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Abstract 

The imperialist Competitive Algorithm (ICA) is one of the recent meta-heuristic algorithms 

proposed to solve optimization problems. The Imperialist Competitive Algorithm is based on a 

socio-politically inspired optimization strategy. This paper presents an Imperialist Competitive 

Algorithm (ICA) to optimize the performance of a surface grinding operation.  Moreover, the multi-

objective optimization of a surface grinding process is suggested by using an evolutionary 

algorithm. Factors like depth of dressing, lead of dressing, workpiece speed and wheel speed are 

considered to minimize the production cost, surface roughness and to maximize the production rate. 

The suggested approach presents two constraints handling techniques: constraints handling strategy 

of ICA and penalty function method. The effectiveness of this algorithm for grinding operation is 

investigated by comparing the results to other algorithms available in the literature. Results show 

that the proposed algorithm in this work gives a better performance in a shorter time for the 

optimization of machining parameters in comparison to other works. 
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1. Introduction 

One of the significant manufacturing processes in engineering industries is grinding. Optimization 

analysis of the grinding process seems very important because it based on obtaining the best 

possible surface quality, maximizing the production rate and minimizing the production cost. In the 

optimal selection for the grinding process, a variety of operating conditions such as depth and lead 

of dressing, wheel speed, and workpiece speed are considered [1].  

Fortunately, a basis for achieving grinding parameter optimization presented through grinding 

process models published in former literature [2]. Since 2000, several studies had focused on 

potential approaches to optimization for the grinding process. Among all the studies those of Wen et 

al., Amity et al. and Malkin are mentioned [3-5]. Wen et al. proposed a quadratic programming 

(QP) approach, which used a multi-objective function model with a biased approach for 

optimization of surface grinding process [3]. Amity et al. described the technique of optimizing 

both grinding and dressing conditions for the maximum workpiece removal rate subjected to 
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constraints on workpiece burn and surface finish in the adaptive control system [4]. The constraints 

of optimization during the grinding were mainly present by Malkin [5]. A variety of smart 

optimization techniques like the Hybrid Particle Swarm Optimization Algorithm (HPSO), Scatter 

Search (SS), Ant Colony Algorithm (ACO), etc. have been used to optimize the grinding variables: 

workpiece speed, wheel speed, lead of dressing and depth of dressing. Moreover, the Genetic 

Algorithms (GA) based optimization procedure was described by Saravan et al. This procedure used 

to optimize grinding conditions using a multi-objective function model [6]. Later, to obtain more 

accurate results Basker et al., Lee et al., Krishna,  Pawar et al. , Krishna and Rao, and Zhang et al. 

applied the Differential Evolution (DE), the PSO, the ACO, the SS, the GA, and HPSO for the same 

model [2,7-11]. The Imperialist Competitive Algorithm (ICA) is a new meta-heuristic algorithm 

that was first suggested by Atashpaz-Gargari and Lucas in 2007 [12]. 

The ICA has not been used for machining parameter optimization yet. Therefore, there is an effort 

to apply the ICA to tackle the optimization of machining parameters of surface grinding. ICA could 

be used to find the optimal number of passes and optimal values of the cutting parameters for other 

machining parameters. 

 

2. Mathematical model of the surface grinding process  

2.1 Mathematical model of the surface determination of sub-objectives and variables for 

optimization 

The rough grinding case is taken into account in this study. In this case, production cost and surface 

finish are chosen as the sub-objectives with the condition that the production rate value should not 

exceed the required value [2]. 

It is hard to optimize every variable because many of the process variables are involved in grinding. 

Fortunately, among all the process variables, some are more important while others are determining 

by the operators. For grinding process variables, namely lead of dressing [L], depth of dressing 

[doc], workpiece speed [VW], and wheel speed [VS] are considered as the optimization variables 

[2]. 

