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Abstract 

In this research, the production of multi-products using one machine is investigated in continuous 

time. The machine has limited capacity and can produce only one product at any time. To change the 

product, the machine should be set up. Due to the difference in demand for products, there is no need 

to equate the number of machine start-ups for these products, by removing this constraint, a nonlinear 

mathematical model is presented that gives the optimal production lot size for each product. To solve 

the single-constraint nonlinear model, the Lagrange method is used. For a numerical example, the 

obtained solution is compared with the method of rotating a constant cycle. Due to the total cost, the 

solution was better than the solution of the rotation cycle method. Also, contrary to the rotation cycle 

method, the total holding cost is equal to the total setup costs, which is similar to the Wilson inventory 

basic formula. 

 

Keywords 

Production Lot Size, Continuous Time, One Machine, Multi-product 
 

1. Introduction 

In manufacturing companies, productivity should be enhanced and costs should be reduced to survive 

in today’s competitive market. Besides, timely delivery should be also taken into consideration as a 

vital goal for survival.  Therefore, organizations strive to exploit machines at maximum capacity with 

their fixed capital along with one time delivery of products to customers. 

The determination of production quantities and their scheduling is called the Economic Lot 

Scheduling Problem (ELSP) [1]. ELSP is a complicated problem and classified as NP-hard [2]. 

The objective of the ELSP is to determine a production schedule that minimizes the sum of inventory 

holding costs and setup costs. 

A machine, with finite capacity, can produce multiple products. To change the product, the machine 

should be setup. Hence, the lot size of each product is intended to be determined at a minimum cost. 

The earliest paper discussed economic production quantity is Taft [3], and finite production rate [4]. 

In a study conducted by Goyal [5], the lot size of various products by a machine was investigated 

using the random demands for products, and the distribution of the lot size of each product was also 

determined. In another study done by Kono [6], the problem of determining the lot size of multi-

product production by a machine was investigated through considering the product-related transport. 

Additionally, in a study performed by Hodgson et al. [7], the policies of dynamic lot size in single-

machine production were studied and a semi-Markov model was presented. Moreover, a common 
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cyclic method with insufficient capacity for production was considered in a study done by Khoury et 

al. [8]. Besides, an integer hybrid model was presented by Cooke et al. [9] to find timely schedules. 

In some other studies such as the one performed by Yao [10], the problem was studied without 

capacity limitations, and Leven and Segerstedt [11] provided schedule policies to change the 

impossible answers to a feasible solution. A new structure was proposed by Nilson and Segerstedt 

[12] for the holding costs to make the costs more realistic. In another study done by Brander and 

Segerstedt [13], in addition to the set-up and holding costs, the costs of using machines dependent on 

time were also considered. Further, a nonlinear model was presented by Sun et al. [14] based on the 

basic cycle and 2 power policy. In a study performed by Chan and Chung [15], the genetic algorithm 

was applied to solve the model. In another study done by Gabay et al. [16], the problem was studied 

when the set-up costs depended on the product orders. Ilic and Radovic [17] analyzed EPQ in eight 

situations, in cases gradual or instantaneous replenishment, with or without delivery during the 

production period, and with or without shortages. They considered the same cycle for different 

products.  

Al-Salamah [18] considered a production-inventory system consisting of a single imperfect unreliable 

machine. The items manufactured may require a rework to be restored to perfect quality. A single-

variable expected average cost function is derived to find the optimal lot size. Because of the 

complexity in the model, the ABC heuristic is proposed and implemented to find a near-optimal value 

for the lot size. Zhang et al. [19] investigated the problem of single machine lot scheduling where 

each lot contains one or more jobs and is of identical processing time. They proved that the WSPT 

(Weighted Shortest Processing Time first) rule is optimal for both models of minimizing total 

weighted completion time and minimizing total weighted discounted completion time. Zheng and Jin 

[20] studied the problem of single machine lot scheduling to minimize the total completion time of 

jobs. Each processing lot has a uniform capacity and is of identical processing time. They proposed 

an improved Best Fit Random (BFN) algorithm named IBFN, which makes a refined adjustment of 

job assignment, based on the BFN schedule, to reduce the spare space of each lot as much as possible. 

