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Abstract 

Energy management (EM) in distribution systems has gained significant attention in recent years. Coordi-
nating electricity generation and consumption is crucial for energy savings, cost reduction, and achieving 
technical and economic objectives (EO). Demand-side participation through responsive loads (RLs) in smart 
distribution networks (SDNs) facilitates optimal EM  and operation, contributing to the long-term improve-
ment of distribution network performance. The primary objective of this paper is to present an efficient model 
for optimal EM  planning in a smart distribution network, considering RLs and the impact of network recon-
figuration on enhancing technical and economic goals. In this study, a 33-bus IEEE distribution network is 
analyzed for daily EM , incorporating ten different load levels with varying probabilities for each level. The 
optimization algorithm employed in this research is the Genetic Algorithm (GA), used to optimize the objec-
tive functions. The results demonstrate that demand-side participation through responsive loads, along with 
optimal network reconfiguration, can effectively reduce daily energy loss costs and improve the voltage pro-
file of the distribution network. 

Keywords: Smart distribution network, responsive loads, network reconfiguration, genetic algorithm, loss cost 
reduction, voltage profile improvement. 

 

1. Intruduction 

Demand-side load participation in energy 
management (EM) serves as a reliable solu-
tion for ensuring economic and sustainable  
electricity supply to consumers. As the final 
stage in electrical energy delivery, this ap-
proach represents an innovative EM  strat-
egy that is directly connected to or located 
near the distribution network. To achieve 
economic, technical, environmental, and 
regulatory benefits in power systems, it is es-
sential to optimize the size, location, and 
type of distributed energy resources. Effec-
tive operation of smart distribution networks 
(SDNs) relies on the efficient utilization of 

responsive loads (RLs) on the demand side. 
RLs constitute a key capacity in demand-
side management within SDNs[1]. 

Reconfiguration of power distribution sys-
tems is a method for restructuring distribu-
tion networks that does not require the instal-
lation or deployment of new equipment. In-
stead, it utilizes existing equipment and 
switches in a simple and cost-effective man-
ner to reduce power losses.  In each distribu-
tion network, there are normally open and 
normally closed switches. By closing some 
of the normally open switches and simulta-
neously opening the same number of nor-
mally closed switches, the power flow path 
in the distribution network can be altered to 
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minimize system losses. Since distribution 
networks always operate in a radial configu-
ration, their reconfiguration must be con-
ducted in a way that preserves this structure.  
Given the dynamic nature of power flow in 
distribution systems, it is unrealistic to ex-
pect a fixed network structure to fulfill tech-
nical and economic objectives (EO) at all 
times [2-4]. 

The variable nature of loads in power sys-
tems necessitates the adoption of optimiza-
tion methods to achieve technical and EO . 
In this regard, the reconfiguration of distri-
bution networks using remotely controlled 
switches gains significant importance. 
Achieving this requires accurate load fore-
casting in scientific studies and precise load 
modeling, considering its irregular nature, or 
incorporating it into manual control pro-
cesses [5-6]. 

Due to their radial structure, distribution 
networks experience significant power 
losses. Therefore, the primary objective of 
distribution network operation planning is to 
reduce power loss costs and improve the 
voltage profile. One of the most effective 
and widely used methods to achieve this goal 
is network reconfiguration, which can sub-
stantially reduce power losses [7-9]. 

Accordingly, in this paper, RLs are utilized 
as a demand-side management strategy to re-
duce energy consumption costs and enhance 
the technical objectives of a smart distribu-
tion network. Additionally, the impact of 
network reconfiguration on improving eco-
nomic objectives is examined within the 
framework of a one-day operational plan-
ning approach. 

