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Abstract – One of the most appropriate and efficient methods for evaluating the performance of 

homogenous decision-making units (DMU) is data envelopment analysis (DEA). Traditional DEA 

models are only able to evaluate DMUs with deterministic inputs and outputs, while in real-world 

problems, data are usually uncertain. So far, various approaches have been introduced to overcome 

the uncertainty of data. In this paper, two robust DEA models is presented to evaluate the 

performance of systems with continuous uncertain data under constant return to scale (CRS) and 

variable return to scale (VRS) conditions. The main advantage of the proposed robust DEA models 

over the previous robust DEA models is that they are able to formulate uncertainty in both input 

and output data. Moreover, these models are also developed directly on basic traditional DEA 

models (not alternative models). To demonstrate the applicability of two developed robust models, 

a numerical example is presented and the efficacy of models is exhibited. 
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1. Introduction 

 

Today, in order to outdo competitors, it is necessary for 

every organization to be fully aware of its true position. To 

determine their position, organizations must carefully 

evaluate the current situation and their performance. Many 

methods for measuring efficiency have been proposed in 

previous studies. But compared to all models, data 

envelopment analysis (DEA) is a better way to organize and 

analyze data. Because it allows the performance changes 

over time and does not require any assumptions about the 

efficiency frontier. It is also possible to include multiple 

inputs and multiple outputs for each decision-making unit 

(DMUs)[1]-[2]. DEA is one of the most important non-

parametric techniques in measuring performance. It uses 

the mathematical modeling to measure the relative 

efficiency of DMUs under evaluation. 

The efficiency frontiers obtained by DEA is sensitive to 

perturbations as well as their uncertainties of data, and if 

the data is uncertain, the efficiency frontiers may be shifted 

and the DEA results may be invalid. The ambiguity of the 

data can be due to various reasons such as uncertainty, 

unmeasurable information, incomplete and unattainable 

information, inconsistent and contradictory information, 

partial and incomplete truth, etc. [3]. This problem has led 

to different approaches to control the uncertainty of the 

DEA models under diverse situations. Robust optimization, 

stochastic programming and fuzzy set theory are the most 

important approaches in this field. 

Robust optimization is a way to deal with the uncertain 

parameters of an optimization problem. In fact, uncertainty 

sets are the space for changing the uncertain parameters that 

contain all possible values for the uncertain parameters. The 

robust optimization approach optimizes the worst-case 

scenarios that may occur for the uncertain parameters. This 

approach gives equal importance to all points of the space 

of the uncertain parameters and produces the solutions that 

maintain optimality and feasibility of each member 

belonging to the sets of uncertainty. The concept of 

robustness means that the model outputs are not very 

sensitive to the exact values of parameters and inputs [4]-

[5]. 

Robust optimization is an alternative approach to 

sensitivity analysis and stochastic programming that is 

more practical and flexible than the latter two approaches. 

*
Corresponding Author: Department of Industrial Engineering, 

Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran. 

Email: m.amirkhan.ie@gmail.com 

 

Received: 2021.03.15; Accepted:2021.06.14 



Journal of Applied Dynamic Systems and Control, Vol.4, No.1, 2021: 70-78                       

 
71 

 

 

If the robust optimization approach is used in DEA models, 

the ranking of DMUs will not change due to small noises in 

the problem inputs and outputs [6].  

Robust optimization approaches are generally divided 

into two categories: discrete and continuous. In the discrete 

approach, the data are scenario-based, while in the 

continuous mode, data is noisy. 

When in mathematical programming models the 

parameters are as stochastic variables, probabilistic 

programming is used to solve the problems. In the 

traditional DEA model, all inputs and outputs are assumed 

to be accurately measured, whereas, due to the inherent 

uncertainty of many real-world problems, the inputs and 

outputs of DMUs may be stochastic in nature, and the 

performance appraisal process may sometimes include 

stochastic estimates. Therefore, a model should be 

presented that, while calculating the efficiency of the 

system, also takes into account the stochastic nature of the 

problem parameters. In the random approach, the uncertain 

data of the problem are considered as random variables, and 

it is assumed that the probability distribution function of the 

stochastic processes is known [7]. Also, when one or more 

of the limiting equations in the linear programming model 

can be satisfied for a certain amount of probability, the 

chance-constraint programming can be used as an effectual 

approach [8]. 

