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Abstract 
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the 
conventional optimization algorithms to solve this problem. The purpose of present study is to 
demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multi-
pass turning process. This algorithm is inspired by competition mechanism among imperialists and 
colonies, in contrast to evolutionary algorithmsthat perform the exploration and exploitation in the 
solution space aiming to efficiently find near optimal solutions using a finite sequence of 
instructions. To validate the proposed approach, the results of ICA were finally compared with 
Genetic Algorithm (GA).Based on the results; ICA has demonstrated excellent capabilities such as 
simplicity, accuracy, faster convergence and better global optimum achievement. The outcome 
shows the success of ICA in optimizing the machining process indicating that data analysis method 
developed in this work can be effectively applied to optimize machining processes. 
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1. Introduction  
The machining processes are commonly used by manufacturing industries to produce high quality 
and complex products in a short time. These machining processes include large number of input 
variables which may affect the cost and quality of the products. Selection of optimum machining 
variables in such processes is very important to satisfy all the conflicting objectives of the metal 
cutting operations. As the output variables of the machining process depend on the cutting 
conditions, the decision concerning selection of the optimal cutting parameters has a remarkable 
influence on the production costs and quality. In last decades, several trials were made by various 
researchers to analyze machining processes using different methods such as the differential calculus 
[1], regression analysis [2], linear programming [3], geometric and stochastic programming [4-6], 
dynamic programming [7-9] and sequential unconstrained minimization technique [10] .These 
optimization techniques are either stuck at local optimum or take a long time to converge to a 
reasonable result [11].Evolutionary algorithms such as Genetic Algorithm (GA) [12-15], particle 
swarm optimization algorithm (PSO) [16,17], immune algorithm [18] and differential evolution 
algorithm [19-21] have been used in many applications instead of conventional techniques. 
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In 2007, Atashpaz-Gargari and Lucas [22] introduced the basic idea of Imperialist Competitive 
Algorithm (ICA) to solve the real world engineering and optimization problems. Imperialist 
Competitive Algorithm is a new meta-heuristic optimization developed based on a socio-politically 
motivated strategy and contains two main steps: the movement of the colonies and the imperialistic 
competition. From the basis of the ICA the powerful imperialists are reinforced and the weak ones 
are weakened and gradually collapsed, directing that algorithm towards optimum points. This 
algorithm has been successfully applied to solve some engineering problems in recent years, some 
of those are mentioned below. In Atashpaz-Gargari et al. [23], ICA is used to design an optimal 
controller which not only decentralizes but also optimally controls an industrial Multi Input Multi 
Output (MIMO) distillation column process. Biabangard-Oskouyi et al. [24] used ICA for reverse 
analysis of an artificial neural network in order to characterize the properties of materials from 
sharp indentation test.  Nazari et al. [25] solved the integrated product mix-outsourcing (which is a 
major problem in manufacturing enterprise) using ICA. Kaveh and Talatahari [26] utilized the ICA 
to optimize design of skeletal structures. Yousefi et al. [27] presented the application of Imperialist 
Competitive Algorithm for optimization of cross-flow plate fin heat exchanger and concluded that 
ICA comparing to the traditional GA shows considerable improvements in finding the optimum 
designs in less computational time under the same population size and iterations. Mozafari et al. 
[28] applied ICA to optimize intermediate epoxy adhesive layer which is bonded between two 
dissimilar strips of material. They compared the results of ICA with the Finite Element Method 
(FEM) and Genetic Algorithm; they showed the success of ICA for designing adhesive joints in 
composite materials. Towsyfyan and Salehi compared the effectiveness of ICA and GA in 
optimization of submerged arc welding process [29]. 
 In this paper, the basic idea of ICA is introduced and applied for optimization of multi-pass turning 
process. To validate the proposed approach, compare is made against GA method. Interested 
readers may refer to works of Deb [30, 31] for a detailed discussion on the principle of the GA. 
 
2. Imperialist competitive algorithm 
The proposed algorithm mimics the social–political process of imperialism and imperialistic 
competition. ICA contains a population of agents or countries. The pseudo-code of the algorithm is 
as follows. 
 
