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In the present study, a technique has been addressed in order to 

model and optimize gas tungsten arc welding (GTAW) process 

which is one of the mostly used welding processes based on the high 

quality fabrication acquired. The effects of GTAW process variables 

on the joint quality of AISI304 stainless steel thin sheets (0.5 mm) 

have been investigated. The required data for modeling and 

optimization purposes has been gathered using Taguchi design of 

experiments (DOE) technique. Next, based on the acquired data, the 

modeling procedure has been performed using regression functions 

for two outputs; namely, heat affected zone (HAZ) width and 

ultimate tensile stress (UTS). Then, analysis of variance (ANOVA) 

has been performed in order to select the most fitted proposed 

models for single-objective and multi-criteria optimization of the 

process in such a way that UTS is maximized and HAZ width 

minimized using simulated annealing (SA) algorithm. Frequency, 

welding speed, base current and welding current are the most 

influential variables affecting the UTS at 22%, 21%, 20% and 17% 

respectively. Similarly, base current, welding current, frequency and 

welding speed affect the HAZ at 28%, 20%, 16%, and 15% 

respectively. Based on the results considering the lowest values for 

current results in the smallest amount of HAZ. By the same token in 

order to acquire the largest amount of UTSs the highest values of 

current must be considered. Setting welding and base current, 

frequency, speed, and debi at 42 and 5 apms, 46 Hz, 0.4495 m/min, 

and 5 lit/min respectively resulted the optimized HAZ and UTS 

simultaneously. The proper performance of the proposed 

optimization method has been proved through comparison between 

computational results and experimental data with less than 6% error. 
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1. Introduction 
Due to excellent corrosion resistance and mechanical 

properties, austenitic stainless steels have been 

extensively used as reactor coolant piping in nuclear 

structural materials, valve bodies, and vessel 

internals. Nevertheless, the metallurgical changes 

such as micro-segregation, precipitation of secondary 

phases, presence of porosities, solidification 

cracking, grain growth in the heat affected zone 

(HAZ) and loss of materials by vaporization welding 

often leads to low mechanical properties [1,2]. 

Usually, one of the most extensively used processes 

to fabricate stainless steel parts is welding process 

among which gas tungsten arc welding (GTAW) is 

the most extensively used one [3]. GTAW is a multi-

objective and multi-factor metal fabrication process 

using of which joining of a number of common 

metals such as steel, magnesium and aluminum in 

almost all positions can be carried out [4]. Weld bead 

geometry, mechanical and metallurgical properties of 

the weldments are affected by selecting the proper 

process variables [4, 5]. Conventionally, expert 

operators or engineers choose parameters based on 

trial and error method which is time consuming for 

every new welded product to obtain a welded joint 

with the required specifications. Then welds are 

examined to determine whether they meet the 

specification or not [4]. Nowadays, different 

modeling procedures such as regression modeling, 

artificial neural network are widely used to develop 

mathematical relationships between the welding 

process input variables and the output characteristics 

of the weld joint in order to determine the optimized 

welding input variables that lead to the desired weld 

quality [6]. Sapkal and Teslang [7] applied Taguchi 

method to obtain maximum depth of penetration 

(DOP) on mild steel through optimization of the 

process variables (current, voltage and welding 

speed). For developing experiential relationships, 

incorporating pulsed current parameters and weld 

pool geometry (front height, back height, front width 

and back width), Box–Behnken design of 

experiments was used by Balasubramanian [8]. Yan 

et al [3] investigated the microstructure and 

mechanical properties of AISI304 stainless steel 

fabricated by GTAW, laser welding and laser- 

GTAW hybrid welding. The results revealed that the 

joints made by laser welding had highest tensile 

strength and smallest dendrite size, while the joints 

made by GTAW had the lowest tensile strength and 

the biggest dendrite size. The results showed that the 

laser welding and hybrid welding are suitable for 

welding of AISI304 stainless steel parts due to their 

high welding speed and excellent mechanical 

properties. Berretta et al. [9] studied the pulsed 

Nd:YAG laser welding of AISI 304–AISI 420 

stainless steels. The tensile strength of 

ferritic/austenitic laser-welded components has been 

optimized by Anawa [10]. Multiple linear regression 

procedure has been used to develop mathematical 

models for weld bead shape parameters of GTAW 

process. Also by using the same experimental data, 

an attempt has been made to model the process using 

artificial neural network. Then, for optimization 

procedure genetic algorithmic (GA) coupled with 

artificial neural network has been employed [11].  

