اقتصاد چرخشی در زنجیره تامین توربین بادی؛ الزامات و راهبردها
محورهای موضوعی : آینده پژوهیفرزاد یاوری 1 , نازنین پیلهوری 2 * , رضا رادفر 3
1 - گروه مدیریت صنعتی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مدیریت صنعتی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مدیریت صنعتی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اقتصادچرخشی , توربین بادی, انرژیهای تجدیدپذیر, زنجیره تامین, بهرهوری منابع,
چکیده مقاله :
در اين مقاله، به الزامات و راهبردهای مفهوم اقتصاد چرخشی در راستای خلق ارزش پایدار در زنجیره تامین صنعت توربین بادی پرداخته شده است.درحقیقت هدف مفهوم اقتصاد چرخشی، بالاترن ارزش ممکن یک محصول یا یک ماده در طول زمان و همچنین کاهش مصرف مواد اولیه و افزایش بهرهوری منابع میباشد. در این تحقیق بهکارگیری اقتصاد چرخشی با رویکرد کاهش ضایعات، کاهش اثرات زیست محیطی تولید و مصرف، افزایش بهرهوری و کارایی بیشتر منابع و رسیدگی به نگرانیهای در حال ظهور در رابطه با امنیت و کمبود منابع در تولید توربینهای بادی و همچنین پایان عمر آنها مورد بررسی قرار میگیرد. پیشبینی میگردد انرژی بادی روند رو به رشدی در تولید، نصب و راهاندازی در دنیا طی کند. در زنجیره تامین برای ژنراتورهای بادی، بالاترین ریسک مربوط به مواد خام است. اغلب مواد مورد استفاده در تولید توربینهای بادی مانند عناصر موجود در آهنربای دائم در زمره مواد بحرانی و استراتژیک قرار دارند.در ایران نیز در ایران نیز ظرفیت نیروگاههای تجدیدپذیر رشد محسوسی دارد. پس از از رده خارج کردن توربین های بادی، مواد حاصل از توربین های بادی باید به طور موثر دفع شوند. با کاهش مقدار مواد مورد نیاز از تولید اولیه، اثرات زیستمحیطی را کاهش میدهد. در این مقاله جداسازی و دفع این اجزا و مواد و اثرات زیست محیطی و پتانسیل بازیافت و چرخشی بودن مزارع بادی در راستای شکاف تحقیقاتی مهم در صنعت توربینهای بادی ارزیابی میشود. این مقاله به ارتباط بین موضوعات پایان عمر، اقتصاد چرخشی و ارزیابی چرخه عمر توربینهای بادی میپردازد.
In this article, the requirements and strategies of the circular economy concept in order to create sustainable value in the supply chain of the wind turbine industry have been discussed. In fact, the purpose of the circular economy concept is the highest possible value of a product or a material over time, as well as reducing the consumption of raw materials and increasing the productivity of resources. In this research, the application of the circular economy with the approach of reducing waste, reducing the environmental effects of production and consumption, increasing the productivity and efficiency of resources, and addressing the emerging concerns related to the security and lack of resources in the production of wind turbines, as well as their end of life, are examined. It is expected that wind energy will go through a growing trend in production, installation and commissioning in the world. In the supply chain for wind generators, the highest risk is related to raw materials. Most of the materials used in the production of wind turbines, such are among the critical and strategic materials. In Iran, the capacity of renewable power plants has grown significantly. After wind turbines are decommissioned, materials from wind turbines must be disposed of effectively. In this article, the separation and disposal of these components and materials and the environmental effects and recycling potential of wind farms are evaluated. This paper deals with the relationship between end-of-life, circular economy and life cycle assessment of wind turbines.
1 Commission, E., Circular Economy Action Plan. 2020.
2 Korhonen, J., et al., Circular economy as an essentially contested concept. Journal of cleaner production, 2018. 175: p. 544-552.
3 Macarthur, E. and H. Heading, How the circular economy tackles climate change. Ellen MacArthur Found, 2019. 1: p. 1-71.
4 Ghisellini, P. and S. Ulgiati, Managing the transition to the circular economy, in Handbook of the circular economy. 2020, Edward Elgar Publishing. p. 491-504.