2.1. Step1: Initial empires creation 
Comparable to other evolutionary algorithms, the proposed algorithm starts by an initial population. 
An array of the problem variables is formed which is called Chromosome in GA and country in this 
algorithm. In a ���� �	dimensional optimization problem a country is a 1×���� array which is 
defined as follows: 
 

C o u n t r y = [P1, P2, P3, ..., ��	
�]  (1) 
 

A specified number of the most powerful countries, ���, are chosen as the imperialists and the 

remaining countries, ����, would be the colonies which are distributed among the imperialists 
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depending on their powers which is calculated using fitness function. The initial empires are 
demonstrated in Figure 1 where more powerful empires have greater number of colonies.

 
 

Figure1. Generating the initial empires: The more colonies an imperialist possess, the bigger is its relevant

2.2. Step 2: Assimilation policy 
To increase their powers, imperialists try to develop their colonies through assimilation policy 
where countries are forced to move towards them. A schematic description of this process is 
demonstrated in Figure 2. 
The colony is drawn by imperialist in the culture and language axes (analogous to any dimension of 
problem). After applying this policy, the colony will get closer to the imperialist in the mentioned 
axes (dimensions). In assimilation, each colony moves wi
line between the colony and its imperialist by 
random numbers with uniform distribution and 
between the colony and the imperialist state. 
state from both sides. 
x ~U (0, β × d) 

θ ~ U (-γ , γ) 

Figure2. Movement of colonies toward their relevant imperialist 
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depending on their powers which is calculated using fitness function. The initial empires are 
where more powerful empires have greater number of colonies.

 
 
 
 
 
 
 
 
 

Generating the initial empires: The more colonies an imperialist possess, the bigger is its relevant

 

powers, imperialists try to develop their colonies through assimilation policy 
where countries are forced to move towards them. A schematic description of this process is 

The colony is drawn by imperialist in the culture and language axes (analogous to any dimension of 
problem). After applying this policy, the colony will get closer to the imperialist in the mentioned 
axes (dimensions). In assimilation, each colony moves with a deviation of θ
line between the colony and its imperialist by x units to increase the search area, where 
random numbers with uniform distribution and β is a number greater than one and 

ny and the imperialist state. β>1 causes the colonies to get closer to the imperialist 

 
 
 
 
 
 
 
 
 
 
 
 

Movement of colonies toward their relevant imperialist  

 

depending on their powers which is calculated using fitness function. The initial empires are 
where more powerful empires have greater number of colonies. 

Generating the initial empires: The more colonies an imperialist possess, the bigger is its relevant mark 

powers, imperialists try to develop their colonies through assimilation policy 
where countries are forced to move towards them. A schematic description of this process is 

The colony is drawn by imperialist in the culture and language axes (analogous to any dimension of 
problem). After applying this policy, the colony will get closer to the imperialist in the mentioned 

θ from the connecting 
units to increase the search area, where θ and x are 

is a number greater than one and d is the distance 
 causes the colonies to get closer to the imperialist 

(2) 
(3) 
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2.3. Step 3: Revolution 
In each decade (generation) certain numbers of countries go through a sudden change which is 
called revolution. This process is similar to mutation process in GA which helps the optimization 
process escaping local optima traps. 
 
2.4. Step 4: Exchanging the position of imperialist and colony 
As the colonies are moving towards the imperialist and revolution happens in some countries, there 
is a possibility that some of these colonies reach a better position than their respective imperialists. 
In this case, the colony and its relevant imperialist change their positions. The algorithms will be 
continued using this new country as the imperialist. 
 
2.5. Step 5: Imperialistic competition 
The most important process in ICA is imperialistic competition in which all empires try to take over 
the colonies of other empires. Gradually, weaker empires lose their colonies to the stronger ones. 
This process is modelled by choosing the weakest colony of the weakest empire and giving it to the 
appropriate empire which is chosen based on a competition among all empires. Fig.3. demonstrates 
a schematic of this process. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure3.Imperialistic competition: The more powerful an empire is, the more likely it will possess the weakest colony 

of the weakest empire 

 
In this Figure Empire 1 is considered as the weakest empire, where one of its colonies is under 
competition process. The empires 2to n are competing for taking its possession. In order to begin 
the competition, firstly, the possession probability calculated considering the total power of the 
empire which is the sum of imperialist power and an arbitrary percentage of the mean power of its 
colonies. Having the possession probability of each empire, a mechanism similar to Roulette Wheel 
is used to give the selected colony to one of the empires considering a proportional probability. 
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2.6. Step 6: Convergence 
basically the competition can be continued until there would be only one imperialist in the search 
space, However, different conditions may be selected as termination criteria including reaching a 
maximum number of iterations or having negligible improvement in objective function. Fig.4. 
depicts a schematic view of this algorithm. Whenever the convergence criterion is not satisfied, the 
algorithm continues. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4. Flowchart of the Imperialist Competitive Algorithm 
 

