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Abstract

Optimization of turning process is a non-linearnmmation with constrains and it is difficult fone
conventional optimization algorithms to solve tpoblem. The purpose of present study is to
demonstrate the potential of Imperialist CompetitAlgorithm (ICA) for optimization of multi-
pass turning process. This algorithm is inspireddypetition mechanism among imperialists and
colonies, in contrast to evolutionary algorithmstparform the exploration and exploitation in the
solution space aiming to efficiently find near omtl solutions using a finite sequence of
instructions. To validate the proposed approach, résults of ICA were finally compared with
Genetic Algorithm (GA).Based on the results; ICAs ltemonstrated excellent capabilities such as
simplicity, accuracy, faster convergence and begtebal optimum achievement. The outcome
shows the success of ICA in optimizing the machgrpnocess indicating that data analysis method
developed in this work can be effectively appliesbptimize machining processes.

Keywords
Imperialist Competitive Algorithm, Machining prosg©ptimization

1. Introduction

The machining processes are commonly used by metufsg industries to produce high quality
and complex products in a short time. These maohiprocesses include large number of input
variables which may affect the cost and qualitythe#f products. Selection of optimum machining
variables in such processes is very important tisfgaall the conflicting objectives of the metal
cutting operations. As the output variables of thachining process depend on the cutting
conditions, the decision concerning selection ef diptimal cutting parameters has a remarkable
influence on the production costs and quality.dst Idecades, several trials were made by various
researchers to analyze machining processes udfegedit methods such as the differential calculus
[1], regression analysis [2], linear programming} [geometric and stochastic programming [4-6],
dynamic programming [7-9] and sequential unconséei minimization technique [10] .These
optimization techniques are either stuck at logatiroum or take a long time to converge to a
reasonable result [11].Evolutionary algorithms sashGenetic Algorithm (GA) [12-15], particle
swarm optimization algorithm (PSO) [16,17], immualgorithm [18] and differential evolution
algorithm [19-21] have been used in many applicetiostead of conventional techniques.
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In 2007, Atashpaz-Gargari and Lucas [22] introdutesl basic idea of Imperialist Competitive
Algorithm (ICA) to solve the real world engineerirgnd optimization problems. Imperialist
Competitive Algorithm is a new meta-heuristic optiation developed based on a socio-politically
motivated strategy and contains two main stepsmrbeement of the colonies and the imperialistic
competition. From the basis of the ICA the poweifaperialists are reinforced and the weak ones
are weakened and gradually collapsed, directing #hgorithm towards optimum points. This
algorithm has been successfully applied to solveesengineering problems in recent years, some
of those are mentioned below. In Atashpaz-Gardaal.e[23], ICA is used to design an optimal
controller which not only decentralizes but alsdiroplly controls an industrial Multi Input Multi
Output (MIMO) distillation column process. Biabandi@skouyi et al. [24] used ICA for reverse
analysis of an artificial neural network in order ¢haracterize the properties of materials from
sharp indentation test. Nazari et al. [25] soltleslintegrated product mix-outsourcing (which is a
major problem in manufacturing enterprise) using.l®aveh and Talatahari [26] utilized the ICA
to optimize design of skeletal structures. Youseéfal. [27] presented the application of Impertalis
Competitive Algorithm for optimization of cross-floplate fin heat exchanger and concluded that
ICA comparing to the traditional GA shows considdeaimprovements in finding the optimum
designs in less computational time under the saopellption size and iterations. Mozafari et al.
[28] applied ICA to optimize intermediate epoxy adive layer which is bonded between two
dissimilar strips of material. They compared thsuits of ICA with the Finite Element Method
(FEM) and Genetic Algorithm; they showed the suscalsICA for designing adhesive joints in
composite materials. Towsyfyan and Salehi compadred effectiveness of ICA and GA in
optimization of submerged arc welding process [29].

In this paper, the basic idea of ICA is introduead applied for optimization of multi-pass turning
process. To validate the proposed approach, compareade against GA method. Interested
readers may refer to works of Deb [30, 31] for tadied discussion on the principle of the GA.

2. Imperialist competitive algorithm

The proposed algorithm mimics the social—politigebcess of imperialism and imperialistic
competition. ICA contains a population of agentg@untries. The pseudo-code of the algorithm is
as follows.

