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Abstract 

In this research, Ride quality of a three-axle truck is investigated to understand its vibration 

specifications and influence of it on special load. The truck is Benz 2624, and the load is rather 

sensitive to vibrations. The system is considered for an off-road duty. Hence, the vehicle is modeled 

as a nineteen-degree of freedom system and its equations of motion are derived by employing 

Lagrange equation. Since, the physical parameters of the vehicle were not available; the truck is 

modeled in Solidworks CAD software in order to obtain the material and dynamic properties of 

each component of the truck. Then, a code is developed in MATLAB to calculate natural 

frequencies and mode shapes of the truck and their corresponding vibrating components in critical 

speed. A simple model of the truck in ADAMS is employed for validation. The adoption of the 

results verifies the equations. The developed model can also be used in newer truck with some 

modifications. It is also necessary to have accurate data for input information in order to change the 

current model for other utilities. 

 

Keywords: Vibration Analysis, Mode Shapes, Lagrange Equations, Multi-axles Truck. 
 

1. Introduction 

Modeling is an important part of engineering. There are two types of the modeling: Physical and 

numerical. Both types are widely used in engineering [1-8]. Vibration modeling and analyzing are 

of the application of modeling in engineering. Vibration analysis contributes to improve in many 

fields and products, e.g., aerospace, automobile, transportation, and so on. The most common goal 

is unwanted vibration’sidentification and suppression to improve product quality. Multi-axel truck 

is a real world example, which requires its vibration breakdown.  

Generally, vibrations are classified as free and forced vibrations that natural frequencies and mode 

shapes are the characteristics of the first one [9]. To obtain natural frequencies and mode shapes for 

damped vibration, two spaces are employed, time domain and frequency domain [10-13]. It is well-

known that for a system, undamped and damped natural frequencies are very close particularly in 

case of vehicles dynamics because of small damping coefficient. Hence, undamped natural 

frequencies are commonly used to characterize the system [14]. Many approaches have been 

reported to extract natural frequencies with their own advantages and disadvantages, for instance, 
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Prony method, generalized pencil-of-function method, matrix pencil method, higher order tensor-

based method and Newton method [15-22]. 

Many models such as quarter, bicycle, half and full models of vehicle with different numbers of 

DoF have been investigated in vehicle dynamics [23-26]. One of the most famous models for 

vehicles is eight-DoF model, including forward, lateral, yaw and rolling motion plus, four degree of 

freedom for travel of each wheel [27-28]. Multibody system dynamic models of vehicles have also 

been proposed in the literature. For instance, RahmaniHanzaki et al. proposed a methodology for 

dynamic analysis of a multibody system with spherical joints. They considered a suspension system 

of a vehicle as an example for that [29]. Applying this methodology on a three-axle truck creates the 

complicated computation. Hence, other people also employed discrete model for the truck. For 

example, Tabatabaee developed a 16-DoF non-linear model an articulated vehicle, which is 

validated experimentally [30].  It is also possible to reduce air pollutants specially CO2 by 

acquisition of developed model by optimizing several components in the truck [31, 32]. 

This paper presents a survey on the equations of motion utilizing Lagrange equations to determine 

natural frequencies and mode shapes of a three-axle truck, i.e., Benz 2624 model. The main purpose 

is to investigate the influence of dynamics of the vehicle on its load to determine the maximum 

speed on different paths. Next, a discussion is provided on the results to distinguish the critical DoF 

using the mode shapes. The developed 19 DoF model can also be applied on many trucks by 

changing material properties and adding estimations. 

 

2. Modeling the three-axle truck  

Using experimental techniques to obtain mass properties of the components of a manufactured 

vehicle is the most reasonable but very costly. Hence in this work, Solidworks software is employed 

to model a three-axle truck and to find masses, centers of mass, moments of inertia etc. These 

physical properties are highly necessary for dynamic simulation of the truck. Figures 1 and 2 show 

two views of the assembled model of the truck, and some components of the truck, respectively. In 

this part, the weighty components of the truck such as chassis, tires, differentials, cabin, springs etc. 

are modeled precisely. Non homogeneous material is assigned to this model since differential 

consists of several material and precision of properties, which are obtained from this model and are 

more acceptable.  