Modeling and optimization of GTAW process has 

been considered in different studies. However, to the 

best of our knowledge, there is no study in which 

modeling and optimization of both microstructure 

and mechanical properties are considered as single 

and multi-criteria optimization. Therefore, in this 

study mathematical models developed to establish 

the relations between multi-input, multi-output 

parameters of GTAW process. The proposed 

approach has been implemented on AISI304 stainless 

steel sheets, a widely used alloy in various industries 

including petrochemical and oil pipelines. 

2. Experimental procedures 
In this study, A DIGITIG 250 AC/DC (GAAM-Co, 

Iran) semi-automatic welding machine with a 250 

ampere capacity, and high value of pulse frequency 

(up to 500 Hz) conventional DCEN GTAW welder 

has been employed to carry out the experiments. The 

tungsten electrode and argon with 99.7% purity as 

welding shield gas was used for experiments.  

Experiments were carried out on AISI304 stain less 

steel sheets with dimension of 100 mm×40 mm×0.5 

mm.  
2.1. Process input variables and their 

corresponding levels 
In this study current (I), frequency (F), welding speed 

(S), and shielding gas debi (D) have been considered 

as the process input variables. Similarly, heat 

affected zone (HAZ) and ultimate tensile stress 

(UTS) have been selected as the process output 

characteristics. Welding references have been studied 

and several preliminary tests based on the screening 

method have been carried out to determine the 

practical working ranges of each process input 

variable and their corresponding levels [12]. The 

input variables limits were then evaluated by 

inspecting the weldment for a good penetration 

without any visible defects such as surface porosities 

and undercut and smooth appearance. According to 

the preliminary test results, the input variables and 

their corresponding levels are listed in Table 1. Other 

input variables with trivial effects (electrode 

diameter, electrode angle and etc.) have been 

considered at an optimum and fixed level.  
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Table 1. GTAW process input variables and their feasible levels 
Debi (D) 

(l/min) 
Welding Speed (S) 

(m/min) 
Frequency (F) 

(Hz) 
Base current (Ib) 

(Ampere) 
Welding current (I) 

(Ampere) 
Level 

5 0.4350 30 5 30 Level 1 

7 0.5075 40 8 35 Level 2 

- 0.5365 50 10 40 Level 3 

- 0.5800 60 15 45 Level 4 

 

2.2. Design of experiments 
When, the process input variables, their feasible 

ranges and proper levels have been selected, the next 

step is to select an appropriate experimental design 

matrix for conducting the experiments required for 

modeling and optimization purposes. orthogonal 

array Taguchi (OR-Taguchi) technique is one of the 

most effective methods that can dramatically reduce 

the number of experiments required for data 

gathering [13, 14]. Based on the number of input 

variables and their specified levels, in this study 

Taguchi’s L32 has been selected to provide a well-

balance design for test runs in order to acquire the 

needed data for modeling and optimization. This 

matrix consists of 32 sets of process parameters 

(Table 2), based of which the experiments have been 

conducted. The main purpose of fractional DOE 

techniques, including Taguchi method, is to obtain as 

much information as possible from a limited number 

of experiments. In many DOE patterns, having the 

same number of levels for each variable is necessary. 

Taguchi is one of the few that allows for uneven 

levels. Table 1 lists the ranges of process parameters 

and their corresponding levels. As shown, Debi is 

considered at two levels, while all other process 

variables have four levels. In DOE, the number of 

required experiments (and hence the experiment cost) 

rises as the number of parameters and/or their 

corresponding levels increase. That is why it is 

recommended that the parameters with less likely 

pronounced effects on the process outputs be 

evaluated at fewer levels. In addition, the limitations 

of test equipment may also dictate a certain number 

of levels for some of the process parameters [13-15]. 