The main steps of ICA summarized in the pseudo-code are given in Fig.5. The continuation of the 
mentioned steps will hopefully cause the countries to converge to the global minimum of the cost 
function. Different criteria can be used to stop the algorithm.  
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure5. Pseudo code of the Imperialistic Competitive Algorithm 
 
 

1-Initialization  
            1-1-Set Parameters (PopSize, Number of imperialist,ξ,P-Revolution, % Assimilate)  
            1-2-Generating initial Countries (Randomly)  
2-Evaluate fitness of each country  
3-Form initial empires  
            3-1-Choice power countries as imperialists 
            3-2-Assigne other countries (colonies) to imperialists based on their power  
4-Move the colonies of an empire toward the imperialist (assimilation)  
5-Revolution among colonies and imperialist  
6- If the cost of colony is lower than own imperialist  
            6-1-Exchanging positions of the imperialist and a colony  
7- Calculate Total power of the empires.  
8-Imperialistic competition  
            8-1- Select the weakest colony of the weakest empire and assign this to one of the strange 
empires  
9-Eliminate the powerless empires (the imperialist with no colony)  
10-Stop if stopping criteria is met, otherwise go to step 4. 
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3. Problem Statement 
The goal of the multi-pass turning operations is to minimize unit production cost (��). The unit 
production cost is the sum of the cutting cost (��), machine idle cost (��), tool replacement cost 
(��) and tool cost (��). In this study, the ICA approach is used to optimize multi-pass turning 
operations for the determination of cutting parameters considering minimum production cost under 
a set of machining constraints which are presented and adopted in the references of Shin and Joo 
[7], Chen and Tsai [11], and Chen [33]. According to the work of A.R. Yildiz [32] the objective 
(cost) function for multi-pass turning process can be mathematically stated as follows: 
 
�� � �� � �� � �� � �� (4) 

�� � 	�� � �.  . !
1000. $�%� &

'( � ')
'� * � �.  . !

1000. $)%)+ � �� �,� � -./! � .01 &
'( � ')
'� � 1*+

� �� ,23� �
�.  . !

1000. $�%� &
'( � ')
'� * � �.  . !

1000. $)%)+

� �(3� �
�.  . !

1000. $�%� &
'( � ')
'� * � �.  . !

1000. $)%)+ 

(5) 

 
Where the machining variables (factors) x1($4 ), x2(%4 ), x3($5), x4(%5) and x5('5) are selected as 
feed, cutting speed and depth of cut in rough and finish turning respectively. 
In multi-pass turning operations, the unit production cost (CU) is imposed by different constraints 
which are (i) parameter bounds cover depth of  cut, cutting speed and feed; (ii) tool-life constraint; 
(iii) cutting force constraint; (iv) power constraint; (v) stable cutting region constraint; (vi) chip-tool 
interface temperature constraint; (vii) surface finish constraint (only for finish machining); and (viii) 
parameter relations. These constraints are taken from the work of Shin and Joo [7] as follow: 
 
3.1. Rough machining  
Depth of cut: 
'�6		 7		 '�		 7		'�8 (6) 
Cutting speed: 
$�6		 7		$�		 7		$�8 (7) 
Feed: 
%�6		 7		 %�		 7		 %�8 (8) 
Tool-life constraint: 
3�6		 7		3�		 7		3�8 (9) 
Cutting force constraint: 
�/	%�8'�� 7	9� (10) 
Power constraint: 
�/	%�8'��$�
6120< 	7 	�� (11) 

Stable cutting region constraint: 