 

 
Figure1. Two views of the CAD model from the three-axle truck. 
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Figure2. CAD models of two main components of the truck; a) chassis, b) axle with differential 

 

3. Material Property 

Assigning material property to the current model has been very challenging and time consuming. 

All of the components of truck were modeled separately in order to achieve accurate center of 

gravity for ADAMS software and initial boundary conditions for MATLAB. Batteries for heavy-

duty transport vehicles are so large that the vehicle would barely move, and overhead lines are not 

practical over millions of acres of farmland, or other off-road logging-trucks, mining trucks, etc., 

nor could wires be strung over 4 million miles of roads, requiring trucks to have yet another power 

system after getting off the wires to get to their destination, which doubles the price of the truck. 

Large, commercial silicon modules convert 17–25% of solar radiation into electricity, and much 

smaller perovskite cells have already reached a widely reproduced rate of 16–18% in the lab, 

occasionally spiking higher [33-35]. New Materials for truck can also be assigned to any three axle 

truck by acquisition of current model. 

 

4. Governing Equations 

Lagrange method is utilized to determine dynamic behavior of the mentioned three-axle truck. The 

truck is considered as a 19-DoF mathematical model. As shown in Figure 3, M1, M2 and M3 are the 

axles of the truck. Blue springs are considered on behalf of tires, and red springs as leaf springs of 

the suspensions systems. Also previous mathematical numerical derivation by Zeidi et al. [34-38] 

has been very useful in this study. Green springs are counted for connecting cabin to the frame and 

finally, purple spring is used to suspend driver’s seat with respect to the cabin. As the rests, W,, 

and 𝜑 illustrate displacement, roll, and pitch of the truck in this dynamic analysis. Hence, the 19 

DoFs are as follow: 

 Driver seat bounce, one degree; w106; 

 Cab bounce, pitch and roll, three degrees; orderly w104, θ104, φ104; 

 Chassis bounce (sprung mass), pitch and roll, three degrees; w100, φ100, θ100, respectively: 

 Front axle, its bounce and roll, two degrees; orderly w101, θ101; 

 Intermediate axle, bounce and roll, two degrees; orderly w102 , θ102; 

 Rear axle, bounce and roll, , two degrees; orderly w103, θ103;   

 6 bounce motion of the 6 wheels; w1, w2, w3, w4, w5, w6; where w1  and ; w2are the bounce 

of left and right steer wheels, respectively; w3 and  w4are the bounce of left and right wheels 
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of the middle axle, correspondingly; w5 and w6are the bounce of left and right wheels of 

rear axle, respectively.  

The vector of coordinates for the vehicle is written as: 

 

W19 = [w106w104θ104φ104 w100  θ100
φ100w101θ101w102𝜃102w103θ103w1w2w3w4w5w6]

T
                (1) 

 
Figure3. The scheme of the 19-DoF model for the truck 

 

 

Figure 4(a) shows truck model in X-Z plane and distances between different important points. In 

addition, Figure 4(b) indicates the model in Y-Z plane and the related parameters. 
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Figure4. CGs (Center of gravity) and other essential parameters of the model 

 

5. Equations of Motion  

The Lagrange equation is well-known in the following form for this system: 
𝑑

𝑑𝑡
(

𝑑𝑇

𝑑�̇�19
) − (

𝑑𝑇

𝑑𝑊19
) + (

𝑑𝑃

𝑑𝑊19
) = 0                                                                                                           

(2)                                                                                                            

 

Where, T and P are the kinematic and potential energies of the system respectively. 

