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Abstract–In this paper, three methods of nonparametric fuzzy regression with crisp input and 

asymmetric trapezoidal fuzzy output, are compared. It analyzes the three nonparametric techniques in 

statistics, namely local linear smoothing (L-L-S), K- nearest neighbor Smoothing (K-NN) and kernel 

smoothing (K-S) with trapezoidal fuzzy data to obtain the best smoothing parameters. In addition, it 

makes an analysis on three real-world datasets and calculates the goodness of fit to illustrate the 

application of the proposed method. 
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1. Introduction 

 

In 1982 Tanaka et al.[1] introduced fuzzy regression 

analysis. After that time, several fuzzy regression 

approaches have been proposed, including the mathematical 

programming based methods [1], least squares based 

methods [2],[3] and other methods [4],[5]. In many real-

world problems, it may be unrealistic to predetermine a 

fuzzy parametric regression relationship especially for a 

large dataset with a complicated underlying variation trend. 

Along this line of consideration, some other approaches 

have been developed to handle the fuzzy regression 

problems without predefining a specific form of the 

underlying regression relationship. For instance, Ishibushi 

and Tanaka [6],[7] have suggested several fuzzy 

nonparametric regression methods by using the traditional 

back propagation networks. Also, statistical nonparametric 

smoothing techniques have achieved significant 

development in recent years [8],[9],[10]. These smoothing 

techniques are especially useful to handle the 

nonparametric regression problems and therefore there may 

be other promising tools for developing fuzzy 

nonparametric regression. In this aspect, Cheng and Lee [4] 

have extended the k-nearest neighbor (K-NN) and kernel 

smoothing (K-S) methods for the context of fuzzy 

nonparametric regression. In Wang et al. [11], the local 

linear smoothing method, the special case of the local 

polynomial smoothing technique, is fuzzified to handle the 

fuzzy nonparametric regression with crisp input and LR 

fuzzy output based on the distance measure proposed by 

Diamond [12]. Farnoosh et al. [5] used ridge estimation in 

nonparametric regression with triangular fuzzy data. 

In this paper, we propose to analyze the three 

nonparametric regression techniques in statistical regression, 

namely local linear smoothing (L-L-S), the K- nearest 

neighbor smoothing (K-NN) and the kernel smoothing 

techniques (K-S) with trapezoidal fuzzy data. 

This article is organized as follows: In section 2, we 

have some preliminaries about fuzzy nonparametric 

regression and trapezoidal fuzzy data. In section 3, 

smoothing methods for trapezoidal fuzzy numbers are 

proposed and in section 4, two numerical examples are 

solved.  

 

2. Preliminaries 

A fuzzy number A
~
is a convex normalized fuzzy subset of 

the real line R with an upper semi-continuous membership 

functionof bounded support [12]. 

 

Definition 2.1. An asymmetric trapezoidal fuzzy number A
~
, 

denoted by ),,,(
~ )4()3()2()1( aaaaA =  is defined as: 
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where )4()3()2()1( ,, aaaa are four parameters of the 

asymmetric trapezoidal fuzzy number. 

 

Definition 2.2.Suppose that ),,,(
~ )4()3()2()1( aaaaA =  and 

(1) (2) (3) (4)( , , , )B b b b b=ɶ  are two trapezoidal fuzzy numbers. 

Diamond distance between Aɶ and Bɶ can be expressed as:  
2 (1) (1) 2 (2) (2) 2

(3) (3) 2 (4) (4) 2

( , ) ( ) ( )

( ) ( )

d A B a b a b

a b a b

= − + −

+ − + −

ɶ ɶ

 

This distance measures the closeness between two 

trapezoidal fuzzy membership functions when 2( , ) 0d A B =ɶ ɶ . 

It means that the membership functions of Aɶ  and Bɶ are 
equal. 

 

Let { }(1) (2) (3) (4): ( , , , )F Y Y y y y y= =ɶ ɶ  be a set of 

all trapezoidal fuzzy numbers. The following univariate 

fuzzy nonparametric regression model is considered by 

{ }( )Y F x ε= + . In this model, X is a crisp independent 

variable (input) and Y is a symmetric trapezoidal fuzzy 

dependent variable (output). ε is an error term, and { }+  

is an operator whose definition depends on the fuzzy 

ranking method used.  

In this paper, for the nonparametric regression 

techniques, K-N-N and K-S are based on the concept of 

local averaging. In other words, the estimated value of the 

regression surface at point 0k  is the weighted average of 

the responses of the observations in the neighborhood of 

0k .  

 

Definition 2.3.Let , 1,2, ,iK i n= …  where the index is in 

ascending order, then the smoothing function based on local 

averaging can be represented as: 

 

(1) (2) (3) (4)

( ) ( )

( , , , )

i j
i k j i k

j j j j
i k j i k

S K K AVE Y

AVE y y y y

− ≤ ≤ +

− ≤ ≤ +

= =

=
 

 

where AVE denotes the mean, median or any weighted 

average. 

 

3. Smoothing methods for trapezoidal fuzzy 

numbers 

The basic idea of smoothing is that if a function f is 

fairly smooth, then the observations made at and near � 
should contain information about value of � . Thus, it 

should be possible to use local averaging of the data � to 
construct an estimator for ( )F x which is called the 

smoother. There are several smoothing techniques. We 

proposed K-nearest neighbor smoothing (K-NN), kernel-

smoothing (K-S) and local linear smoothing (L-L-S) 

methods for trapezoidal variable in this section.  