Fuzzy set theory [9] is another approach to dealing with 

uncertainty. If the input data of the problem is qualitative, 

linguistic data, etc., the use of this approach is efficient [3]. 

The fuzzy DEA model combines the concept of fuzzy set 

theory with the conventional DEA model. There are the 

different approaches to apply fuzzy set theory to the DEA 

models, so that most of the obtained fuzzy DEA models are 

as mathematical linear programming. In the DEA models, 

the use of the fuzzy approach is important from two aspects. 

In the first aspect, the parameters of the problem are 

considered fuzzy and in the second aspect, the tolerance 

level is defined on the objective function and the violation 

of constraints. 

In general, if input data of the problem is not accurate 

and is as qualitative, linguistic, etc., the fuzzy approach is 

utilized and also, if the parameters of the problem are 

random variables and the possible distribution of these 

parameters is known, Probabilistic programming is used 

and moreover, if the possible distribution of the random 

parameters of the problem is not available and the decision-

maker seeks the model outputs that are not very sensitive to 

the exact values of the parameters and inputs, the robust 

optimization approach is employed. 

In the classical DEA models, data is assumed to be 

accurate. Therefore, these models were not able to deal with 

the uncertain data. Given that in real-world problems, some 

data are inherently inaccurate, ambiguous, and uncertain, 

approaches are needed to control this uncertainty in the 

modeling process. Many methods have been proposed to 

control the uncertainty in optimization problems. Fuzzy set 

theory, stochastic programming and robust optimization are 

the most important approaches to deal with this type of 

problems that have attracted much attention in recent years. 

One of the main challenges in applying the traditional 

DEA approach to real-world problems is the existence of 

interference and uncertainty in some input/output data of 

DMUs. In other words, the traditional DEA approach is a 

data-driven one that calculates the performance of DMUs 

using the efficiency frontier generated by the inputs and 

outputs of DMUs. Hence, any noise in the input/output data 

of DMUs causes the performance frontier to shift, and 

consequently the performance values of the DMUs may 

change. 

Much research has been done to develop robust 

optimization methods to consider uncertainty corresponding 

to data in mathematical models. Researchers believe that 

uncertainty can affect both the optimality and the feasibility 

of solutions. Usually in the various problems, the best data 

estimation, called nominal data, is used for the 

mathematical models. Robust optimization was first 

introduced by Soyster [10] in 1973. This model is based on 

a pessimistic approach and is very conservative, so that to 

ensure the robustness of the solution, the optimal solution 

of the problem is very far from its optimality. 

The model presented by Soyster [10] offers the best 

feasible solution for all input data, so that each input data 

can adopt any value of the certain interval. After the 

Soyster's paper [10], a great deal of research has been done 

to provide the robust models for dealing with the 

optimization problems with the uncertain data. El ghaoui et 

al. [11] proposed a robust optimization model that had two 

main problems. First, it increased the computational 

complexity of the problem compared to the original model, 

and second, it did not guarantee the probability of 

feasibility for the robust model. Ben-Tal and Nemirovski 

[4] proposed a quadratic conical model as a robust 

counterpart of a linear programming model for data under 

conditions of elliptical uncertainty. This model is less 

conservative than the Soyster's model [10] and offers more 

acceptable solutions. Ben-Tal and Nemirovski [12] 

introduced a robust optimization model. Because this model 

was nonlinear, it was difficult to find optimal solutions. 