Rios-Solis et al. [21] studied a lot-sizing and scheduling problem to maximize the profit of assembled 

products over several periods. The setting involves a plastic injection production environment where 

pieces are produced using auxiliary equipment (molds) to form finished products. Each piece may be 

processed in a set of molds with different production rates on various machines. They developed a 

two-stage iterative heuristic based on mathematical programming. First, the lot-size of the products 

is determined together with the mold-machine assignments. And the second stage determines if there 

is a feasible schedule of the molds with no overlapping. 

In this paper, the assumption of the constant rotation cycle is violated for products and a certain cycle 

is obtained for each of the products. Each product may be produced one time or more. It should be 

noted that none of the products confront shortage, and given the different demands for products, the 

different production cycles and the difference in the number of machine set-ups for each product in 

the cycle are real and logical. 

The rest of the paper is organized as follows. In section 2 and 3 assumptions and notation of the paper 

is introduced. The mathematical model is developed in section 4. The exact mathematical solution is 

obtained in section 5. To illustrate model application, a numerical example is given in section 6 and 
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compare with traditional constant rotation cycle policy. Finally, the conclusion and some future 

research recommendations have presented in section 7.  

 

1.1 Assumptions 

 Demand is constant over time. 

 There is a machine that can produce different products. 

 The machine can produce only one item at a time. 

 The start of the production of each product requires time and cost of machine setup. 

 The setup cost of the machine and holding cost of the products are considered. Of course, the cost 

of production is constant and not considered. 

 The machine setup costs are independent of the production sequences. 

 In the entire period, all products are consumed at all times, and the shortage is not allowed at any 

time during the period. 

1.2 Notations 

𝑛: The number of different type of products 

𝐷𝑗: The demand of product j per unit time 

𝑃𝑗 : The production rate of product j per unit time 

𝐴𝑗: The machine setup cost for production jth product 

ℎ𝑗: The carrying cost of a unit of product j per unit time 

𝑠𝑗: The required time for machine Setup time to production jth product 

𝑁𝑗: The number of machine setups for product j 

𝑋𝑗 : The lot size of product jth after each setup 

𝑇𝑃𝑗: The length of time to produce the jth product after each machine setup 

 

2. Mathematical model 

A machine is intended to produce the total demands for different products, and shortages are not 

allowed. In other words, any product is in stock at any time, and as soon as an item is out of stock, its 

production will resume (Figure 1). Contrary to the constant rotation cycle method, there is no 

requirement for the same number of production times for products. And as a result, products that their 

setup costs are high compared to the holding cost, fewer runs will be launched and Instead, more lot 

size of production for them is determined. 
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Figure1. Inventory behavior in a cycle 

 

The total cost includes setup and holding costs. Because the total variable cost of production is 

constant, in determining the lot size of the production, it does not affect and is ignored. 

The cost of preparation of each product is equal to the number of times that the product is setup 

multiplied by the cost of setting up the machine for each time the product is going to be produced. 

The number of times the jth product is launched is calculated as follows: 

  𝑁𝑗 =
𝐷𝑗

𝑋𝑗
                                                                    (1) 

Therefore, the costs of machine preparation for the production of jth product is  
𝐴𝑗𝐷𝑗

𝑋𝑗
. Each time the 

machine is launched for the product j, the number of 𝑋𝑗 units of this product are produced. But at the 

same time as the production, this product is consumed; therefore, the whole inventory will not 

accumulate in the warehouse, and the maximum visible inventory in the warehouse will 

be(𝑃𝑗 − 𝐷𝑗)𝑇𝑃𝑗. Because𝑇𝑃𝑗 = 𝑋𝑗/𝑃𝑗, maximum warehouse inventory is equal to  
(𝑃𝑗−𝐷𝑗)𝑋𝑗

𝑃𝑗
=

𝑋𝑗(1 − 𝐷𝑗/𝑃𝑗), And since the minimum inventory of this product is zero, the average inventory of 

product j will be𝑋𝑗(1 − 𝐷𝑗/𝑃𝑗)/2. And the total cost of all whole products is calculated as follows: 

