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Abstract. In real life, structural problems can be described in linear and nonlinear forms. This nonlinear structural
problem is very challenging to solve when its all parameters are imprecise in nature. Intuitionistic fuzzy sets were
proposed to manage circumstances in which experts have some membership and non-membership value to judge an
option. Hesitant fuzzy sets were used to manage scenarios in which experts pause between many possible member-
ship values while evaluating an alternative. A new growing area of a generalized fuzzy set theory called intuitionistic
hesitant fuzzy set (IHFS) provides useful tools for dealing with uncertainty in structural design problem that is
observed in the actual world. In this article, we have developed a procedure to solve non-linear structural problem
in an intuitionistic hesitant fuzzy (IHF) environment. The concept of an intuitionistic hesitant fuzzy set is intro-
duced to provide a computational basis to manage the situations in which experts assess an alternative in possible
membership values and non-membership values. This important feature is not available in the intuitionistic fuzzy
optimization technique. Here we have discussed the solution procedure of intuitionistic hesitant fuzzy optimization
technique dedicatedly for linear, exponential, and hyperbolic types of membership and non-membership functions.
Some theoretical development based on these functions has been discussed. A numerical illustration is given to
justify the effectiveness and efficiency of the proposed method in comparison with fuzzy multi-objective nonlinear
programming method and intuitionistic fuzzy multi-objective nonlinear programming method. Finally, based on
the proposed work, conclusions and future research directions are addressed.
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1 Introduction

In structural and civil engineering, structural optimization is a key idea. Although the concept of structural
optimization is well-established.It is frequently treated in a single objective form, with the objective being
(the weight function). In addition to the minimization of the weight function, this optimization also involves
satisfying one or more constants consequently. But in the real world, there are multiple competing objec-
tives. The Multiple objective structural optimizations (MOSOs) methodology was used to address multiple
competing objectives. Due to the growing technological demand for structural optimization, the MOSO is
becoming a more and more important research area in the last ten years.
The development of fuzzy optimum structural design methods was required because the input data and the
parameters in structural design problems are frequently/imprecise. The fuzzy set (FS) theory was first de-
veloped by Zadeh [17] to deal with erroneous and imperfect data. The decision-making problem was later
addressed by Zadeh [29] and Bellman and Zadel [6] using the fuzzy set theory. Later on, Zimmermann [30]
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proposed a fuzzy programming approach (FPA) for several objective optimization problems. The FS theory
is also used in the structural model. Many researchers (see [27, 12, 11, 23]) have given remarkable contri-
butions in the field of structural optimization under fuzzy environments. Also Dey et.al. [15] developed a
methodology using different norm( Yager, Hamacher, Dombi) under the fuzzy environment in the context
of structural design. Here they have optimized three objective functions simultaneously in three bar truss
structural model. Numerous extensions of fuzzy sets emerged as a result of the growing use of FS in structural
problems when the available information is ambiguous.

1.1 Literature Review

The intuitionistic fuzzy set (IFS), one of the generalizations of FS theory, was introduced by professor
Atanassov [4] in 1986.IFS plays an important role when imprecise information cannot be expressed by con-
ventional fuzzy sets. It is a more advanced version of FS. In IFS, we usually consider the degree of acceptance,
degree of rejection and hesitancy such that the sum of degrees of membership should be less than or equal to
one, whereas we consider the degree of acceptance only in FS. P. P. Angelov [3] introduced optimization for
the first time in a widespread intuitionistic fuzzy environment(IFEv) in 1997. The field of intuitionistic fuzzy
optimization (IFO) is still unexplored. There has been little research work done on IFO in terms of structural
optimization. The methodology of Multi-objective linear programming(MOLP) under IFEv was developed
by Jana and Roy [18] to find an optimal solution to the transportation problem. Luo et. al.[19] had discussed
multi-criteria decision making (MCDM) problems based on the inclusion degree of IFS in 2008. In 2015, Dey
et al. [13] used multi-objective intuitionistic fuzzy optimization approach to solve three bar truss structural
model. Farther, M. Sarkar et al. [21] proposed a new computational algorithm based on t-norm and t-conorm
in the intuitionistic fuzzy environment to solve a welded beam design problem. Ahmadini et al. [1] proposed
intuitionistic fuzzy goal programming with preference relations to solve a multi-objective problem in 2021.M.
Akram, et al.[2] introduced interval-valued Fermatean fuzzy set(IVFFS) which is the extension of Fermatean
fuzzy sets(FFSs) and applied IVFFS in the fractional transportation problem. Further, M.K. Sharma, et
al.[22] originally solved multi-objective transportation problem (MOTP) in Fermatean fuzzy environment.
They also anticipated a new score function to convert the Fermatean fuzzy data into Crisp data to solve
MOTP.In an IFS, the degree of acceptance, degree of rejection, and degree of hesitation of an element may
not be a specific number in some situations. As a result, it has been extended to interval-valued intuitionistic
fuzzy sets [5].
The concept of hesitant fuzzy set (HFS), which is an extension of regular FS, was first introduced by Torra [25]
and Torra and Narukawa [24]. This is a useful tool because it allows for more possible degrees of an element
to be in a set which is a sub-interval of [0,1]. In the literature survey, we have seen Meany researchers have
implemented the concept of HFS in different fields of research. In 2016, Xu et al. [26] developed a compu-
tational programming technique based on HFS for a hybrid multi-criteria group decision making (MCGDM)
model. L. Dymova [16] created a user-friendly computer application using a fuzzy multiple-criteria decision-
making (MCDM) technique. In 2018, Bharati [7] developed a multi-objective hesitant fuzzy optimization
technique. He also published some research articles on interval-valued intuitionistic hesitant fuzzy sets (see
[8, 9]), and hesitant intuitionistic fuzzy sets [10] between 2021 and 2022. Xia et. al. [28] introduced hesitant
fuzzy on decision making. In 2022, M. Ranjbar et al. [20] introduced the ranking of hesitant fuzzy numbers
and new arithmetic operations based on the extension principle.