In the following discussion, asymmetric trapezoidal 

fuzzy numbers are applied as asymmetric trapezoidal 

membership functions for deriving nonparametric 

regression model based on the smoothing parameters. 

These models are considered univariate fuzzy 

nonparametric regression model as:
 ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4

{ }

, , , { }

F x

Y x Y x Y x Y x

Y ε

ε

= +

= +

ɶ

      (1) 

whereY is a trapezoidal fuzzy dependent variable as 

output. x is a crisp independent variable as input ,

x ∈ℝ , and x domain is assumed to be �. ( )F x is a 

mapping D F→ . The definition of the three smoothing 

methods for trapezoidal fuzzy variables is as follows: 

 

3.1. Local linear smoothing method (L-L-S) 

In the following discussion, Razzaghnia et al. [13] 

proposed the first linear regression analysis with trapezoidal 

coefficients. Asymmetric trapezoidal fuzzy numbers are 

applied as asymmetric trapezoidal membership functions 

for deriving bivariate regression model. A univariate 

regression model can be expressed as:  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 3 4

0 1 0 0 0 0

1 2 3 4

i1 1 1 1

,
ˆ

(2, )

, ,

, , X

i iX a a a aY A

a a

A

a a

= + =

+

ɶ ɶɶ

 

This model can be rewritten as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 2 3

i0 1 0 1 0

3 4 4

i i1 0 1

, X ,

X ,

ˆ

X

i

i

a a X a a a

a a a

Y
 + + =
 + + 

ɶ  

where 1, ,i n= …  and n  is the sample size. 

and ( )(1) (2) (3) (4)
, , ,i i i i iY Y Y YY =ɶ  is an 

observed value for 1, ,i n= …  . So .

ˆ
i LYɶ and .

ˆ
i RYɶ  are 
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the left bound and right bound of the predicted 
ˆ
iY
ɶ  at 

membership h  level. Also ,i LYɶ and ,i RYɶ  are left 

bound and right bounds of observed iY
ɶ
 at membership 

h level.  

Thereupon,  

( ) ( ) ( ) ( )2 2 1 1

, i0 1 0 1X (1
ˆ

) (1 )i L iha ha h a hY a X= + + − + −ɶ  

( ) ( ) ( ) ( )3 3 4 4

, i i0 1 0 1h h X ( )
ˆ

1 (1 ) Xi R a a h a h aY = + + − + −ɶ  

(2) (1)
, (1 )i L i ihY hY Y= + −ɶ  

(3) (4)
, (1 )i R i ihY hY Y= + −ɶ . 

Let ( ),i iX Yɶ  be a sample of the observed crisp inputs 

and trapezoidal fuzzy outputs with underlying fuzzy 

regression function of model (2).  

( )F x  is estimated at any x D∈ based on ( ), iix Yɶ

for 1, , .i n= … When the local linear smoothing technique 

is used, we shall estimate ( ) ( ) ( ) ( ) ( ) ( )1 2 3
, ,Y x Y x Y x  and 

(4) ( )Y x for each x D∈  by using the distance proposed by 

Diamond [12] as a measure of the fit ( Definition 2.2).  

This distance is used to fit the fuzzy nonparametric 

model (1). 

Let 
( ) ( ) ( ) ( ) ( ) ( )1 2 3

, ,Y x Y x Y x  and 
(4) ( )Y x  have 

continuous derivatives in the domain x D∈ . Then for a 

given 0x D∈  and Taylors expansion, 

( ) ( ) ( ) ( ) ( ) ( )1 2 3
, ,Y x Y x Y x  and (4) ( )Y x  can be locally 

approximated in neighborhood of 0x  , respectively by 

the following linear functions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1(1) '
0 0 0( ) (3)Y x Y x Y x Y x x x= + −

⌢
≃  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2'
0 0 0 4( )Y x Y x Y x Y x x x= + −

⌢
≃  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3'
0 0 0 5( )Y x Y x Y x Y x x x= + −

⌢
≃  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4'
0 0 0 6( )Y x Y x Y x Y x x x= + −

⌢
≃  

 

where (1) (2) (3)
0 0 0( ), ( ), ( )Y x Y x Y x′ ′ ′  and (4)

0( )Y x′  are 

respectively, the derivatives of ( ) ( ) ( ) ( ) ( ) ( )2 31
, ,Y x Y x Y x  

and ( ) ( )4
Y x based on Diamond distance (Definition 2.2) and 

the local linear smoothing method is estimated at 0x , 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
0 0 0 0 0, , ,F x Y x Y x Y x Y x=  

by minimizing 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

2

1 2 3 4

1

2 3 4

0

1

12

ˆ
,

, , , , , , , ( )

n

i i

n

i i i i i i

i

i

i

i i h

Yd Y

d Y Y Y Y K xY Y Y xY

=

=

 
 
 

= −

∑

∑

ɶ

⌢ ⌢ ⌢ ⌢

ɶ
(7) 

With respect to
( ) ( ) ( ) ( )1 2 3 4
, , ,i i i iY Y Y Y  and 

( ) ( ) ( ) ( )2 3 41
, , ,i i i iY Y Y Y

⌢ ⌢ ⌢ ⌢
 for the given kernel k(.) and 

smoothing parameter h, where ( )
0

0

i

h i

x x

hK x x k
h

 −
 
 − =
 
 
 

  

for 1, ,i n= …  are a sequence of weights at 0x .Two 

commonly used kernel functions are parabolic shape 

functions: 

2

1

0.75(1 ) 1
( )

0

x if x
k x

otherwise

 − ≤
= 


 

and Gaussian function: 