1.1. Literature Review 

In [10], an intelligent EM  system is pro-
posed to optimize the performance of a mi-
crogrid (MG). This paper also considers the 
photovoltaic output under various weather 
conditions and the hourly electricity prices 
of the main grid. However, this approach 
does not account for load participation in de-
mand response programs or the impact of 
network reconfiguration.  In [11], the analy-
sis of an EM  System (EMS) based on re-
newable energy strategies for MGs is exam-
ined. This study emphasizes the importance 
of reducing operational costs and optimizing 
the utilization of renewable energy re-
sources.  The EMS is designed to minimize 
costs by enabling multiple real-time opera-
tional setpoints for energy generation units, 
thereby enhancing efficiency and reducing 
operational expenses. By employing optimi-
zation strategies, the system creates favora-
ble conditions for effective energy resource 
utilization and flexibly responds to fluctua-
tions in supply and demand.  This paper 
demonstrates that EMS can serve as a critical 
tool for managing renewable energy re-
sources, benefiting not only energy produc-
ers but also consumers. As this system con-
tributes to lowering operational costs, it can 
potentially lead to a reduction in the final en-
ergy price.  In [12], both economic and emis-
sion objectives are considered in the MG op-
eration planning. The adaptive mesh direct 
search algorithm is employed to minimize 
the system cost function. However, this ap-
proach does not take into account the partic-
ipation of RLs in the energy market. In [13], 
a high-reliability distribution system is uti-
lized for the economic operation of an MG. 
The proposed method enhances operational 
reliability and reduces power outages in the 
MG. Additionally, this study incorporates 
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ring networks in distribution systems to im-
prove performance.  In [14], a deterministic 
EM  system is proposed for an MG. This ap-
proach integrates advanced photovoltaic 
(PV) generation, energy storage units, and 
gas microturbines. The planning process is 
conducted in two levels: central EM  within 
the MG and local EM  on the consumer side. 
However, this study does not consider the 
need for storage forecasting and demand re-
sponse programs within the MG. Addition-
ally, the impact of network reconfiguration 
in distribution networks has not been ana-
lyzed. In [15], a model for optimal MG plan-
ning is presented, incorporating multi-period 
islanding constraints. The objective of this 
model is to minimize the total operational 
costs of the MG, which include both the cost 
of local generation resources and the cost of 
energy obtained from the main grid. To sep-
arately analyze the islanded operation chal-
lenges and grid-connected operation issues, 
the corner relaxation decomposition method 
is utilized. Moreover, island reduction is pri-
marily employed to coordinate these two 
challenges. In this study, mixed-integer lin-
ear programming (MILP) is applied to 
model the MG components, including loads, 
generation units, and energy storage sys-
tems.  In [16], which examines the environ-
mental and economic challenges of smart 
MGs, the quantum genetic algorithm (QGA) 
is utilized as an approach for cost optimiza-
tion and emission reduction. By leveraging 
the principles of quantum computing, this al-
gorithm offers enhanced capabilities com-
pared to traditional genetic algorithms, 
providing improved efficiency in optimiza-
tion processes.  However, a major limitation 
of this study is the lack of consideration for 
the unpredictable nature of renewable en-

ergy generation in energy planning. This is-
sue can have negative impacts on decision-
making and economic outcomes, as energy 
generation from renewable sources such as 
solar and wind is typically subject to signifi-
cant fluctuations. 

2. The research problem modeling 

In this paper, improving the voltage profile 
of the smart distribution network is consid-
ered as the first objective function, while re-
ducing the power loss cost in the smart dis-
tribution network is defined as the second 
objective function. This study is formulated 
as a bi-objective optimization problem, aim-
ing to optimize both objective functions sim-
ultaneously.  Since both objective functions 
are defined from the perspective of the smart 
distribution network operator, the assigned 
weighting coefficients for each function are 
considered equal (ω1=ω2=0.5). 
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In equation (2), the first objective function 
is formulated to improve the voltage profile 
over the planning period, considering both 
the absence and presence of RLs and net-
work reconfiguration. In equation (3), the 
second objective function, which aims to 
maximize the profit derived from loss reduc-
tion, is modeled for both cases: with and 
without RL and network reconfiguration 
over the same time period. In the above 
equations, ρs represents the probability of 
occurrence for each load level throughout a 
24-hour period. Each objective function is 
simultaneously evaluated using the GA un-
der equation (1), incorporating weighting 
coefficients to determine the optimal values 
of the objective functions. 

As stated in the first and second objective 
functions, the number of load levels for a 24-
hour scheduling period has been determined, 
along with the probability of occurrence for 
each load level. In these equations, Vi,s  rep-
resents the per-unit voltage profile of the 
smart distribution network at bus iii for load 
level s, where the objective is to maintain the 
voltage of all buses at all time intervals and 
load levels at 1pu. 

Additionally, PLoss
s denotes the cost of 

power losses in the distribution network at 
load level s, and finally, costs represents the 
electricity consumption tariff for each load 
level s. The power loss for each load level is 
calculated using the following equation. 

 
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Loss b b

b
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In this modeling, Rb represents the re-
sistance of line b, while Ib  denotes the cur-
rent magnitude in the smart distribution net-
work lines.  In this paper, the modeling is 
conducted on a 33-bus distribution network, 
where the number of lines in this radial dis-
tribution network is 32. 

The optimal location and participation per-
centage of RLs considered in this study for 
each load level are determined to facilitate 
the optimal implementation of demand re-
sponse programs, which will be executed by 
smart distribution network operators. These 
parameters are formulated in this modeling 
based on the following equations. As shown 
in these equations, the participation level of 
RLs in reactive power reduction at each load 
level is calculated considering the power 
factor of the respective bus. 
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where PERs
RLi represents the percentage of 

load reduction by each responsive load for 
each load level, optimally determined within 
the range of 0% to 50% of the consumed 
load at the respective bus. 

In this paper, the direct load control 
method, which is one of the RL programs, is 
utilized. This approach plays a significant 
role in demand-side management and can be 
employed by the distribution network opera-
tor at each peak load level. However, to en-
sure the implementation of RLs and facili-
tate consumer participation in EM  at each 
load level, it is necessary to establish bilat-
eral agreements between the electricity dis-
tribution company and consumers participat-
ing in demand management. These agree-
ments serve as an operational guarantee, de-
fining the commitments of both parties and 
ensuring the effective execution of the pro-
cess. 