1.2 Motivation for that research

According to the literature review, numerous methods have been developed to solve multi-objective opti-
mization problems (MOOPs) in fuzzy and intuitionistic fuzzy environments. Dey et al. [14] used fuzzy and
intuitionistic fuzzy approaches to solve multi-objective three-bar truss structural model. This method can
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satisfy the objective(s) with a bigger degree than the analogous fuzzy optimization problem and the crisp
one, but there is no space for the decision maker’s point of view. In real life, the decision makers priority
plays an important role in any decision-making. Therefore, it is necessary to develop a new decision-making
method based on IHF decision-making set that assigns a set of potential values for each objective functions
membership and non-membership in IHF environment.

1.3 Contribution of the work

Many scholars are working continuously to find the best solution to multi objective structural optimization
problems (MOSOPs). A large amount of the literature is composed of fuzzy-based optimization approaches
that use the generalized concept of a FS to solve MOSOPs. Many researchers optimize the MOSOPs using
an intuitionistic fuzzy-based optimization technique. The study focused on IHFS under different membership
and non-membership functions. After that, MOSOP can be solved by using the proposed IHF approach.
However, the following are the few major aspects that guarantee a significant contribution to the field of
multi objective optimization techniques.

• The intuitionistic hesitant fuzzy (IHF) is a recent extension of fuzzy sets that are explained in a
structural model of three bar truss.

• In this paper, we present an IHF set theory that provides an opportunity for the decision-maker to
select the best result or reject the worse result in comparison to others.

• Instead of a single fixed degree, a set of possible degrees of acceptance and degrees of rejection are
defined to address the uncertainty and hesitancy of MONLPP.

• The intuitionistic hesitant Pareto optimal is also introduced in this paper.

• We have developed a multi-objective structural model under an intuitionistic hesitant fuzzy environ-
ment. A computational algorithm for intuitionistic hesitant fuzzy optimization has been developed to
solve multi-objective structural models.

• The HIFS might be a useful tool to deal with any real-life situation in the context of uncertainty and
hesitation.

1.4 Framework of the article

The rest of the manuscript is organized as follows: Sect. 2, we have explained the multi-objective structural
optimization model. In Sect. 3 recalls some basic concepts of FS, IFS, IHFS. For the practical perspective,
a computational algorithm was proposed to solve MOOP using the intuitionistic hesitant fuzzy optimization
technique (IHFOT) in Sect. 4. In Sect. 5, stepwise solution procedures are described for the solution of
multi-objective structural model using IHFOT. An illustrative example is examined in Sect. 6 that shows the
applicability and validity of the proposed algorithm efficiently. Finally, conclusions are highlighted based on
the present work in Sect. 7.

2 Mathematical form of Multi-Objective Structural Problem (MOSP)

In the structural model, the basic parameters of a bar truss structure system (such as elastic modulus,
material density, height possible stress etc.) are identified, and the goal is to find the optimum cross section
area of the bar truss so that we can find the lightest weight of the structure and smallest node displacement
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under loading condition.
The multi-objective problem in structure model is written as follows:

Minimize WG(C)

Minimize d(C)

Such that T [C] ≤ [T0]

C ∈ [Cmin, Cmax]

(1)

Where n number design parameters C = [C1, C2, C3, ....., Cn]
T are considered.The design parameters are

the cross section of the truss bar,the total structural weight is WG(C) =
∑n

i=1 δiCiLi, d(C) is the deflection
of loaded joint, Li, Ci and δi were the lengths of the bar, cross section area and density of the ithgroup bars
respectively. Under different conditions, the stress constraint=T (C)and maximum possible stress of the group
bars=[T0] , cross section area (minimum)= Cmin and cross section area (maximum) = Cmax respectively.

3 Preliminaries

In this section, we talked about several fundamental ideas related to intuitionistic fuzzy logic.

Definition 3.1. (see [4]) (Intuitionistic Fuzzy Set(IFS)) Let E = {x1, x2, ..., xn} be the collection of finite
objects then the IFS Y in E is defined as: Y = {(xj , γY (xj)

, λY (xj)
) : xj ∈ E}, where the function γA(xj)

:

E → [0, 1]define the degree of membership function and λY (xj)
: xj : E → [0, 1] define the degree of non-

membership function of an element xj ∈ E respectively, with the condition 0 ≤ γY (xj) + λY (xj))
≤ 1 ∀xj ∈

E.For each Y ∈ E the amount πY (xj) = 1 − γA(xj)
− λY (xj)

is called Atanassovs intuitionistic index of the

element xj ∈ E or degree of indeterminacy (uncertainty) of xj of the measure of hesitation.

Definition 3.2. (see [4]) ((α, β)-cut) A subset (α, β)-cut of E generated by an IFS, where (α, β)are fixed
numbers such that α + β ≤ 1 is defined by Y α,β(xj) = {xj∈ E : γY (xj)

≥ α, λY (xj))
≤ β} .Thus (α, β) of an

IFS to be denoted by {Y α,β(xj) as a crisp set of the element xj which belong to Y α,β(xj) at least to the degree
α and at most to the degree β.

Definition 3.3. (see [25, 24]) (Hesitant Fuzzy Set(HFS)) Torra in 2009 and Torra and Narukawa in 2010,
created a new tool called hesitant fuzzy sets (HFSs) and which allow the membership degree to the set of
various possible values. The HFS can be stated as follows:
Let E be the fixed set then a HFS on E is expressed as Y = {(xj , hh(xj)

) : xj ∈ E}, where is set of possible

membership degrees of the element xj ∈ E in [0,1].Also, we call hY (xj), a hesitant fuzzy element. Further,
Xia and Xu [?] applied it in their works of research.

