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Abstract. We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main
idea is that of predicting the “next” workload occurring against the target Cloud infrastructure via an innovative
ensemble-based approach that combines the effectiveness of different well-known classifiers in order to enhance the
whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. The so-
called workload categorization problem plays a critical role in improving the efficiency and reliability of Cloud-based
big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate in the
distributed classification approach on top of wvirtual machines, which represent classical “commodity” settings for
Cloud-based big data applications. Given a number of known reference workloads, and an unknown workload, in
this paper we deal with the problem of finding the reference workload which is most similar to the unknown one.
The depicted scenario turns out to be useful in a plethora of modern information system applications. We name
this problem as coarse-grained workload classification, because, instead of characterizing the unknown workload in
terms of finer behaviors, such as CPU, memory, disk, or network intensive patterns, we classify the whole unknown
workload as one of the (possible) reference workloads. Reference workloads represent a category of workloads that
are relevant in a given applicative environment. In particular, we focus our attention on the classification problem
described above in the special case represented by virtualized environments. Today, Virtual Machines (VMs) have
become very popular because they offer important advantages to modern computing environments such as cloud
computing or server farms. In virtualization frameworks, workload classification is very useful for accounting,
security reasons, or user profiling. Hence, our research makes more sense in such environments, and it turns out
to be very useful in a special context like Cloud Computing, which is emerging now. In this respect, our approach
consists of running several machine learning-based classifiers of different workload models, and then deriving the
best classifier produced by the Dempster-Shafer Fusion, in order to magnify the accuracy of the final classification.
Experimental assessment and analysis clearly confirm the benefits derived from our classification framework. The
running programs which produce unknown workloads to be classified are treated in a similar way. A fundamental
aspect of this paper concerns the successful use of data fusion in workload classification. Different types of metrics
are in fact fused together using the Dempster-Shafer theory of evidence combination, giving a classification accuracy
of slightly less than 80%. The acquisition of data from the running process, the pre-processing algorithms, and
the workload classification are described in detail. Various classical algorithms have been used for classification to
classify the workloads, and the results are compared.
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1 Introduction

In this paper, we propose Cloud-based machine learning tools for enhanced big data applications (e.g., [34,
, 21]), where the main idea is that of predicting the “next” workload occurring against the target Cloud

infrastructure via an innovative ensemble-based (e.g., [17]) approach combining the effectiveness of different
well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant
at now in the specific context of Big Data (e.g., [17]). So-called workload categorization problem plays a

critical role in improving the efficiency and the reliability of Cloud-based big data applications (e.g., [60,

]). Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed
classification approach on top of virtual machines (e.g., [28]), which represent classical “commodity” settings
for Cloud-based big data applications (e.g., [37]).

Virtualization technology has become fundamental in modern computing environments such as cloud
computing [9, 13, 22, 8] and server farms [57, 23]. By running multiple virtual machines on the same
hardware, virtualization allows us to achieve a high utilization of the available hardware resources. Moreover,
virtualization brings advantages in security, reliability, scalability, and resource management (e.g., [10, 58,

). Resource management in the virtualized context can be performed by classifying the workload of the
virtualized application (e.g., [066]). As a consequence, workload characterization and prediction have been
widely studied during past research efforts (e.g., [14, 3]). More recently, some work has been done on
workload characterization in data center environments [26]. On the other hand, workload modeling and
prediction in virtualization environments have been addressed in [24, 27, 2], while a virtualized workload
balancing approach is described in [29] which uses virtual machine migration, and another approach that
focuses on server farms is presented in [61]. From a methodological point of view, workload classification
is a critical task that integrates the previously-mentioned ones, is performed by collecting suitable metrics
during the execution of reference applications, and running a pattern classifier on the collected data, which
allows us to discriminate among the different classes. At a base level, the workload can be classified as CPU-
intensive or I/O-intensive. In [32], Hu et al. perform asymmetric virtual machine scheduling based on this
base classification level. At a finer level, the workload can be classified as CPU-intensive, memory-intensive,
disk read/write-intensive, and network I/O-intensive. Zhao et al. [66] describe a workload classification
model based on such a finer classification level. In [65], Zhang et al. address the problem of automatically
selecting the metrics which provide the best accuracy in the classification task. Also, it has been studied that
workloads can be classified by considering memory references as signals, which can be analyzed using spectral
parameters (e.g., [53, 12]). Results on instrumented machines and in simulation show that Hidden Markov
Model (HMM) classifiers [!] can be used to model memory references created and managed by processes
under execution.