 

2.3. Experimental results 

To increase the accuracy of the experiments the 

tests have been carried out in a random orders. 
After welding, two types of characteristics have 

been taken from each sample. For measuring 

HAZs and UTSs, on each samples two transverse 

cross sections were made. Next, the cut faces 

were smoothly polished and etched using 10% 

Nital solution to clearly show heat affected zones 

using electro-polish and electro-etch machines 

[4].  

Then, images were taken using an optical 

microscope with X10 magnification (OLYMPUS-

530). These images were subsequently processed 

by microstructural image processing (MIP) 

software (Fig. 1), to determine samples HAZs. 

For each sample the average of two 

measurements are reported. In the next step, 

UTSs were measured and reported (Table 2).  
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Fig. 1. The welded specimen and evaluation of HAZ width using microstructural image processing software 

 

Table 2. The GTAW process experimental conditions and their corresponding results based on Taguchi method 

No. 
I 

(Ampere) 
Ib 

(Ampere) 
F 

(Hz) 
S 

(m/min) 
D 

(l/min) 
HAZ width  

(mm) 
UTS  

(N) 

1 4 2 1 4 1 0.29 4296 

2 4 1 2 3 1 0.24 4871 

3 3 4 4 2 1 0.25 5246 

4 3 2 1 3 1 0.31 3825 

5 1 1 3 3 2 0.18 1567 

6 2 4 3 4 1 0.31 5189 

7 4 2 3 2 2 0.51 4963 

8 1 2 4 4 2 0.20 601 

9 3 1 4 2 2 0.30 5780 

10 2 1 3 4 2 0.19 862 

11 2 1 1 2 1 0.26 5604 

12 2 2 4 3 2 0.26 4481 

13 1 3 2 2 2 0.20 1020 

14 3 4 2 4 2 0.35 5298 

15 4 3 1 4 2 0.15 539 

16 2 4 1 2 2 0.20 5001 

17 3 3 3 1 1 0.31 539 

18 3 2 3 1 2 0.29 5716 

19 1 3 4 4 1 0.38 2254 

20 3 1 2 4 1 0.28 2038 

21 2 3 4 3 1 0.21 5636 

22 3 3 1 3 2 0.42 5800 

23 1 1 1 1 1 0.32 4310 

24 4 4 2 3 2 0.40 5792 

25 1 4 3 3 1 0.37 5484 

26 1 2 2 2 1 0.23 1847 

27 4 4 4 1 1 0.22 4734 

28 1 4 1 1 2 0.38 4948 

29 4 1 4 1 2 0.29 5621 

30 2 2 2 1 1 0.20 5517 

31 4 3 3 2 1 0.30 5803 

32 2 3 2 1 2 0.30 5418 
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3. Regression modeling of GTAW process 
In order to establish the relations between process 

variables and output characteristics different 

procedures have been proposed among which 

regression modeling is the most extensively used one 

[16- 18]. The last two columns of Table 2 are the 

outputs for each test setting. These data can be used 

to develop mathematical models. These relations can 

be described by the equation of y = f (x1, x2, x3, x4). 

Any of the above output is a function of process 

variables which are expressed by linear, logarithmic 

and second order functions; as stated in Equations 1 

to 3 respectively [8]. 