Definition 3.4. [10] (Intuitionistic Hesitant Fuzzy Set) When making a decision, a decision-maker may
hesitate to determine the exact degrees of membership and non-membership between 0 and 1. In such a
scenario, the IHFS, which is a generalized version of FS where the membership and nonmember ship degrees
of an element to a specific set can be represented by multiple distinct values between 0 and 1. The IHFS is
perfect at dealing with circumstances in which decision maker disagreement or hesitate to make a decision.
Let there be a fixed setE ; a IHFS Y on E is represented as Y = {(xj , hh(xj)

: xj ∈ E} where hY (xj) is set of

some values of IHFSs in [0,1] , denoting the possible membership degree and non-membership degree of the
element xj ∈ E . Let Ih1 , Ih2 be two IHFSs and h1 ∈ Ih1 , h2 ∈ Ih2.Then the complement of IHFS Ih, union
and intersection of Ih1 , Ih2 are defined as follows respectively.

• Ich = {hc : h ∈ Ih}
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• Ih1 ∪ Ih2 = {max(h1, h2) : h1 ∈ Ih1 , h2 ∈ Ih2 where h1 ∪ h2 = {max(γh1 , γh2),min(λh1 , λh1)}}

• Ih1 ∩ Ih2 = {min(h1, h2) : h1 ∈ Ih1 , h2 ∈ Ih2 where h1 ∩ h2 = {min(γh1 , γh2),max(λh1 , λh1)}}

Definition 3.5. [8] (Pareto-optimal solution) An ideal solution derived from a single objective may or may
not satisfy all of the conflicting objectives at the same time. However, it is difficult to find Pareto-optimal
solutions, which optimize all objectives while satisfying all constraints. Mathematically, SupposeΛ be the
collection of feasible solution for (1) of MOSOP. Then a point x∗ is considered to be a Pareto optimal or
efficient solution of (1) iff there exists no x ∈ Λ such that Θσ(x

∗) ≥ Θσ(x) for all σ and Θσ(x
∗) > Θσ(x)

for at least one σ. And a point x∗ ∈ Λ is called a weak Pareto optimal solution of (1). iff there exists no
x ∈ Λ such that Θσ(x

∗) ≥ Θσ(x) for all σ

Definition 3.6. [10] (Pareto-optimal solutions of IHF) The Pareto-optimal solutions for the IHF optimization
can be defined as follows:
A solution X0 ∈ Ω is said to be Pareto-optimal solution for (1) if there does not exist another X ∈ Ω such
that Θσ(X) ≥ Θσ(X0) with γIFσ Θσ(X) ≥ γIFσ Θσ(X0), λ

IF
σ Θσ(X) ≤ λIFσ (Θσ(X0)) , and Θσ0(X) > Θσ0(X0)

with γIFσ0
(Θσ0(X)) > γIFσ0

(Θσ0(X0)) and λ
IF
σ0

(Θσ0(X)) < λIFσ0
(Θσ0(X0)) for at least one σ0 = {1, 2, ....,Σ}.

Definition 3.7. (Intuitionistic Hesitant fuzzy Non Linear Programming (IHFNLP)) Most real-world prob-
lems involve the optimization of more than one objectives at the same time. The best compromise solution
is the most promising solution set that efficiently satisfies each objective. Therefore, a Multi-Objective Non-
Linear Programming (MONLP) with P objectives should be greater than or equal to some value ≲ g0p(x), p =
1, 2, ..., P may be taken in the following form:

Minimize Θ(x) = [Θ1,Θ2, .....,Θσ]
T

subject to Θσ(x) ≲ g0σ(x), σ = 1, 2, ...,Σ

gj(x) ≤ 0, xj ≥ 0forj = 1, 2, ..,m

x = {x1, x2, ..., xn}

(2)

Where g0σ(x) is goal for σth objective and ≲ is uncertain form of ≤.

4 Problem formulation and solution algorithm

4.1 Intuitionistic Hesitant Fuzzy algorithm to Solve MONLPP

A MONLP with σ objective may be taken in the following form:

Minimize Θ(x) = [Θ1(x),Θ2(x), .....,Θσ(x)]
T

subject to {x ∈ Rn : gj(x) ≤ or = or ≥ bj for j = 1, 2, ...,m}
Li ≤ xi ≤ Ui (i = 1, 2, ..., n)

(3)

Zimmermann [30] showed that fuzzy programmin technique (FPT) can be used to solve the MOOP. To solve
MONLPP, following steps are used.
Step 1 Solve the MONLP (3) as a single objective function from the set of σ objectives and solve it as a
single objective subject to the given constrains and ignoring the others objective function. Determine the
value of objective functions and basic feasible solutions.
Step 2 Calculate the values of the remaining (σ−1) objectives at the basic feasible solutions that are obtained
from Step 1.
Step 3 Repeat the Step 1 and Step 2 for the remaining (σ − 1) objective functions.
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Table 1: Please write your table caption here

Minimum Θ1 Θ2 Θ3 —– Θσ X

Minimum Θ1 Θ∗
1 —– X1

Minimum Θ2 Θ∗
2 —– X2

Minimum Θ3 Θ∗
3 —– X2

—– —– —– —– —– —– —–
Minimum ΘΣ —– Θ∗

σ Xσ

Maximum Θ′
1 Θ′

2 Θ′
3 —– Θ′

σ X ′
σ

Step 4 From the result of Step 1, Step 2 and Step 3, obtained the corresponding tabulated values of
objective functions from a Table 1. and these are known as positive ideal solution.
Step 5 From Step 4, obtain the lower bounds and upper bounds for each objective functions, where Θ∗

σ and
Θ

′
σ are maximum, minimum values of ΘΣ respectively.