( ) ( )
2

1
2

2 2 exp( )
2

x
k x π

− −
=  

Also, by substituting (3), (4), (5) and (6) at (7), the 

following can be obtained   

( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 3 4

2 2
0

1 2 3 4
1 1

, , ,

, ( )

, , , ,

n n i i i i

i i h i

i i i i i i

Y Y Y Y

d Y Y d K x x

Y Y Y Y= =

 
 

= − 
 
 

∑ ∑
⌢

ɶ ɶ
⌢ ⌢ ⌢ ⌢

( ) ( ) ( ) ( ) ( )( )( )21 1 1'
0 0 0 0

1

( )

n

i h ii

i

Y Y x Y x x x K x x

=

= − − − −∑  

( ) ( ) ( ) ( ) ( )( )( )22 2 2'
0 0 0 0

1

( )

n

i h ii

i

Y Y x Y x x x K x x

=

+ − − − −∑  

( ) ( ) ( ) ( ) ( )( )( )23 3 3'
0 0 0 0

1

( )

n

i h ii

i

Y Y x Y x x x K x x

=

+ − − − −∑  

( ) ( ) ( ) ( ) ( )( )( )2'
0 0 0 0

4 4 4

1

( ) (8)

n

i h ii

i

Y Y x Y x x x K x x

=

+ − − − −∑  

By solving this weighted least-squares problem, the 

following can be obtained 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 3 4

2

1 1

3 4

, , , ,

, , ,

Y x Y x Y x Y x Y x

Y x Y x Y x

′

′ ′ ′
 

at 0x . So the estimation ( )F x  at 0x  is   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4
0 0 0 0 0( , , , )x Y x Y x Y YY x x=

⌢ ⌢ ⌢ ⌢⌢
ɶ .  

Equation (8) has eight unknown parameters 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 2 31 1
0

4
0 0 0, , , , , , ,Y x Y x Y x Y x Y x Y x Y x Y x′ ′ ′ ′

to derive a formula for the unknown parameters 

nonparametric regression based on minimizing this distance, 

the derivatives (8) with respect to the eight unknown 

parameters need to be derived, set to zero and solve the 

eight unknown parameters. 

According to the principle of the weighted least-squares 
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and utilizing matrix notations, we can obtain  
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1' 1

0 0 0

(1)
0 0

( , ) ( ; )

( ) ( ; ) (9)

T T

T

x x X x W x h X x

X x W x h Y

Y Y −=

ɶ

⌢ ⌢

( ) ( ) ( ) ( ) ( ) ( ) ( )' 1
0 0 0

2

(2
0

2

)
0

( , ) ( ; )

( ) ( ; ) (10)

T T

T

x x X x W x h X x

X x W x h Y

Y Y −=

ɶ

⌢ ⌢

( ) ( ) ( ) ( ) ( ) ( ) ( )' 1
0 0 0

3

(3
0

3

)
0

( , ) ( ; )

( ) ( ; ) (11)

T T

T

x x X x W x h X x

X x W x h Y

Y Y −=

ɶ

⌢ ⌢

( ) ( ) ( ) ( ) ( ) ( ) ( )' 1
0 0 0

4

(4
0

4

)
0

( , ) ( ; )

( ) ( ; ) (12)

T T

T

x x X x W x h X x

X x W x h Y

Y Y −=

ɶ

⌢ ⌢

 

where 

( )

(1) (2)
1 1

1 0 (1) (2)
(1) (2)2 2

0 2 0

(1) (2)

0

(3) (4)
1 1

(3) (4)
(3) (4)2 2

(3) (4)

1

1 , ,

1

, ,

n n
n

n n

Y Y
x x

Y Y
X x x x Y Y

Y Yx x

Y Y

Y Y
Y Y

Y Y

          −      = − = =                  − 

   
   
   

= =   
   
   
   

ɶ ɶ

⋮ ⋮
⋮⋮

ɶ ɶ

⋮ ⋮

 

and
( ) ( ) ( )

( )
0 1 0 2 0

0

; ( ,Diag

, , )

h h

h n

W x h K x x K x x

K x x

= − −

… −
 

is a � × � diagonal matrix with its diagonal elements 
being ( )h i oK x x−  for 1, ,i n= …  and symbol T is 

transpose of a matrix. If we suppose 
1 (1,0)Te = and 

( ) ( ) ( ) ( ) ( ) ( )1
0 0 0 0 0 0; ( ; ) ;T TH x h X x W x h X x X x W x h−=  

The estimate of ( )F x  at 0x  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
0 0 0 0, , ,x x xY Y Y Y Yx x=

⌢ ⌢ ⌢ ⌢ ⌢
ɶ  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 3
1 0 1 0 1 0

4
1 0

( ; ,

, ) (13

, ; ;

; )

T T T

T

e H x h e H x h e H x hY Y Y

e H h Yx

= ɶ ɶ ɶ

ɶ

 

3.2. K- Nearest neighbor smoothing (K-NN) 

The K-NN weight sequence was introduced by 

Loftsgaarden and Quesenberry [14] in the related field of 

density estimation and has been used by Cover and Hart [15] 

for classification purposes. The K-NN smother is defined as: 

1

( )) (14i j

n

j

jx YY ω
=

= ∑ɶ  

where 

  ( ) 1, ,j x for j nω = … is a the weight sequence at x

andis defined as 

 

( ) ( )1
, 1, ,

(15)