The proposed model has five process input variables 

namely: current (I), frequency (F), welding speed (S), 

and debi (D), and two output characteristics (heat 

affected zone (HAZ) width and ultimate tensile stress 

(UTS)). In the proposed approach, single and multi-

criteria optimization is carried out to determine 

optimal values of process variables in such a way that 

results in minimum HAZ and desired UTS.  
Y1 = b0 + b1X1 + b2 X2 + b3 X3                                (1) 

Y2 = b0 +b1 X1 +b2 X2 +b3 X3 +b11 X1 X1 + b22 X2 X2 +b33 

X3 X3 +b12 X1 X2 +b13 X1 X3 +b23 X2 X3                        (2) 

Y3= b0 × X1 b1 + X2 b2 + X3
b3+ X1 X1

b11 + X2 X2
b22 + X3 

X3
b33 + X1 X2

b12 + X1 X3
b13 + X2X3

b23                           (3) 

 

Where, regression coefficients are shown with b0, b1, 

b2 and b3 and are to be estimated. Xi are the process 

input variables (I, Ib, F, S and D). In this study, based 

on the UTSs and HAZs data given in Table 2, the 

regression models are developed using MINITAB 

software. Based on the nature of initial data and the 

required accuracy models are chosen [17]. Models 

representing the relationship between process 

parameters and output characteristics can be stated in 

Equations 4 to 9. 
 

4-1. Linear Model 
HAZ = 0.260 + 0.0170×D – 0.145×S – 0.00298×F + 

0.00678×Ib + 0.00182×I                                                                  (4) 

UTS = 491 - 11.8×D - 1200×S - 1.41 F + 14.8×IB + 14.9×I  

(5) 

 

4.2. Logarithmic Model (6) 
𝐻𝐴𝑍 = 0.986 × 𝐹−0.456 × 𝐼𝑏

0.210 

𝑈𝑇𝑆 = 0.019 × 𝑠−2.17 × 𝐼𝑏
0.460                                              (7) 

 

4-2. Second Order Model 
HAZ = 3.98 - 0.207×D + 4.51 S - 0.0616 F + 0.141 Ib - 

0.205 I - 0.615 D×S +0.00298 D×F + 0.0109 D×I + 0.0338 

S×F-0.157×S×Ib+0.000422×F×Ib+0.000869×F×I-

0.000129×F×F-0.00347×Ib×Ib+0.00138×I×I                      (8)  

 

UTS = 329 + 219×D - 88.1×Ib - 2.87×D×F - 11.0×D×Ib + 

49.9×S×F + 311×S×Ib + 305×S×I - 0.900×F×I - 1.21×Ib×I 

- 18500 ×S×S + 0.329×F×F +2.72×Ib×Ib - 1.13×I×I       (9) 

 

Analysis of variance (ANOVA) technique with the 

confidence limit of 95% has been used to check the 

adequacy of the proposed models (Table 3) [19-21]. 

Given the required confidence limit (Pr), the 

correlation factor (R2), the adjusted correlation factor 

(R2-adj) and  predicted correlation factor (R2-pre) for 

these models, it is evidence that second order model 

is superior to linear and logarithmic models, thus, 

these models are considered as the best representative 

of the authentic GTAW process throughout this 

paper.  

 
Table 3. ANOVA results for the GTAW process charactristics 

Model Variable R2 R2 (adj) R2 (Pre) F value Pr>F 

Linear HAZ 49.4 43.9 42.18 9.1 <0.0001 

logarithmic HAZ 40.3 36.8 41.2 9.8 <0.0001 

Second order HAZ 92.4 89.9 90.1 12.4 <0.0001 

Linear UTS 51.5 46.3 45.9 9.9 <0.0001 

logarithmic UTS 49.0 43.5 41.3 8.97 <0.0001 

Second order UTS 95.4 91.7 90.6 25.7 <0.0001 

 

In order to confirm the adequacy of the proposed 

models, some experimental which have not been 

within the proposed design matrix have been 

conducted. Based on the results of confirmation tests 

(Table 4), the proposed model is quite efficient in 

modeling of the process.  

 
Table 4. confirmation of the proposed models 

I(Ampere) Ib(Ampere) F(Hz) S(m/min) D(l/min) HAZ width (mm) UTS (N) Predicted Error (%) 

35 5 60 0.435 5 0.153 - 0.163 6.5 

30 15 45 0.435 5 - 620 580 6.4 
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Fig. 2, demonstrates the interaction effect of process 

variables (frequency and pulse current) for HAZ.  As 

illustrated, by increasing welding frequency, the 

HAZ decreases. Similarly by increasing pulse 

current, the HAZ increases then decreases. By the 

same token, Fig 3, exhibits the interaction effect of 

process variable (frequency and welding current) for 

UTS. As illustrated by increasing welding current, 

UTS increases. Similarly by increasing welding 

frequency, the UTS increases. 