5 BLADE, A., SUSTAINABLE DECOMMISSIONING: WIND TURBINE BLADE RECYCLING.
6 Elia, V., M.G. Gnoni, and F. Tornese, Measuring circular economy strategies through index methods: A critical analysis. Journal of cleaner production, 2017. 142: p. 2741-2751.
7 Corona, B., et al., Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resources, Conservation and Recycling, 2019. 151: p. 104498.
8 Bocken, N.M., et al., Product design and business model strategies for a circular economy. Journal of industrial and production engineering, 2016. 33(5): p. 308-320.
9 Parliament, E., EU Critical raw materials in the circular economy and strategic value chains and EU R&D funding. 2019.
10 Bobba, S., et al., Critical raw materials for strategic technologies and sectors in the EU. A Foresight Study. 2020.
11 آمار, د.ب.ر.و.ت.م.گ.ب.ر.ر.و., گزارش آماری ماهانه انرژیهای تجدیدپذیر. 1403.
12 Bech, N.M., A Circular Economy and Ecosystem Service approach to offshore wind power installations. 2017.
13 Jensen, J.P. and K. Skelton, Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and Sustainable Energy Reviews, 2018. 97: p. 165-176.
14 Hao, S., et al., A circular economy approach to green energy: Wind turbine, waste, and material recovery. Science of the Total Environment, 2020. 702: p. 135054.
15 Marylise Schmid, W., Accelerating Wind Turbine Blade Circularity. 2020.
16 انرژی(, م.ا.ص.و.م.گ., مسائل راهبردی بخش انرژی در برنامه هفتم توسعه:توسعه انرژی تجدیدپذیر. 1402.
17 Spyroudi, A. and O. Catapult, Carbon footprint of offshore wind farm components. Catapult Offshore Wind Energy, 2021.
18 Graedel, T., et al., UNEP Recycling rates of metals-A Status Report. A Report of the Working Group on the Global Metal Flows to the International Resource Panel, 2011.
19 Cao, Z., et al., Resourcing the fairytale country with wind power: a dynamic material flow analysis. Environmental Science & Technology, 2019. 53(19): p. 11313-11322.
20 Gonzalez, E., et al. Is the future development of wind energy compromised by the availability of raw materials? in Journal of Physics: Conference Series. 2018. IOP Publishing.
21 Europer, W., Discussion Paper on Manageing Composite Blade Waste. 2017.
22 Psomopoulos, C.S., et al., A review of the potential for the recovery of wind turbine blade waste materials. Recycling, 2019. 4(1): p. 7.
23 Sakellariou, N., Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Systems, 2018. 9: p. 981-1023.
24 Naqvi, S., et al., A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, conservation and recycling, 2018. 136: p. 118-129.
25 Topham, E. and D. McMillan, Sustainable decommissioning of an offshore wind farm. Renewable energy, 2017. 102: p. 470-480.
26 Ankrah, P.P.T., Technical Feasibility of Decomtools Vessel Monopile Extraction System. 2022, Høgskulen på Vestlandet.
27 Sillanpää, M. and C. Ncibi, The circular economy: Case studies about the transition from the linear economy. 2019: Academic Press.
28 Blomsma, F. and G. Brennan, The emergence of circular economy: a new framing around prolonging resource productivity. Journal of industrial ecology, 2017. 21(3): p. 603-614.
29 Fehrer, J.A. and H. Wieland, A systemic logic for circular business models. Journal of Business Research, 2021. 125: p. 609-620.
30 Guldmann, E., N.M. Bocken, and H. Brezet, A design thinking framework for circular business model innovation. Journal of Business Models, 2019. 7(1): p. 39-70.
31 Linder, M. and M. Williander, Circular business model innovation: inherent uncertainties. Business strategy and the environment, 2017. 26(2): p. 182-196.
32 Geissdoerfer, M., et al., Circular business models: A review. Journal of cleaner production, 2020. 277: p. 123741.
33 Kirchherr, J., D. Reike, and M. Hekkert, Conceptualizing the circular economy: An analysis of 114 definitions. Resources, conservation and recycling, 2017. 127: p. 221-232.
34 Hauschild, M.Z., R.K. Rosenbaum, and S.I. Olsen, Life cycle assessment. Vol. 2018. 2018: Springer.
35 Curran, M.A., Life-Cycle Assessment. Encyclopedia of Ecology, 2008. 2016(4): p. 7.
36 Vogtlander, J.G., A practical guide to LCA, for students, designers and business managers; Cradle-to-Grave and Cradle-to-Cradle. 2010: VSSD.