  𝑇𝐶 = ∑ [
𝐴𝑗𝐷𝑗

𝑋𝑗
+ ℎ𝑗𝑋𝑗(1 − 𝐷𝑗/𝑃𝑗)/2]𝑛

𝑗=1                   (2) 

On the other hand, the production capacity of the machine is limited. Therefore, 

the required time to produce 𝑋𝑗 unit of jth product is as follows: 

  𝑇𝑃𝑗 = 𝑋𝑗/𝑃𝑗                                                               (3) 

Due to the number of machine setups for the production of j’th product, and as 

well as that at each time production, set up time of 𝑠𝑗 is necessary, the total time 

of production and setup of product j will be as follows: 

  

(
𝑋𝑗

𝑃𝑗
+ 𝑠𝑗) =

𝐷𝑗

𝑋𝑗
(

𝑋𝑗

𝑃𝑗
+ 𝑠𝑗) =

𝐷𝑗

𝑃𝑗
+

𝑠𝑗𝐷𝑗

𝑋𝑗
                          (4) 
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And thereupon, considering that the total production and setup times for 

products should not exceed one period, the following constraint is defined: 

 

∑ (
𝐷𝑗

𝑃𝑗
+

𝑠𝑗𝐷𝑗

𝑋𝑗
) ≤ 1     𝑛

𝑗=1                                                (5) 

Therefore, according to the obtained equations, the following model is proposed to minimize costs: 

 

𝑀𝑖𝑛       𝑇𝐶 = ∑ [
𝐴𝑗𝐷𝑗

𝑋𝑗
+

ℎ𝑗𝑋𝑗(1−
𝐷𝑗

𝑃𝑗
)

2
]   𝑛

𝑗=1      

s.t. 

∑(
𝐷𝑗

𝑃𝑗
+

𝑠𝑗𝐷𝑗

𝑋𝑗
) ≤ 1

𝑛

𝑗=1

 

𝑋𝑗 ≥ 0 

 

3. Solving the model 

The proposed mathematical model is nonlinear, and Lagrange method is used to 

solve it. To this end, the objective function is multiplied by -1 and the 

maximum of concave function is obtained by Lagrange method, which is 

equivalent to minimum point of previous function. The Lagrange function is as 

follows: 

𝐿(𝑋1, 𝑋2, … , 𝑋𝑛, 𝜆) = −∑ [
𝐴𝑗𝐷𝑗

𝑋𝑗
+

ℎ𝑗𝑋𝑗(1−
𝐷𝑗

𝑃𝑗
)

2
]𝑛

𝑗=1 + 𝜆 [∑ (
𝐷𝑗

𝑃𝑗
+

𝑠𝑗𝐷𝑗

𝑋𝑗

𝑛
𝑗=1 ) − 1]    (6)   

To minimize the function above, the partial derivative is taken to 𝑋𝑗  𝑎𝑛𝑑 λ and 

set it to zero: 

 
𝛿𝐿

𝛿𝑋𝑗
=

𝛿𝐿

𝛿𝜆
= 0                                                              (7) 

Therefore, the following relationships are obtained: 

(𝐴𝑗−𝜆𝑠𝑗)𝐷𝑗

𝑋𝑗
2 −

ℎ𝑗(1−
𝐷𝑗

𝑃𝑗
)

2
= 0                                           (8) 

∑ (
𝐷𝑗

𝑃𝑗
+

𝑠𝑗𝐷𝑗

𝑋𝑗
) = 1𝑛

𝑗=1                                                       (9)              

 

The Hessian function is as follows: 
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𝐻 =

[
 
 
 
−2(𝐴1−𝜆𝑆1)𝐷1

𝑋1
3 ⋯

−𝑆1𝐷1

𝑋1
2

⋮ ⋱ ⋮
−𝑆1𝐷1

𝑋1
2 ⋯ 0 ]

 
 
 

                              (10) 