0 ,
j

j J x j n
x k

otherwise

ω


∈ = …
= 



 

where xJ  is one of K-nearest observations to x and 

iY
⌢
ɶ  is the estimate of the observations iY

ɶ  for 1, ,i n= …  

and 
( ) ( ) ( ) ( )1 2 3 4

( , , , )i i i i iY Y Y Y Y=ɶ be asymmetric 

trapezoidal fuzzy numbers. So based on (14) and (15) we 

have 

( ) ( ) ( ) ( )2 3 4

1 1

1

1 1

, , ,( )i j j j jj j

n n n n

j j

j j

j j

Y Y Y Y Yω ω ω ω
= = = =

= ∑ ∑ ∑ ∑
⌢
ɶ  

( )

( )

( )

( )

( )

( )

( )

( )1 2 3 4
, ,

1 1 1 1
,( )j j j j

j J x j J x j J x j J x

Y Y Y Y
k k k k

∈ ∈ ∈ ∈

= ∑ ∑ ∑ ∑  

The K-NN smoothing parameter is the neighborhood 

size k. So if a relatively small neighborhood size is used, 

this will increase the regression noise and a relatively large 

neighborhood size is used which will increase the 

regression error. So section (3.4) describes leave-one-out 

cross-validation for finding k optimal value and this can be 

obtained by minimizing cross-validation criterion.  

3.3. Kernel smoothing (K-S) 

K-NN smoothing is a weighted averaging neighborhood 

and weights in neighborhood are treated equally. So in 

kernel smoothing  ( )S x is defined by a fixed neighborhood 

around x . It is determined by kernel function and band 

with h. The fuzzy regression equations for kernel 

smoothing and K-NN smoothing are the same and so are 

represented by equation (14). In kernel smoothing method, 

( )j oxω for 1, ,j n= … , at 0x is defined as 

( )

1 1

( )( )

( ) ( )

j o

h j o

j o n n
j o

h i o

i i

x x
KK x x

hx
x x

K x x K
h

ω

= =

−
−

= =
−

−∑ ∑
 

and 

( ) ( )

( )

( ) ( )

( )

3 4

1 1

1 1

, )

n n

h j o j h j o j

j j

n n

h i o h i o

i i

K x x Y K x x Y

K x x K x x

= =

= =

− −

− −

∑ ∑

∑ ∑
 

the weight sequence is defined by ( ) 1
h

x
K x K

h h

 
=  

 
 

which is the kernel with scale factor. So the kernel 

smoothing parameter is band with h and weight depends on 

smoothing parameter h. 

( ) ( )

( )

( ) ( )

( )

1

21

1

1 1

( , ,

n n

h j o h j oj j

j j

i n n

h i o h i o

i i

K x x Y K x x Y

Y

K x x K x x

= =

= =

− −

=

− −

∑ ∑

∑ ∑

⌢
ɶ



Journal of Applied Dynamic Systems and Control,Vol.4, No.2, 2021: 85-94 

 
89 

 

 

3.4. Smoothing parameters selection  

The most important aspect for averaging techniques and 

local linear smoothing method is selecting the size of 

neighborhood to average k and parameter h. There are 

different methods for selecting parameter h such as the 

cross-validation method, and generalized cross validation 

which are used to obtain parameter h. Let  

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

3 4

, , , ,
,

, , ,

i i

i

i i

Y x h Y x h
Y x h

Y x h Y x h

 
 =
 
 

⌢ ⌢
⌢
ɶ

⌢ ⌢  

The fuzzified cross-validation procedure (CV) for 

selecting parameter h local linear smoothing method based 

on Diamond distance is defined as: 

( ) ( ) ( )1 (1)2 2

1 1

1 1
, (( )

n n

i i i i

i i

CV h d Y Y Y Y
n n

= =

= = − +∑ ∑
⌢ ⌢

ɶ ɶ  

( ) ( ) ( )(2) (3) (4)2 23 22 4
( ) ( ) (( ) (16))i i i i i iY Y Y Y Y Y− + − −+

⌢ ⌢ ⌢

 

as its minimization gives the h optimal value. 

( ) ( )0 minh oCV h CV h>=  

In fact, we may compute ( )CV h  for a series of value of 

h to search for h.  

So selected optimal value of h  by the ( )CV h  nearly 

depends on the degree of smoothness of iLY and iRY . 

Large value of h leads to lack-of-fit and small value of h 

makes over-fit. 

Also the cross validation leave-one-out technique is 

used for selecting values k and h in K-NN and KS methods 

that are obtained by minimizing the cross-validation 

criterion. According to Stone [16], the CV criterion is 

defined as 

( ) ( )

( )

\

1

1

1
[ , , ]

1
( ( )) (17)

n

i b i i

i

n

i i

i

CV b L Y Y x o
n

D b C b
n

=

=

=

= +

∑

∑

⌢
ɶ ɶ

 

where 

( )\

1

, ( )b i i j i j

j j i

n

Y x Yx o ω
= ≠

= ∑
⌢
ɶ ɶ  

where ( )i jxω  is a function with respect to jx , 

( )iD b is the measure of difference and ( )iC b is the 

measure of inclusion as in: 

( ) ( ) ( )\ \, ,
L RL R

i b i i i b i i iC b P Y x o Y Q Y x o Y
α αα α

         = − + −               

⌢ ⌢
ɶ ɶ ɶ ɶ

 

where P and Q are penalty terms and are defined as: 

( )\

,

1,

0

,
LL

i b i iif Y Y x o
P

otherwise

α α

    ≤    =  



⌢
ɶ ɶ

 

and 

( )\

0

1, ,

,

i b i i

RR
if Y Y x o

Q

otherwise

α α

    ≤    =  



⌢
ɶ ɶ

 

To obtain ( )iD b , we will use difference measure of an 

trapezoidal fuzzy number A, by using the method of Chang 

and Lee [17], which is defined as: 

( ) ( ) ( ) ( ) ( ) ( )
1

1 2

0

O ,M A L Rv v A v v A v dvϖ χ χ + = ∫  

Thus ( )iD b  is calculated by using equation (17). For 

the calculation of parameter b, we minimize the CV 

criterion equation (16). 
*b which is defined as:  

{ }* ( )b argmin CV b=  

So 
*b  is the neighborhood size k in K-NN smoothing 

method and band with h in kernel smoothing method.  