The kinetic energy of the system is as follow: 

 

T =
1

2
Ms(W`106)2 +

1

2
Mc(W`104)2 +

1

2
Mb(W`100)2 +

1

2
M1(W`101)2 +

1

2
M2(W `102)2 +

1

2
M3(W `103)2

+
1

2
Icx(θ`104)2 +

1

2
Ibx(θ`100)2 +

1

2
I1x(θ`101)2 +

1

2
I2x(θ`102)2 +

1

2
I3x(θ`103)2 +

1

2
Icy(θ`104)2

+
1

2
Iby(θ`100)2 

Moreover, the potential energy of the system is obtained as: 

P =
1

2
Ks(W106 − W105)2 +

1

2
Kc(W45 − W31)2 +

1

2
Kc(W46 − W32)2 +

1

2
Kc(W47 − W35)2

+
1

2
Kc(W48 − W36)2 +

1

2
K𝑓(W33 − W13)2 +

1

2
K𝑓(W34 − W14)2 +

1

2
K𝑚(W17` − W17)2

+
1

2
K𝑚(W18` − W18)2 +

1

2
K𝑟(W25` − W25)2 +

1

2
K𝑟(W26` − W26)2 +

1

2
KWf(W7 − W1)2

+
1

2
KWf(W8 − W2)2 +

1

2
KWr(W9 − W3)2 +

1

2
KWr(W10 − W4)2 +

1

2
KWr(W11 − W5)2

+
1

2
KWr(W12 − W6)2 

 

By differentiating of T and P with respect to the coordinates and time according to Eq. (2), 

equations of motion can be organized as:   

 
M19�̈�19 + K19W19 = 0          

Chassis 

(a) (b) 
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In which M19 and K19 are orderly mass matrix and stiffness matrix of the 19 DOF of the truck-poster 

system model. In this equation, �̈�19 and W19are acceleration vector and displacement vector of the 

19 DoF truck-poster system model. In addition, system mass matrix, M19 which is a diagonal matrix, 

is calculated as follow: 

 
𝑀19 = diag[𝑀𝑠𝑀𝑐𝐼𝑐𝑥𝐼𝑐𝑦𝑀𝑏𝐼𝑏𝑥𝐼𝑏𝑦𝑀1𝐼1𝑥𝑀2𝐼2𝑥𝑀3𝐼3𝑥𝑀01𝑀02𝑀03𝑀04𝑀05𝑀06] 

 

Where, “diag” illustrates that the M19 is a diagonal matrix and Ms to M06 are located on the main 

diagonal of the matrix. In this relation, MsandMc are masses of the seat and the driver, and the cab, 

respectively; Icxand Icy are inertia of the cab about X and Y axes, correspondingly. In the following, 

Mb, Ibx,  and Iby point to sprung mass, inertia of the sprung mass about X and Y axes, respectively; 

Also, 1, 2,, and 3 as the indexes in order point to the  front axle, middle axle, and the rear axle of the 

truck. Similarly, 𝑀01 to 𝑀06 indicate the masses of the front left to rear right wheels, as well. The 19 

nonzero values have been obtained from the truck model in Solidworks software utilizing mass 

properties. Now, the system stiffness matrix can be written in the following form: 

 

𝐾19 = [

𝐾1,1

𝐾2,1

𝐾1,2

𝐾2,2
⋯

𝐾1,19

𝐾2,19

⋮ ⋱ ⋮
𝐾19,1 𝐾19,2 ⋯ 𝐾19,19

] 

 
The non-zero components of  𝐾19 are as follows: 

K1,1 = Ks, K1,2 = −Ks, K1,3 = Ks. e1, K1,4 = Ks. d1;  

K2,1 = −Ks, K2,2 = 4Kc + Ks, K2,3 = −Ks. e1, K2,4 = Kc(2d3 − 2d2) − Ks. d1, K2,5 = −4Kc, , K2,7 = Kc(2b5 +

2b4);  

K3,1 = Ks. e1, K3,2 = −Ks. e1, K3,3 = 4Kc. e2
2 + Ks. e1

2, K3,4 = Ks. e1. d1;  
K4,1 = Ks. d1, K4,2 = −Ks. d1 − 2Kc. d2 + 2Kc3. d3, K4,3 = Ks. d1. e1, K4,4 = Ks. d1