Next, the load flow model of the smart dis-
tribution network is presented. As is well 
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known, the primary objective of load flow 
analysis is to determine the voltage at each 
bus within the network for each time period. 
Accurately calculating bus voltages plays a 
crucial role in both short-term and long-term 
studies of distribution networks, including 
identifying buses with significant voltage 
drops beyond standard limits, estimating en-
ergy losses, and calculating the costs associ-
ated with these losses. By utilizing the input 
data and information from the distribution 
network, the network operator can conduct a 
detailed technical analysis and develop an 
appropriate plan for EM  and optimal net-
work operation for the upcoming day. In the 
following section, the direct load flow (DLF) 
method, which is one of the widely used ap-
proaches for radial distribution network load 
flow analysis, is presented along with its cor-
responding mathematical formulations.  In 
this load flow method, the relationship be-
tween branch current (Bs) at each load level 
and load current (Is) at the same load level 
must first be determined using a matrix 
called the BIBCs matrix [17]. 

    s s sB BIBC I s   (8) 

where the BIBCs matrix is a binary matrix 
for each load level s that represents the rela-
tionship between the load current and branch 
current. This matrix is defined as an upper 
triangular matrix with values of 0 and 1. Fur-
thermore, the relationship between the Bs 
and the electric potential difference of all 
buses in the network relative to the reference 
bus voltage (ΔVs) is modeled using the 
BCBVs matrix for each load level, which can 
be expressed as follows: 

    s s sV BCBV B s    (9) 

For each load level during the scheduled 
planning period, the BIBCs and BCBVs ma-
trices serve as the fundamental structures for 
developing smart distribution network 

guidelines.  Since the BIBCs matrix repre-
sents the relationship between injected load 
currents and branch currents at each load 
level, and the BCBVs matrix defines the re-
lationship between branch currents and bus 
voltages at each load level, the voltage vari-
ations of network buses, which result from 
branch current variations at the same load 
level, must be directly computed using the 
BCBVs matrix.  Therefore, the relationship 
between injected currents and bus voltages 
for each load level is modeled using the fol-
lowing equation: 
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where the DLFs matrix establishes the re-
lationship between the voltage differences of 
distribution network buses and bus load cur-
rents, this matrix must be modeled for each 
load level. Additionally, the relationship be-
tween the bus load currents of the smart dis-
tribution network and the power consump-
tion at each bus must be formulated using the 
equation below [18]. Accordingly, an equa-
tion is derived where the only unknown var-
iable is the bus voltages of the smart distri-
bution network for each load level, which is 
modeled as follows. It should be noted that 
since the power consumption at different 
buses varies across different load levels, the 
voltage drop at each bus will also be differ-
ent for each load level. As a result, the load 
flow results for each load level will be 
unique, and these results will be presented in 
the results section through corresponding 
figures and tables. 
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Based on the above equations and their in-
tegration, the only unknown variable in the 
equation is the voltage of each bus in the dis-
tribution network. This value is determined 
using the iterative method, where with in-
creasing iterations, voltage variations at the 
buses become negligible. In this condition, 
the voltage of each bus converges to an opti-
mal value and is accurately determined. 

One of the most critical factors in EM  
modeling for distribution networks is con-
sidering the balance between the input 
power to the distribution network and the 
power consumed within the network [19-
20]. Failure to account for this balance in 
modeling and mathematical equations can 
lead to technical issues, including distribu-
tion network instability and voltage collapse 
at multiple buses.  In this study, network re-
configuration and consumer participation 
through RLs result in variations in power 
flow across the distribution network 
branches. The active power input to the dis-
tribution network consists of active power 
supplied from the upstream network and the 
amount of active power contributed by re-
sponsive loads.  Accordingly, the power con-
sumption within the smart distribution net-
work includes the power consumed by loads 
connected to the network buses. Addition-
ally, the reactive power balance must be con-
sidered, which includes reactive power sup-
plied from the upstream network and the 
amount of reactive power contributed by re-
sponsive loads.  It is essential to note that the 
balance of active and reactive power must 
hold for each load level throughout the 
scheduled planning period, considering the 
network load and the participation of respon-
sive loads. The following equations model 
the active and reactive power balance in the 
presence of responsive loads. 

1

RL
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N
RLU Grid Demand

s s s
i

P P P s
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where Ps
U-Grid and Qs

U-Grid  represent the ac-
tive and reactive power input to the smart 
distribution network from the upstream net-
work at each load level. Additionally, 
Ps

Demand and Qs
Demand denote the active and 

reactive power consumption of loads con-
nected to the distribution network buses for 
each load level. 

As you know, high voltage drops in the dis-
tribution network impose various technical 
challenges on network performance. There-
fore, improving the voltage profile has been 
considered as the first objective function in 
this study.  Next, the voltage constraints for 
each bus at each load level are presented. It 
should be noted that in the IEEE proposed 
structure for the 33-bus radial distribution 
network, the reference bus has no load, and 
its voltage is set to 1pu in the modeling pro-
cess. 