The quantity for comparison between methods of 

smoothing is goodness offit ( )GOF . It measures the 

difference between fuzzy regression function and its 

estimation. So, based on Diamond distance GOF  is 

defined as:
 

( ) ( )

( ) ( ) ( )

11 12 (1) 2
, (( )

1 1

(2) 2 (3) 2 (4) 2
( ) ( ) ( )

2 3 4

n n
GOF d Y Yi ii in ni i

Y Y Y Y Y Yi i i i i i

Y Y +

+ +

∑ ∑= = −
= =

− − −

⌢

⌢

ɶ

⌢

ɶ
⌢

⌢
 

where iY
⌢
ɶ is the estimation of the fuzzy regression 

function at all ix s by one of the smoothing methods. So a 

very large value of GOF  indicates lack-of-fit and a small 

value shows over-fit for the observed fuzzy outputs. 

 

4. Extension the proposed method to multivariate 

input 

It is straightforward to extent the proposed methods to 

the case of multivariate input. In fact, let 

x = ���, �
, … . , ��be a p-dimensional crisp input and Y be 
a trapezoidal fuzzy output. The fuzzy nonparametric 

regression model in this case is of the form  

� = �(�)���, �
, … . , �� + �(
)���, �
, … . , ��
+ �(�)���, �
, … . , ��
+ �(�)���, �
, … . , �� 

= �(�){+}� 
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4.1 K- Nearest neighbor smoothing (K-NN) 

The K-NN smother is defined as: 

1

( )) (18i j

n

j

jx YY ω
=

= ∑ɶ
 

where 

  ( ) 1, ,j x for j nω = … is a the weight sequence at 

x and is defined as 

( ) ( )1
, 1, ,

( 19 )

0 ,
j

j J x j n
x k

otherwise

ω


∈ = …
= 


 

where xJ  is one of K-nearest observations to x and 

iY
⌢
ɶ  is the estimate of the observations iY

ɶ  for 1, ,i n= …  

and 
( ) ( ) ( ) ( )1 2 3 4

( , , , )i i i i iY Y Y Y Y=ɶ be asymmetric 

trapezoidal fuzzy numbers. So based on (14) and (15) we 

have 

( ) ( ) ( ) ( )2 3 4

1 1

1

1 1

, , ,( )i j j j jj j

n n n n

j j

j j

j j

Y Y Y Y Yω ω ω ω
= = = =

= ∑ ∑ ∑ ∑
⌢
ɶ

 

( )

( )

( )

( )

( )

( )

( )

( )

1 2 3

4

, , ,
1 1 1

)

(

1

j j j

j J x j J x j J x

j

j J x

Y Y Y
k k k

Y
k

∈ ∈ ∈

∈

= ∑ ∑ ∑

∑
 

The K-NN smoothing parameter is the neighborhood 

size k. ( 1,... )ilY l p=
⌢
ɶ are computed for 

1 2( , ,..., )pX x x x= then 

1
i i lY Y

n
=

⌢ ⌢
ɶ ɶ

 
 

4.2 Kernel smoothing method 

It is the same K- Nearest neighbor smoothing method 

but ( )j oXω for 1, ,j n= … , at 0X is defined as 

��(x�) = ��(�x� − x��)
∑ ��(‖x" − x�‖)#"$�

= �(�%&'%(�
� )

∑ �(‖%)'%(‖
� )#"$�

, *

= 1, … , �, 
4.3 Local linear smoothing 

Suppose that 
( ) ( ) ( ) ( ) ( ) ( )1 2 3

, ,X XY Y Y X  and 

( 4 )( )Y X  have continuous derivatives in the domain 

x D∈ . Then for a given 0x D∈  and Taylor's 

expansion, ( ) ( ) ( ) ( ) ( ) ( )1 2 3
, ,X XY Y Y X  and 

( 4 )( )Y X  

can be locally approximated in neighborhood of 0x  , 

respectively by the following linear functions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 )1 1 1 ((1)
0 0 1 01

)

0
(1

0

( ) ...

( ) (20)
p

p p

x

x

Y x Y x Y x Y x x x

Y x x x

= + − +

+ −

⌢
≃

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

12 )2 2 2 ('
0 0 1 01

0 0
(2)

( ) ...

( ) 21
p

x

x

p p

Y x Y x Y x Y x x x

Y x x x

= + − +

+ −

⌢
≃

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

13 )3 3 3 (
0 0 1 01

0 0
(3)

( ) ..

2

.

( ) 2
p

p

x

x

p

Y x Y x Y x Y x x x

Y x x x

= + − +

+ −

⌢
≃

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

14 4 4 ( )
0 0 1 01

)
0 0

4

(4

(

2

) .

3

..