Bertsimas and Sim [5] presented a model in which there 

was an interaction between optimality and robustness. Their 
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model was a linear one that moderated the level of 

conservatism of the robust solutions. Linearity, the ability 

to control the level of conservatism of robust solutions as 

well as usability in integer problems are the main features 

of the Bertsimas and Sim's model [5]. The main advantage 

of the robust optimization approach developed by 

Bertsimas and Sim [5] is that when used on linear models, 

the final robust model still retains its linearity. In addition, 

this approach is not very conservative, unlike Soyster's 

approach [10], and the degree of conservatism can be 

determined by the decision-maker. The application of the 

robust optimization approach in DEA was first done by 

Sadjadi and Omrani [6]. They presented two robust DEA 

models to evaluate the performance of electricity 

distribution companies in Iran. The first model is based on 

the Ben-Tal and Nemirovski's [4]  approach, and the 

second model is according to Bertsimas and Sim's [5] 

approach. It should be noted that in the models presented by 

them, the input data of DMUs are considered as certain and 

only the output data of DMUs are considered as uncertain. 

Sadjadi and Omrani [13] developed a bootstrap robust DEA 

model to assess and rank the telecommunications 

companies. In their model, only the uncertainty of the 

output data is considered. They first obtained the 

performance values of DMUs with noisy outputs and then, 

using the bootstrap technique, calculated the modified 

efficiency scores. Sadjadi et al. [14] presented a robust 

super-efficiency DEA model for ranking provincial gas 

companies. Using the Ben-Tal and Nemirovski' [4] 

approach, they developed a nonlinear programming model 

in the envelopment form. Based on the robust scenario-

based optimization approach introduced by Mulvey et al. 

[15], Hafezalkotob et al. [16] presented a DEA model with 

discrete inputs and outputs to calculate the relative 

efficiency of 38 electricity distribution companies in Iran. 

They considered three scenarios (pessimistic, most likely, 

and optimistic) for the data and then, determined a 

coefficient for the probability of occurrence of each 

scenario. Using the approaches of Bertsimas et al. [17] and 

Bertsimas and Sim [5], Peykani et al. [18] developed three 

robust DEA models and then implemented these models in 

a data set derived from the stock market. The results of their 

research showed that in all three models, the efficiency 

values of the robust models are less than or equal to the 

efficiency values of the equivalent deterministic models. In 

addition, with increasing the level of conservatism, the 

number of efficient DMUs has decreased. Esfandiari et al. 

[19] examined the uncertainty of input, intermediate and 

output data of two-stage processes. They declared that a 

small disturbance in the problem parameters severely 

affects the efficiency values of the whole process as well as 

each of the sub-processes. Using the robust optimization 

approach of Mulvey et al. [15], they were able to develop a 

two-stage DEA models in the cooperative and non-

cooperative modes under uncertainty conditions and 

calculate the values of the process efficiency for different 

scenarios. Yousefi et al. [20] used a hybrid approach 

including robust scenario-based optimization, dynamic 

DEA, and the ideal DMU to evaluate sustainable suppliers. 

Their proposed approach was able to provide a suitable 

model for efficient and inefficient DMUs and also allows 

future planning for inefficient DMUs. Rabbani et al. [21] 

used two models, robust DEA and robust DEA with 

common weight, to evaluate the performance and rank of 

56 mines. Amirkhan et al. [22] introduced a hybrid 

approach based on fuzzy and discrete robust optimization to 

cope with the uncertainty in the CCR and BCC DEA 

models. Peykani et al. [23] reviewed 73 studies (from 2008 

to 2019) in the field of robust DEA. They surveyed and 

classified the robust approaches used in DEA models. 

Omrani et al. [24] introduced a model based on the best 

worst method and robust DEA for incorporating decision-

makers’ preferences into the classic DEA model. This 

model was bi-objective and formulated under uncertainty 

condition. Tavana et al. [25] presented a robust interval 

cross-efficiency model to rank DMUs. They declared that 

the proposed model avoids problems of non-unique optimal 

weights and uncertain data. 

Hitherto, researchers have developed many robust DEA 

models using the Bertsimas and Sim's approach [5]. It is 

noteworthy that in the previous proposed models, none of 

the previous models directly used the Bertsimas and Sim's 

approach [5] on the basic DEA models, so that both input 

and output data are uncertain. It is worth noting that since 

the basic DEA models including the CCR and BCC ones 

have equality constraints, the Bertsimas and Sim's approach 

[5] cannot be used. A review of previous research shows 

that researchers have adopted two approaches to overcome 

this issue. The first approach involves research in which 

researchers used alternative models instead of the basic 

DEA models. The second approach involves research in 

which researchers have not considered uncertainty in input 

and output data simultaneously. In other words, in this type 

of research, either input or output data are uncertain and 

both of them do not meet these conditions at the same time. 