 

2.1.1 Production Cost 

The production costs in the surface grinding process consist of the cost directly related to the 

grinding of the part, the cost of material consumption, and the cost of non-productive time. So, 

considering the three above-mentioned items, the formula of the total production cost CT ($/pc) is 

given according to Wen et al. [3]. 
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Table 1 shows Surface grinding operation variables. 

 

Table1. Surface grinding operation variables 

 

2.1.2 Production Rate 

The production rate is shown by the workpiece removal parameter WRP (cubic millimeters per 

minute newton) and is presented in Wen et al. as follows [3]: 
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Where VOL= 1.33X+2.2S−8 is the wheel bond percentage (%), here, X = 0, 1, 2, etc., for wheel 

hardness H, I, J, etc., respectively, and S is the wheel structure numbers 4, 5, 6; dg is the grind size 

(millimeters), and Rc is the workpiece hardness (Rockwell hardness number) [2, 3]. 

 

 Meaning Unit  Meaning Unit 

Mc 
cost per hour labor and 

administration 
$ per hour bs the width of the wheel Millimeters 

P 
the number of workpieces loaded 

on the table 
pc G the grinding ratio - 

Lw the length of the workpiece Millimeters Sd the distance of wheel idling Millimeters 

Le the empty length of grinding Millimeter Vr the speed of wheel idling 
Millimeters 

per minute 

bw the width of the workpiece Millimeters t1 
the time of loading and 

unloading workpiece 
Minutes 

be the empty width of grinding Millimeters tch 
the time of adjusting 

machine tool 
Minutes 

fb the crossfeed rate 
millimeters 

per pass 
Nt the batch size of work-pieces pc 

aw the total thickness of the cut Millimeters Nd 

the total number of 

workpieces to be ground 

between two dressings 

pc 

ap the down feed of grinding 
millimeters 

per pass 
Cs the cost of wheel 

$ per cubic 

millimeter 

Sp the number of spark out grinding pass Ntd 

the total number of 

workpieces to be ground 

during the life of dresser 

pc 

De the diameter of the wheel Millimeters Cd the cost of dressing $ 
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2.1.3 Surface finish 

The surface finish of the workpiece is mostly identified to be within a specific value Ra that is 

affected by wheel dressing parameters and the operation parameters. Its mathematical formula is 

defined as follows in Wen et al. [3]: 
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Tave is the average chip thickness during grinding. 
 
2.2 Constraints 

The main constraints considered in the machining process are variable constraints and process 

constraints. The process constraints in this study include machine tool stiffness, wheel wear 

parameter, thermal damage, and either surface finish (for rough grinding) [2]. 

 

2.2.1 Thermal damage constraint 

High input of energy per unit volume of material removal is needed in the grinding process. All of 

the energy is changed into heat which is gathered in the grinding zone. This may cause thermal 

damage to the grinding surface of the workpiece. Workpiece burn is one of the most common types 

of thermal damage, which directly limits the production rate. According to experimental 

measurements and heat transfer analysis, it has been proved that burning happens in the zone where 

the temperature reaches the critical temperature. The critical temperature is directly related to 

specific energy, which includes sliding energy, plowing energy, and chip formation energy. 

Considering all these factors, the specific energy U is presented in terms of operating parameters by 

the following equation of Wen et al. [3]: 
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Where A0 is the initial wear flat area percentage (percent) and Ku is the wear constant (per 

millimeter). 

And U* is the corresponding critical specific grinding energy, which causes the start of thermal 

damages. It can be shown in terms of the operating parameters in Wen et al. [3] as follows: 

1
4* 6.2 1.76

3 1
4 2

DeU

a Vwp

   (6) 

In practice, if the specific energy U exceeds the corresponding critical specific grinding energy U*, 

a workpiece burn happens. The thermal damage constraints can be identified as shown below 

according to the relationship between specific energy and grinding parameters. 
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*U U  (7) 

 

2.2.2 Wheel wear parameter constraint 

Wheel wear parameter (WWP) is related to the grinding conditions and the details of wheel 

dressing which occurs before the grinding operations: 
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According to Equations (2) and (8), the wheel constraint could be obtained as follows: 

/WRP WWP G  (9) 

 

2.2.3 Machine tool stiffness constraint 

The workpiece removal rate should be reduced to eliminate grinding chatter. Chatter, in grinding, 

causes undulation roughness on the grinding wheel or workpiece surface and is highly undesirable. 

