptions of the problem for the city 

of Kerman, only 6 of these 9 states occur. The 

intersection of the two curves is shown in Figure 1. 
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Figure 1. The intersection of two annual load and production graphs of a solar system 

 

 

The characteristics of the different states of the 

graph resulting from the intersection of the two 

load and production curves are presented in Table 

4. Accordingly, in order to solve the problem in 

question, by determining the loss objective 

function for each of these 6 states, according to 

equation (13), the objective function of the problem 

is obtained by considering the changes in the load 

curve and the changes in the production curve. 

(13) 

𝐹𝑇 =
3

12
𝑔1 +

3

12
𝑔2 +

3

12
𝑔3 +

1

12
𝑔4

+
1

12
𝑔5 +

1

12
𝑔6 

 
First case: For the months of November-

December-January, the load curve and the 

generation curve are at low load level. Therefore, 

the coefficient of the corresponding loss function 

𝑔1 is obtained as 3/12. The generation capacity 

factor is 74%. (For load distribution) its active 

power is considered to be 0.3 times the active 

power of the test network load and its reactive 

power is considered to be 1.5 times the reactive 

power of the test network. 

 

Second case: In the months of June, July, and 

September, the load curve and the generation curve 

are at medium load level, therefore the coefficient 

of the corresponding loss function 𝑔2 is obtained as 

3/12. The generation capacity factor is 90%. (For 

load distribution) its active power is considered to 

be 0.6 times the active power of the test network 

load and its reactive power is considered to be 0.5 

times the reactive power of the test network. The 

table below describes the status of all 6 possible 

cases. 

Table 4. All possible load and production states and 6 possible states 

Mid Mid High High Low Low Mid High Low Load Level 

High Low Mid Low Mid High Mid High Low 
Generation 

Level 

1

12
 0 0 

1

12
 

1

12
 0 

3

12
 

3

12
 

3

12
 Probability  

October Don’t occure Don’t 
occure August February Don’t 

occure 

April 
May 

March 

June 
July 

September 

November
December 

January 
Month 

0.6P 0.6P P P 0.3P 0.3P 00.6P P 0.3P Active 
power 

0.5Q 0.5Q Q Q 1.5Q 1.5Q 0.5Q Q 1.5Q 
Reactive 

power 

100% 74% 90% 74% 90% 100% 90% 100% 74% Capacity 
factor 

 

3.2. Problem-solving with the P-PSO algorithm 

To solve the optimization problem described in this 

section, a new and very effective and useful 

algorithm, P-PSO, has been used, the capabilities 

and implementation of which are shown in [17]. 

Despite the competitive performance of PSO, it is 

noted the tendency of PSO swarm to converge 

prematurely in the local optima, due to its rapid 

convergence on the best position found so far at the  
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early stage of optimization. Main challenging issue 

that needs to be addressed is the proper control on 

the exploration and exploitation searching of PSO.  

Basic PSO Algorithm 

 

In basic PSO, each particle that is roaming through 

the D dimensional problem hyperspace represents 

the potential solution for a specific problem. For 

particle i two vectors, i.e. position vector Xi =

[Xi1، Xi2، … ،XiD] and velocity vector Vi =

[Vi1 ،Vi2، … ، ViD] are used to represent its current 

state. Additionally, each particle i can memorize its 

personal best experience ever encountered (i.e. 

cognitive experience), represented by the personal 

best position vector Pi = [Pi1، Pi2  … ، PiD]. The 

position attained by the best particle in the society 

(i.e. social experience) is represented asPg =

[Pg1، Pg2، … ، PgD]. Mathematically, at iteration (t 

+ 1) of the searching process, the d-th dimension of 

particle i's velocity, V id(t + 1) and position 

X i,d(t + 1) are updated as follows: 

Where 𝑐1and 𝑐2 are the acceleration coefficients; 𝑟1 

and 𝑟2 are two random numbers generated from a 

uniform distribution within the range of [0, 1]. 

Particles velocity is clamped to a maximum 

magnitude of 𝑉𝑚𝑎𝑥 to prevent swarm explosion. 

When minimizing the fitness function f in D 

dimensional search space, particle i's 𝑃𝑖 position in 

iteration (t + 1) is updated as follows [19]: 

𝑃𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡 + 1)        𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) < 𝑓( 𝑃𝑖(𝑡))

𝑃𝑖(𝑡)                                          𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 (16) (13) 

P-PSO Algorithm 

Despite the competitive performance of PSO, 

researchers have noted the tendency of PSO swarm 

to converge prematurely in the local optima, due to 

its rapid convergence on the best position found so 

far at the early stage of optimization [20]. Once the 

swarm congregates at such position, little 

opportunity is afforded for the population to 

explore for other solution possibilities by designing 

perturbation module. This leads to the entrapment 

of the swarm within the local optima of search 

space and thus premature convergence occurs. 