Step 6 Here, we denote and define upper and lower bounds by Uγ
σ = max{ZpXp} and p = 1, 2, 3, ..., P for

respectively for each uncertain and imprecise objective functions of MONLPPs
Step 7 Set upper bound or upper tolerance level and lower bound or lower tolerance limit for the σth objective
function Θσ for hesitant degree of acceptance and rejection based on the set of solutions obtained in Step 4.
For hesitant membership function: Upper and lower tolerance level for hesitant membership functions are

Uγ
σ = max{Θσ(Xp)} and Lγ

σ = min{Θσ(Xp)}, 1 ≤ p ≤ P , σ = 1, 2, ...,Σ

For hesitant non-membership function: Upper and lower tolerance level for hesitant membership functions
are

Uλ
σ = Uγ

σ , L
λ
σ = Lγ

σ + ϵσ

where 0 ≤ ϵσ ≤ (Uσ − Lσ) is predetermined real numbers prescribed by decision-makers.
Step 8 In this step, we can define uncertainty and imprecise objectives of different hesitant membership
functions as linear, exponential and hyperbolic more elaborately under IHF environment. Each of them
is defined for the hesitant membership and a hesitant non-membership functions, which seems to be more
realistic.

4.1.1 Linear-type intuitionistic hesitant membership functions approach (LTIHMFA)

The truth membership function of linear type γLfiσ (Θσ(x)) and a falsity membership function of linear type

λLf1σ (Θσ(x)) functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γLf1σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γLf2σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ
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.....

γLfnσ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

(
(Uγ

σ )
†−(Θσ(x))†

(Uσ)†−(Lσ)†

)
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λLf1σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λLf2σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λLfnσ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

(
(Θσ(x))†−(Lλ

σ)
†

(Uσ)†−(Lσ)†

)
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

The mathematical expression for objective functions defined as follows

Max minσ=1,2,...,Σγ
Lfi
σ (Θσ(x))

†)

Min maxσ=1,2,...,Σλ
Lfi
σ (Θσ(x))

†)

i = 1, 2, ...., n

(4)

Subject to all constraints of (3).

Also assume that γLfiσ (Θσ(x))
†) ≥ νi and λ

Lfi
r (Θσ(x))

†) ≤ ηi i = 1, 2, ...., n for all σ. Where the parameter
† > 0
Using auxiliary parameters νi and ηi, the problem (4) can be transformed into the following problem (5)
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LTIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

(Θσ(x))
† +

ν1
ϕ1

(
(Uγ

σ )
† − (Lγ

σ)
†
)
≤ (Uγ

σ )
†,

(Θσ(x))
† +

ν2
ϕ2

(
(Uγ

σ )
† − (Lγ

σ)
†
)
≤ (Uγ

σ )
†,

.........,

(Θσ(x))
† +

ν3
ϕ3

(
(Uγ

σ )
† − (Lγ

σ)
†
)
≤ (Uγ

σ )
†;

(Θσ(x))
† − η1

ζ1

(
(Uλ

σ )
† − (Lλ

σ)
†
)
≤ (Lσλ)†,

(Θσ(x))
† − η2

ζ2

(
(Uλ

σ )
† − (Lλ

σ)
†
)
≤ (Lλ

σ)
†,

.........,

(Θσ(x))
† − η3

ζ3

(
(Uλ

σ )
† − (Lλ

σ)
†
)
≤ (Lλ

σ)
†;

(5)

νi ≥ ηi; νi + ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., nall the constraints of (3).

Theorem 4.1. There is only one optimal solution (x∗, ν∗, η∗) of (5) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ....., ν

∗
n) and η

∗ = (η∗1, η
∗
2, ....., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (5) that it is an inefficient solution
to the problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that
Θσ(x

∗) ≤ Θσ (x
′)∀σ = 1, 2, ....,Σ and Θσ(x

∗) < Θσ (x
′) for at least one σ .

Therefore, we have ϕ
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†
≤ ϕ

(Uγ
σ )† − (Θσ(x

′))†

(Uγ
σ )† − (Lγ

σ)†
∀ σ = 1, 2, ....,Σ

and ϕ
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†
< ϕ

(Uγ
σ )† − (Θσ(x

′))†

(Uγ
σ )† − (Lγ

σ)†
for atleast one σ,

where 0 ≤ ϕ ≤ 1

Thus, Max∀σ

(
ϕ
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − ((Lγ

σ)†

)
≤Max∀σ

(
ϕ
(Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†

)
and Maxσ

(
ϕ
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†

)
< Maxσ

(
ϕ
(Uγ

σ )† − (Θσ(x
′))†

(Uσ)† − (Lσ)†

)
for at least one σ.

Similarly, Min∀σ

(
ζ
(Θσ(x

∗))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
≥Min∀σ

(
ζ
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
and Minσ

(
ζ
(Θσ(x

∗))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
> Minσ

(
ζ
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
for at least one σ.

where 0 ≤ ζ ≤ 1
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Now suppose that,

ν ′ =Maxσ

(
ϕ
(Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†

)
, ν∗ =Maxσ

(
ϕ
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†

)
,

η′ =Minσ

(
ζ
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
, and η∗ =Minσ

(
ζ
(Θσ(x

∗))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗ − η∗) < (ν ′ − η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (5). Hence, it is an effective solution
of (5). Hence the proof is now complete. □

4.1.2 Exponential-type intuitionistic hesitant membership functions approach (ETIHMFA)

The truth membership function of exponential type γEfi
σ (Θσ(x)) and a falsity membership function of expo-

nential type λEfi
σ (Θσ(x)) functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γEf1
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

[
1− exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γEf2
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

[
1− exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

.....