( )
p

p p

x

x

Y x Y x Y x Y x x x

Y x x x

= + − +

+ −

⌢
≃

 

where 

( 1 )( ) ( 2 )( ) ( 3 )( )

0 0 0( ), ( ), ( )j j jx x x
Y x Y x Y x  and 

( 4 )( )

0( )jxY x  are respectively, the derivatives of 

( ) ( ) ( ) ( ) ( ) ( )2 31
, ,Y x Y x Y x  and ( ) ( )4

Y x with 

respect to ( )x
j

based on Diamond distance (Definition 

2.2) and the local linear smoothing method is estimated 

at 0x , 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
0 0 0 0 0, , ,F x Y x Y x Y x Y x=  

by minimizing 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )
( )

2 3 41 2 3 4 12 2

0

1 1

ˆ
, , , , , , , ,

( ) 24

n n

i i i i i i i i i i

h

i

i

i

d Y d Y Y YY Y Y Y YY

K XX

= =

  = 
 

−

∑ ∑
⌢ ⌢ ⌢ ⌢

ɶ ɶ
With 

respect to
( ) ( ) ( ) ( )1 2 3 4
, , ,i i i iY Y Y Y  and 

( ) ( ) ( ) ( )2 3 41
, , ,i i i iY Y Y Y

⌢ ⌢ ⌢ ⌢
 

for the given kernel k(.) and smoothing parameter h, where 

( )
0

0

i

h i

X

hX k

X

K X
h

 −
 
 − =
 
 
 

  for 1, ,i n= …  are a 

sequence of weights at 
0X . 

Also, by substituting (20), (21), (22) and (23) at (24), 

the following can be obtained   

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )1 2 3 4 1 2 3 42 2

1 1

0

, , , , , , , ,

( )

n n

i i i i i i i i i i

i i

h i

d Y Y d Y Y Y Y Y

XX

Y Y Y

K

= =

=

−

∑ ∑
⌢ ⌢ ⌢ ⌢ ⌢

ɶ ɶ



Journal of Applied Dynamic Systems and Control,Vol.4, No.2, 2021: 85-94 

 
91 

 

 

( ) ( ) ( ) ( ) ( )( )
2

1 ( )1 1
0 0 0 0

1 1

( )j

pn
x

i ij j h i

i j

Y Y x Y x Xx K XX

= =

 
 = − − − −
 
 

∑ ∑  

( ) ( ) ( ) ( ) ( )( )
2

( )

0 0 0 0

1

2

1

22
( )j

pn
x

i ij j h i

i j

Y Y x Y x Xx K XX

= =

 
 + − − − −
 
 

∑ ∑  

( ) ( ) ( ) ( ) ( )( )
2

( )

0 0 0 0

1

3

1

33
( )j

pn
x

i ij j h i

i j

Y Y x Y x Xx K XX

= =

 
 + − − − −
 
 

∑ ∑  

( ) ( ) ( ) ( ) ( )( )
2

( )

0 0 0 0

1

4

1

44
( ) ( 25 )j

pn
x

i ij j h i

i j

XY Y x Y x x K X X

= =

 
 + − − − −
 
 

∑ ∑

 

0iX X− is Euclidean distance between iX  and 0X .  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
0 0 0 0, , ,x x xY Y Y Y Yx x=

⌢ ⌢ ⌢ ⌢ ⌢
ɶ  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 3
1 0 1 0 1 0

4
1 0

( ; ,

, ) (26

; ;

)

,

;

T T T

T

e H h e H h e H h

e H h

X Y X Y X Y

X Y

= ɶ ɶ ɶ

ɶ
 

where 

( )
11 01 1 0

0 21 01 2 0

1 01 0

1

1 ,

1

...

...

...

p p

p p

n np p

x x x x

X x x x x x

x x x x

 
 

− − 
 = − − 
 
 
 − − 
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( 1 ) ( 2 ) ( 3 ) ( 4 )
1 1 1 1

( 1 ) ( 2 ) ( 3 ) ( 4 )
( 1 ) ( 2 ) ( 3 ) ( 4 )2 2 2 2

( 1 ) ( 2 ) ( 3 ) ( 4 )

, , ,

n n n n

Y Y Y Y

Y Y Y Y
Y Y Y Y

Y Y Y Y

       
       
       

= = = =       
       
       
       

ɶ ɶ ɶ ɶ
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and
( )0 1

02

0

0

; (

, , , )

Diag ( )

( ) ( )p

h

h h

W h K X

K X K X

X X

X X

= −

− … −
 

is a � × � diagonal matrix with its diagonal elements 
being ( )h i oK x x−  for 1, ,i n= …  and symbol  

T is transpose of a matrix. If we suppose 1 (1,0 )Te =

and ( ) ( ) ( ) ( ) ( ) ( )1
0 0 0 0 0 0; ( ; ) ;T TH x h X W hX X X X W hX X X−=  

  

The estimate of ( )F x  at 0x  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
0 0 0 0, , ,x x xY Y Y Y Yx x=

⌢ ⌢ ⌢ ⌢ ⌢
ɶ  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
1 0 1 0

3 4
1 0 1 0

( ; , ;

;

,

7);, ) (2

T T

T T

Y Y

Y

e H x h e H x h

e H x h e H x h Y

= ɶ ɶ

ɶ ɶ  

 

5. Numerical Examples and Conclusion 

In this section, there are two examples in which the 

input is a crisp number and the output is a trapezoidal fuzzy 

number. We estimate the values by using three smoothing 

methods. Then these methods can be compared with each 

other and for this purpose, their GOF and their charts are 

used.  

