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Abstract–Core vector regression (CVR) is an extension of the core vector machine algorithm for 

regression estimation by generalizing the minimum bounding ball (MEB) problem. As an 

estimator, both the kernel function and its parameters can significantly affect the prediction 

precision of CVR. In this paper, a method to improve CVR performance using pre-processing 

based on data feature extraction and Grid algorithm is proposed to obtain appropriate parameters 

values of the main formulation and its kernel function. The CVR estimated mean absolute error 

rate here is the evaluation criterion of the proposed method that should be minimized. In addition, 

some benchmark datasets out of different databases were used to evaluate the proposed parameter 

optimization approach. The obtained numerical results show that the proposed method can reduce 

the CVR error with an acceptable time and space complexity. Therefore, it is able to deal with very 

large data and real world regression problems. 
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1. Introduction 
 

Kernel function-based methods have always been used 

in a wide variety of machine learning and pattern 

recognition problems. These methods, such as support 

vector (SVM) in classification problems  [1] or support 

vector regression (SVR) in regression analysis  [2], are 

mainly developed as quadratic programming problems (QP) 

and based on the size of the training sample. A typical 

implementation of QP for kernel function-based methods 

can take the O(N3) time complexity and the O(N2) space 

complexity. 

Core vector machine (CVM), as one of the common 

methods, uses an approximation algorithm to deal with the 

minimal bounding ball (MEB) problems in computational 

geometry. According to the size of the training patterns, the 

CVM algorithm has the advantage of O(N) time complexity 

and space complexity independent of the size of the training 

set. The core vector regression (CVR) algorithm also 

inherits the simplicity of CVM and has small asymptotic 

time and space complexities. Its generalized form can be 

used with linear/nonlinear kernel functions or applied to 

kernel based methods and other normalized kernel function. 

Empirically, they are supposed to be as accurate as existing 

SVM implementations but much faster and produce much 

fewer support vectors for large data [3].  

In methods based on the kernel function, the regression 

performance depends on the kernel function and the value 

of its parameters, which can be applied in the CVR theory. 

Common kernel functions used in regression analysis using 

CVR are radial basis function (RBF), polynomial and other 

normalized kernel function  [4]. 

 

A number of studies utilized experiential technique to 

determine parameters such as C parameter, ε along with 

those parameters that are usually found in standard kernel 

functions. They also used them to analyze CVR regression 

estimation. The parameter C makes the trade-off between 

the training error and the generalization ability, whereas the 

parameter ε controls the growing rate of the MEB radius 

until it encloses the uncovered points. 

In this article, a method to automatically determine the 

kernel function parameters using the Grid algorithm, which 

has been successfully used in data classification, will be 

presented to minimize the CVR regression error estimation. 

Therefore, there is no need to determine the parameter 

settings in advance and trial and error can be avoided to 

determine the appropriate parameter settings. In addition, to 

the measurement criterion, the mean absolute error (MAE), 

was used to check the performance of the proposed method 

dealing with the benchmark data. Based on the 

experimental results, the proposed method has a low 

regression error rate that can be used for mathematical 

problems and real-world applications. 

The other sections of this article are prepared as follow: 

Section 2 provides a summary of former studies for 

parameter optimization that tries to reduce CVR regression 

error. Section 3 gives a brief introduction to the methods 

based on kernel function for regression. Section 4 contains 
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our proposed method. Section 5 includes the numerical 

results and finally, the conclusion is explained in detail. 

2. Former Researches 

 

In this section, the kernel methods of previous studies 

are examined, the details are as follows. Lorenzi et al.  [5] 