, ,min i s maxV V V i s    (15) 

1, 1 .sV p u s   (16) 

where Vmin  and Vmax  represent the minimum 
and maximum standard voltage for each bus, 
respectively, within the range of 0.95pu to 
1.05pu. 

The existing infrastructure of each distribu-
tion network imposes limitations on energy 
penetration into these networks. The total in-
jected power (including active and reactive 
power) from the upstream network to the 
smart distribution network is subject to input 
capacity constraints for each load level, as 
represented in the following equation: 

   2 2U Grid U Grid U Grid
s s maxP Q S s      (17) 
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3. Simulation results 

3.1. Assumptions of the Problem Under 
Study 

Based on the presented concepts, the sig-
nificance of RLs in EM  for SDNs was em-
phasized. Furthermore, the role of network 
reconfiguration in enhancing both short-
term and long-term objectives of distribution 
networks was thoroughly examined. The pri-
mary goal of this paper is to investigate the 
impact of RLs and network reconfiguration 
on improving both technical and economic 
objective functions for a 33-bus smart distri-
bution network using a GA. 

Another objective of this article is to pre-
sent an optimized mathematical model for 
the placement and optimal sizing of RLs at 
each load level throughout a 24-hour period. 
In this study, a daily load model with ten 
load levels (ranging from 10% to 100%) and 
varying probabilities is proposed. The fig. 1 
illustrates the load levels, the probability of 
occurrence for each level, and the corre-
sponding electricity tariff. As observed, each 
load level has a specific probability of occur-
rence and a corresponding electricity tariff. 
According to this figure, electricity prices 
are higher during peak load periods com-
pared to low-load periods. 
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Fig. 1. Load Levels and Electricity Tariff Prices 

 
To observe the simulation results, a stand-

ard IEEE 33-bus radial distribution network, 
as shown in the fig. 2, has been used. This 

distribution network has a radial structure, 
and the reconfiguration process must be car-
ried out in a way that preserves this struc-
ture.  In this network, Bus 1 has been selected 
as the reference bus, and no load is con-
sumed at this bus. Additionally, according to 
the IEEE standard, the voltage level of this 
distribution network is considered 12.66 kV, 
which in per unit terms is less than 1.  As 
shown in the figure, in the initial state, lines 
33, 34, 35, 36, and 37 are open and not in-
cluded in the circuit. 
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Fig. 2. 33-Bus Radial Distribution Network 

 
In the initial state, without reconfiguration, 

lines 33 to 37 are not included in the circuit 
to maintain the radial structure of the distri-
bution network. If reconfiguration is per-
formed and the network requires structural 
changes, some lines will be disconnected, 
while others will be added to the circuit. In 
every scenario, the reconfiguration must be 
optimized to ensure that the radial structure 
of the network is preserved. 

The objective of this article is to optimize 
the placement and determine the optimal 
participation percentage of responsive loads, 
as well as to optimize the reconfiguration of 
the smart distribution network. To achieve 
this, in the genetic algorithm, the genes in 
each chromosome correspond to the number 
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of problem variables, including the locations 
of responsive loads, the participation per-
centage of responsive loads, and the number 
of opened and closed lines for each load 
level. 

In this study, eight buses have been identi-
fied as those capable of participating in de-
mand-side management as responsive loads. 
These buses have signed agreements with 
the electricity distribution company, and in 
case of network demand, with prior notice 
and the availability of bidirectional commu-
nication infrastructure between the distribu-
tion network and consumers, they can reduce 
their consumption by up to 50% for each 
load level. 

Accordingly, fig. 3 illustrates a sample pro-
posed chromosome designed to achieve the 
objective functions. As shown in this figure, 
in each iteration of the genetic algorithm, 
during the generation of each population, 

chromosomes consist of three main compo-
nents: 

 Locations of responsive loads. 

 Participation percentage of responsive 
loads. 

 Numbers of opened lines in the reconfig-
uration process. 

This figure represents an example of a 
chromosome structure for each load level. 
According to fig. 3, each chromosome is 
formed, and the processes of crossover, mu-
tation, recombination, and other necessary 
operations within the genetic algorithm are 
performed. Ultimately, after several itera-
tions, the results converge to optimal values, 
and the unknown variables of the problem 
are determined by the algorithm within an 
optimized chromosome that aligns with the 
defined objectives. 
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Location of responsive load at 
bus 4

30% participation of responsive load 
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Numbers of opened lines
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B )32( B )33( B )36( B )37(

 
Fig. 3. Proposed Chromosome Structure 

 
 

3.2. Results 

To analyze the results of this study, four 
different scenarios have been considered: 

 Scenario 1 (baseline condition): In this sce-
nario, the distribution network operates in 
its initial state, without any smart infra-
structure. Under these conditions, RLs 

cannot participate in EM , and network re-
configuration is not possible. 

 2- Scenario 2 (smart grid and responsive 
load participation): In this case, with the 
smartening of the distribution network and 
the establishment of bidirectional commu-
nication infrastructure between consumers 
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and the distribution network operator, 
eight buses are identified as responsive 
loads, capable of reducing up to 50% of 
their consumption to support EM  in the 
distribution network. 