2 + 2Kc(d2
2 + d3

2), K4,5 =

2Kc(d2 − d3), K4,6 = −2Kc. d3. e2, K4,7 = −2Kc. d2. b4 + 2Kc. d3. b5;  
K5,2 = −4Kc, K5,4 = −2Kc. d3K5,5 = 2Kf + 2Km + 2Kr + 4Kc, K5,6 = 2(Kf + Km + Kr). a1 + 2Kc. e2, K5,7 =

−2Kf. b1 + 2Km. b2 + 2Kr. b3 − 2Kc. b4, K5,8 = −2Kf, , K5,10 = −2Km, K5,11 = 2Km. a1K5,12 = −2Kr; 
K6,2 = −2Kc. e2, K6,3 = −2Kc. e2

2, K6,4 = −2Kc. e2. d3, K6,5 = 2(Kf + Km + Kr). a1 + 2Kc. e2, K6,6 =

2(Kf + Km + Kr). a1
2 + 4Kc. e2

2, K6,7 = −2Kf. a1. b1 − 2Km. a1. b2 + 2Kr. a1. b3 − 2Kc. e2. b4, K6,8 = −2Kf. a1, , 

K6,12 = −2Kr. a1; 
K7,2 = 4Kc. b4, K7,4 = −2Kc. b4. d2 + 2Kc. b5. d3, K7,5 = −2Kf. b1 + 2Km. b2 + 2Kr. b2 − 2Kc. b4 − 2Kc. b5, K7,6 =

−2Kf. a1. b1 + 2K5. a1. b3 + 2Kc. e2. b4, K7,7 = 2Kf. b1
2 + 2Km. b2

2 + 2Kr. b3
2 + 2Kc. b4

2 + 3Kc. b5
2, K7,8 =

2Kf. b1, K7,10 = −2Km. b2, K7,11 = 2Km. b2. a1, K7,12 = −2Kr. b3; 

K8,6 = −2Kf. a1, K8,7 = 2Kf. b1, K8,8 = 2Kf + 2Kwf; 

K9,9 = 2Kwf. a2
2 + 2K1. a1

2K9,14 = −Kwf. a2, K9,15 = Kwf. a2; 
K10,5 = −2Km, K10,6 = −2Km. a1, K10,7 = −2K3. b2., K10,10 = 2Kwr, K10,11 = −2K3. a1, K10,16 = −Kwr, K10,17 =

−Kwr; 
K11,5 = 2Km. a1, K11,7 = 2Km . b2. a1, K11,10 = −2Km. a1, K11,11 = 2Km. a1

2 + 2Kwr. a2
2, K11,16 = −Kwr. a2, 

K11,17 = Kwr. a2; 
K12,5 = −2Kr, K12,6 = −2K5. a1, K12,7 = −2Kr. b3, K12,12 = 2Kwr, , K12,18 = −2Kwr; 

K13,13 = 2Kwr. a2
2 + 2K5. a1

2, K13,18 = −Kwr. a2, K13,19 = −Kwr. a2; 

K14,8 = −Kwf, K14,9 = −Kwf. a2, K14,14 = Kwf; 
K15,8 = −Kwf, K15,9 = Kwf. a2, K15,15 = Kwf; 
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K16,10 = −Kwr, K16,11 = −Kwr. a2, K16,16 = Kwr; 

K17,10 = −Kwr, K17,11 = Kwr. a2, K17,17 = Kwr; 

K18,12 = −Kwr, K18,13 = Kwr. a2, K18,18 = Kwr; 

K19,12 = −Kwr, K19,13 = −Kwra2, K19,19 = Kwr; 

 

In which, 𝐾𝑠is the stiffness of spring of driver seat; Kc is the stiffness of each spring of cab 

suspension; Kfis the stiffness of each spring of front axle suspension; Km, and Kr are defined for 

stiffness of every spring for the middle axle and the rear axle, respectively; Kwfis also considered 

for the equivalent stiffness of each of front tires, while Kwrplays the same role for the tires of middle 

and rear wheels. Other variables and constants were illustrated in the previous sections. 