2.1. Stepl: Initial empires creation

Comparable to other evolutionary algorithms, theppsed algorithm starts by an initial population.
An array of the problem variables is formed whisltalled Chromosome in GA and country in this
algorithm. In aN,,, — dimensional optimization problem a country is ., array which is
defined as follows:

Country=[R, PP ....Py, ] (1)

A specified number of the most powerful countri#s,,,, are chosen as the imperialists and the
remaining countriesN.,;, would be the colonies which are distributed amaémg imperialists
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depending on their powers which is calculated uditigess function. The initial empires ¢
demonstrated in Figurevthere more powerful empires have greater numbeolohies

Imperialist 1
Imperialist 2
Imperialist 3
Imperialist n
Colony 1

Colony 2

Colony 3

Colony n

i W &
Rt

Figurel.Generating the initial empires: The more coloniesnaperialist possess, the bigger is its rele®&mark

2.2. Step 2: Assimilation policy

To increase theipowers, imperialists try to develop their colontbsough assimilation polic
where countries are forced to move towards thenscBAematic description of this process
demonstrated in Figure 2.

The colony is drawn by imperialist in the cultureddanguage axes (analogous to any dimensic
problem). After applying this policy, the colonylirget closer to the imperialist in the mentior
axes (dimensions). In assimilation, each colony esowth a deviation ob) from the connecting
line between the colony and its imperialistx units to increase the search area, wlfd andx are
random numbers with uniform distribution a4 is a number greater than one  is the distance
between the coloy and the imperialist statf>1 causes the colonies to get closer to the impst
state from both sides.
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Figure2.Movement of colonies toward their relevant impesiz
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2.3. Step 3: Revolution
In each decade (generation) certain numbers oftgesngo through a sudden change which is
called revolution. This process is similar to migiatprocess in GA which helps the optimization

process escaping local optima traps.

2.4. Step 4: Exchanging the position of imperiadistl colony

As the colonies are moving towards the imperiared revolution happens in some countries, there
is a possibility that some of these colonies reatietter position than their respective imperiglist
In this case, the colony and its relevant impesiathange their positions. The algorithms will be
continued using this new country as the imperialist

2.5. Step 5: Imperialistic competition

The most important process in ICA is imperialigtmnmpetition in which all empires try to take over

the colonies of other empires. Gradually, weakepiegs lose their colonies to the stronger ones.
This process is modelled by choosing the weakdehgmf the weakest empire and giving it to the

appropriate empire which is chosen based on a dititopeamong all empires. Fig.3. demonstrates
a schematic of this process.

Empire 1
The weakest colony i [.{‘-11:« It
in weakest empire | F\ E:’ : F__
-
Empire 3 PLEE k‘—-la;"“llf PL Empire 2
P2y Py Pr~o_
i ] L s ==
s GLR = ” ] ‘-..,\
| N il
: i
! | Empiren

peR
BB 3R
RRRE

Figure3.Imperialistic competition: The more powédn empire is, the more likely it will possess tieakest colony
of the weakest empire

In this Figure Empire 1 is considered as the weda&ewire, where one of its colonies is under
competition process. The empires Btare competing for taking its possession. In otddoegin
the competition, firstly, the possession probapitalculated considering the total power of the
empire which is the sum of imperialist power andadbitrary percentage of the mean power of its
colonies. Having the possession probability of earcipire, a mechanism similar to Roulette Wheel
is used to give the selected colony to one of thpiees considering a proportional probability.
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2.6. Step 6: Convergence

basically the competition can be continued un@réhwould be only one imperialist in the search
space, However, different conditions may be seteete termination criteria including reaching a
maximum number of iterations or having negligibleprovement in objective function. Fig.4.
depicts a schematic view of this algorithm. Whemdkie convergence criterion is not satisfied, the
algorithm continues.

(| Start |) -
s o Is there an empire
Imperialistic Competition | with no colonies

s . 7'
Initialize the empires Yes
> — - -
v Compute the total cost of all empires|<— | Eliminate this emp1re|
.. . No
Assimilate colonies A
v
l [ Unite Similar Empires |
| Revelve swine colames | Ex'chang'e Fhe positions of that
imperialist and the colony J'
l 2+ Stop condition
Is there a colony in an satisfied
empire which has lower cost Yes 1

than that of the imperialist Yes

o ((END )

No

Figure4. Flowchart of the Imperialist Competitivégérithm

The main steps of ICA summarized in the pseudo-e@vdeagiven in Fig.5. The continuation of the
mentioned steps will hopefully cause the countreesonverge to the global minimum of the cost
function. Different criteria can be used to stop #ihgorithm.