  Scenario 3 (impact of reconfiguration in a 
smart distribution network): This scenario 
examines the effect of network reconfigu-
ration alone, without considering the par-
ticipation of responsive loads. The infor-
mation from each bus is transmitted to the 
distribution network operator through ex-
isting information technology infrastruc-
ture, allowing the operator to reconfigure 
the distribution network according to the 
defined objectives. 

 Scenario 4 (combined reconfiguration and 
responsive load participation): In this sce-
nario, both responsive load participation 
and network reconfiguration are consid-
ered simultaneously within the smart dis-
tribution network. This allows for a com-
parative analysis of all scenarios, assessing 
the impact of each factor in optimizing the 
study's objectives. 

In the following sections, the results of each 
scenario are presented and analyzed using re-
lated figures . 

3.2.1. Scenario 1 

The simulation results of the studied net-
work for a daily scheduling in the baseline 
condition, without responsive load participa-
tion and without network reconfiguration, 
are presented in table 1.  According to the re-
sults in this table:  The daily power loss cost 
of the network is approximately 76$.  The 
voltage profile deviation of the buses from 
the per-unit value of 1 is around 10.  The daily 
power loss in the distribution network is cal-
culated to be approximately 785 kW.  The 
minimum voltage level of the network drops 

to 0.9038pu, which is outside the standard 
acceptable range for distribution networks. 

The objectives of this study are to improve 
the voltage profile and reduce the cost of 
power losses in the distribution network. 
Since scenario 1 is considered the baseline 
condition for the studied distribution net-
work, the values of the first and second ob-
jective functions are not included in this sce-
nario. Instead, this table presents only the 
power loss, power loss cost, and voltage pro-
file deviation. 

In table 2, the line numbers of the open dis-
tribution network in the base case, i.e., sce-
nario 1, are presented. These open lines indi-
cate the radial nature of the distribution net-
work and demonstrate the radial operation of 
the distribution network. In subsequent sce-
narios, the impact of RLs and reconfigura-
tion on the network structure, as well as 
changes in the open lines of the distribution 
network, will be examined and compared 
with the base case. 

 
Table 1. Scenario 1 study results 

Objective function Value 

1OF VPI  - 
& ...

10 33

,
1 1

( 1 )

Without RL Rec

s i s
s i

V
 

 
  
 

 


 9.68 

2OF PLI  - 

 
& ...

10

1

( )

Without RL Rec

s
s Loss s

s

P Cost


 


 75.91$ 

TotalOF  - 

Ploss 
785.59 
kW 

Minimum network 
voltage 

0.9038 
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Table 2. The number of open lines in scenario 1 

Load level 
Number of opened 

lines 

All load lev-
els 

33-34-35-36-37 

 
In Fig. 4, the voltage profile for each load 

level of the studied distribution network is 
shown. According to this figure, at higher 
load levels, the voltage drop in the network 
is high and exceeds the standard limit (5%). 
Additionally, at the terminal buses, the volt-
age drop is more significant.  Based on this 
figure, the greatest voltage drop occurs at 
load level 10, which is the highest load level. 
At bus number 18, which is the farthest from 
the reference bus, the bus voltage is approxi-
mately 0.9038 pu. 

 

 
Fig. 4. The voltage profile of the distribution 

network in scenario 1 

 
The distribution network losses for each 

load level are shown in fig. 5. This figure 
demonstrates that as the power consumption 
in the distribution network increases, the 
losses also increase proportionally. There-
fore, implementing loss reduction strategies 
during peak consumption hours is more im-
portant than reducing losses during other 
hours of the day. 

In fig. 6, the load consumption curve of the 
distribution network for each load level is 
shown. According to this figure, the distribu-
tion network is considered at 10 load levels 
for a 24-hour period with different probabil-
ities, and the active and reactive power con-
sumption of the network for the entire day is 
displayed. It should be noted that the values 
shown in this figure represent the total power 
consumption of all buses in the distribution 
network. 

In fig. 7, the minimum voltage of the net-
work for each load level is presented. This 
figure shows the extent of voltage drop in the 
network at each load level, and its results will 
be compared with those of other scenarios. 
According to this figure, as power consump-
tion in a distribution network increases, the 
voltage drop also increases and can exceed 
the standard voltage drop. Based on this fig-
ure, for load levels above 60%, the voltage 
drop exceeds the standard limit. 

 

 
Fig. 5. distribution network losses in scenario 1 

 

 
Fig. 6. The load consumption curve of the dis-

tribution network in scenario 1 

0/9

0/92

0/94

0/96

0/98

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

p.
u

Bus numbersLS1 LS2 LS3 LS4
LS5 LS6 LS7 LS8

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

KW

load levels

0

2000

4000

1 2 3 4 5 6 7 8 9 10

K
W

-K
V

A
r

Load levels

Active Power(KW)



Journal of Artificial Intelligence in Electrical Engineering, Vol. 14, No. 53, July 2025 

11 
 

 

 
Fig.7. The minimum voltage of the distribution 

network at each load level for scenario 1 

 

3.2.2. Scenario 2 

The results of the studied network for daily 
planning with the presence of RLs and with-
out reconfiguration are shown in table 3. Ac-
cording to the results in this table, the daily 
loss cost of the studied network is approxi-
mately 25$, representing an improvement of 
34%. Additionally, the deviation of the bus 
voltage profile from the pre-unit value has 
improved by 13.84%, with a reduction of 
1.34 units. 