In the present study, using the Bertsimas and Sim's 

approach [5], two robust DEA models have been developed 

under constant return to scale (CRS) and variable return to 

scale (VRS) conditions. In the proposed models, both input 

and output data have uncertainties. In addition, an efficient 

approach to overcome the issue of the equality constraint in 

the basic DEA models is proposed. It should be noted that 
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in the present study, the Bertsimas and Sim's approach [5] is 

been implemented directly on the basic DEA models (and 

not alternative models). Meanwhile, the proposed models 

are able to take into account the uncertainty in both input 

and output data simultaneously. 

The rest of the research is organized as follows. Section 2 

describes the research background including DEA and 

Robust Optimization, and the proposed robust models are 

presented in Chapter 3. Chapter 4 presents a numerical 

example and then, analyzes the results of implementing the 

developed robust models on the example. Finally, the 

results of the research are presented in Chapter 5. 

 

2. Background 

 

2.1. Data Envelopment Analysis 

 

Based on the returns to scale conditions, the basic DEA 

models are divided into two categories: CRS models and 

VRS models. In the following, the basic DEA models 

related to CRS and VRS conditions are briefly described. 

If the goal is to evaluate the efficiency of n DMUs with 

m inputs and s outputs (as shown in Figure 1), the 

efficiency of DMUj is calculated as Equation (1) [26]: 

 

(1)  
1

1

Efficiency of 

s

r rj

r
j m

i ij

i

u y

DMU

v x

=

=

=
∑

∑
 

 

Where ijx  and rjy , represent the ith input 

( 1,..., )i m=  and the rth output ( 1,..., )r s=  of 
jDMU  

( 1,..., )j n= , respectively. Also, iv and ru are the 

weighted variables of the ith input and the rth output of 

jDMU , respectively. 

    

x1j

x2j

xmj
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Figure 1. jDMU  with m inputs and s outputs 

 

Based on the above concept, Charnes, Cooper, and 

Rhodes [26] proposed the CCR Model (2), derived from the 

initials of their names, to calculate performance of oDMU . 

Model (2) is under the CRS conditions and is known as the 

multiplier input-oriented CCR model. In model (2), 

oE denote the efficiency value of oDMU . 
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The multiplier input-oriented BCC model proposed by 

Banker, Charnes, and Cooper [27] is as (3). 
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Model (3) is presented under the VRS conditions. 

 

2.2. Robust Optimization 

 

In mathematical programming, problems are solved 

based on default that data is crisp and certain, while in the 

real-world problems most data are usually uncertain. In 

these cases, due to the very small change in one of the data, 

a large number of constraints may be violated and even the 

solutions obtained may be non-optimal or even infeasible. 

Robust optimization is one of the approaches that operates 

very effectively in such situations. Robust optimization is 

an alternative approach to the sensitivity analysis and the 

stochastic programming methods. The main advantage of 

this approach is its practicality and flexibility. 

Ben-Tal and Nemirovski ([4], [12], [17]), El Ghaoui and 

Lebert [11] and Mulvey et al. [15] presented various 

models in the field of robust optimization.  Ben-Tal and 

Nemirovski [12] by studying  and examining a sample 

problem showed that a small disturbance in the input data 

causes the previous optimal solution of the corresponding 

problem to be infeasible. Bertsimas and Sim [5] proposed 

an approach in which the final robust model still retains its 

linearity. Unlike the Soyster's model [10], this approach is 

not very conservative and also, the conservative level can 

be determined by the decision-maker. 