$�=%�'�� 	> 	 ?@		 (12) 
Chip-tool interface temperature constraint: 
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A� �		 �B$�C%�∅'�E 	7 	A� (13) 

 
3.2. Finish machining 
Depth of cut: 
')6		 7		 ')		 7		 ')8 (14) 
Feed: 
%)6		 7		 %)		 7		 %)8 (15) 
Cutting speed: 
$)6		 7		$)		 7		$)8 (16) 
Tool-life constraint: 
3)6		 7		3)		 7		3)8 (17) 
Cutting force constraint: 
�/	%)8')� 7	9� (18) 
Power constraint: 
�/	%)8')�$)
6120< 	7 	�� (19) 

Stable cutting region constraint: 

$)=%)')� 	> 	 ?@ (20) 
Chip-tool interface temperature constraint: 

A� �		 �0$FC%)∅')E 	7 	A� (21) 
Surface finish constraint: 
%)0
8H ?H� (22) 

 
3.3. Parameter relations 
$) 	> 	�I$� (23) 
 
%� 	> 	 �J%) (24) 
 
'� 	> 	 �K'K (25) 
 

'� �	
-'( � ')1

L  (26) 

 
In addition to these constraints, the total depth of cut is another important constraint for the case 
study. The total depth of cut (dt) is the sum of the depth of finish cut (ds) and the total depth of 
rough cut (ndr). The optimization algorithm does not determine the optimal depth of roughing since 
it can be given by the mathematical manipulation as expressed in Equation (27). Therefore, one can 
eliminate the equality constraint (Equation (26)) and the decision variable (dr) in the optimization 
procedure [34]. 
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') � '( � L'�	 (27) 
 
Therefore, the equality constraint and the decision variable (dr) and (n) in the optimization 
procedure can be eliminated. The five machining parameters (Vr, fr, ds, Vs, fs) are determined for 
turning model optimization. Brief description of parameters of multi-pass turning is shown in Table 
1. Further details about the turning mathematical model and data with respect to machining can be 
obtained from Shin and Joo [7], Chen and Tsai [34], Chen [33], Towsyfyan [35, 36] and Yildiz 
[37,38,39]. 
 

Table1. Description of Parameters 

�� constant pertaining to tool-life 
equation 

A� , A) temperatures during roughing and finishing 
(◦C) 

�� machine idle cost ($/piece) A� maximum allowable temperature (◦C) 
�� cutting cost by actual time in cut 

($/piece) 
H� maximum allowable surface roughness (mm) 

�� tool replacement cost ($/piece) HM nose radius of cutting tool (mm) 
�� tool cost ($/piece) ?� limit of stable cutting region 
'�	, ') depths of cut for each pass of rough 

and finish machining (mm) 
, tool life (min) 

'�6 , '�� lower and upper bounds of depth of 
rough cut (mm) 

,� constant term of machine idling time (min) 

')6 , ')� lower and upper bounds of depth of 
finish cut (mm) 

,2 tool exchange time (min) 

'( total depth of metal to be removed 
(mm) 

,� tool life (min) considering roughing and 
finishing 

D diameter of work piece (mm) ,� , ,) tool lives (min) for roughing and finishing 
%� , %) feeds in rough and finish machining 

(mm/rev) 
,� variable term of machine idling time (min) 

%�6 , %�� lower and upper bounds of feed in 
rough machining (mm/rev) 

3� machine idling time (min) 

%)6 , %)� lower and upper bounds of feed in 
finish machining (mm/rev) 

36 , 3� lower and upper bounds of tool life 

9), 9) cutting forces during rough and finish 
machining (kg f) 

3� cutting time by actual machining (min) 

9� maximum allowable cutting force (kg 
f) 

3�� , 3�) cutting time by actual machining for roughing 
and finishing (min) 

./, .0 constants pertaining to tool travel and 
approach/depart time (min) 

3� tool replacement time (min) 

�/, �0, �constants for roughing and finishing 
parameter relations 

N� unit production cost except material cost 
($/piece) 

�O coefficient pertaining to specific tool-
work piece combination 

$� cutting speeds in rough machining (m/min) 