The daily losses for the distribution net-
work are approximately 550kW, showing an 
improvement of about 30%. This table indi-
cates that the voltage drop in the distribution 
network reaches close to 0.92pu, which is a 
2.31% improvement compared to Scenario 1. 
However, it is still outside the standard limit 
and unacceptable for distribution networks. 
The results obtained for this scenario, in 
comparison with scenario 1, show a signifi-
cant improvement due to the presence of RLs 
in distribution networks. The results related 
to RLs are explained in the next table. 

Table 4 shows the optimal location and per-
centage of responsive load participation for 
the high load levels of the distribution net-
work. In this study, responsive loads, based 
on their optimal location, can participate in 
EM  with an optimal participation percentage 

(0%-50%) for load levels above 60%. There-
fore, the optimal participation percentage 
and the optimal location of RLs for scenario 
2 are shown in the table  4. 

In table 5, the number of open lines in the 
distribution network for scenario 2 is shown. 
These open lines indicate the radial structure 
of the distribution network and demonstrate 
the radial operation of the network. The re-
sults of this scenario are similar to those of 
scenario 1, as no reconfiguration is consid-
ered in either scenario 1 or scenario 2. 

 
Table 3. Results of scenario 2 study 

Objec-
tive func-

tion 
Value 

Percentage 
of improve-

ment 

OF1=VP
I 

1.34 13.84% 

OF2=PL
I 

25.81$ 34% 

Ploss 550.45kW 29.93% 

Mini-
mum net-
work volt-

age 

0.9247 2.31% 

In fig. 8, the voltage profile for each load 
level of the distribution network in scenario 
2 is presented. According to this figure, at 
higher load levels, the voltage drop in the 
network is significant and exceeds the stand-
ard limit (5%). Additionally, the voltage drop 
is more pronounced at the terminal buses. 
The highest voltage drop occurs at the tenth 
load level, i.e., the highest load condition, at 
bus number 18, which is the farthest from the 
reference bus, where the voltage is approxi-
mately 0.92 pu. The presence of RLs has led 
to a noticeable improvement in the voltage 
profile compared to scenario 1. However, the 
voltage drop still exceeds the allowed limit. 

0/9
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1
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Table 4. The number of open lines in scenario 1 

Re-
spon
sive 
load 

O
pti-
mal 
lo-
ca-
tion 

Percentage of participa-
tion in peak load (%) 

60 70 80 90 
1

00 

RL
1 

24 32 33 37 
36 

5
0 

RL
2 

25 42 35 48 
47 

5
0 

RL
3 

14 41 42 41 
47 

5
0 

RL
4 

7 40 34 40 
42 

5
0 

RL
5 

8 47 45 44 
43 

5
0 

RL
6 

18 34 40 39 
48 

5
0 

RL
7 

32 40 31 38 
48 

5
0 

RL
8 

31 40 35 34 
48 

5
0 

 
Table 5. The number of open lines in scenario 2 

Load level 
Number of opened 

lines 

All load lev-
els 

33-34-35-36-37 

The network losses for each load level are 
shown in fig. 9 for scenarios 1 and 2. This 
figure illustrates that as the power consump-
tion in the distribution network increases, the 
losses also rise proportionally. Furthermore, 
the presence of RLs has had a positive impact 
on reducing losses at higher load levels 
(above 60%). 

In fig. 10, the load curve of the distribution 
network for each load level in scenario 2 is 

presented. According to this figure, the dis-
tribution network is considered at 10 load 
levels over a 24-hour period with different 
probabilities, showing the active and reactive 
power consumption of the network for the 
entire day. The results from this figure indi-
cate that the presence of RLs has improved 
the distribution network's consumption dur-
ing peak hours. 

In fig 11, the minimum voltage of the net-
work for each load level in scenarios 1 and 2 
is presented. This figure shows the extent of 
the voltage drop in the network at each load 
level. According to the figure, as power con-
sumption in the distribution network in-
creases, the voltage drop also increases, and 
in some cases, it may exceed the standard 
value. The presence of RLs has resulted in a 
relative improvement in the voltage drop, 
such that at 60% of peak load, the maximum 
voltage drop falls within the standard range. 
However, at other higher load levels, the 
voltage drop still remains outside the stand-
ard range. Fig. 12 also shows the optimal lo-
cations of the responsive loads, calculated 
using a genetic algorithm, within the distri-
bution network. 