In our proposed research, the classification phase works as follows. First, in a virtualized environment, we
run some programs we take as reference (in this work, we make use of the well-known SPEC CINT2006 bench-
marks [541]) and, then, from their execution, we extract some features using the APIs of the Virtual Machine
Monitor. With these so-collected features, we train a model of the workload of each benchmark program
according to various and well-understood machine learning algorithms. Unknown programs are executed in
the same environment, and their features are fed to models of the reference workloads, in order to find the
belief that the unknown workload could be associated with each model. Finally, beliefs obtained by means
of different classification algorithms are fused using the Dempster-Shafer rule of evidence combination [18] in
order to derive a higher-quality classifier (e.g., [0]).

In particular, we discriminate among application workloads. In fact, we run the SPEC2006 benchmarks
under a virtualized operating system, and we collect some features through the Virtual Machine Monitor.
Using machine learning algorithms, we develop a model for each workload. Unknown workloads are then
classified among the different models. The classification among application workloads running in virtualiza-
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tion gives interesting potential applications. For example, if the benchmarks are chosen appropriately, it may
be determined what the main characteristics of the processes running in the virtual machine are. Another
possibility might be to know what are the processes that a given customer typically executes. Other possible
applications are in the area of malware detection [31]. In this respect, running processes can be monitored to
see if their workload is the same or if it changes over time (e.g., [35]). Preliminary experimental assessment
and analysis clearly confirm the benefits derived from our classification framework.

The remaining part of this paper is organized as follows. Section 2 considers related work relevant for
our research. In Section 3, we highlight the process of workload categorization using common classification
algorithms. Section 4 presents the SPEC 2006 Benchmarks used in this work. In Section 5, we provide a
description of the virtual environment settings used to elaborate our experiments. Section 6 introduces the
aspects on which we based our data analysis (i.e., memory reference and resource demand). In Section 7,
we present a detailed description of our methodology along with the used classification algorithms, i.e.,
Neural Networks, Hidden Markov Models, k-NN, and ARMA. Section 8 demonstrates the fundamentals of
the Dempster-Shafer theory of evidence adopted in our approach. Section 9 shows an innovative case study
where we describe workload categorization in the context of anomaly detection. In Section 10, we report
our extensive experimental assessment and the obtained results. Finally, Section 11 contains conclusions and
future work of our research.

2 Related Work

The problem of workload categorization has gained a great deal of attention from researchers, and as a result,
several works have appeared in the active literature. In this Section, we will discuss some of the most relevant
to our work.

In [30], the authors provide a solution to reduce the risk of incidents and injury in hazardous work
conditions, especially in the forestry industry, which is one of the most dangerous industries in New Zealand,
by proposing a semantic paradigm for workload classification. The model takes a collection of multi-modal
physiological measures as input and categorizes a sequence of workloads (resting, cognitive, and physical
workloads). The proposed model was subjected to a series of experimental assessments with participants
ranging in age from 22 to 39 based on three different scenarios: (i) relaxing and refraining from any physically
or intellectually demanding tasks; (ii) performing a cognitively intense activity; (4ii) walking, jogging, and
running. The obtained results in these experiments achieved an average accuracy of 89% for resting workload,
76% for cognitive workload, and 97% for physical workload. Finally, the contribution reported in this work,
by proposing the model to forecast fatigue in hazardous sectors, opens the doors to a wider research initiative
focused on technological applications in hazardous work situations.

[55] presents a workload categorization-based resource allocation framework for balancing the load between
active physical machines and leveraging their resource capacities. The CloudSim simulator is used to run
simulation-based experiments using three separate sets of tasks having 10000, 20000, and 30000 tasks. During
the experiments, the imbalance in workload among active physical machines and the disparity in resource
utilization, specifically CPU and RAM, are observed and measured. According to the simulation results,
the proposed framework outperforms similar methods in the literature in terms of balancing the load among
active physical machines and using their various resource capabilities.

In [10], they focus the attention on performance testing in new application developments and propose a
performance engineering strategy that extracts the workload of an existing legacy FEnterprise Resource Plan-
ning (ERP) application with over 1 million users and produces workload for a new version of this application.
The proposed method demonstrates that (i) workload for new application testing and architecture validation
can be generated from legacy application behavior; (ii) end user organizations have significantly different
usage patterns; (i) high-level operations provide a useful method for analyzing and generating workload
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for ERP applications as opposed to low-level page views. The experimental tests of the proposed method
performed on a Dutch software firm show that leveraging this approach gives better results in performance
engineering.