 

6. Validation  

ADAMS software has provided a unique environment for dynamic modeling of multibody systems. 

Here, we utilize the software to validate the equations of motion for the truck. For this purpose, one 

of the modules of this software, i.e., ADAMS/Truck, is employed. The three-axle truck model, 

which is available in the software, is utilized and the characteristics of the truck are entered. The 

truck, as a vibrational system is moved on a sinusoidal road to excite the model with a wide range 

of frequencies as shown in Figure 5. Times, in which the accelerations of the CG are more than 

their neighborhood, can be used to find natural frequencies using constant acceleration of the truck. 

Figure 6 shows accelerations obtained from this procedure. 

  

 
Figure5. Calculating truck dynamic characteristics using ADAMS 
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Figure6. Acceleration for the truck in ADAMS 

 

To verify the accuracy of the results, some of the natural frequencies, which are derived from 

MATLAB code, are compared with the simulation results from ADAMS software as shown in table 

1. Comparing two or three natural frequencies of the system with those obtained from analytical 

procedure replies that the formulation is valid. 

 
Table1. Comparison of natural frequency which is obtained in MATLAB and ADAMS 

Dominant motion 

Natural 

frequency(rad/s) 

(Analytically) 

Natural 

frequency(rad/s) 

(ADAMS) 

Difference 

(%) 

Right steer wheel bounce 77.1316 83.1044 7.18 

Rear axle bounce 103.358 90.1399 12.78 

Center axle bounce 265.249 261.174 1.56 

 

7. Natural frequencies and corresponding mode shapes 

To determine the natural frequencies of the system, the free vibration of the system is considered. 

The equations of motion for free vibration were derived in eq. 5. The characteristic equation of the 

system is arisen from eq. 5 and Eigen values of the characteristic equation are natural frequencies of 

the system. Eigenvectors of the equation are utilized to find natural frequency corresponding to 

each DOF. 
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Table 2 shows, natural frequencies and mode shapes for the 19 DOF truck. For each natural 

frequency, there is a 19×1 vector of mode shape. Among the elements of every mode shape, the 

highest value shows dominant motion. Dominant motion is the most intense motion in each natural 

frequency.  

Table2. Natural frequency, mode shape and dominant motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8. Natural frequency using 16 DoF model 

In general, the DOF of the driver seat and the cab of the truck are not considered. To investigate the 

influence of this withdrawal, by excluding three degrees of freedom – driver seat bounce, cab 

bounce and cab roll- a 16 DOF model is provided and solved. Hence, three dominant motions from 

three different ranges are opted to compare from those that were obtained from 19 DOF model. 

According to table 3, by eliminating some degrees of freedom, natural frequencies aggravate. 

Comparing the results reports about 10% error in natural frequencies. 

 

Table 3. Natural frequencies using 16 DoF model for three dominant motions 

 

Natural frequency(rad/s) Dominant motion Error 

53.874560935562 right rear steer wheel bounce 6.3% 

201.494719652476 Center axle roll 6.5% 

1250.354821459930 Steer axle bounce 10.4% 

 

 

 

 

 

Natural frequency(rad/s) Dominant motion 

0.000004622358 right rear steer wheel bounce 

0.000003451677 right steer wheel bounce 

0.000000001065513 left rear steer wheel bounce 

0.011396794116965 Deriver seat bounce 

0.022510398030284 Cab roll 

0.032668119888841 Cab bounce 

50.670520926536 right rear steer wheel bounce 

51.637956185048 left center steer wheel bounce 

64.379923963352 left center steer wheel bounce 

66.626459703922 Cab roll 

70.244931281563 Left steer wheel bounce 

77.136046229719 Right steer wheel bounce 

103.358018471211 Rear axle bounce 

189.294739253455 Center axle roll 

189.588958526633 Center axle roll 

265.249162539134 Center axle bounce 

586.273194921182 Steer axle bounce 

596.770119450067 Steer axle roll 

1133.920811119840 Steer axle bounce 
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9. Calculation of the Suspension Static Deflection and the Reaction Force on Each Wheel 