 

Fig. 8. Voltage profile of the distribution 
network in scenario 2 
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Fig. 9. Distribution network losses in scenario 2 

 
Fig. 10. Load consumption curve of the 

distribution network in scenario 2 

 
Fig. 11. Minimum voltage of the distribution 

network in Scenario 2 
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Fig. 12. Optimal locations of RLs in Scenario 2 

 

3.2.3. Scenario 3 

The results of the studied network for a 
daily scheduling scenario, without the pres-
ence of RLs and with the reconfiguration of 
the distribution network, are presented in ta-
ble 6. According to these results, the daily 
network loss cost is approximately 43$, indi-
cating a 57% improvement. Additionally, the 
voltage profile deviation of the network 
buses from the per-unit value has decreased 
by 6.26 units, reflecting a 64.66% improve-
ment. The total daily losses of the distribu-
tion network are estimated to be around 338 
kW, demonstrating a 57% reduction. Based 
on table 6, the voltage drop in the distribution 
network reaches approximately 0.95 pu, 
which represents a 5.17% improvement com-
pared to Scenario 1. This indicates that in this 
scenario, the minimum network voltage re-
mains within the standard range. The ob-
tained results show that, compared to scenar-
ios 1 and 2, this scenario provides better im-
provements in distribution network perfor-
mance through reconfiguration. 

Table 7 presents the numbers of open lines 
in the distribution network for scenario 3. 
These open lines indicate the radial nature of 
the distribution network and demonstrate its 
radial operation. It is important to note that, 
since the load percentage is the same for all 
buses in the network, the results obtained 
from reconfiguration should remain con-
sistent across different load levels. Table 7 
confirms this finding. 

In fig. 13, the voltage profile for each load 
level of the studied distribution network in 
scenario 3 is presented. According to this fig-
ure, at higher load levels, the voltage drop in 
the network is significant. However, with the 
implementation of network reconfiguration, 
the voltage at all load levels and for all buses 
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remains within the standard range. The high-
est voltage drop occurs at the tenth load 
level, corresponding to peak load conditions, 
at bus number 31, with a voltage of approxi-
mately 0.95pu. The application of reconfigu-
ration and modifications in the network 
structure has led to a significant improve-
ment in the voltage profile compared to sce-
narios 1 and 2. 

In fig. 14, the distribution network losses 
for each load level in scenarios 1, 2, and 3 are 
presented. This figure shows that as power 
consumption in the distribution network in-
creases, the losses also increase proportion-
ally. Additionally, the presence of RLs has 
had a positive impact on reducing losses at 
higher load levels (above 60%). However, in 
scenario 3, considering network reconfigura-
tion, the reduction in distribution network 
losses has been more effective compared to 
scenario 2. 

Table 6. Results of scenario 3 study 

Objec-
tive func-

tion 
Value 

Percentage 
of improve-

ment 

OF1=VP
I 

6.26 64.66% 

OF2=PL
I 

4.3.35$ 57.1% 

Ploss 338.82kW 56.87% 

Mini-
mum net-
work volt-

age 

0.9506 5.17% 

 
Table 7. The number of open lines in Scenario 3 

Load level 
Number of opened 

lines 

All load lev-
els 

9-7-14-31-37 

 

 
Fig. 13. Voltage profile of the distribution 

network in scenario 3 

 
Fig. 14. Distribution network losses in scenario 3 

In fig. 15, the minimum voltage of the dis-
tribution network for each load level in sce-
narios 1, 2, and 3 is presented. This figure il-
lustrates the extent of voltage drop in the net-
work at each load level. According to the fig-
ure, as power consumption in the distribution 
network increases, the voltage drop also rises 
and may exceed the standard limit. The pres-
ence of RLs has had a positive effect on re-
ducing voltage drop. However, in scenario 3, 
with the implementation of network recon-
figuration, the minimum network voltage has 
significantly improved and remains within 
the standard range. 

In fig. 16, the minimum voltage of the net-
work for each load level in scenarios 1, 2, and 
3 is presented. This figure illustrates the ex-
tent of voltage drop in the network at each 
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load level. According to the figure, as power 
consumption in the distribution network in-
creases, the voltage drop also rises and may 
exceed the standard limit.  The presence of 
RLs in scenario 2 has led to a partial im-
provement in voltage drop, such that at 60% 
of peak load, the maximum voltage drop falls 
within the standard range. However, at other 
high load levels, the voltage drop still re-
mains outside the standard range. 

The results of this figure indicate that in 
scenario 3, with the implementation of net-
work reconfiguration, the voltage at all load 
levels remains within the standard range. Ad-
ditionally, compared to scenario 2, a more 
significant improvement has been achieved. 

 
Fig. 15. Load consumption curve of the distri-

bution network in scenario 3 

 
Fig. 16. Minimum voltage of the distribution 

network in scenario 3 

3.2.4. Scenario 4 

The results of the studied network for a 
daily scheduling scenario, considering the 
presence of RLs and network reconfigura-
tion, are presented in table 8. According to 

these results, the daily network loss cost is 
approximately 54$, indicating a 71% im-
provement. Additionally, the voltage profile 
deviation of the network buses from the per-
unit value has decreased by 6.80 units, re-
flecting a 70.24% improvement. The total 
daily losses of the distribution network are 
estimated to be around 240 kW, demonstrat-
ing a 69% reduction.  According to the results 
in this table, the voltage drop in the distribu-
tion network has been reduced to approxi-
mately 0.96 pu, which represents a 5.8% im-
provement compared to scenario 1. This in-
dicates that, in this scenario, the minimum 
network voltage remains within the standard 
range. The obtained results show that this 
scenario demonstrates better performance 
compared to scenarios 1, 2, and 3, as a result 
of network reconfiguration and the presence 
of RLs in the distribution network.  Table 9 
presents the numbers of open lines in the dis-
tribution network for scenario 4. These open 
lines indicate the radial nature of the distri-
bution network and illustrate its radial oper-
ation. 