37 Ortegon, K., L.F. Nies, and J.W. Sutherland, Preparing for end of service life of wind turbines. Journal of Cleaner Production, 2013. 39: p. 191-199.
38 Thomson, C. and G. Harrison, Life cycle costs and carbon emissions of wind power: executive summary. 2015.
39 Standard, I., Environmental management-Life cycle assessment-Requirements and guidelines. Vol. 14044. 2006: ISO.
40 ISO, I., 14040. Environmental management—life cycle assessment—principles and framework, 2006. 578: p. 235-248.
41 Davidsson, S., M. Höök, and G. Wall, A review of life cycle assessments on wind energy systems. The International Journal of Life Cycle Assessment, 2012. 17: p. 729-742.
42 Razdan, P. and P. Garrett, Life Cycle Assessment of electricity production from an onshore V136-3.45 MW Wind Plant. Vestas Wind Systems A/S, Aarhus, Denmark, 2017.
43 Razdan, P. and P. Garrett, Life cycle assessment of electricity production from an onshore V112-3.45 MW wind plant. Aarhus: vestas wind systems A/S, 2017.
44 Razdan, P. and P. Garrett, Life cycle assessment of electricity production from an onshore V110-2.0 MW Wind Plant. Vestas Wind Systems A/S, 2015.
45 Guezuraga, B., R. Zauner, and W. Pölz, Life cycle assessment of two different 2 MW class wind turbines. Renewable Energy, 2012. 37(1): p. 37-44.
46 Wagner, H.-J., et al., Life Cycle Assessment of a Wind Farm. Introduction to Wind Energy Systems: Basics, Technology and Operation, 2013: p. 85-92.
47 Gomaa, M.R., et al., Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method: A practical case study. Energies, 2019. 12(17): p. 3263.
48 Ardente, F., et al., Energy performances and life cycle assessment of an Italian wind farm. Renewable and Sustainable Energy Reviews, 2008. 12(1): p. 200-217.
49 Demir, N. and A. Taşkın, Life cycle assessment of wind turbines in Pınarbaşı-Kayseri. Journal of Cleaner Production, 2013. 54: p. 253-263.
50 Weinzettel, J., et al., Life cycle assessment of a floating offshore wind turbine. Renewable Energy, 2009. 34(3): p. 742-747.
51 Martínez, E., et al., Life cycle assessment of a multi-megawatt wind turbine. Renewable energy, 2009. 34(3): p. 667-673.
52 Lenzen, M. and J. Munksgaard, Energy and CO2 life-cycle analyses of wind turbines—review and applications. Renewable energy, 2002. 26(3): p. 339-362.
53 Lee, Y.-M. and Y.-E. Tzeng, Development and life-cycle inventory analysis of wind energy in Taiwan. Journal of Energy Engineering, 2008. 134(2): p. 53-57.
54 Haapala, K.R. and P. Prempreeda, Comparative life cycle assessment of 2.0 MW wind turbines. International Journal of Sustainable Manufacturing, 2014. 3(2): p. 170-185.
55 Xie, J.-b., et al., Assessments of carbon footprint and energy analysis of three wind farms. Journal of Cleaner Production, 2020. 254: p. 120159.
56 Dones, R., et al., Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries. 2007, Ecoinvent report.
57 Koltun, P. and A. Tharumarajah, Life cycle impact of rare earth elements. International Scholarly Research Notices, 2014. 2014(1): p. 907536.
58 Chipindula, J., et al., Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability, 2018. 10(6): p. 2022.
59 Crawford, R.H., Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield. Renewable and sustainable energy reviews, 2009. 13(9): p. 2653-2660.
60 Garrett, P. and K. Ronde, Life cycle assessment of electricity production from an onshore V126-3.3 MW wind plant. Vestas Wind Systems A/S, 2014: p. 116.
61 Andersen, P.D., et al., Recycling of wind turbines, in DTU International Energy Report 2014: Wind energy—drivers and barriers for higher shares of wind in the global power generation mix. 2014, Technical University of Denmark. p. 91-97.