1-Initialization
1-1-Set Parameters (PopSize, Numbenpérialistg,P-Revolution, % Assimilate)
1-2-Generating initial Countries (Randy)
2-Evaluate fitness of each country
3-Form initial empires
3-1-Choice power countries as impestali
3-2-Assigne other countries (colontesimperialists based on their power
4-Move the colonies of an empire toward the impistigassimilation)
5-Revolution among colonies and imperialist
6- If the cost of colony is lower than own impeisal
6-1-Exchanging positions of the impkstaand a colony
7- Calculate Total power of the empires.
8-Imperialistic competition
8-1- Select the weakest colony of tleakest empire and assign this to one of the strange
empires
9-Eliminate the powerless empires (the imperialith no colony)
10-Stop if stopping criteria is met, otherwise gastep 4.

Figure5. Pseudo code of the Imperialistic Compegifhlgorithm
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3. Problem Statement

The goal of the multi-pass turning operations isrimimize unit production costC{). The unit
production cost is the sum of the cutting cd&f)( machine idle cost(}), tool replacement cost
(Cr) and tool cost@;). In this study, the ICA approach is used to openmulti-pass turning
operations for the determination of cutting pararsetonsidering minimum production cost under
a set of machining constraints which are preseatetiadopted in the references of Shin and Joo
[7], Chen and Tsai [11], and Chen [33]. Accordingtiie work of A.R. Yildiz [32] the objective
(cost) function for multi-pass turning process barmathematically stated as follaws

CU=CM+CI+CR+CT (4)
Co = k m.D.L (dt—ds) m.D.L ]+k [t +(hL+h)<dt_dS+1)] (5)
U "011000.V. .\ d, 1000.V,£,l ~ "L ! 2 d,

t.[ m.D.L (dt—ds) m.D.L ]

°T,11000., £, \ d, 1000.V,f,
+kt T[.D.L (dt_ds) T[.D.L ]
T, 11000.V, £, \ d, 1000.V,f,

Where the machining variables (factorgl’r ), xo(fr ), X3(Vs), X4(fs) and x(ds) are selected as
feed, cutting speed and depth of cut in rough amsl turning respectively.

In multi-pass turning operations, the unit produetcost (Q) is imposed by different constraints
which are (i) parameter bounds cover depth of auiting speed and feed; (ii) tool-life constraint;
(ii) cutting force constraint; (iv) power constngi (v) stable cutting region constraint; (vi) ctigol
interface temperature constraint; (vii) surfacésfinconstraint (only for finish machining); andiiyvi
parameter relations. These constraints are takem tihe work of Shin and Joo [7] as follow:

3.1. Rough machining
Depth of cut:

dy < d, < dpy (6)

Cutting speed:

VrL < Vr < Vru (7)

Feed:

fro = fr S fru (8)

Tool-life constraint:

TrL < Tr < Tru (9)

Cutting force constraint:

ky f4d? < Fy (10)

Power constraint:

ky fd2V;

—— < 11
6120n Py (11)

Stable cutting region constraint:

VAf.dY = S 12)

Chip-tool interface temperature constraint:
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Qr = kVEfPd? < Qu (13)

3.2. Finish machining
Depth of cut:

dg < dy < dg (24)
Feed:

fs. = 5 = fau (15)
Cutting speed:

VsL < Vs < Vsu (16)
Tool-life constraint:

TsL < Ts < Tsu (17)
Cutting force constraint:

ki f4dy < Fy (18)
Power constraint:

kq f5dsVs

—612077 < Py (29)
Stable cutting region constraint:

Vi fedd = Sc (20)
Chip-tool interface temperature constraint:

Qr = kVEf2dd < Qy (21)
Surface finish constraint:

fsz

o= SRy (22)

3.3. Parameter relations

Vs 2 ksV; (23)

fr 2 kafs (24)

d, > keds (25)

g = {de—do) (26)
n

In addition to these constraints, the total degtleut is another important constraint for the case
study. The total depth of cuth) is the sum of the depth of finish cuk)(and the total depth of
rough cut Qd). The optimization algorithm does not determine dptimal depth of roughing since

it can be given by the mathematical manipulatioexgsessed in Equation (27). Therefore, one can
eliminate the equality constraint (Equation (26)¥l dhe decision variablal] in the optimization
procedure [34].
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ds = d, — nd, (27)

Therefore, the equality constraint and the decisianiable () and (n) in the optimization
procedure can be eliminated. The five machiningmaters \;, ., ds, Vs fs) are determined for
turning model optimization. Brief description oframeters of multi-pass turning is shown in Table
1. Further details about the turning mathematicatieh and data with respect to machining can be
obtained from Shin and Joo [7], Chen and Tsai [84en [33], Towsyfyan [35, 36] and Yildiz
[37,38,39].