Another challenging issue that needs to be 

addressed is the proper control on the exploration 

and exploitation searching of the PSO. So P- PSO 

which was proposed in [17] is characterized by: 

3.2.1 Velocity calculation 

In this model to achieve better control on the 

algorithm’s exploration and exploitation 

capabilities, particles velocity is dependent on both 

particle’s fitness and time. More specifically, 

particles with better (i.e. lower) fitness value are 

assigned with lower 𝜔𝑖 that favour the exploitation, 

whilst particles with worse (i.e. higher) fitness 

value is encouraged for the exploration by 

assigning them with higher 𝜔𝑖. Mathematically, 

particle i’s inertia weight, i.e. 𝜔𝑖 is calculated as 

follows: 

𝜔𝑖 = 𝑐1((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 ) ∗ 𝐺𝑖 + 𝜔𝑚𝑖𝑛  ) 

+𝑐2 ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ∗
𝑚𝑎𝑥𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
+ 𝜔𝑚𝑖𝑛)     (17)    

Where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 represent the maximum 

and minimum inertia weights, respectively, 

i.e. 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 = 0.4; 𝐺𝑖 represents the 

fitness dependent weight value that determines 𝜔𝑖 

of particle i as shown: 

𝐺𝑖 =
𝑓(𝑃𝑖)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
                                               (18) (15) 

Where 𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛 represent the maximum and 

minimum personal best fitness values that exist in 

the population. Equation (18) shows that the 

particle with smaller fitness has smaller and thus is 

assigned with smaller 𝜔𝑖 and vice versa. To this 

end, we update the particle i's velocity, 𝑉𝑖 as 

follows: 
𝑉𝑖(𝑡 + 1) = 𝜔𝑖𝑉𝑖 + ∑ 𝑐𝑘𝑟𝑘(𝑃𝑘 − 𝑋𝑖)𝑃𝑘∈𝑁𝑖

             (19) (16) 

where 𝑃𝑘 represents the personal best position of 

neighboring particles that exist in particle i's 

neighborhood; 𝑁𝑖 represents the number of 

neighbouring particles available for particle i; 𝑐𝑘 

represents the acceleration coefficient that equally 

distributed among the 𝑁𝑖 neighboring particles, 

calculated as, 𝑐𝑘 = 𝑐 𝑁𝑖⁄  where; 𝑐 = 4.1, 𝑟𝑘 

represents the random number in the range of [0, 

1].  

3.2.2 Perturbation module 

To alleviate the premature convergence issue, a 

perturbation module is adopted to perform 

perturbation on the 𝑃𝑔 particle and provide extra 

diversity for it to jump out from local optima, if its 

fitness is not improved for 𝑚 successive function 

evaluations (FEs). The 𝑚 value that used to trigger 

perturbation module should not be set too large or 

too small, as the former wastes the computation 

resources, whilst the latter degrades algorithm’s 

convergence speed. Herein, 𝑚 is set as 5. In 

perturbation module, one of the d-dimension of 𝑃𝑔 

particle i.e. 𝑃𝑔𝑑 is first randomly selected and it is 

then perturbed randomly by a normal distribution 

as follows: 

𝑉𝑖𝑑(𝑡 + 1) = 𝑉𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + 

𝑐2𝑟2(𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))                                             (14) 

𝑋𝑖𝑑(𝑡 + 1) = 𝑋𝑖𝑑(𝑡)+𝑉𝑖𝑑(𝑡 + 1)                             (15)  

 𝑃𝑔𝑑
𝑝𝑒𝑟

=

{
𝑃𝑔𝑑 + 𝑟4(𝑋𝑚𝑎𝑥,𝑑 − 𝑋𝑚𝑖𝑛,𝑑)                𝑖𝑓 𝑟3 > 0.5

𝑃𝑔𝑑 − 𝑟4(𝑋𝑚𝑎𝑥,𝑑 − 𝑋𝑚𝑖𝑛,𝑑)                𝑖𝑓 𝑟3 ≤ 0.5
 

(20) 
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Where 𝑃𝑔𝑑, is the perturbed 𝑃𝑔;  𝑟3 is a random 

number with the range of [0, 1] and generated from 

uniform distribution; 𝑟4 is a random number 

generated from the normal distribution of  

𝑁~(𝜇, 𝜎2)  with mean value of 𝜇 = 0 and standard 

deviation of 𝜎 = 𝑅, respectively. R represents the 

perturbation range that linearly decreased with the 

number of FEs as follows: 

𝑅 = 𝑅𝑚𝑎𝑥 − (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)
𝑓𝑒𝑠

𝐹𝐸𝑚𝑎𝑥
                (21) (18)  

Where 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are the maximum and 

minimum perturbation ranges, respectively; 𝑓𝑒𝑠 is 

the FEs number used; max FE is the predefined 

maximum FEs. The newly perturbed 𝑃𝑔 particle, 

i.e. 𝑃𝑔
𝑝𝑒𝑟

 is then evaluated and examined. It will 

replace 𝑃𝑔 if 𝑓(𝑃𝑔
𝑝𝑒𝑟

) < 𝑓(𝑃𝑔). 