To better describe the Bertsimas and Sim's [5] approach, 
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consider the linear programming Model (4): 

 

(4) 

max      z cx=  

        ,          i ia x b i≤ ∀ɶ
 

        
,          j j jl x u j≤ ≤ ∀

 

 

In Model (4), it is assumed that only the elements of 

matrix A are uncertain. Suppose that i is a row of matrix A 

and iJ  is a set of coefficients with uncertainty related to 

row i.  

for each ij J∈ , ija is defined as a bounded and 

symmetric stochastic variable ijaɶ in the interval 

ˆ ˆ,ij ij ij ija a a a − +  . Corresponding to each variable ijaɶ , a 

random variable ˆ( ) /ij ij ij ija a aη = −ɶ  is defined by an 

unknown but asymmetric distribution in the interval [ ]0,1 . 

Consider the constraint i of Model (4) as 
i ia x b≤ɶ . For 

each i, the parameter iΓ , which is not necessarily an 

integer number and is in the interval 0, iJ   , is defined. 

This parameter sets the robustness rate of the proposed 

method against the conservatism level of the solution. The 

proposed counterpart robust model of Bertsimas and Sim 

[5] is as (5). 
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3. Proposed Robust DEA Models 

 

In this section, the approach introduced by Bertsimas and 

Sim [5] is used to develop two robust DEA models under 

the CRS and VRS conditions. The proposed models are 

able to take into account uncertainty in both input and 

output data. 

The main problem in applying the Bertsimas and Sim's 

[5] approach for CCR and BCC models is the existence of 

equality constraints in these models. It should be noted that 

the Bertsimas and Sim's [5] approach cannot be used for 

equality constraints. To solve this problem, Lemma 1 and 

Lemma 2 are presented. 

 

Lemma 1. Model (2) is equivalent to Model (6).  

(6) 
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Proof. First, it is necessary to write the dual model 

corresponding to Model (2). This model which is called the 

envelopment input-oriented CCR one, is as (7).  
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The parameter ijx ( ,i j∀ ) is always positive and in 

addition, the variable jλ ( j∀ ) is always greater than or 

equal to zero. considering the first constraint of Model (7), 

it can be concluded that 0θ ≥ . Therefore, Model (7) is 

equivalent to Model (8). 
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Now, if the dual form corresponding to Model (8) is 

rewritten, Model (9) is obtained. 
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Lemma 2. Model (3) is equivalent to Model (10).  
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Proof. Such as the proof of lemma 1. 

 

Since the problem of equality constraints in CCR and 

BCC models has been solved, using the Bertsimas and 

Sim's [5] approach, the robust CCR Model (11) and the 

robust BCC Model (12) can be developed. 
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In Models (11) and (12), x
ijε  and y

rj
ε  represent the 

disturbances percentage of parameters ijx  and rjy , 

respectively and also, 0Γ  and 1Γ  denote the robustness 

moderator parameters of the objective function and the first 

constraint against the conservatism level, respectively. 

Also, in the second constraint, 2
jΓ  and 3

j
Γ  represent the 

robustness modulators of the parameters rjy  and ijx  

against the conservatism level of solution, respectively. 

 

4. Numerical Example 

 

In this section, to show the applicability and efficacy of 

the proposed models, a numerical example is presented and 

then, the example is solved using the two presented robust 

models. In this example, 20 DMUs with 3 inputs and 2 

outputs are considered. The data are listed in Table 1. 

 

 Table 1. Data of Numerical Example 

DMU 
Inputs  Outputs 

1i  2i  3i  1r  2r  

1 37 133 405  444 67 

2 72 988 698 283 92 

3 16 766 450 961 33 

4 86 440 251 386 97 

5 69 301 801 586 82 

6 54 513 223 629 87 

7 41 923 425 208 66 

8 46 596 258 981 95 

9 12 101 122 827 94 

10 75 767 647 858 66 

11 20 863 942 738 43 

12 75 249 575 926 21 

13 25 928 179 242 24 

14 40 857 176 239 13 

15 94 945 998 446 11 

16 48 168 194 785 75 
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17 61 772 364 893 76 

18 72 188 311 166 61 

19 66 684 603 990 95 

20 49 805 517 774 36 

 

All models in the current paper have been coded in 

GAMS 24.0.1 solver software. Moreover, Excel 2019 has 

been used for drawing pictures. In this example, the values 

of all the xε s and yε s are set to 0.05. In addition, since all 

the input and output data are uncertain, the values 0Γ , 1Γ , 
2Γ , and 3Γ  are set to 3, 2, 3, and 2, respectively. 