The suspension static displacement which is the relative displacement of the two ends of the 

suspension can be obtained as following (for instance we have just mentioned seat and cab static 

displacement formula in which the subscripts are f = front, r=right, l = left, re = rear): 

 

𝑑𝑠𝑒𝑎𝑡 = 𝑤106 − 𝑤105 = 𝑤106 − (𝑤104 − 𝑑1𝜃104 − 𝑒1𝜙104) 

𝑑𝑐𝑎𝑏𝑓𝑙
= 𝑤45 − 𝑤31 = (𝑤104 + 𝑒2𝜃104 − 𝑑2𝜙104) − (𝑤100 + 𝑒2𝜃100 − 𝑏4𝜙100) 

𝑑𝑐𝑎𝑏𝑓𝑟
= 𝑤46 − 𝑤32 = (𝑤104 − 𝑒2𝜃104 − 𝑑2𝜙104) − (𝑤100 − 𝑒2𝜃100 − 𝑏4𝜙100) 

𝑑𝑐𝑎𝑏𝑟𝑒𝑙
= 𝑤47 − 𝑤35 = (𝑤104 + 𝑒2𝜃104 + 𝑑3𝜙104) − (𝑤100 + 𝑒2𝜃100 − 𝑏5𝜙100) 

𝑑𝑐𝑎𝑏𝑟𝑒𝑟
= 𝑤48 − 𝑤36 = (𝑤104 − 𝑒2𝜃104 + 𝑑3𝜙104) − (𝑤100 − 𝑒2𝜃100 − 𝑏5𝜙100) 

 

The displacements of all degrees of freedom that have been used above have been calculated by 

considering the gravity. 

Hence, the static deflection of each suspension spring member is listed below: 

 

Table4. Deflection of suspension springs. 

 

Seat 
Cab, front 

left 

Cab, front 

right 
Cab, rear left 

Cab, rear 

right  

Static 

Deflection 

(m) 

-0.0594 -0.0088 -0.0212 -0.0092 -0.0216 

  

 

Main, steer 

left 

Main, steer 

right 

Main, center 

left 

Main, center 

right 

Main, rear 

left 

 Main, rear 

right 

Static 

Deflection 

(m) 

-0.1875 -0.1895 -0.1456 -0.1488 -0.1173 -0.1204 

 

  Tire,   

steer left 

   Tire,     

steer right 

  Tire,    

center left 

   Tire,    

center right 

   Tire,    

rear left 

    Tire,    

rear right 

Static 

Deflection 

(m) 

-0.031 -0.0311 -0.0348 -0.0351 -0.0279 -0.0282 

 

And the reaction force on each wheel can be obtained by considering tire stiffness; hence result for 

the reaction force calculation is listed in the following table: 

 
Table5. Calculation of reaction force 

 

  Tire,   

steer left 

   Tire,     

steer right 

  Tire,    

center left 

   Tire,    

center right 

   Tire,    

rear left 

    Tire,    

rear right 

Reaction 

force (N) 
21399 21483 48102 48531 38525 38954 

 

It is clearly seen that wheels on the right side are subject to slightly greater loads than those on the 

left side consistent with the chassis and cab lean. This effect results from the offset position of the 

driver seat. 
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10. Conclusion 

A 19-DoF system had been chosen in order to study the dynamic characteristics of a three-axle 

truck. Physical properties are calculated using a model in Solidworks CAD software. Lagrange 

equations are used for deriving equations of motion. Validation performed by comparison of data 

achieved analytically and those resulted from ADAMS simulation, which replies the accuracy of the 

formulation. Finally, natural frequencies, mode shapes and dominant motions have been observed. 

In each natural frequency, a 19-dimensional mode shape is established, which is useful to know the 

vibrating component of the truck. Finally, the influence of elimination of three non-prominent 

DOFs is investigated. The results illustrate that the equations of motion obtained in this work can 

increase the accuracy by 10%. It was also found that right side wheels of the truck experience more 

intense load in comparison with the left side wheels due to chassis and cab lean. 
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