Moreover, wheel surface unevenness makes frequent wheel redressing necessary. Therefore, chatter 

worsens surface quality and decreases the machining production rate. As a result, for the selection 

of the operating parameters, chatter elimination is an important constraint. The relationship between 

operating parameters during grinding, grinding stiffness Kc (newtons per millimeter) is presented as 

follows: 

1000 V fw bKc
WRP

 
  (10) 

And 
1000 V fs bKc

WWP

 
  (11) 

 

It is suggested in this paper that the wheel wear stiffness during grinding and the grinding stiffness, 

as well as the static machine stiffness, must satisfy the following constraint: 

1 1
(1 )

2

RV emw

K V G K Kc s s m
    (12) 

 

Where Km is the static machine stiffness (newton’s per millimeter), and Rem is the dynamic 

machine characteristic. 

 

2.2.4 Surface finish constraint (for rough grinding) 

The maximum production rates as well as maintaining a certain surface finish are needed for rough 

grinding. In this case, surface finish is a constraint whereas the production rate is selected as a sub-

objective. The constraint could be shown as follows: 

*R Ra a  (13) 

 

Where Ra* is the surface finish limitation in the rough grinding (micrometers) operation. 
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2.3 Combined objective function model 

Based on the analysis presented above, the optimization problem for the surface grinding problem 

could be expressed as a multi-objective, multi-variable, non-linear optimization problem with multi-

constraints. Normalization of each sub-objective is suggested to deal with the large differences in 

numerical values between the sub-objectives. The combined weighted objective function to be 

minimized here is as follows: 

( , , , ) 1 2 3
* * *

CT WRP RaCOF V V Doc L W W Ws w
CT WRP Ra

    
(14) 

Subjected to 
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/WRP WWP G   
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For the finishing grinding where CT∗ shows the expected limitation of production cost ($/pc), and 

Wi (i = 1, 2, 3) are the weighting factors where: 

 

0 <Wi < 1 and W1 + W2 + W3 = 1  

 

3. Imperialist competitive algorithm  

The optimization problem can be identified as finding an argument X whose related cost f(x) is 

optimum, and it has been applied in various occasions like pattern recognition, scheduling, 

industrial planning, resource allocation, and so on. A set of algorithms were proposed in the past 

decades for solving optimization problems in different fields of science and engineering [3, 14, 15]. 

Among all these methods evolutionary algorithms, such as genetic algorithm, particle swarm 

optimization, ant colony optimization, bee algorithm, and simulated annealing could be mentioned.  

ICA is an algorithm proposed by Atashpaz-Gargari and Lucas for the first time in 2007 and used for 

optimizing inspired by the imperialistic competition algorithm [3, 12]. It is also significantly 

relevant to some engineering applications [16-21]. Similar to other evolutionary algorithms, the 

proposed algorithm begins with an initial population. Colonies and imperialists that all together 

form some empires are two types of population individuals. Among these empires, imperialistic 

competition forms the basis of the proposed evolutionary algorithm. During this challenge, 

powerful empires take possession of their colonies and weak empires collapse. By using this 

algorithm, the optimum condition of most functions could be found. Imperialistic competition 

readily converges to a state in which only one empire exists and its colonies are in the same position 

and have the same imperialist [12]. In order to optimize the objective function, the suggested 

model-based on regression analysis is embedded into the ICA. The goal of optimization algorithms 

is to find an optimal solution in terms of the variables of the problem (optimization variables). We 

shape an array of variable values to be optimized. We use the term ‘’country’’ for this array here (in 

genetic algorithm terminology, this array is called ‘’chromosome’’). In an N Var-dimensional 

optimization problem, a country is a 1xN Var array. This array is defined as follows: 
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1, 2, 3,...,
var

country p p p pN 
 

 (15) 