In [11], the authors investigate and classify Infrastructure as a Service (IaaS) cloud workloads into patterns
based on their behavioral features as effective characterization of workloads plays a crucial role in driving
Capacity Planning and Performance Management in laaS Cloud environments. Various workload metrics,
including CPU utilization, memory usage, throughput, and response time, can be leveraged and modeled to
understand their interrelationships. Furthermore, different types of behavioral patterns that can be observed
within workloads and an outline of statistical techniques to be employed in identifying and determining these
patterns are presented in this work. To support their research, they present initial results obtained from the
analysis of development workload data collected in a controlled lab environment. These results highlight the
potential of the proposed approach in uncovering meaningful workload patterns and highlight the importance
of effective workload characterization for efficient Capacity Planning and Performance Management in IaaS
Clouds.

[44] introduces the analysis of Cloud workloads and evaluation of the effectiveness of two commonly used
prediction techniques, namely Markov Modeling and Bayesian Modeling, using a dataset comprising 7 hours of
Google cluster data. The primary objective is to assess the performance of these methodologies in accurately
forecasting user demand. Moreover, a key aspect of this study involves the categorization and characteri-
zation of Cloud workloads, which enables the modeling of essential parameters for user demand forecasting.
By understanding the patterns and characteristics of workloads, the authors aim to enhance the accuracy
of demand prediction, thereby facilitating efficient resource allocation and energy consumption management,
they present an optimal solution to minimize idle resources and reduce unnecessary energy consumption
while ensuring Quality of Service (QoS) maintenance. Through the experimental analysis and assessments,
the research provides insights into the effectiveness of different prediction methodologies for Cloud work-
load forecasting. This research contributes to the development of energy-efficient Cloud environments while
maintaining optimal QoS levels.

In [51], the authors manage the dynamic scalability of resources in IaaS environments by studying dif-
ferent workloads and classifying them based on their features and limits. Additionally, metrics aligned with
QoS requirements are defined and analyzed for each task, enabling the creation of improved application ar-
chitectures, as efficiently managing these workloads is essential for the optimal utilization of dynamic natural
resources. This research contributes to enhancing the efficiency of Cloud resource utilization by considering
workload as a core capacity. Therefore, by effectively classifying and characterizing workloads, organizations
can optimize resource allocation and ensure that QoS demands are met. This research emphasizes the impor-
tance of aligning application architecture with workload characteristics and QoS metrics to achieve optimal
performance in IaaS Cloud environments.

[19] discusses the problem of Instruction Set Architecture (ISA)-independent workload characterization for
significant program features related to compute, memory, and control flow by employing a Just-In-Time (JIT)
compiler that generates ISA-independent instructions. Through a comparative analysis with an x86 trace,
they evaluate the impact of different ISAs on the workload characterization results. revealing that certain
aspects of the study exhibit significant sensitivity to the ISA employed. This highlights the importance of
adopting ISA-independent workload characterization methodologies for designers of specialized architectures.
Based on these results, one can notice that specialized architecture designers must utilize ISA-independent
workload characterization methodologies to ensure accurate and reliable assessments of program features.
By decoupling workload characterization from specific ISAs, designers can effectively optimize specialized
architectures for energy efficiency while considering the unique demands and characteristics of the workload,
providing insights into the design and development of energy-efficient computing solutions in the industry.
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3 Operational Principles

The training and testing phases of the classification algorithm are described in Figure 1. The idea behind
training is to use the different execution sequences produced by a program when fed by different inputs to
train the workload model of that program. On the other hand, when an unknown execution sequence is given
to a workload model, the probability that the workload of the unknown sequence is similar to that of the
model is produced.

Input 1\ / Process 1 \

Input 2 —»= Program A —» Process 2 —

Input 3 \ Process 3 /
Input 4\ / Process 4 \
-

Input 5 —»= Program B Process 5 —

Train model
of workload A

Train model
of workload B

Input 6 Process 6
Train
Model of *
workload A Choose
Input — Unknown —p Unknown Model of *  the most
Program Process workload B likely
Test

Figure 1: Training and testing of workload models

It is also worth remarking that a number of inputs are given to the benchmarks. In other words, we
generate different executions from a given benchmark using different input data. The executions generated
from the same benchmark are different because they are obtained with different inputs. Nevertheless, the
executions have in common the fact that they come from the same benchmark. The correct classification of
the workload of one process means that the classifier is able to understand that different executions come
from a single benchmark. Furthermore, we perform the workload classification using four classifiers, namely
Neural Networks (e.g., [10]), Hidden Markov Models, k-Nearest Neighbors [1] and ARMA [33].