 

Example 1: This example is a generated dataset in the 

same way as that in Cheng and  Lee [4] The following 

function is considered ( )
2

102
5

x
x

f x e= +  

So �" is uniformly generated within the interval [0, 1] 
and i=1,…,100, 

( )(1) (2) (3) (4)
i i i i iY ,Y ,Y ,Y

1 2
( , , , )

3 3
i i i i i i i i

Y

y e y e y e y e

=

= − + + +

ɶ

, so 

( ) [ 0.5,0.5]i iy f X rand= + − and 

( )1 / 4 [0,1].i ie f X rand= +
 

 

Local Linear smoothing method, K-NN and kernel 

smoothing are applied to the fitting model. So Gauss and 

Parabolic shape kernel are used to produce the weight 

sequence for local linear smoothing and kernel smoothing 

methods. Table 1 shows smoothing parameter selected by 

cross-validation procedure results from different methods. 

Figures 1, 2 and 6 show the results of three methods. These 

results can be compared using figure 3 and table 4. Like the 

previous example, L-L-S method is better than K-NN, and 

K- S methods. In table 3, GOF of L-L-S method is lower 

than K-NN, K- S methods.  

 

 
Fig.1Obtained results by L-L-S method with Gausian kernel for 

h=0.43 

 

 

_Y-./ = 0�12"
(�), �12"

(
), �12"
(�), �12"

(�)3 
•�1" = 0�"

(�), �"
(
), �"

(�), �"
(�)3 
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Fig.2 Obtained results by K-S method with Gausian kernel for h=0.12 

 

 

 
Fig.3 Obtained results by KNN method with K=19 

 

 

 

 

Table 1The obtained results of different methods for 

example 1 

method  kernel 
Smoothing 

parameter 
GOF  

KNN  -  19  0.328 

KS  
Gauss 

Parabolic shape 

0.12 

1.72 

0.30 

0.0085 

LLS  
Gauss 

Parabolic shape 

0.43 

1.2  

0.0045 

0.0046 

 

Example 2: Consider the following function: 

 

4(��, �
) = 24.238
(0.75 − 8
) + 5, 
8
 = (��/10 − 0.5)
 + (�
/10 − 0.5)
. 

 

where the domain of  X = (��, �
) is � = [0,10]
. A 
set of data is generated the same way as that in [18] and in 

the following manner. 

The crisp inputs of the independent variables �� and 
�
 are randomly taken from 0 to 10. Let output iY

ɶ  is a 

trapezoidal fuzzy number and it is generated by: 

 

( )(1) (2) (3) (4)
i i i i iY ,Y ,Y ,Y

1 2
( , , , )

3 3
i i i i i i i i

Y

y e y e y e y e

=

= − + + +

ɶ

, so  

@A" = 4(�"�, �"
),                           
C" = (1/4)4(�") + 8D�E[0,1], F G = 1, … ,30, 
 

where rand [D, H] denotes a random number between a 
and b for each i. the different methods are applied to fit 

regression model. The error value of IJ� are numerically 
used to evaluate the performance of the different methods. 

So Gauss kernel is used to produce the weight sequence for 

local linear smoothing and kernel smoothing methods. 

 

 

Tables 2 and 3 show the obtained results from different 

methods. These results can be compared each other. Like 

 

the previous examples, L-L-S method is better than K-

NN, and K- S methods.  

 

 

 

 

Table 2The input data and the fitted fuzzy outputs by three smoothing methods 

L-L-S K-S K-NN �1"  = 0�"
(�), �"

(
), �"
(�), �"

(�)3 �
 �� 

(2.148,2.85,3.55,4.25) (2.36,3.15,3.94,4.729) (2.7107, 3.6238, 4.5369, 5.4500) (2.1750, 2.8910, 3.6070, 4.3230) 5.9760 0.5160 

(2.67,3.64,4.61,5.59) (2.67,3.64,4.62,5.59) (2.7107, 3.6238, 4.5369, 5.4500) (2.6730, 3.6457, 4.6183, 5.5910) 2.1290 0.7250 

(3.28,4.32,5.38,6.43) 3.28,4.33,5.38,6.43)( (2.7543, 3.7417, 4.7290, 5.7163) (3.2840, 4.3347, 5.3853, 6.4360) 9.8370 0.8070 

(2.41,3.28,4.45,5.46) (2.52,3.51,4.5,5.48) (2.7843, 3.8252, 4.8661, 5.9070) (2.3060, 3.2447, 4.1833, 5.1220) 7.1500 0.8910 

(2.55,3.47,4.69,5.77) (2.57,3.598,4.62,5.66) (2.5983, 3.5637, 4.5290, 5.4943) (2.7630, 3.8963, 5.0297, 6.1630) 7.4820 1.0710 

(2.41,3.23,3.92,4.68) (2.58,3.43,4.28,5.13) (2.6270, 3.6628, 4.6986, 5.7343) (2.7260, 3.5500, 4.3740, 5.1980) 6.2100 1.1940 

Y-./ = 0�12"
(�), �12"

(
), �12"
(�), �12"

(�)3 

�1" = 0�"
(�), �"

(
), �"
(�), �"

(�)3 
• 

�1" = 0�"
(�), �"

(
), �"
(�), �"

(�)3 

_ Y-./ =
0�12"

(�), �12"
(
), �12"

(�), �12"
(�)3 

• 
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(2.40,3.42,4.68,5.82) (2.48,3.59,4.69,5.79) (3.5160, 4.5847, 5.6533, 6.7220) (2.3920, 3.5420, 4.6920, 5.8420) 4.8520 1.3000 

(5.43,6.86,7.9,9.136) (5.24,6.50,7.75,9.01) (3.7950, 5.0861, 6.3772, 7.6683) (5.4300, 6.6620, 7.8940, 9.1260) 5.7270 2.6390 