The solutions obtained from solving the models 

presented in the previous section are summarized in Table 

2.  

 
Table 2. Results of DEA Models (2)-(3) v.s. Robust DEA 

Model (11)-(12) 

DMU 
Constant Return to Scale 

 
Variable Return to Scale 

CCR Robust CCR 
 

BCC Robust BCC 

j01 0.54 0.44 
 

0.76 0.69 

j02 0.17 0.14 
 

0.17 0.16 

j03 0.87 0.71 
 

1 0.75 

j04 0.50 0.41 
 

1 0.44 

j05 0.29 0.24 
 

0.34 0.30 

j06 0.51 0.41 
 

0.55 0.49 

j07 0.21 0.17 
 

0.29 0.26 

j08 0.56 0.46 
 

1 0.62 

j09 1 0.82 
 

1 0.90 

j10 0.20 0.16 
 

0.26 0.17 

j11 0.54 0.44 
 

0.60 0.54 

j12 0.45 0.37 
 

1 0.43 

j13 0.20 0.16 
 

0.68 0.62 

j14 0.20 0.16 
 

0.69 0.63 

j15 0.07 0.06 
 

0.13 0.12 

j16 0.60 0.49 
 

0.63 0.57 

j17 0.36 0.30 
 

0.50 0.3 

j18 0.35 0.29 
 

0.54 0.49 

j19 0.24 0.20 
 

1 0.41 

j20 0.23 0.19 
 

0.24 0.22 

 

 

The second and fourth columns of Table 2 show the 

efficiency values of the CCR and BCC models, 

respectively. Applying Models (11) and (12) for the data 

presented in Table 1, the efficiency values of DMUs can be 

calculated for the two robust CCR and robust BCC models. 

The third and fifth columns of Table 2 display these values. 

Table 2 as well as Figures 2 and 3 show that in both the 

CCR model and the BCC model, the efficiency values of 

the robust models are lower than or equal to the 

deterministic model. Because the efficiency frontier of the 

robust model is different from the efficiency frontier in the 

deterministic model, this condition is not always true and, 

in some cases, may be violated. A noteworthy point from 

Table 2 is that in deterministic models at least one DMU 

always has an efficiency score of 1, whereas in robust 

models this condition is not necessarily met. 

 

 

 

 

Figure 2. Efficiency Scores of CCR Model (2) 

and Robust CCR Model (11) 

 

 

Figure 3. Efficiency Scores of BCC Model (3) 

and Robust BCC Model (12) 

 

 

5. Conclusion 

 

Methods and tools of performance appraisal have always 

been one of the important topics in organizational and 

academic research. On the other hand, the ability of DEA 

models in performance appraisal has led to extensive 

research in various scientific fields. One of the main 

challenges in applying the traditional DEA models is the 

existence of uncertainty in the data related to inputs and 

outputs. In the present study, two robust DEA models for 

calculating the efficiency of DMUs with uncertain data are 

presented. The first proposed robust model is based on 

multiplier input-oriented CCR model and used under CRS 

conditions. Also, the second proposed robust model is 

based on multiplier input-oriented BCC model and used 

under VRS conditions. Both robust models are linear and 

can be used for issues in which both input and output data 

are uncertain. Unlike previous robust DEA models, both 
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robust DEA models presented in this study are developed 

directly on the traditional and basic DEA models and are 

also able to consider uncertainty for both input and output 

data. To show the applicability of the developed DEA 

models, a numerical example with three inputs and two 

outputs is presented. For this example, where all the data is 

considered uncertain, the efficiency values are calculated 

for both the CRS and VRS condition. The results show that 

both under CRS and VRS conditions, the efficiency values 

of the robust DEA models are less than or equal to the 

traditional DEA models. 
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