 

 
Fig. 2. interaction of process parameters for HAZ 

 

 
Fig. 3. interaction of process parameters for UTS 

 

ANOVA results may provide the percent 

contributions of each process variable [17]. The 

percent contributions of the GTAW process variables 

on the process parameters are shown in Fig. 4.  

( )
(%) i i error

i

SS DOF MS
P

Total Sum of Squre

 
                          (10)  

In the above formula, Pi is Contribution percentage, 

SSi is sum of square, DOFi is degree of freedom of 

ithfactor, and MSerror is mean sum of square of error 

[17]. 
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Fig 4. Percent contributions of welding parameters on HAZ and UTS 

 

4. Simulated annealing algorithm 
To interpolate between the process input variables 

intervals to select the most appropriate values of 

process input parameters reaching the desired output 

characteristics, different procedures have been 

introduced among which heuristic algorithms have 

been extensively employed for different optimization 

problems. All heuristic algorithms are reminiscent of 

biological or physical processes. In this regard, SA 

algorithm is reminiscent of annealing in heat 

treatment process [21, 22]. In annealing process, 

metals are heated up to a specific and pre-determined 

temperature (near the melting point), at which all 

metal particles are in random motion. Then, all metal 

particles rearranged by cooling down slowly toward 

the lowest energy state. As the cooling process is 

conducted appropriately slowly, lower and lower 

energy states are achieved until the lowest energy 

state is reached. Similarly, in A-TIG welding process 

the lowest energy level gives the optimized value for 

variables based on an energy function is created and 

minimized. The mechanism of SA algorithm is 

defined as follows [23]:  

Defining an acceptable answer space and generating 

an initial random solution in this space. Next, the new 

solution’s objective function (C1) is computed and 

compared with the current ones (C0). A move to a 

new solution is made either the new solution has 

better value or the value of SA probability function 

(Equation (11)) is higher than a randomly generated 

number between 0 and 1 [22]: 

𝑃𝑟 = exp (−
∆𝐸

𝑇𝑖
)                                             (11) 

17%

20%

22%

13%

21%

7%

I Ib F D S Error

Percent Contribution of welding variales on UTS

20%

28%

16%

15%

15%

6%

I Ib F D S Error

Percent Contribution of welding variales on HAZ
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Where, temperature parameter is shown by Tk, which 

acts as the temperature in the physical annealing 

process does [21]. Equation (12), is used as a 

temperature reduction rate to cool down the pre-

determined temperature at each iteration. 

T T i 0,1,... and 0.9 1
i 1 i

     
            (12)

 

Where, the current and former temperatures are 

shown by Tk+1 and Tk respectively. The cooling rate 

also presented by parameter α. Consequently, at the 

first iterations of SA due to higher temperature, most 

of the not improving (or even worsening) moves may 

be accepted. Nonetheless, as the algorithm proceeds 

and temperature is reduced only improving moves 

are likely to be accepted. This strategy could help the 

algorithm avoid being trapped in local minimum and 

jump out of it. After a specific number of iterations, 

a number of iterations in which no development is 

detected, and a pre-determined run time, the 

algorithm may be dismissed. The SA algorithm 

strategy flowchart is depicts in Fig. 5. Simulated 

annealing algorithm has varied applications 

including improving the performance of other 

artificial intelligence techniques and determining the 

optimal set of process parameters [13, 23]. 

 
Fig. 5. Flowchart of SA algorithm used for the GTAW process optimization 

 

5. Results and discussion 
In this research, modeling and optimization of 

GTAW process has been addressed. The data 

required for modeling and optimization purposes has 

been acquired using Taguchi technique. Regression 

analysis has been employed to establish a relation 
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between process input and output variables. In order 

to opt the most fitted and appropriate model ANOVA 

has been used. Then, simulated annealing algorithm 

has been employed to optimize the process in such a 

way that the desired UTS and HAZ achieved. SA has 

been used twice. First it is employed for single 

objective optimization, then for multi-criteria 

optimization.  