The cost of a country is found by evaluating the cost function f of the variables [12]. The variable 

values in the country are shown as floating-point numbers. Then 

 

cos ( ) ( 1, 2, 3,..., )
var

t f country f p p p pN   (16) 

 

Figure 1 shows the flowchart of the ICA algorithm. We generate the initial population of size N pop 

to start the optimization algorithm. To form the empires, we choose N imp of the most powerful 

countries. The remaining Ncol of the population will be the colonies, each of which belongs to an 

empire. Then, there will be colony and imperialist as two types of countries. 

 
Figure1. Flowchart of the ICA algorithm [2] 
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We divide the colonies among the imperialists based on their power, in order to form the initial 

empires. That is, the initial number of colonies of an empire ought to be proportionate to its power. 

To do so, we define the normalized cost of an imperialist by Cn=cn-max {ci}, where cn is the cost of 

nth imperialist and Cn is the normalized cost. The normalized power of each imperialist is defined by 

Atashpaz, having the normalized cost of all imperialists [12]. 

1

Cnpn Nimp
Ci

i






 
 

 

(17) 

 

On the other hand, the normalized power of each imperialist would be the proportion of colonies 

that should be possessed by that imperialist. Therefore, the initial number of colonies of an empire 

will be: 

. .N C round p Nn n col  (18) 

 

Where N.Cn is the initial number of colonies of the nth empire, and Ncol is the number of all 

colonies. In order to divide the colonies, for each imperialist, we accidentally elect N.C. n of the 

colonies and give them to it. The imperialist along with these colonies will shape the nth empire. In 

which, smaller (weaker) empires have less number of colonies, while bigger (powerful) ones have 

more. To find different points around the imperialist, a random amount of deviation to the direction 

of movement is added [8]. 

 

Table2. Parameters of the ICA for Parameter Optimization 

Parameters Value 

Number of Countries 200 

Number of Initial Imperialists 8 

Number of Decades 200 

Revolution Rate 0.3 

Total Cost (Zeta) 0.2 

Damp Ratio 0.99 

Assimilation coefficient  2 

 

4. Input Data 

The following values in Table 2 are used as the input data for this optimization problem [2]. 
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Table3. Numerical values of input data 

Symbol Description Unit Value 

Mc Cost per hour of labor and administration $/h 30 

p Number of workpieces loaded on the table pc 1 

Lw Length of workpiece mm 300 

Le Empty length of grinding mm 150 

bw Width of workpiece mm 60 

be Empty width of grinding mm 25 

fb Crossfeed rate mm/pass 2 

aw The total thickness of the cut mm 
0.1(r) 

0.055(f) 

ap The down feed of grinding mm/pass 
0.0505(r) 

0.0105(f) 

Sp Number of spark out grinding pass 2 

De Diameter of wheel mm 355 

bs Width of wheel mm 25 

G Grinding ratio  60 

Sd The distance of wheel idling mm 100 

Vr Speed of wheel idling mm/min 254 

t1 Time of loading and unloading workpiece min 5 

tch Time of adjusting machine tool min 30 

Nd Total number of the workpiece to be ground between two dressings pc 20 

Nt Batch size of the workpiece  12 

Ntd Total number of the workpiece to be ground during the life of dresser pc 2000 

Cd Cost of dresser $ 25 

Cs Cost of wheel per mm3 $/mm3 0.003 

CT∗ Expected production cost limitation $/pc 10 

Rc Workpiece hardness (Rockwell hardness)  58 

Ra∗ Surface finish limitation during rough grinding µ m 1.8 

VOL Wheel bond percentage % 6.99 

dg Grain size mm 0.3 

WRP∗ Workpiece removal parameter limitation mm3/min 

N 

20 

Km Static machine stiffness N/mm 100,000 

Rem Dynamic machine characteristics  1 

A0 Initial wear flat area percentage  0 

Ku Wear constant mm−1 3.937 × 10−7 

Ka Constant dependent on coolant and wheel grain type  0.0869 

 

5. Results and comparisons 

The optimum operating parameters such as total production cost (CT), production rate (WRP), 

surface finish [Ra] and combined objective function (COF) for rough grinding obtained by the 

genetic algorithm (GA), quadratic programming (QP], particle swarm optimizer (PSO], and hybrid 

particle swarm optimization (HPSO) are given in Table 3. 