In the Hessian matrix, except the last row of the last column, only the values of the main diameter 

are non-zero. The determinant of the Hessian matrix calculated as follows: 

|𝐻| = (−1)2𝑛+1 ∏ [
−2(𝐴𝑖−𝜆𝑆𝑖)𝐷𝑖

𝑋𝑖
3 ] (

−𝑆𝑖𝐷𝑖

𝑋𝑖
2 ) = (−1)3𝑛+1 ∏ [

2(𝐴𝑖−𝜆𝑆𝑖)𝐷𝑖

𝑋𝑖
3 ] (

𝑆𝑖𝐷𝑖

𝑋𝑖
2 )𝑛−1

𝑖=1
𝑛−1
𝑖=1         (11)                                                           

 

The sign of |𝐻| has assigned as (−1)𝑛+1 . Therefore, it can be concluded that 

the function is concave, and the obtained point is the maximum point, so it is 

the minimum point for model 1.  

To get the solution, 𝑋𝑗 is obtained from relation (8) and put it in relation (9), as 

follows: 

∑ 𝐷𝑗𝑠𝑗
√

ℎ𝑗(1−
𝐷𝑗

𝑃𝑗
)

2𝐷𝑗(𝐴𝑗−𝜆𝑠𝑗)

𝑛
𝑗=1 = 1 − ∑

𝐷𝑗

𝑃𝑗
    𝑛

𝑗=1                   (12) 

The equation (12) is a single-variable equation, and after obtaining λ, 𝑋𝑗 can be 

calculated from equation (8). It should be noted that solving the equation (12) is 

complicated and it should be solved using numerical methods. After obtaining 

λ, the lot size of jth product calculated as: 

𝑋𝑗 = √
2𝐷𝑗(𝐴𝑗−𝜆𝑠𝑗)

ℎ𝑗(1−
𝐷𝑗

𝑃𝑗
)

                                                   (13)                                 

 

4. Numerical example 

Suppose a machine that can produce four different products, and other required information given in 

Table 1[22]. 
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Table1. The data of the numerical example 

Holding cost of 

each unit per year 

Setup time 

(year) 

Setup 

Cost 

Production rate 

(unit/year) 

Annual 

Demand 
Product 

2 0.001 50 10,000 3000 A 

3 0.002 70 5,000 2000 B 

1 0.005 120 50,000 5000 C 

4 0.003 80 10,000 1000 D 

First, the problem is solved using the constant rotation cycle method, and 

then it is solved using the obtained formula, and the results are compared 

with each other. In the constant rotation cycle method, 𝑇 = 0.20 was 

obtained and the lot size and other items were calculated (Table 2). In 

solving by obtained formula,  𝜆 measured 0.002118 and other items 

calculated due to it. 

 Table2. Solving of the problem using the Constant Rotation Cycle and the Optimal method 

Product Rotation cycle method  Optimal method 

T Xj TPj TCj  Tj Xj TPj TCj 

A 0.20 600 0.06 670  0.15 463 0.05 648 

B 0.20 400 0.08 710  0.20 394 0.08 710 

C 0.20 1000 0.02 1050  0.23 1155 0.02 1039 

D 0.20 200 0.02 760  0.21 211 0.02 759 

Total    3190     3156 

 

5. Conclusion 

In this research, the assumption of constant rotation cycle for all products is ignored and studies a 

case that each product has its special cycle time. According to the removal of this condition, the 

solution to the problem is improved, and fortunately, a mathematically exact solution has been 

obtained. In the presented optimal solution, the total cost was reduced in proportion to the Constant 

Rotation Cycle method, and this show model improvement. Due to different product demands, 

Different production cycles, and thereupon different the number of product machine setup is quite 

natural.  Notable point is that, in the presented optimal model, for each product, the total holding cost 

equals the total setup cost, which is the same as Wilson’s basic inventory formula, but they aren’t 
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equal in the rotation cycle method. The demand for one product may be very little, or the setup cost 

is high than others, and therefore it will be not logical that has the number of setups as same as other 

products. 

To avoid the error of rounding of numbers, the model can be solved considering 

integer variables with an OR software like LINGO. Furthermore, the 

probability and uncertainty of considering demand can be studied in future 

studies. And multi-machine problems can be also considered. 
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