have proposed a new reconstruction method for missing 

data in the image, which integrates radiometric information 

and the position of the missing value in the reconstruction 

process. For this purpose, the information including the 

position of the pixels in the image has been added to the 

radiometric information and a special kernel function has 

been selected and adapted for each type of information 

adopted in the regression. They have proposed a new 

combination of kernel functions, which can be used to 

achieve better reconstruction. By adopting this new kernel 

function combination in SVR, it turns out that a small 

number of support vectors are needed to reconstruct the 

missing region. However, the cost of its superior 

effectiveness is the larger number of free parameters for 

estimation compared to the reference reconstruction 

methods, which require higher calculation time. Shafizadeh 

Moghadam and others  [6] to model land cover change from 

SVR with different linear (LN) and non-linear single kernel 

functions such as RBF, sigmoid, polynomial to identify 

non-linear patterns in land use data in urban growth has 

been used. With such an approach, choosing the appropriate 

kernel function in SVR has a direct impact on the accuracy 

of the Land Cover Change (LCC) model. Therefore, 

different kernel functions are used in two general steps in 

combination with GA and without GA, and then the 

resulting simulated maps of each combination using a 

recently modified version of receiver operating 

characteristics (ROC) called Total Operating Characteristic 

(TOC) has been studied. To show the importance of feature 

selection in the performance of the model, when all the 

selected explanatory factors were related to the selected 

kernel functions, GA was used to perform an optimal 

feature selection process by removing the features which 

are relevant in the binary bit coding. It is used to set them to 

zero at the end of the algorithm operation. The results show 

that the synergy between GA and SVR can effectively 

optimize the process of selecting the variables used in the 

preparation of the LCC model, and as a result, strengthen 

the accuracy of the SVR prediction, which has the highest 

performance related to the SVR-RBF-GA model and the 

lowest one, corresponds to the SVR-LN-GA model. Wu et 

al.  [7] proposed a multi-kernel regression algorithm based 

on gradient boosting for short-term electric charge 

forecasting. The proposed BMKR solves the MKL problem 

using a reinforcement learning approach with less 

computational cost. They first adopt reinforcement to learn 

a set of multiple kernel regressions and then extend this 

framework to the field of homogeneous and heterogeneous 

transfer learning. Experimental results on the residential 

data show that the prediction error can be reduced by a 

large margin based on the knowledge which has been 

learned from other houses. 

The mentioned methods are limited to specific 

applications and suffer from the limitations of SVM in 

large-scale regression problems. Besides, they are not 

planned to work with very large data. Even the methods 

that have used the kernel combination or MKL, except for a 

few cases, have often not taken any action to pre-process 

the data and reduce its redundancy. Therefore, in this 

research, we tried to solve this weakness with the proposed 

method. 

Since CVM regression in kernel function parameter 

optimization has not been noticed by researchers, previous 

studies are reviewed as follows. In  [8], Tsang et al. have 

extended the CVM algorithm to regression settings by 

generalizing the MEB problem. Their core vector 

regression algorithm can be used with both linear and non-

linear kernel functions and is able to obtain the possible 

approximate optimal solution. Their proposed method has 

also been successfully applied to large 3D point sets in 

computer graphics for implicit surface modeling.  Gu et al. 

in  [9] have presented a new algorithm called sequential 

corevector machine, which, like the original CVM, has 

approximately linear time complexity and space complexity 

independent of the number of training data. Experiments on 

five different preliminary regression algorithms have shown 

that their proposed algorithm has a generalization capability 

comparable to existing SVM implementations when the 

data size increases, and additional training for OCVM is 

also possible, so it can be used in an online scenario. 

Gu et al.  [10] proposed an extreme vector machine 

(EVM) for fast training of SVM with different but common 

loss functions in a large dataset. For the regression work, 

they used the least square loss function and named the 

resulting machine LS-EVMR. Their experimental results 

show that EVM performs better or at least comparable to 

CVR algorithm, L2 Support Vector Machine - Fast 

Regression Vector Kernel Function Density Estimation 

Algorithm (L2SVR-FastKDE) in terms of accuracy, 

training time, number of support vectors and robustness. 

Approximate extreme point support vector machine 

(AESVM). 

 

3. Kernel Based Methods for Regression 

 

In this section, the basis of the CVR theory is explained 

and the condition of the proposed kernel function is 

discussed to construct the hybrid kernel CVR to improve its 

regression performance. 

3.1 Kernel Based Methods as MEB Problems 

 

Consider the Support Vector Data Description 

(SVDD)  [11] with a hard margin: 
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4. Proposed Method 

 

In this section, our parameter optimization method for 

CVR is described as follows. 