�� direct labor cost overhead ($/min) $) cutting speeds in finish machining (m/min) 
�B coefficient pertaining to equation of 

chip-tool interface temperature 
$�6 , $�� lower and upper bounds of cutting speed in 

rough machining (m/min) 
�( cutting edge cost ($/edge) $)6 , $)� lower and upper bounds of cutting speed in 

finish machining (m/min) 
L length of work piece (mm) P vector of machining parameters 
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L number of rough passes Q, R, S constants pertaining to expression of chip-tool 
interface temperature 

T, U, 4 constants pertaining to the tool-life 
equation 

< power efficiency 

�� , �) cutting power during roughing and 
finishing (kW) 

V, W constants pertaining to expression of stable 
cutting region 

�� maximum allowable cutting power 
(kW) 

V, X constants of cutting force equation 

 
Machining data for this example of multi-pass turning are shown in Table 2. 
 

Table 2; machine data for the example of multi-pass turning. 

  = 50 mm                 '4 = 3.0 mm                   ', = 6.0 mm           	',=8.0 mm 
! = 300 mm                $4N = 500 m/min          $4! =50 m/min       $5N = 500 
m/min 
%4!= 0.1 mm/rev        %4N = 0.9 mm/rev         %5N = 0.9 mm/rev   %5! = 0.1 
mm/rev 
$5! = 50 m/min          '5N = 3.0 mm               '5! = 1.0 mm          �Y = 0.5 
$/min 
�, =2.5 $/edge            .1 = 7 × 10−4                .2 = 0.3                   ,Z = 0.75 
min/piece  
,[ = 1.5 min/edge       T = 5                              q = 1.75                    4 = 0.75 
3N = 45 min               3! = 25 min                   �% = 108                  μ= 0.75  
X= 0.95                       <= 0.85                           9N = 200 kg            f�N = 5 kW  
V= 2                            ]= −1                              ?Z = 140                  �U = 132  
Q= 0.4                         ̂ = 0.2                           S= 0.105                  AN = 1000 
◦C  
HL = 1.2 mm              H_ = 10                          �1= 1.0                    �2 = 2.5  
�3 = 1.0                     �� = 6 × 1011 

 

4. Results and Discussion 
4.1. Minimum Cost Function 
ICA algorithm is used to optimize the production cost subject to the mentioned constraints. After 
very careful investigation, ICA parameters were selected based on table 3. 
 

Table3. Parameters Used in ICA 
ICA Parameters  
Revolution rate 0. 75 
Number of countries 
Number Of Initial Imperialists 

100 
8 

Number of decades 200 
Assimilation Coefficient (β) 0.5 
Assimilation Angle Coefficient (γ) 0.5 
Zeta ζ 0.02 
Variable min  (I, V, S) 
Variable max (I, V, S) 

(50, 0.1, 50, 0.1, 1) 
(500, 0.9, 500, 0.9, 3) 
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To choose the proper number of countries for the optimization, the algorithm is executed for 
different number of initial countries and the respected results for the minimum total 
can be seen in Fig.6. Due to the stochastic nature of the algorithm, each execution of the algorithm 
results in a different result, therefore in the entire study the best solution out of 
presented as the optimization result
number of countries up to 200 slightly improves the results
Although more increase in the number of initial countries yields in decrease in the objective 
function, the changes are not considerable. Therefore, the number of countries for this study is set to 
200 for the rest of the paper. 

Figure6. Effect of variation of the number of countries on the minimum production cost by different 

Figure 7 demonstrates the iteration process of ICA method for optimization of multi
process. A significant decrease in the target function is seen in the beginning of the evolution 
process. After certain decades, the c
minimum of production cost for ',
2.2969 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure7. Convergence of the 
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To choose the proper number of countries for the optimization, the algorithm is executed for 
different number of initial countries and the respected results for the minimum total 

Due to the stochastic nature of the algorithm, each execution of the algorithm 
therefore in the entire study the best solution out of 

presented as the optimization result. According to Fig.6, it can be concluded that
 slightly improves the results in both ',=6 mm and 

Although more increase in the number of initial countries yields in decrease in the objective 
not considerable. Therefore, the number of countries for this study is set to 

 
 
 
 
 
 
 
 
 
 
 
 
 

Effect of variation of the number of countries on the minimum production cost by different 
mm 

 

 demonstrates the iteration process of ICA method for optimization of multi
process. A significant decrease in the target function is seen in the beginning of the evolution 

the changes in the fitness function become relatively minute. The 
',=6 mm and ',=8 mm after 200 decades was

 

Convergence of the Minimum Production Cost Objective; (a)	',=6 mm, 

 

To choose the proper number of countries for the optimization, the algorithm is executed for 
different number of initial countries and the respected results for the minimum total production cost 

Due to the stochastic nature of the algorithm, each execution of the algorithm 
therefore in the entire study the best solution out of 10 executions is 

it can be concluded that increasing the 
 mm and ',=8 mm cases. 

