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Abstract 

The time difference of arrival based approach to wireless localization is 

perhaps one of the most interesting research subjects over the past decade. 

A method using copula function is proposed for source localization using 

TDOA measurements for both noncooperative and cooperative scheme. The 

proposed method is started with noncooperative localization, and finaly is 

extended to the cooperative localization problem. Because of the unknown 

measurement noise covariance matrix, by using the theory of copulas with 

Sklar’s theorem, the joint likelihood function of TDOA measurements is 

coupled to the corresponding univariate marginal likelihood functions. Then, 

an attractive alternative using the method of inference functions for 

margings is applied to the maximum likelihood estimation. The procedure 

involving the maximization of univariate marginal likelihood functions and 

then estimation of copula parameter. The maximization suffers from 

noncovexity, so we apply semidefinite relaxation techniques to derive a 

convex estimator. Simulation results corroborate the performance of the 

proposed method as for sufficient signal to noise ratio, we observe one 

meter of improvement in source location accuracy.  
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Highlights 

• A method using copula function is proposed for source localization using TDOA measurements for both 
noncooperative and cooperative scheme. 

• The joint likelihood function is coupled to the corresponding univariate marginal likelihood functions with 
unknown measurement noise covariance matrix, by using the theory of copulas. 

• An attractive alternative using the method of inference functions for margins is applied to the maximum likelihood 
estimation. 
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1. Introduction 

Passive source localization with a wireless sensor network (WSN) is a classical problem for many applications in radar, sonar, 

navigation and public safety. Generally, in a WSN, the positions of several sensors are known (anchor nodes), while there are some 

sensors (source nodes) whose positions are unknown and thus must be estimated using sensor localization.  The main purpose of a 

WSN is to determine the location of a signal emitted from a source node based on received noisy measurements at anchor nodes 

that are spatially distributed over a geographical area which is generally divided into two cases: non-cooperative and cooperative. 

In the non-cooperative case, source nodes can communicate only with anchor nodes. The lack of accessible anchor nodes and also 

limited connectivity among anchor nodes and source nodes have led to the emergence of cooperative localization in which source 

nodes are able to communicate with both anchor nodes and other source nodes. Most source positioning techniques rely on distance 

estimates obtained from time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), received signal strength 

(RSS) and received signal strength difference (RSSD) or a combination of these techniques. 

In cooperative localization, anchor nodes can estimate the location of all source nodes simultaneously. Thus, both estimation 

performance and robustness are improved by employing cooperative localization. Therefore, not only are the RSS values between 

source nodes and anchor nodes (source-anchor measurements) measured, but also the source nodes themselves are involved and 

collect RSS measurements from each other (source-source measurements).  

The TDOA-based source positioning in the presence of Gaussian measurement noise led to the minimization of the maximum 

likelihood (ML) cost function. Several ML-based estimators have been developed for TDOA based source localization. Solving the 

ML problem may be performed using iterative algorithms, where the final solution relies on the proper choice of initial estimate. 

This approach was improved by reformulating the original problem into a closed-form solution. To the improvement of the proposed 

method, TSWLS approach was considered. These methods are performed based on weighted least squares. 

2. Innovation and contributions 

The ML estimator is suboptimal due to the noise statistics are known, but is difficult to implement due to the highly nonlinear and 

nonconvex cost function. This paper considers the assumption of zero-mean Gaussian measurement noise with an unknown 

covariance matrix. To eliminate the unknown parameter from ML problem, we apply the central theory of copulas. Copulas are 

basically parametric functions for modeling dependencies among random variable that couple univariate marginal distribution 

functions to the corresponding multivariate distribution function. The functions play a key role in the fields of econometrics and 

finance. By utilizing an alternative to ML estimation and applying semidefinite programming technique, the estimation of source 

position can be found. The joint distribution based on copula function yields the estimation improvement due to the increase in the 

magnitude of Fisher information matrix diagonal elements and equivalently lower CRLB in comparison to the methods that employ 

conditional independence of measurements. This results in better performance for copula-based ML estimators in terms of mean 

squared error (MSE). 

3. Materials and Methods 

This section considers the problem of noncooperatvie correlated TDOA measurements for source location estimation. The target is 

a source with an unknown location while the sensor nodes have known positions The set of TDOA values between the first and ith 

anchor node in the presence of zero mean correlated Gaussian measurement noise can be formulated. Based on that the ML estimator 

can be developed and the corresponding nonconvex optimization problem can be formed based on the joint probability density 

function (PDF) with the unknown covariance matrix of Gaussian distribution with elements.  