 

4.1 Parameter Optimization for CVR 

In this method, we try to form a CVR -based regression 

analysis system using the conventional kernelfunctions and 

find the optimal values of the common kernelfunctions and 

parameters in the main CVR formulas such as C and ε the 

resulting system by the Grid algorithm  [14]. It should be 

noted that the Grid algorithm is used in the data 

classification by the RBF kernel function, and in this study 

we will also apply this algorithm to select the parameter of 

other kernel functions to improve its effectiveness in 

improving system regression analysis. In order to reduce 

data dimensions, computational complexity and facilitate 

system performance on large investors, a preprocessing 

based on the feature extraction of system input data has also 

been applied. Figure (2) shows the diagram of proposed 

regressor using Grid algorithm and its components. 

 

 
Fig.2. The architecture of the proposed system to reduce the CVR analysis 

error based on the parameter optimization using Grid algorithm 

4.1.1 Scaling of Input Dataset 

At the beginning of this procedure, the input data is read 

and the attribute values are scaled to the range [1, 0] or [-1, 

1] depending on the type of data and its attribute values, in 

order to avoid the influence of rates. Different data in the 

values of features and numerical problems during 

calculations must be avoided. 

4.1.2DataPre-processing Based on Distributed Principal 

Component Analysis and Performance with Observer to 

the Proposed Method in Regression Analysis 

Finding patterns between data in high dimensions can 

be difficult. The Supervised Sparse and Functional 

Principal Component Analysis (SupSFPC) framework can 

combine monitoring information to recover underlying data 

structures that are more interpretable. This framework 

unifies and generalizes several existing methods in which it 

develops an efficient modified expectation-maximization 

algorithm for parameter estimation  [15]. Also, it has fast 

data-driven procedures for adjusting parameter selection. In 

this way, we can perform the regression analysis of the 

desired data better and more efficiently. 

4.1.3 Parameter Selection for CVR Parameters and its 

Kernel Function Based on Grid Algorithm 

The description of kernel function parameters and their 

improvement method using Grid algorithm in the proposed 

method is given below. 

In this method, the list of parameters in the CVR 

formulation and kernel functions that we have considered 

for this problem in order to find suitable values for them is 

shown in Figure (3): 

 

RBF: C ε E0 

 Laplacian: C ε E� 
Inverse Distance: C ε E� 

Polynomial: C ε E% r D 

Fig.3.List of real value parameters for the CVR formulation and 

considered kernel functions based on the Grid algorithm 

Parameter C is related to the term of penalty in the main 

formula of CVR and determines the margin of the decision 

making boundaries with the interval of allowed changes [0  

1000], parameter ε is the growth rate of the radius of MEB 

in order to include new samples with the interval of 

changes [0.000001 0.1], the γ parameter is related to RBF, 

laplacian, inverse distance and polynomial functions with 

the allowed variation interval [0.1 10]. Also, the bias 

parameter with the range of changes [1 10] and the degree 

parameter with the range of changes [2 5] are also 

considered in the polynomial kernel function. 

4.1.3.1 Evaluation criterion 

Since the purpose of this method is to reduce the 

regression analysis error of the core vector machine, we 

have considered the smallness of the regression analysis 

error on the test set of the target data using the mean 

absolute error method that will be introduced. 

This method of error calculation in regression analysis 

is done using equation (15). 
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5- Experimentation and results 

We have used various examples of artificial and real 

world datasets to conduct experiments in different stages of 

our research. Synthetic data are production data used for a 

specific situation that are not obtained by direct 

measurement, but are data that are produced, stored and 

used by researchers to perform scientific processes. Real 

world data is defined as data derived from a number of 

sources that relate to outcomes in a heterogeneous 

population of patients, biological, economic, statistical 

phenomena, etc. in real world settings. The most popular 

source for real-world data, the UCI  [16], which we will use 

in our experiments. 

In experimental research, artificial data after statistical 

distributions as well as data from real world programs are 

used as test data sets. The use of artificial data set allows 

testing the algorithm or data structure under certain exact 

conditions or in extreme conditions. 