(3.70,5.219,6.71,8.22) (4.1,5.58,7.07,8.55) (4.5013, 5.9142, 7.3271, 8.7400) (3.5630, 5.0543, 6.5457, 8.0370) 3.6310 2.8300 

(4.77,6.32,7.91,9.94) (5.51,7.23,8.94,10.68) (4.5137, 6.0977, 7.6817, 9.2657) (4.5110, 6.0263, 7.5417, 9.0570) 8.8280 2.9670 

(5.36,7.09,8.74,10.43) (5.37,7.05,8.73,10.41) (5.0813, 6.7167, 8.3520, 9.9873) (5.4670, 7.2123, 8.9577, 10.7030) 7.1270 3.1610 

(5.35,7.08,8.73,10.43) (5.37,7.051,8.74,10.42) (5.2347, 6.9227, 8.6107, 10.2987) (5.2660, 6.9113, 8.5567, 10.2020) 7.1450 3.1780 

(4.87,6.259,8.12,9.74) (4.79,6.31,7.82,9.34) (5.4497, 7.1930, 8.9363, 10.6797) (4.9710, 6.6443, 8.3177, 9.9910) 4.2610 3.5530 

6.37,8.27,10.17,12.06)( (6.17,8.02,9.86,11.72) (5.3610, 6.9981, 8.6352, 10.2723) (6.1120, 8.0233, 9.9347, 11.8460) 8.8930 3.6090 

(4.94,6.54,7.72,9.05) (4.77,6.24,7.72,9.19) (5.9820, 7.6284, 9.2749, 10.9213) (5.0000, 6.3267, 7.6533, 8.9800) 3.8310 37110 

(6.620,8.559,10.46,12.38) (6.38,8.26,10.16,12.053) (6.1337, 7.8408, 9.5479, 11.2550) (6.8340, 8.5353, 10.2367, 11.9380) 8.9900 3.9190 

(6.622,8.562,10.467,12.388) (6.38,8.27,10.16,12.053) (6.6517, 8.5981, 10.5446, 12.4910) (6.5670, 8.6603, 10.7537, 12.8470) 8.9840 3.9220 

(6.77,8.54,10.88,12.93) (6.67,8.64,10.61,12.57) (6.6747, 8.7682, 10.8618, 12.9553) (6.5540, 8.5987, 10.6433, 12.6880) 9.4330 4.4860 

(6.94,9.1,11.25,13.40) (6.97,9.13 ,11.29,13.45) (7.4800, 9.5636, 11.6471, 13.7307) (6.9030, 9.0457, 11.1883, 13.3310) 6.6770 5.2480 

(8.97,11.02,13.099,15.16) (8.69, 10.74,12.81,14.87) (7.3267, 9.3551, 11.3836, 13.4120) (8.9830, 11.0463, 13.1097, 5.1730) 9.6320 5.6960 

(6.09,7.97,9.85,11.73) (6.10, 7.98,9.86,11.74) (7.4383, 9.3919, 11.3454, 13.2990) (6.0940, 7.9733, 9.8527, 11.7320) 0.2170 5.8020 

(7.104,8.83,10.825,12.95) (7.08, 9.13,11.18,13.23) (6.5437, 8.5377, 10.5317, 12.5257) (7.2380, 9.1560, 11.0740, 12.9920) 2.6600 6.4390 

(6.67,8.806,10.825,13.904) 7.12, 9.18,11.24,13.31)( (7.1963, 9.3701, 11.5439, 13.7177) (6.2990, 8.4837, 10.6683, 12.8530) 2.3490 6.3490 

(8.042,10.45,12.85,15.29) (7.97, 10.37,12.777,15.178) (7.5373, 9.7349, 11.9324, 14.1300) (8.0520, 10.4707, 12.889, 15.3080) 6.6090 6.6280 

(8.12,10.41,12.35,14.39) (7.81, 9.91,12.01,14.106) (8.1450, 10.3594,   12.5739, 14.7883) (8.2610, 10.2503, 12.2397, 4.2290) 2.0840 7.1060 

(8.11,10.43,12.425,12.583) (7.94, 10.05,12.17,14.28) (8.5080, 10.6344, 12.7609, 14.8873) (8.1220, 10.3573, 12.5927, 4.8280) 1.7980 7.1880 

(9.14,11.28,13.45,15.603) (8.99,11.13,13.27,15.41) (9.4363, 11.8377, 14.2390, 16.6403) (9.1410, 11.2957, 13.4503, 5.6050) 3.5590 7.5790 

(11.198,14.06,16.98,19.87) (11.53, 14.5,17.49,20.48) (10.7697, 13.5014,   16.2332, 8.9650) (11.0460, 13.860, 16.6740, 9.4880) 7.5400 8.9310 

(12.066,15.29,18.48,21.69) (11.697,14.75,17.81,20.87) (12.1727, 15.1822, 18.1918, 21.2013) (12.1220, 15.3487, 18.5753, .8020) 7.1810 9.2970 

(13.35,16.35,19.33,22.31) (13.25,16.23,19.22,22.20) (12.1727, 15.1822, 18.1918, 21.2013) (13.3500, 16.3380, 19.3260, .3140) 8.8430 9.7360 

 

 

 

 

Table 3 The obtained results of different methods for example 2 

Method  kernel 
Smoothing 

parameter 
GOF 

K-NN - 3 2.7217 

K-S  Gauss 0.6  0.6683 

L-L-S  Gauss 0.75 0.1394 
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