After that, we show that the Dempster-Shafer data fusion algorithm can be successfully used with two
different and independent types of metrics. The final classification rate is slightly less than 80% over six
benchmarks. In this work, we derived workload models from six benchmarks.

We performed two classification experiments: first, we tested the workload models with the same six
benchmarks used to derive the models. However, the input data is different from that used in training, and
therefore the processes are always different. Secondly, the other six benchmarks are used for evaluating the
similarity with the workload models.

Different classifiers and features can be considered in a data fusion framework to improve classification
accuracy, as reported in Figure 2. As it will be shown at the end of the paper, these higher-quality classifiers
can be used to find the category of an unknown workload.
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Figure 2: Data fusion of two classifiers

4 SPEC 2006 Benchmarks

CINT2006 [51] is SPEC’s CPU-intensive benchmark suite, stressing a system’s processor, memory subsystem,
and compiler. SPEC designed CPU2006 to provide a comparative measure of compute-intensive performance
across the widest practical range of hardware using workloads developed from real user applications. All
the benchmarks are provided as source code. The twelve programs included in the benchmark suite can be
grouped into the following classes according to their functionality: compiler class, game class, compression
class, scientific computing class, and optimization class.

In this work, we derived workload models from six benchmarks, namely 401.bzip2, 403.gcc, 458.sjeng,
471.omnetpp, 400.perlbench and 462.libquantum. In the first experiment, we tested the derived models with
the same six benchmarks. It is important to note that the input data is different from that used in training, and
therefore the execution sequences are always different. In the second experiment, the other six benchmarks
are used to evaluate the similarity between the workload models.

It is worth observing that the used benchmarks represent only a fraction of what applications look like
because I/O and memory activity are missing. Thus, the reported results have to be considered as preliminary
from a general point of view, being valid only within computer-intensive workloads.

It is important to describe how the input data for the benchmarks are organized in order to make the
reported results repeatable. SPEC gives six different inputs for bzip, nine for gcc and three for perlbench.
The sjeng benchmark has only one input; two other inputs for sjeng have been obtained from the first chess
positions of chess.html downloaded from WWW.DOWNSCRIPTS.COM /CHESS-DATABASE.

Similarly, omnetpp has only one input furnished by SPEC; other inputs have been obtained from the first
example networks reported in HTTP://INET.OMNETPP.ORG/DOC/INET /NEDDOC/.

Finally, libguantum was given the following two additional pairs of numbers: (159, 15) and (1413,17). In
this way, all the benchmarks have at least three inputs that are used for training. Additional input for the
test has been obtained in a similar way.

5 Virtual Machine Setting

The virtualization infrastructure used in this work is provided by VirtualBox, which is an open source full
virtualization Virtual Machine Monitor (VMM) that runs on both Linux and Windows operating systems
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running on x86 and x64-based architectures [13]. The useful thing is that VirtualBox offers a rich set of
APIs that easily allow to collect metrics on the virtualized process, and the complete set of available APIs
is described in [56]. The SDK provided with Virtual Box allows third parties to develop applications that
can directly interact with it. It is designed in levels, and at the bottom level, we find the VMM (hypervisor)
which is the heart of the virtualization engine that allows for monitoring the performance of virtual machines,
providing security, and ensuring the absence of conflicts between virtual machines and the host. Above the
hypervisor, there are modules that provide additional functionality, for example, the RDP server (Remote
Desktop Protocol). Finally, there is the API level, which is implemented above these functional blocks.

VirtualBox comes with a web service that, once running, acts as an HTTP server, accepts SOAP connec-
tions [52] (Simple Object Access Protocol) and processes them. And the interface of this service is described
in a Web Services Description Language (WSDL) file [59]. In this way, it is possible to write client programs
in any programming language that has provided the tools to process WSDL files, such as Java, C++, NET
PHP, Python, and Perl. In addition to Java and Python, the SDK contains many libraries that are ready
for use. Internally, the API is implemented using Component Object Model (COM) as a reference model. In
Windows, it is natural to use Microsoft COM, however, in other hosts, where COM is not present, XPCOM,
which is a free implementation of COM, can be used.

Despite the numerous advantages of Web service API, we used the COM method because it allows a lower
overhead and thus a higher data rate. We conducted a data exchange experiment, and it turns out that the
web service is able, on average, to collect data every 5.96 ms, while using COM, data can be collected every
0.49 ms. As other interesting features regarding the collection of statistical data about resources usage, the
API provides functions for:

specifying which groups of indicators we are interested in (CPU, RAM, Network, and Disk);

setting the measuring range (minimum interval of 1 s);

setting the frame size for statistics (Min, Max, and Average);

making queries on the usage of a single resource.