In order to examine the abilities and capabilities of the 

proposed model in regression analysis, we have used the 

change and update of the toolbox implemented by Frank 

Michael Schleif [19] in the classification of data for CVM in 

the MATLAB software environment. 

To measure the effectiveness of our proposed methods, 

we used the datasets of UCI databases, DELVE repository, 

MLnet Archive and StatLib. Table 1 shows the 

specifications of the benchmark datasets. In the case of the 

Forest cover type dataset, according to [20], we intend to 

separate class 2 from other classes. As described in [21], we 

transform this classification problem into a regression by 

predicting +1 for class 2 samples and −1 for other classes. 

 
Table 1.Characteristics of benchmark datasets used in regression analysis 

experiments 

Dataset Name 
Number of 

Features 

Number of 

Samples 

Pyrimidines 27 74 

Traizine 60 176 

Machine CPU 6 209 

Housing 13 506 

Stock 9 949 

Abalone 8 4118 

Computer Activity 21 8192 

Kinematics 8 8192 

Pole 

Telecommunication 
48 15000 

Elevators 18 16599 

Census House 137 22884 

Friedman 10 40768 

Forest Cover Type 54 581012 

 

In Table 2, we have shown the test results with the 

proposed method, which contains the error rate of the 

regression analysis obtained for each of the investigated 

dataset in the average state of ten times of running the Grid 

algorithm. The result of the regression analysis by 

implementing the proposed method for each data is 

displayed in the form of mean ± standard deviation.  The 

results indicate that other kernel functions often have 

comparable regression analysis error than the RBF kernel 

function. In case of small and medium datasets, laplacian 

kernel function has comparable performance rather than 

RBF kernel but in case of large datasets RBF kernel 

function has a lower error rate.  

In Table 3, we have reported the amount of core vector 

stored by the proposed method for each of the benchmark 

dataset. As can be seen from the results, in most cases, the 

polynomial kernel function has stored less number of core 

vectors than other kernel functions, particularly the RBF 

kernel function. Therefore, the regression analysis system 

based on this kernel function in the proposed method will 

be less complicated. Figure 4 shows the number of 

storedcore vectors of the proposed parameter optimization 

method on forest cover type dataset for different sizes of the 

training set. Thus, the number of core vectors increases 

with the size of the training set. 

 
Fig.4.The number of core vectors stored in regression analysis of 

the proposed method for the Forest Cover Type dataset 

In Table 4, we have reported the average execution time 

in each experiment for training and testing each of the 

benchmark datasets in the proposed method. All the 

columns related to the training times follow the pattern of 

minutes: seconds, which is related to the entire training set. 

All the columns related to the training and testing time of 

the dataset with the value of less than one minute, are 

calculated in seconds. 

As results showed, the inverse distance kernel function 

had a better training time in most cases and had a faster 

testing time for large datasets. 

Figure 5 shows the performance of the proposed method 

based on MAE criterion for different values of the 
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parameter ε on the Friedman dataset. It can be seen that the 

proposed method has low MAE rate for different kernel 

functions. Therefore, setting a value of ε = 10-4 is 

acceptable as a compromise between training speed and 

regression error for most kernel functions. 

 

5. Conclusion 

 

In the current paper, an approach to reduce CVR 

regression error was proposed. Based on the experimental 

results, the proposed method has a low error rate, which can 

be related to the use of pre-processing based on distributed 

and functional principal component analysis with the data 

observer and the selection of the kernel function parameter 

by the Grid algorithm. 

The reasons for the success of the proposed method can 

be pointed to the use of the linear time complexity of CVR, 

the ability to estimate a better regression of the kernel 

function with the real modeling of the parameters based on 

the Grid algorithm, which enables us to better search and 

more effectively adjust the values of the CVR parameters, 

leads to a reduction in the regression error rate with an 

acceptable time and memory complexity. 