γEfn
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

[
1− exp

{
−ψ
(
(Uγ

σ )
†−(Θσ(x))†

(Uγ
σ )†−(Lγ

σ)†

)}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λEf1
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

[
1− exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λEf2
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

[
1− exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λEfn
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

[
1− exp

{
−ψ
(
(Θσ(x))†−(Lγ

σ)
†

(Uλ
σ )†−(Lλ

σ)
†

)}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ
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Where ψ denotes the ambiguity degree or shape parameter assigned by the decision-maker.
Using by problem (4), we consider that γEfi

σ (Θσ(x)) ≥ νi and λ
Efi
σ (Θσ(x)) ≤ ηi for i = 1, 2, ...., n and ∀σ,

where the parameter † > 0.
The auxiliary parameters νi and ηi allow the problem (4) to be changed into (6)

ETIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

ϕ1

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x))
†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ ν1,

ϕ2

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x))
†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ ν2,

.........,

ϕn

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x))
†

(Uγ
σ )† − (Lγ

σ)†

)}]
≥ νn;

ζ1

[
1− exp

{
−ψ
(
(Θσ(x))

† − (Lγ
σ)†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
≤ η1,

ζ2

[
1− exp

{
−ψ
(
(Θσ(x))

† − (Lγ
σ)†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
≤ η2,

.........,

ζn

[
1− exp

{
−ψ
(
(Θσ(x))

† − (Lγ
σ)†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
≤ ηn;

(6)

νi ≥ ηi; νi + ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., nall the constraints of (3).

Theorem 4.2. There is only one optimal solution (x∗, ν∗, η∗) of (6) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ....., ν

∗
n) and η

∗ = (η∗1, η
∗
2, ...., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (6) that it is an inefficient solution
to the problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that
Θσ (x

∗) ≤ Θσ(x
′)∀σ = 1, 2, ....,Σ and Θσ (x

∗) < Θσ(x
′) for at least one σ

Therefore, we have
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†
≤ (Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†
∀ σ = 1, 2, ....,Σ

and
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†
<

(Uγ
σ )† − (Θσ(x

′))†

(Uγ
σ )† − (Lγ

σ)†
for atleast one σ,

Now, 1− exp

{
−ψ
(
(Θσ(x

∗))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
≤ 1− exp

{
−ψ
(
(Θσ(x

′))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
∀ σ = 1, 2, ....,Σ

and 1− exp

{
−ψ
(
(Θσ(x

∗))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
< 1− exp

{
−ψ
(
(Θσ(x

′))† − (Lγ
σ)†

(Uγ
σ )† − (Lγ

σ)†

)}
for atleast one σ,
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Thus,

Max∀σϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
≤Max∀σϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
and Maxσϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
< Maxσϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
for at least one σ, 0 ≤ ϕ ≤ 1

Min∀σζ

[
1− exp

{
−ψ
(
(Θσ(x

∗))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
≥Min∀σζ

[
1− exp

{
−ψ
(
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
)

and Minσζ

[
1− exp

{
−ψ
(
(Θσ(x

∗))† − (Lγ
σ)†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
> Minσζ

[
1− exp

{
−ψ
(
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
for at least one σ, 0 ≤ ζ ≤ 1

Now suppose that,

ν ′ =Maxσϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
′))†

(Uγ
σ )† − (Lγ

σ)†

)}]
),

ν∗ =Maxσϕ

[
1− exp

{
−ψ
(
(Uγ

σ )† − (Θσ(x
∗))†

(Uγ
σ )† − (Lγ

σ)†

)}]
),

η′ =Minσζ

[
1− exp

{
−ψ
(
(Θσ(x

′))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
,

and η∗ =Minσζ

[
1− exp

{
−ψ
(
(Θσ(x

∗))† − (Lλ
σ)

†

(Uλ
σ )

† − (Lλ
σ)

†

)}]
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗−η∗) < (ν ′−η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (6). Hence, it is an effective solution
of (6). Hence the proof is now complete. □

4.1.3 Hyperbolic type intuitionistic hesitant membership functions approach
(HTIHMFA)

The truth membership function of hyperbolic type γHfi
σ (Θσ(x)) and a falsity membership function of hyper-

bolic type λHfi
σ (Θσ(x)) membership functions under IHF environment can be explained in the following way:

For truth hesitant fuzzy membership functions:

γHf1
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ1

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θpσ(x)) > Uγ
σ

γHf2
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕ2

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

.....
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γHfn
σ (Θσ(x)) =


1 if Θσ(x) ≤ Lγ

σ

ϕn

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
if Lγ

σ ≤ Θσ(x)) ≤ Uγ
σ

0 if Θσ(x)) > Uγ
σ

For Falsity hesitant fuzzy membership functions

λHf1
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ1

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

λHf2
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζ2

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

.....

λHfn
σ (Θσ(x)) =


0 if Θσ(x) ≤ Lλ

σ

ζn

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
if Lλ

σ ≤ Θσ(x)) ≤ Uλ
σ

1 if Θσ(x)) > Uλ
σ

Where τσ =
6

Uσ − Lσ
denotes the ambiguity degree or shape parameter assigned by the decision-maker.

Assume that γHfi
σ (Θσ(x)) ≥ νi and λ

Hfi
σ (Θσ(x)) ≤ ηi for i = 1, 2, ...., n and ∀σ, where the parameter † > 0.