Tablel. Description of Parameters

C, constant pertaining to tool-life Q,,Q, temperatures during roughing and finishing
equation (-C)

G machine idle cost ($/piece) Qy maximum allowable temperatureX)

Cy  cutting cost by actual time in cut R, maximum allowable surface roughness (mm)
($/piece)

Cr  tool replacement cost ($/piece) R, nose radius of cutting tool (mm)

Cr  tool cost ($/piece) S limit of stable cutting region

d,,d, depths of cut for each pass of rough t tool life (min)
and finish machining (mm)

d,., d,, lower and upper bounds of depth of t. constant term of machine idling time (min)
rough cut (mm)

dg;, dg lower and upper bounds of depth of t, tool exchange time (min)
finish cut (mm)

d,  total depth of metal to be removed ty tool life (min) considering roughing and
(mm) finishing
D diameter of work piece (mm) t. t, tool lives (min) for roughing and finishing
fr. fs  feeds in rough and finish machining t, variable term of machine idling time (min)
(mm/rev)
fri, fry 1ower and upper bounds of feed in T; machine idling time (min)

rough machining (mm/rev)

fsu, fsu 1ower and upper bounds of feed in T,, Ty lower and upper bounds of tool life
finish machining (mm/rev)

F, F, cutting forces during rough and finish Ty, cutting time by actual machining (min)
machining (kg f)

F,  maximum allowable cutting force (kg Ty, Ty. cutting time by actual machining for roughing

f) and finishing (min)

hy, h, constants pertaining to tool travel and Ty tool replacement time (min)
approach/depart time (min)

ki, k,, constants for roughing and finishing U, unit production cost except material cost

parameter relations ($/piece)

ks coefficient pertaining to specific tool- V. cutting speeds in rough machining (m/min)
work piece combination

k, directlabor cost overhead ($/min) |74 cutting speeds in finish machining (m/min)

k,  coefficient pertaining to equation of  V,,,V,, lower and upper bounds of cutting speed in
chip-tool interface temperature rough machining (m/min)

k¢ cutting edge cost ($/edge) Ve, Vsy lower and upper bounds of cutting speed in

finish machining (m/min)
L length of work piece (mm) X vector of machining parameters
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n number of rough passes 7,0,0
p,q,r constants pertaining to the tool-life n
equation
P.,P, cutting power during roughing and ALv
finishing (kW)
P,  maximum allowable cutting power v

(kw)

constants pertaining to expression of chip-tool
interface temperature
power efficiency

constants pertaining to expression of stable
cutting region
constants of cutting force equation

Machining data for this example of multi-pass taghare shown in Table 2.

Table 2; machine data for the example of multi-gassing.

D =50 mm dr =3.0 mm

L =300 mm VrU =500 m/min
m/min

frL=0.1 mm/rev frU = 0.9 mm/rev
mm/rev

VsL = 50 m/min dsU = 3.0 mm
$/min

kt =2.5 $/edge hl1 =7 x 10-4
min/piece

te=1.5min/edge p=5

TU = 45 min TL =25 min
v=0.95 1n=0.85

A=2 v=-1

=04 ¢$=0.2

°C

Rn=1.2mm Ra =10

k3=1.0 C, =6 x1011

dt=8.0 mm
VsU =500

dt = 6.0 mm
VrL =50 m/min

fsU =0.9 mm/rev fsL =0.1

dsL = 1.0 mm ko =05
h2=0.3 tc =0.75
q=1.75 r=0.75
kf =108 u=0.75
FU = 200 kg AU =5 kW
Sc =140 kq =132
5=0.105 QU = 1000
k1= 1.0 k2=25

4. Results and Discussion
4.1. Minimum Cost Function

ICA algorithm is used to optimize the productiorsiteubject to the mentioned constraints. After

very careful investigation, ICA parameters werestd based on table 3.

Table3. Parameters Used in ICA

ICA Parameters

Revolution rate

Number of countries

Number Of Initial Imperialists
Number of decades
Assimilation Coefficient[f)
Assimilation Angle Coefficienty]
Zeta(

Variable min (1, V, S)

Variable max (I, V, S)

0.75
100
8

200

0.5
0.5
0.02
(50, 0.1, 50, 0.1, 1)
(500, 0.9, 500, 0.9, 3)
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To choose the proper number of countries for thenmopation, the algorithm is executed 1

different number of initial countries and the ragpd results for the minimum totproduction cost
can be seen in Fig.@ue to the stochastic nature of the algorithm, eadtution of the algorithi

results in a different resultherefore in the entire study the best solution @ft10 executions is
presented as the optimization re. According to Fig.6jt can be concluded tt increasing the
number of countries up to 2@lightly improves the resu in bothdt=6 mm anddt=8 mm cases.
Although more increase in the number of initial coies yields in decrease in the object

function, the changes an®t considerable. Therefore, the number of counfoethis study is set 1

200 for the rest of the paper.