To evaluate the performance of the ICA algorithm proposed in this paper, we compare our results 

with those obtained from the approaches proposed by Wen et al., Saravanan et al., Baskar et al., 

Krishna and Rao, Pawar et al., Lee et al. and Zhang et al. by using the same cases. For a fair 

comparison with those approaches, the numerical values of input data shown in Table 3 and the 

user-defined bounds of process variables shown in Table 3 are all set to be the same with those 

given in the aforementioned references in this paper. The results obtained by the proposed ICA in 

this work and the comparisons with the results obtained from the original references which 



Imperialist Competitive Algorithm (ICA) Approach for Optimization of the Surface Grinding Process, pp. 51-62 

60 

proposed some other methods and the results rechecked in this work are shown in Table 4. Table 4 

shows the results of rough grinding operation with the maximization WRP and the minimization CT 

objectives subjected to aw = 0.1 mm, ap = 0.0505 mm/pass, and Ra ≤ 1.8 µm. In Table 4, QP denotes 

the quadratic programming approach of Wen et al., GA is the genetic algorithm method of 

Saravanan et al., ACO denotes the ant colony optimization approach of Baskar et al., SS is the 

scatter search method of Krishna and Rao, DE denotes the differential evolution algorithm approach 

of Krishna and Rao, PSO is the particle swarm optimization method of Pawar et al.,  TSBDEA 

denotes the Taguchi sliding-based differential evolution algorithm method of Lee et al., and HPSO 

is the hyper particle swarm optimization method of Zhang et al. [2,3,6,7,8,10,11]. 

 
Table4. Results of optimization for rough grinding operation W1 = 0.5, W2 = 0.5, W3 = 0 

(aw = 0.1 mm, ap = 0.0505 mm/pass, Ra ≤ 1.8 µm) 

Method References Vs Vw Doc L CT WRP Ra COF 

QP Wen et al. [3] 2,000 19.96 0.055 0.044 6.2 17.47 1.74 -0.127 

GA Saravanan et al. [4] 1,1998 11.3 0.101 0.065 7.1 21.68 1.79 -0.187 

ACO Baskar et al. [5] 2,010 10.19 0.118 0.081 7.5 24.20 1.80 -0.229 

SS Krishna and Rao [6] 2,023 10 0.129 0.068 8.3 25.41 1.79 -0.243 

DE Gopala Krishna [7] 2,023 10 0.13 0.1093 7.9 26.57 1.80 -0.249 

PSO Pawar et al. [8] 2,023 10 0.11 0.137 8.33 25.63 1.798 -0.224 

TSBDEA Lee et al. [9] 2,023 13.17 0.074 0.137 7.2668 23.7012 1.8000 -0.2292 

HPSO Zhang et al. [2] 2,023 13.2882 0.0729 0.137 7.2364 23.6424 1.8 -0.2292 

ICA  1,1923 20.5 0.065 0.07 6.1176 19.9927 1.90 -.19394 

 

6. Conclusions 

In this paper, an Imperialist Competitive algorithm is performed to optimize surface grinding 

operation for better performance. The effectiveness of this algorithm for grinding operation has 

been demonstrated by comparing the results to other algorithms. 

From obtained results by ICA, it can be concluded that the proposed algorithm gives an effective 

and powerful performance in a shorter time for the optimization of machining parameters for other 

conventional and unconventional machining operations. 
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