The auxiliary parameters νi and ηi allow the problem (4) to be changed into (7)

HTIHMFA Max

(∑
i

νi −
∑
i

ηi

)
Subject to

ϕ1

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
≥ ν1,

ϕ2

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
≥ ν2,

.........,

ϕn

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x))

†
)
τσ

}]
≥ νn;

ζ1

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
≤ η1,

ζ2

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
≤ η2,

.........,

ζn

[
1

2
+

1

2
tanh

{(
(Θσ(x))

† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
≤ ηn;

(7)
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νi ≥ ηi; νi+ ηi ≤ 1 and ηi, νi, ϕi, ζi ∈ [0, 1] ∀i = 1, 2, ..., n Where τσ =
6

Uσ − Lσ
all the constraints of (3).

Theorem 4.3. There is only one optimal solution (x∗, ν∗, η∗) of (7) that is also an efficient solution to the
problem (3) where ν∗ = (ν∗1 , ν

∗
2 , ..., ν

∗
n) and η

∗ = (η∗1, η
∗
2, ....., η

∗
n)

Proof. Assume that (x∗, ν∗, η∗) be the only optimal solution of (7) that it is an inefficient solution to the
problem (3). Then there exist different feasible alternative x′(x′ ̸= x∗) of problem (3), so that Θσ(x

∗) ≤
Θσ(x

′) ∀σ = 1, 2, ....,Σ and Θσ(x
∗) < Θσ(x

′) for at least one σ .
Therefore, we have

tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

∗))†
)
τσ

}
≤ tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

′))†
)
τσ

}
∀

σ = 1, 2, ....,Σ

and tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

∗))†
)
τσ

}
< tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

′))†
)
τσ

}
for atleast one σ,

Max∀σϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

∗))†
)
τσ

}]
≤Max∀σϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

′))†
)
τσ

}]
and Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

∗))†
)
τσ

}]
< Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uγ

σ )† + (Lγ
σ)†

2
− (Θσ(x

′))†
)
τσ

}]
for at least one σ, 0 ≤ ϕ ≤ 1

Similarly,

Min∀σζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

∗))† − (Uσ)
† + (Lσ)

†

2

)
τσ

}]
≥Min∀σζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

′))† − (Uσ)
† + (Lσ)

†

2

)
τσ

}]
and Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

∗))† − (Uσ)
† + (Lσ)

†

2

)
τσ

}]
> Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

′))† − (Uσ)
† + (Lσ)

†

2

)
τσ

}]
for at least one σ, 0 ≤ ζ ≤ 1
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Table 2: Tabulation value of objective functions

WG (C1, C2) d (C1, C2)

C1 WG(C1) d(C1)
C2 WG(C2) d(C2)

Now suppose that,

ν ′ =Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uλ

σ )
† + (Lλ

σ)
†

2
− (Θσ(x

′))†
)
τσ

}]
,

ν∗ =Maxσϕ

[
1

2
+

1

2
tanh

{(
(Uλ

σ )
† + (Lλ

σ)
†

2
− (Θσ(x

∗))†
)
τσ

}]
,

η′ =Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

′))† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
,

and η∗ =Minσζ

[
1

2
+

1

2
tanh

{(
(Θσ(x

∗))† − (Uλ
σ )

† + (Lλ
σ)

†

2

)
τσ

}]
for at least one σ.

Then, ν∗ ≤ (<)ν ′ and η∗ ≥ (>)η′ which gives (ν∗ − η∗) < (ν ′ − η′) that implies the solution is not optimal
which contradicts that x′(x′ ̸= x∗) is the only one optimal solution of (7). Hence, it is an effective solution
of (7). Hence the proof is now complete. □

5 Proposed Algorithm

5.1 Computation Algorithm for MOSP using IHF programming technique

Step 1 Solve the first goal function in the collection of objectives, (1) treating it as a single objective while
taking into account the specified constraints. Evaluate the values of the objective functions and decision
variables.
Step 2 Calculate the values of the remaining objectives based on the values of these decision variables.
Step 3 For the remaining objective functions, repeat Step 1 and Step 2.
Step 4 As per the Step 3, obtained the corresponding tabulated values of objective functions from a Table
2 as follows:
Step 5 The upper and lower limits are U1 = max

{
WG(C1),WG(C2)

}
,

L1 = min
{
WG(C1),WG(C2)

}
for weight function WG(C), where WG(C) ∈ [L1, U1] and the upper limit

and lower limit of objective are U2 = max
{
d(C1), d(C2)

}
, L2 = min

{
d(C1), d(C2)

}
for deflection function

d(C), where d(C) ∈ [L1, U1] are identified.
Step 6 Now the IHF programming approach for MOSOP with linear (or exponential or hyperbolic) truth
intuitionistic membership and falsity intuitionistic membership functions gives equivalent nonlinear program-
ming problem as

Max
(
minγIfiσ (WG(C))

)
;Max

(
minγIfiσ (d(C))

)
;

Min
(
maxλIfiσ (WG(C))

)
;Min

(
maxλIfiσ (d(C))

)
Subject to, [T (C)] = [T0]

C ∈ [Cmin, Cmax], Ifi = Lfi, Efi,Hfi; i = 1, 2, .., n]

where x ∈ E = {x ∈ ℜ : gj ≤ or ≥ bj j = 1, 2, ...m} and Li ≤ xi ≤ Ui

(8)
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bar truss.png bar truss.bb

Figure 1: The three-bar planar truss’s design

Now, using arithmetic aggregation operator the above equation (8) can be formulated as follows:

Maxℑ =
ν1 + ν2 + .....+ νn

n
− η1 + η2 + .....+ ηn

n

Subject to, γIf1σ (WG(C)) ≥ ν1, γ
If2
σ (WG(C)) ≥ ν2, ..., γ

Ifn
σ (WG(C)) ≥ νn;

λIf1σ (WG(C)) ≤ η1, λ
If2
σ (WG(C)) ≤ η2, ..., λ

Ifn
σ (WG(C)) ≤ ηn;

γIf1σ (d(C)) ≥ ν1, γ
If2
σ (d(C)) ≥ ν2, ..., γ

Ifn
σ (d(C)) ≥ νn;

λIf1σ (d(C)) ≤ η1, λ
If2
σ (d(C)) ≤ η2, ..., λ

Ifn
σ (d(C)) ≤ ηn

[T (C)] = [T0];C ∈ [Cmin, Cmax], Ifi = Lfi, Efi,Hfi;C ≥ 0;

νi, ηi ∈ [0, 1]; νi + ηi ≤ 1‘ i = 1, 2, .., n

(9)

Step 8 An appropriate mathematical programming algorithm can easily solve the above non-linear program-
ming problem (9).