 
Table 8. Results of scenario 3 study. 

Objec-
tive func-

tion 
Value 

Percentage 
of improve-

ment 

OF1=VP
I 

6.80 70.24% 

OF2=PL
I 

54.09$ 71.25% 

Ploss 240.63kW 69.36% 

Mini-
mum net-
work volt-

age 

0.9563 5.80% 
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Table 9. The number of open lines in scenario 4. 

Load level 
Number of opened 

lines 

10% 9-7-14-31-37 

20% 9-7-14-31-37 

30% 9-7-14-31-37 

40% 9-7-14-31-37 

50% 9-7-14-31-37 

60% 9-7-14-31-28 

70% 9-7-14-31-28 

80% 9-7-14-31-28 

90% 9-7-14-31-28 

100% 9-7-14-30-28 

 
In fig. 17, the voltage profile for each load 

level of the distribution network in Scenario 
4 is presented. This figure shows that at 
higher load levels, the voltage drop in the 
network is significant. However, with the im-
plementation of network reconfiguration and 
the presence of responsive loads, the voltage 
at all load levels and for all buses remains 
within the standard range.  According to this 
figure, the highest voltage drop occurs at the 
tenth load level, corresponding to peak load 
conditions, at bus number 27, with a voltage 
of approximately 0.96 pu. The application of 
network reconfiguration and the presence of 
RLs have led to a significant improvement in 
the voltage profile compared to Scenarios 1, 
2, and 3. 

In fig. 18, the distribution network losses 
for each load level in scenarios 1, 2, 3, and 4 
are presented. This figure shows that as 
power consumption in the distribution net-
work increases, the losses also rise propor-
tionally. Additionally, the presence of RLs 
has had a positive impact on reducing losses 
at higher load levels (above 60%).  In sce-
nario 3, considering network reconfigura-
tion, the reduction in distribution network 

losses has shown better performance com-
pared to Scenario 2. Furthermore, comparing 
scenario 4 with the other scenarios indicates 
that in this scenario, the improvement in net-
work loss reduction is significantly better 
across all load levels. 

In fig. 19, the load consumption curve of 
the distribution network for each load level 
in scenario 4 is presented. According to this 
figure, the distribution network has been 
modeled at 10 load levels over a 24-hour pe-
riod, considering different probabilities, and 
the active and reactive power consumption of 
the network throughout the day has been 
shown.  The results of this figure indicate that 
the implementation of network reconfigura-
tion and participation of RLs has improved 
the distribution network’s consumption dur-
ing peak hours, leading to a more significant 
reduction in overall network consumption. 

In fig. 20, the minimum voltage of the net-
work for each load level in scenarios 1, 2, 3, 
and 4 is presented. This figure illustrates how 
the voltage drop in the network varies at each 
load level.  According to this figure, as power 
consumption in the distribution network in-
creases, the voltage drop also rises and, in 
some cases, may exceed the standard limit.  

 
Fig. 17. Voltage profile of the distribution net-

work in scenario 4 
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The results indicate that with network re-
configuration and participation of responsive 
loads, the voltage at all load levels remains 
within the standard range. Additionally, 
compared to scenarios 2 and 3, a significant 
improvement in network performance has 
been achieved. 

 

 
Fig. 18. Distribution network losses in scenario 4 

 
Fig. 19. Load consumption curve of the distri-

bution network in scenario 4 

 

 
Fig. 20. Minimum voltage of the distribution 

network in scenario 4 

4. Conclusion 

This paper examines the results of model-
ing in four different scenarios, aiming to an-
alyze the impact of RLs and network recon-
figuration in smart distribution networks. In-
itially, the problem assumptions are pre-
sented, followed by a comparison of the sim-
ulation results under different conditions 
with the base case, which excludes RLs and 
network reconfiguration.  The findings indi-
cate that the integration of RLs along with 
network reconfiguration can significantly re-
duce daily loss costs and improve the voltage 
profile. Additionally, the paper highlights the 
use of optimization algorithms, such as the 
genetic algorithm, for EM  in smart distribu-
tion networks. These algorithms have suc-
cessfully identified the optimal combination 
of loads and network conditions, leading to 
improved network performance.  The results 
further demonstrate that optimal placement 
of RLs has a significant impact on reducing 
network losses. Overall, this study empha-
sizes the importance of RLs and network re-
configuration in enhancing the performance 
of power distribution systems and can serve 
as a guide for the optimal design and man-
agement of SDNs in the future. 
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