2.5

24 F -

- = -
-—
- —_—-
—
-

I
=

Best cost
I
(8]

d=6 = = d=8

30 50 80 100 150 200 250
Number of countries

Figure6.Effect of variation of the number of countries die minimum production cost by differedt=6 mm andit=8
mm

Figure 7demonstrates the iteration process of ICA metlmwdptimization of mul-pass turning
process. A significant decrease in the target fancts seen in the beginning of the evolut

process. After certain decaddise thanges in the fitness function become relativelyjuta. The

minimum of production cost fatt=6 mm andit=8 mm after 200 decadess found to 2.0482 and
2.2969 respectively.

28 ;

27 i T . 281 = Mini iali g

3} Minimum Cost of Impenalists Mot oflnlpc.l‘la}lsts

i pa 1 aliste | | eweeeseees Avearge Cost of Imperialists

GEE e vearge Cost of Impenalists 28b
% 20 % s 2N
8 i 3

24} 4 4 O 25} ]

\'k”‘ 2
s i
2.1 e g 25t \
0 20 40 6 80 100 120 140 160 180 200 % @ B 0 i % 98 3
Decades Decades
(a) dt=6 mm (b) dt=8mm

Figure7.Convergence of thMinimum Production Cost Objective; (d}=6 mm (b) dt=8 mm
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4.2.A Comparison between ICA and

A careful investigation is carried out to compahne tlesign efficiency of the proposed algoril
with traditional genetic algorithm (GA). An attemyas initially made t«determine the minimur
values ofCy,, C;, Cr andCy for different parameters «dt=6 mm anddt=8 mm. The following GA
parameters were determined to yield the best gesulbbability of mutation ,=0.45; population
size N= 200;maximum number of eneration G = 100To be fair in the comparis, ICA

parameters were considered ablE3, similar to GA configurationdBoth ICA and GA algorithm

are programmed in MATLAB R01(b and run on an INTEL laptogPU Cor+i3 2310M, 2.1GHz,
RAM 3GB. From the cmparison of best results given in Tal4, it can be concluded that t

minimization of the unit production cost in m-pass turning operation is achieved by propc
ICA.

Table4.Comparison of the best computed optimum resultsuioring problem of ICA ar-GA

MO B85 xur)  Xalfr) XVS)  Xa(fs)  Xs(ds) CPL(’S)T'”‘G
dt=6 mm ICA 2.0482 460.2441 0.8365 494.7070 0.8909 2.9099 4.5
GA 2.1079 444.7746 0.8123 498.5915 0.8747 2.5887 19.6
dt=8 mm ICA 2.2969 440.1702 0.8419 491.5710 0.8939 2.8032 4.4
GA 2.3259 447.0350 0.7992 491.2865 0.8721 2.8373 19.5

Since the minimum values of cost functio desired, we compare tlobdtainedresults in Figure 8.
As it is illustrated in Figure 8.and8.b, it can be concluded that ICA is more successful
predicting the Minimum production co«Cy) in less computation time.

218

2.16
2.14
212

21

Al

Best Cost ($)

1
WICA | 2.063 |2.0894 | 2.0884 |2.0745 (20977 |2.1196|2.0772| 2,081 |2.0041| 20772
EGA |21182|21031(2.1191 (21634 21 | 212 |2.1332|2.0809|2.1036| 2.117
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236

12
[
iy

2
[
[}

b2
Lo

228 F

Best Cost ($)

226 |

224

1 2 3 4 3 6 7 8 g 10
WICA [23107|23343 | 2285 |23317| 2332 | 2326 (23168|23184(23195|22003
GA (2320723469 233352 |23364 |23543 | 23435|23410|23467| 2204523318

Figure8.OptimizationResults for Production Cost; (a)t=6 mm, (b),dt=8 mm

5. Conclusions

In this paper, the ICA approach has been used timize the objectivefunction related to multi-
pass turning proces#éccording to theobtained results, thproposed approa comparing to the
traditional genetic algorithrshows considerable improvements in finding theroptn results ir
less computational time under the same populatiom &nd iteration Simplicity, accuracy, an
time saving are some ofdentages of the ICA algorithmMoreover, considering the hic
complexity and notinear natur of the cost function going to be minimized througtalysis ant
unique and exact solutions obtained from algor confirms the ability of ICA in dealing wit
difficult optimization tasks. In general, ICA has amising potential to be used as a new solu
approach in a variety of probler
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