6 Numerical solution of a three-bar truss MOSOP

In Figure (1), a well-known three-bar planar truss structure is taken into consideration to minimize vertical
deflection d (C1, C2) along x and y axes at the loading point of a statistically loaded three-bar planar truss
subjected to stress Ti (C1, C2) constraints on each of the truss members i = 1, 2, 3 and reduce structural
weight WG (C1, C2). The MOSOP can be stated in the following manner:
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Table 3: Tabulation value of objective functions

WG (C1, C2) dx (C1, C2) dx (C1, C2)

C1 2.187673 20 5.8578664
C2 15 3 1
C3 10.1 3.960784 0.03921569

Minimize WG (C1, C2) = δL
(
2
√
2C1 + C2

)
,

Minimize dx (C1, C2) =
PL (2C1 + C2)

E
(
2C2

1 + 2C1C2

) ,
Minimize dy (C1, C2) =

PLC2

E
(
2C2

1 + 2C1C2

) ,
subject to, T1 (C1, C2) =

PL (2C1 + C2)(
2C2

1 + 2C1C2

) ≤
[
T T
1

]
,

T2 (C1, C2) =
P(√

2C1 + C2

) ≤
[
T T
2

]
,

T3 (C1, C2) =
PC2(

2C2
1 + 2C1C2

) ≤
[
TC
3

]
, Cmin

i ≤ Ci ≤ Cmax
i i = 1, 2

(10)

Where, applied load=P ;material density= δ,L = Length of each bar, maximum limit of tensile stress for bar
1 and 2 = T T

i for i = 1, 2,maximum limit of compressive stress for bar 3=TC
3 , Youngs modulus =E ,C1 =Bar

1 and Bar 3 cross sections and C2 = Bar 2 cross section. dx and dy are the deflection of loaded along x and
yaxes respectively.
The input data for MOSOP (10) is given as follows:
P = 20KN, δ = 100KN/m3, L = 1m,

[
T T
1

]
= 20KN/m2,

[
T T
2

]
= 10KN/m2

and
[
TC
3

]
= 20KN/m2, E = 2× 108KN/m2, 0.1× 10−4m2 ≤ C1, C2 ≤ 0.5× 10−4m2

Solution According to step 2 the corresponding tabulated values of objective functions obtained from Table
3 as follows:
Here, WGγ

U = WGλ
U = 15, WGγ

L = 2.187673,WGλ
L = WGγ

L + ϵ1,where 0 ≤ ϵ1 ≤ (15 − 2.187673),
(dx)

γ
U = (dx)

λ
U = 20, (dx)

γ
L = 3, (dx)

λ
L + ϵ2, where 0 ≤ ϵ2 ≤ (20 − 3), (dy)

γ
U = (dy)

λ
U = 5.857864, (dy)

γ
L =

0.03921569, (dy)
λ
L + ϵ3,where 0 ≤ ϵ3 ≤ (5.857864− 0.03921569) Using the Linear type hesitant membership

functions approach (LTHMFA) (5) the problem (10)
equivalent to the following (11)

Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective
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(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν1

0.98
≤ (15)†,

(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν2

0.99
≤ (15)†,

(2C1 + C2)
† +

(
(15)† − (2.187673)†

)
× ν3 ≤ (15)†

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
× η1

0.98
,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
× η2

0.99
,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
× η3

For 2nd objective (
20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(
(20)† − (3)†

)
× ν1

0.98
≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(
(20)† − (3)†

)
× ν2

0.99
≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
+
(
(20)† − (3)†

)
× ν3 ≤ (20)†,

(11)

(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
× η1

0.98
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
× η2

0.99
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
× η3

For 3rd objective(
20C2

2C2
1 + 2C1C2

)†
+
(
(5.857864)† − (0.03921569)†

)
× ν1

0.98
≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
+
(
(5.857864)† − (0.03921569)†

)
× ν2

0.99
≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
+
(
(5.857864)† − (0.03921569)†

)
× ν3 ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)
× η1

0.98
,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)
× η2

0.99
,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)
× η3,

νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Using the Exponential type hesitant membership functions approach (ETHMFA) (6) the problem (10)
equivalent to the following (12)
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Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln

(
1− ν1

0.98

)
/ψ ≤ (15)†,

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln

(
1− ν2

0.99

)
/ψ ≤ (15)†,

(2C1 + C2)
† −

(
(15)† − (2.187673)†

)
× ln (1− ν3) /ψ ≤ (15)†

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
×
{
−ln

(
1− η1

0.98

)}
/ψ,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
×
{
−ln

(
1− η2

0.99

)}
/ψ,

(2C1 + C2)
† − (2.187673)† − (ϵ1)

† ≤
(
(15)† − (2.187673)† − (ϵ1)

†
)
× {−ln (1− η3)}/ψ

For 2nd objective

(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(
(20)† − (3)†

)
× ln

(
1− ν1

0.98

)
/ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(
(20)† − (3)†

)
× ln

(
1− ν2

0.99

)
/ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
−
(
(20)† − (3)†

)
× ln (1− ν3) /ψ ≤ (20)†,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
×
{
−ln