Note that the joint likelihood function is required to achieve an accurate solution based on ML estimator. The central theory of 

copulas for continuous distributions, known as Sklar’s theorem, can be used to model the proposed dependency by reformulating  

the joint multivariate PDF, as marginal distributions. Several copula families were previously considered such as Archimedean, 

Gaussian and elliptic copulas which differ in their dependence representation. The Gaussian copula is of practical interest since it 

can be easily implemented and its dependence structure is intuitive, which can highlight the linear dependence based on correlation 

coefficients for correlated TDOA measurements.  

Thus, the ML problem in (3) can be reformulated based on the Gaussian copula by employing Sklar’s theorem . The ML problem 

involves simultaneous maximization over the dependence and marginal parameters. It has been shown that the marginal parameters 

could be estimated separately from the correlation matrix based on a computationally efficient method of inference functions for 

margins (IFM) which is asymptotically equivalent to ML. Thus, the above problem can be simplified by first estimating the 

marginals and then using those marginals to estimate the copula function and correspondingly the unknown covariance matrix. This 

results in a simple approach to obtain the unknown hyperparameters of the proposed nonconvex maximization problem.  

The IFM estimation technique is motivated by the decomposition of the proposed problem in two stages. First, the unknown marginal 

parameter is estimated based on the sum of marginal log-likelihood functions. Then the corresponding first stage IFM optimization 

problem can be given as an SDP problem. Thus, the first stage IFM optimization problem is reformulated as a convex minimization 

problem utilizing semidefinite programming. This allows a globally optimum solution to be obtained efficiently using SDP solvers 

such as SDPT3 and SeDuMi that employ the interior point method.  

Using the parameter estimated in the first stage and substituting it, we can begin the second stage. The goal of the second stage is 

to find copula parameter or correlation matrix which is related to the unknown covariance matrix. Note that the ML estimation and 

IFM procedures are equivalent in the special case of multivariate Gaussian distribution functions that have multivariate Gaussian 

copulas and univariate Gaussian margins. The Gaussian Copula density can be given using the multivariate normal distribution. The 

next section, considers the cooperative TDOA-based localization model in which there are more than two source nodes with 

unknown locations in 2D space, and moreover, source nodes can communicate with anchor nodes and each other as well.  
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4. Results and Discussion 

In this section, simulation results are given to evaluate the performance of the proposed copula-based SDP method for both 

cooperative and noncooperative cases. A 2D geometry with M = 7 sensors is considered at known coordinates (0,0), (10,5), (5,10), 

(20,15), (15,10), (30,25) and (35,40) in meters to estimate an unknown source which is located at θ = (16,  24). The performance of 

the proposed correlated TDOA-based method is compared with several well-known methods for both cooperative and 

noncooperative scenarios where the corresponding CRLB is used as a performance benchmark. These comparisons examine the 

accuracy of the proposed methods in terms of root mean squares error and bias. The range difference measurements are generated 

by adding zero-mean Gaussian noise with the covariance matrix Q. The Choice of Q make arbitrary, here, Q is selected as a matrix 

with diagonal elements equal to all other elements. To solve the proposed problem and its constraints, the SDP method is 

implemented using the CVX toolbox with the Self-Dual-Minimization (SeDuMi) solver. 

Figures show the placement of source nodes and anchor nodes in the first scenario and second scenario, respectively. By considering 

the first scenario, simulation results of comparison of these methods in terms of RMSE and bias are shown, respectively. In the 

experiment, variance of measurement noise varies from −60dB to 10dB and −60dB to 20dB, respectively. The results show that the 

proposed method performs better than other methods. The number of ensemble runs is equal to 10. In the second stage of IFM, we 

estimate copula parameter and then, we comprise with covariance matrix Q. 

The experiment shows the results of the comparison in terms of mean square error. The simulation shows the effect of increasing 

the number of anchor nodes too. First, the experiment considers the first scenario without anchor node in [10, 10]T coordinate, then 

considers the first scenario with new anchor nodes in [15, 15]T and [15, 10]T coordinates. The number of ensemble runs is equal to 

100. Other experiment examines the effect of increasing number of anchor nodes in terms of RMSE and bias for σ = 10−2. By 

considering the first scenario, a comparison is done between CRLB and RMSE of estimation. The simulation also shows the results 

of the comparison. Simulation results show that the RMSE of the proposed method achieves CRLB. In cooperative case, we use 

first scenario and consider four source nodes, where their coordinates have U(0, 10) distribution. These simulations show the results 

of the experiment in terms of RMSE and bias versus noise level. 

5. Conclusion  

In this paper, a method for TDOA based localization problem in noncooperative and cooperative cases was described. To eliminate 

the unknown covariance matrix from likelihood function, it utilized Sklar’s theorem. Then, it applied IFM instead of ML estimation 

and found the source position and copula parameter. The proposed method was shown to reach the CRLB even under high level 

measurement noise for noncooperative case. 
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