 

 

 

Table 2.Regression errors of the proposed method based on the MAE criterion 

Dataset Name RBF Laplacian Inverse Distance Polynomial 

Pyrimidines 0.0106±0.0050 0.0108±0.0031 0.0116±0.0044 0.0105±0.0035 

Traizine 0.0049±0.0023 0.0041±0.0018 0.0045±0.0019 0.0048±0.0021 

Machine CPU 0.5317±0.3246 5731±0.3319 0.6035±0.3034 0.5593±0.3333 

Housing 0.1074±0.0481 0.0975±0.0406 0.1097±0.0410 0.1018±0.0396 

Stock 0.1227±0.0185 0.1193±0.0159 0.1205±0.0164 0.1221±0.0183 

Abalone 0.0054±0.0019 0.0052±0.0015 0.0055±0.0023 0.0053±0.0021 

Computer Activity 0.0244±0.0066 0.0252±0.0058 0.0250±0.0069 0.0248±0.0067 

Kinematics 9.4914e-05±1.0203e-05 0.0011±1.4895e-05 0.0096±8.7152e-05 9.4034e-05±5.3494e-06 

Pole Telecomm 0.0099±0.0057 0.0117±0.0069 0.0132±0.0058 0.0116±0.0070 

Census House 4.1915e-04±5.0221e-05 1.1878e-04±3.6017e-05 9.7574e-05±2.0287e-05 1.0624e-04±1.3708e-05 

Friedman 7.4558e-04±1.4096e-04 8.0420e-04±5.0855e-05 8.2576e-04±1.1848e-05 8.3975e-04±1.3133e-04 

Forest Cover Type 2.7092e-06±1.3801e-06 3.5060e-06±1.3902e-06 3.1076e-06±1.6903e-06 3.7054e-06±1.1953e-06 

 

Table 3.The number of the core vectors produced in the proposed method for each of the benchmark dataset 

Dataset Name RBF Laplacian Inverse Distance Polynomial 

Pyrimidines 36 38 34 33 

Traizine 89 93 87 85 

Machine CPU 103 101 104 51 

Housing 247 245 244 196 

Stock 471 474 453 336 

Abalone 2006 2038 2031 1947 

Computer Activity 3347 4062 4064 3889 

Kinematics 3934 4053 3947 3986 

Pole Telecomm 4921 4948 4942 1456 

Census House 9743 9754 9729 2948 

Friedman 18997 20183 19583 18627 

Forest Cover Type 192071 191604 191436 123104 

 

Table 4. The caption must be followed by the table 

 

Dataset Name 
RBF 

Train 

Laplacian 

Train 

Inverse 

Distance 

Train 

Polynomial 

Train 

RBF 

Test 

Laplacian 

Test 

Inverse 

Distance 

Test 

Polynomial 

Test 

Pyrimidines 0.0238 0.0201 0.0168 0.0232 0.0050 0.0087 0.0055 0.0061 

Traizine 0.0489 0.0747 0.0393 0.0441 0.0039 0.0046 0.0011 0.0029 



Journal of Applied Dynamic Systems and Control,Vol.6, No.3, 2023: 1-8 

 
7 

 

 

Machine CPU 0.0383 0.0375 0.0379 0.0391 0.0031 0.0038 0.0031 0.0028 

Housing 0.1401 0.1332 0.1324 0.1379 0.0059 0.0062 0.0051 0.0054 

Stock 0.3552 0.3478 0.3467 0.3515 0.0125 0.108 0.0136 0.0152 

Abalone 0.4789 0.4983 0.5031 0.4904 0.1070 0.1219 0.1203 0.1153 

Computer Activity 1.4968 1.4693 1.5273 1.5473 0.2989 0.2954 0.3024 0.3198 

Kinematics 1.8532 1.7471 1.7258 1.7552 0.3601 0.3464 0.3282 0.3555 

Pole 

Telecommunication 
6.3002 6.3799 6.4002 6.5244 1.2301 0.1415 0.1423 0.1332 

Census House 1.5712 1.7467 1.6155 1.5644 0.2498 0.3326 0.2565 0.2496 

Friedman 2.9953 2.7269 2.8238 2.8608 0.6242 0.5852 0.5468 0.5546 

Forest Cover Type 20.5658 20.5254 20.3267 20.6564 0.0299 0.0315 0.0294 0.0306 

 

 

 
Fig.5.Performance studyof CVR mean absolute error for different types of kernel functions with different values of ε parameter on Friedman 

dataset.
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