(
1− η1

0.98

)}
/ψ,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
×
{
−ln

(
1− η2

0.99

)}
/ψ,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
− (3)† − (ϵ2)

† ≤
(
(20)† − (3)† − (ϵ2)

†
)
× {−ln (1− η3)}/ψ

(12)

For 3rd objective

(
20C2

2C2
1 + 2C1C2

)†
−
(
(5.857864)† − (0.03921569)†

)
× ln

(
1− ν1

0.98

)
/ψ ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
−
(
(5.857864)† − (0.03921569)†

)
× ln

(
1− ν2

0.99

)
/ψ ≤ (5.857864)†,(

20C2

2C2
1 + 2C1C2

)†
−
(
(5.857864)† − (0.03921569)†

)
× ln (1− ν3) /ψ ≤ (5.857864)†,
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20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)

×
{
−ln

(
1− η1

0.98

)}
/ψ,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)

×
{
−ln

(
1− η2

0.99

)}
/ψ,(

20C2

2C2
1 + 2C1C2

)†
− (0.03921569)† − (ϵ3)

† ≤
(
(5.857864)† − (0.03921569)† − (ϵ3)

†
)

× {−ln (1− η3)}/ψ,
νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Using the Hyperbolic type hesitant membership functions approach (HTHMFA) (7) the problem (10) equiv-
alent to the following (13)
For 1st objective

Maxℑ =
1

3

(
Σ3
i=1νi − Σ3

i=1ηi
)

Subject to,
For 1st objective

(2C1 + C2)
† τWG(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) + tanh−1(2ν3 − 1) ≤

τWG(C)

2

(
(15)† + (2.187673)†

)
,

(2C1 + C2)
† τWG(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
,

(2C1 + C2)
† τWG(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
,

(2C1 + C2)
† τWG(C) − tanh−1 (2η3 − 1) ≤

τWG(C)

2

(
(15)† + (2.187673)† + (ϵ1)

†
)
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Table 4: The input values for MOSOP (10)

P δ L(m)
[
T T
1

] [
T T
2

] [
TC
3

]
E Cmin

i .Cmax
i

(KN) (KN/m3) (KN/m2) (KN/m2) (KN/m2) (KN/m2) (10−4m2)

20 100 1 20 10 20 2× 107 Cmin
1 = 0.1, Cmax

1 = 5.0,
Cmin
2 = 0.1, Cmax

2 = 5.0

For 2nd objective(
20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) + tanh−1 (2ν3 − 1) ≤

τdx(C)

2

(
(20)† + (3)†

)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)
,(

20(2C1 + C2)

2C2
1 + 2C1C2

)†
τdx(C) − tanh−1 (2η3 − 1) ≤

τdx(C)

2

(
(20)† + (3)† + (ϵ2)

†
)

(13)

For 3rd objective(
20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1

(
2ν1
0.98

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1

(
2ν2
0.99

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) + tanh−1 (2ν3 − 1) ≤

τdy(C)

2

(
(5.857864)† + (0.03921569)†

)
,

(
20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1

(
2η1
0.98

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1

(
2η2
0.99

− 1

)
≤
τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)
,(

20C2

2C2
1 + 2C1C2

)†
τdy(C) − tanh−1 (2η3 − 1) ≤

τdy(C)

2

(
(5.857864)† + (0.03921569)† + (ϵ3)

†
)

where τWG(C) =
6

15− 2.187673
τdx(C) =

6

20− 3
and τdy(C) =

6

5.857864− 0.03921569
,

νi ≥ ηi, νi + ηi ≤ 1, νi, ηi ∈ [0, 1]; ‘ i = 1, 2, 3 and all the constraints of (10).

Comparison of optimal solution of MOSOP (10) using several methods.
The Pareto optimal solution of MOSOP model (10) using fuzzy, intuitionistic fuzzy, and intuitionistic

hesitant fuzzy multi-objective nonlinear programming techniques is given in Table 5. Here we get the best
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Table 5: Optimal values on Structural Weight and Deflections for † = 1

Membership Various
function algorithm C1×10−4m2 C2×10−4m2 WG(C1, C2) dx(C1, C2) dy(C1, C2)

MONLP

Fuzzy multi-objective
Linear-type nonlinear 2.677489 0.1000000 5.454979 7.335216 0.1344683

programming[14]

Intuitionistic fuzzy
multi-objective

Linear-type nonlinear programming 2.613073 0.1000000 5.326147 7.512768 0.1410545
ϵ1 = 0.76873962,
ϵ2 = 1.7,
ϵ3 = 0.2480392 [14]

Proposed Method
Linear type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.576483 0.1000000 5.252965 7.617507 0.1450135
ϵ3 = 0.2480392

Exponential Proposed Method
-type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.677490 0.1000000 5.454980 7.335215 0.1344682
ϵ3 = 0.2480392

Hyperbolic Proposed Method
-type ϵ1 = 0.76873962,

ϵ2 = 1.7, 2.471704 0.1000000 5.043407 7.934265 0.13573195
ϵ3 = 0.2480392
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solution for different tolerances ϵ1, ϵ2, ϵ3 for non-membership function of objective functions. The Table 5
shows that the proposed intuitionistic hesitant fuzzy optimization technique gives a better Pareto optimal
solution from the perspective of structural optimization.

7 Conclusion and Future Implication

To demonstrate the performance of the stated algorithm, a numerical example is given and compare their
results with the existing studies[14]. It is concluded from this study that the proposed work gives more
reasonable ways to handle the hesitant fuzzy information to solve practical problems.
In the future, we shall lengthen the methodology of intuitionistic hesitant fuzzy optimization technique to
the diverse fuzzy environment as well as different fields of application such as transportation, networking,
portfolio management, and emerging decision problems.
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