 The process of solving the aforementioned 

optimization problem is shown in the flowchart in 

Figure 2.  

 

 

 

 

Figure 2. Problem-solving algorithm 

 

4. Numerical results 

The maximum number of distributed generation 

sources is four and the generation capacity range of 

each DG unit is 1.2 MW and 1.2 MVAR. 

To show the effect of using the reactive power 

capacity of PV systems and also to evaluate the 

proposed method on the selection of optimal 

location and capacity, simulations have been 

performed considering four scenarios: 

1- The studied network without the presence of 

distributed generation such as photovoltaic systems 

2- The network in the presence of photovoltaic 

systems and assuming only the use of active power 

3- The network in the presence of photovoltaic 

systems and assuming the production of active and 

reactive power 

4- Similar to case 3 but without leveling (assuming 

the average load and production). 

In this paper, the role of reducing losses and 

improving the voltage profile in the equal objective 

function is considered )K1=K2=0.5). 

 

Figure 1. Intersection of two annual
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V.D6 V.D5 V.D4 V.D3 V.D2 V.D1 

 
 

- 0.0599 0.0402 0.1338 0.0599 0.0402 1 

0.1947  0.1579 0.0314 0.4052 0.2500 0.0652 0.2654 2 

0.0541 
 

0.0002 0.0036 0.0245 0.0021 0.0012 0.0077 3 

0.0583  0.0105 0.18 0.1374 0.0114 0.0847 0.028 4 

Table 6. Capacity and location of installed PV units 

Table 7. Power loss in four scenarios 

 

 

 

The results of Table 5 show that the optimal use of 

active and reactive power capacity can be effective 

in reducing voltage deviation. So scenario 3 shows 

the lowest voltage deviation. Table 6 shows the 

results of the capacity and location of installed PV 

units. To evaluate the results from the point of view 

of losses, Table 7 summarizes the results of the 

different objective functions and also reports the 

average losses. As can be seen in scenario 1, losses 

occur at the highest level and the use of the active 

power capacity of the photovoltaic system leads to 

a significant reduction in the level of power losses 

in the network. Also, comparing the results of the 

second and third scenarios shows the effect of 

using the reactive power capacity of the 

photovoltaic system in reducing losses. So at peak 

load, losses are reduced to about one-third. To see 

the effect of using the photovoltaic system, the 

voltage results of all buses at peak load in the first 

and third scenarios are shown in Figure 3. 

According to the figure, in the third scenario, due 

to the simultaneous use of the active and reactive 

power capacity of the solar system, the bus voltage 

deviation level is minimized. The results of Table 

PV 4 PV 3 PV 2 PV 1  

Scenario 

Capacity 
 

Location 

 

Capacity 
 

Location 

 

Capacity 
 

Location 

 

Capacity 
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P(kW) P(kW) P(kW) P(kW) 
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) 
Q(kVAR) QkVAR 

- - - - - - -  

- 
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6 show that the use of reactive and active power 

capacity simultaneously with the proposed leveling 

method is effective in controlling the bus voltage 

deviation, reducing losses, and reducing system 

costs. To see the importance of using the proposed 

leveling method, the results of the third and fourth 

scenarios can be compared. As can be seen, the 

voltage deviation at peak load in the third scenario 

is about one-sixth of that in the fourth scenario, and 

the power losses in the third scenario are less than 

half of those in the fourth scenario.  

These results reveal the importance of load and 

generation leveling according to climate in the use 

of distributed generation resources. 

Figure 4 shows the convergence plot of the P-PSO 

method compared to PSO. Comparing the two plots 

reveals the optimization quality and escape from 

the local convergence of P-PSO. 

 
 

Figure 4. Convergence diagram of P-PSO and PSO 

methods 

 

5. Conclusion 

In this paper, the location and capacity of the active 

and reactive power of the photovoltaic system in 

the distribution network were optimized based on 

the load leveling required and the generation 

capacity of the photovoltaic system. The aim of 

optimizing the voltage and reactive power control 

in the network under study was to reduce active 

power losses and bus voltage deviations as the 

main objectives. To use the leveling method, the 

actual load and generation profile of Kerman was 

used, and the results obtained indicate the 

importance of proper use of distributed generation 

resources and the advantage of using the reactive 

power capacity of these systems. Observation of 

the results shows that the use of the photovoltaic 

system leads to a profound reduction in active 

losses and bus voltage deviations in the system. 

However, using the reactive power capacity of 

these resources compensates the system voltage 

level more appropriately. Of course, it is necessary 

to consider the limitations of the active and reactive 

power generated by these distributed generation 

resources. Also, the use of the P-PSO optimization 

method shows the appropriate quality of 

optimization of this method and the escape from 

local convergence in complex problems. The 

results of the article show that the appropriate use 

of the leveling method in a distribution system with 

distributed generation resources will lead to 

improved results and achieve the goal of improving 

power quality in the network. 
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