Table 5 illustrates the results of optimization using 

SA and their corresponding confirmation tests for 

single objective optimization.  

 

Table 5. single objective optimization results for the GTAW process  

Error 

(%) 

experimen

t 
Predicted 

Process parameters 

Output 

D S F Ib I 

3 578 595 5 
0.43

5 
30 15 45 UTS 

4 0.198 0.188 5 
0.43

5 
60 5 35 HAZ 

 

Table 4 indicate that both welding and base current 

should be at their highest and other parameters at 

their lowest permissible ranges, resulting in 

maximum possible UTS. Likewise, for achieving the 

lowest HAZ, welding current, frequency, debi and 

base current should be approximately set at their 

lower ranges. 

The quality of final product in GTAW process is 

significantly affected by the choice of process 

variable levels. On the other hand, simultaneous 

selection of process parameters optimal values due to 

the interactions of these parameters is required. 

Therefore, several conflicting goals such as 

increasing product quality and reducing production 

time could be simultaneously achieved using multi-

criteria optimization of processes parameters. In this 

section the effects of GTAW process variables 

settings on the two important output characteristics 

(HAZ and UTS) have been investigated 

simultaneously (Equation (13)).  
  

(13) 

Minimaize f(𝑥)

=
𝐻𝐴𝑍2

0.285
+  

( UTS − 577)2

438
 

 

Table 6 shows the results of multi-criteria 

optimization of GTAW process and their 

corresponding confirmation test.  

 
Table 6. multi-criteria optimization results for the GTAW process 

Error (%) experiment Predicted Process parameters 

HAZ UTS HAZ UTS HAZ UTS D S F Ib I 

5 4 0.020 602 0.021 577 5 0.4495 46 5 42 
 

6. Conclusion 
The quality of final product in GTAW process is 

considerably affected by the selection of process 

variables values. In contrast, the conflicting nature of 

various quality measures, necessitate simultaneous 

selection of their optimal values. In this study the 

problem of single and multi-criteria modeling and 

optimization of GTAW process for AISI304 stainless 

has been addressed. First, GTAW modeling has been 

carried out using experimental data gathered as per 

L32 Taguchi design of experiments (DOE). Then, 

UTSs have been measured. Moreover, the MIP 

software has been used for measurement of HAZs. 

Five process input variables take into account to 

simultaneously predict two outputs responses using 

regression modeling. In order to evaluate the 

adequacy of the proposed models some experiments 

out of the matrix have been conducted based on 

which the adequacy of the proposed models have 

been proved. The errors which have been reported for 

the confirmation experiments were less than 7%. 

Next, the models have been embedded into SA 

algorithm to determine the optimal set of process 

settings both for single and multi-criteria 

optimization. The multi-criteria optimization 

procedure involves finding a certain combination of 

welding variables in such a way to optimize HAZ and 

UTS simultaneously. Frequency, welding speed, base 

current and welding current are the most influential 

variables affecting the UTS at 22%, 21%, 20% and 

17% respectively. Similarly, base current, welding 

current, frequency and welding speed affect the HAZ 
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at 28%, 20%, 16%, and 15% respectively. Based on 

the results considering the lowest values for currents, 

results in the smallest amount of HAZ. By the same 

token in order to acquire the largest amount of UTSs 

the highest values of currents must be considered. 

Setting welding and base current at 42 and 5 apm, 

frequency at 46 Hz, speed at 0.4495 m/min, and debi 

at 5 lit/min resulted the optimized HAZ and UTS 

simultaneously. These further illustrated that 

optimization results are consistent with the inherent 

characteristics of GTAW process. The result of 

optimization technique has shown the proposed 

model can accurately simulate the actual GTAW 

process (with less than 6% error). 
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