Although more increase in the number of initial countries yields in decrease in the objective 
not considerable. Therefore, the number of countries for this study is set to 

Effect of variation of the number of countries on the minimum production cost by different ',=6 mm and ',=8 

 demonstrates the iteration process of ICA method for optimization of multi-pass turning 
process. A significant decrease in the target function is seen in the beginning of the evolution 

hanges in the fitness function become relatively minute. The 
was found to 2.0482 and 

, (b) ',=8 mm 
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4.2. A Comparison between ICA and GA
A careful investigation is carried out to compare the design efficiency of the proposed algorithm 
with traditional genetic algorithm (GA). An attempt was initially made to 
values of	��, �� , �� and �� for different parameters of 
parameters were determined to yield the best results: probability of mutation p
size N= 200; maximum number of g
parameters were considered as Table 
are programmed in MATLAB R2010
RAM 3GB. From the comparison of best results given in Table 
minimization of the unit production cost in multi
ICA.  
 

Table4. Comparison of the best computed optimum results for turning problem of ICA and
 
 

Algorithm 
method 

Best 
Cost 

',=6 mm 
ICA 2.0482 

GA 2.1079 

',=8 mm 
ICA 2.2969 
GA 2.3259 

 

Since the minimum values of cost function is
As it is illustrated in Figure 8.a and 
predicting the Minimum production cost (
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A Comparison between ICA and GA 
A careful investigation is carried out to compare the design efficiency of the proposed algorithm 
with traditional genetic algorithm (GA). An attempt was initially made to determine the minimum 

for different parameters of ',=6 mm and ',=8 mm
parameters were determined to yield the best results: probability of mutation p

maximum number of generation G = 100. To be fair in the comparison
able 3, similar to GA configurations. Both ICA and GA algorithms 
2010b and run on an INTEL laptop, CPU Core

mparison of best results given in Table 4, it can be concluded that the 
minimization of the unit production cost in multi-pass turning operation is achieved by proposed 

Comparison of the best computed optimum results for turning problem of ICA and

X1 ($4 ) X2 (%4 ) X3($5) X4 (%5) 

 460.2441 0.8365 494.7070 0.8909 

 444.7746 0.8123 498.5915 0.8747 

 440.1702 0.8419 491.5710 0.8939 
 447.0350 0.7992 491.2865 0.8721 

Since the minimum values of cost function is desired, we compare the obtained 
a and 8.b, it can be concluded that ICA is more successful for 

predicting the Minimum production cost (��) in less computation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

A careful investigation is carried out to compare the design efficiency of the proposed algorithm 
determine the minimum 
 mm. The following GA 

parameters were determined to yield the best results: probability of mutation pm=0.45; population 
To be fair in the comparison, ICA 

Both ICA and GA algorithms 
CPU Core-i3 2310M, 2.1GHz, 

it can be concluded that the 
pass turning operation is achieved by proposed 

Comparison of the best computed optimum results for turning problem of ICA and GA 

 X5 ('5) 
CPU Time 

(s) 

 2.9099 4.5 

 2.5887 19.6 

 2.8032 4.4 
 2.8373 19.5 

obtained results in Figure 8. 
it can be concluded that ICA is more successful for 
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Figure8. Optimization 

5. Conclusions 
In this paper, the ICA approach has been used to optimize 
pass turning process. According to the 
traditional genetic algorithm shows considerable improvements in finding the optimum results in 
less computational time under the same population size and iterations.
time saving are some of adva
complexity and non-linear nature
unique and exact solutions obtained from algorithm
diff icult optimization tasks. In general, ICA has a promising potential to be used as a new solution 
approach in a variety of problems.
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