6 Metrics

As regards metrics, we developed the acquisition system described in the block diagram reported in Figure 3.
The acquisition is driven by the host, and all the commands and the acquired data use the COM interface.
There is also a web interface to the VirtualBox VMM, but it is much slower, as specified above.

The measured quantities used for workload characterization are of two types, namely memory references
and resource demand. Both quantities are gathered using the VirtualBox VMM’s API classes. The memory
references are the instruction addresses generated by the virtualized process. The VMM’s IMachineDebugger
APT can collect the value of the Program Counter related to instructions every 0.5 ms. In Figure 4 (a), we
report, as an example, a chunk of memory references collected during the virtualized execution of one SPEC
benchmark (gobmk). On the other hand, Figure 4 (b) presents a chunk of memory reference for another
SPEC benchmark (perlbench).

The data is collected in a <time stamp><address> format. Using the TPerformanceCollector API, we
collect resource demand features generated by the virtualized process. The resource demand features we
acquired are the following:

e the CPU used in user mode;

e the CPU used in system mode;
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Figure 3: Acquisition system
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Figure 4: Memory references generated by (a) the gobmk benchmark - (b) the perlbench benchmark

e memory fragmentation (free memory / total memory).

In Figure 5 (a), we report, as an example, a portion of 400 s of the CPU used when in user mode collected
during the execution of the virtualized process. In Figure 5 (b), we report, instead, the amount of free RAM
memory available during the execution of the virtualized process.

Each curve is related to the execution of a different process in the virtual machine, and resource demand
feature data is also acquired in a time-stamp format as shown in Figure 6, which reports a piece of resource
demand metrics acquired during execution.
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Figure 5: User CPU time feature (a) - free RAM feature (b) for different programs in two different executions

Timestamp CPUuser CPU system Free Ram
701893535744118 90.0 10.0 1016784.0
701893637910209 90.0 10.0 1016784.0
701893741889815 90.0 10.0 1016784.0
701893845900845 90.0 10.0 1016784.0
701893949900057 90.0 10.0 1016784.0
701894051790540 90.0 10.0 1016784.0
701894153906958 90.0 10.0 1016784.0
701894257888280 90.0 10.0 1016784.0
701894361898999 90.0 10.0 1016784.0

Figure 6: Resource demand format

7 Data Analysis Methodology

7.1 Pre-Processing Algorithms

It is well known that the initial instructions of a running code are highly non-representative of the steady-
state behavior of the program. In fact, the first billion instructions do very little except for file I/O and
memory allocation as data structures are set up and populated before getting to the real computation to be
performed by the program. In this work, we do not use techniques for discovering program phases such as
those described in [50] to find the beginning of the steady-state phase of the programs. Instead, we simply
blindly fast forward for 1 billion instructions before starting data analysis.

We consider the memory reference sequence as a one-dimensional signal and the resource demand sequence
as a multi-dimensional signal. Similarly to what happens in signal processing, we use a parametric description
of the sequences. We remark that events in the process, such as for examples loops or sequential program
behaviors, produce important events in the metrics sequences and then in the signal spectrum. For instance,
loops introduce peaks in the spectrum, while a sequential address sequence produces a DC spectral component.
Moreover, the sequences dynamically change their properties. For these reasons, we used a short-time spectral
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description of the memory reference sequence. Thus, the sequences are divided into overlapped analysis frames
of a given size, as reported in Figure 7. The frames are further divided into blocks. Hence, for instance, a
frame of memory references is represented by a set of blocks. Also, the multi-dimensional sequence of resource
demand features is divided into overlapped frames and blocks.

Frame size

——

overlap

Figure 7: Analysis frames

The next step is to perform a spectral analysis of the blocks. Among the possible spectral-related param-
eters, we chose the Discrete Cosine Transform (DCT) representation. DCT is a well-known signal processing
operation with important properties [30]. For example, it is useful for reducing signal redundancy since it
places as much energy as possible in as few coefficients as possible (energy compaction). The first DCT coeffi-
cients are given as input to the classification algorithm. The effects of retaining the first DCT coefficients are
shown in Figure 8. A frame of 1024 memory references is plotted in this Figure. On this frame, we perform
a DCT transform; the first sixteen coefficients are used to obtain a 1024-coefficient vector with zero-padding.
By inversely transforming this sequence, we obtain the curve plotted in the same Figure 8. It is evident
that the effect of retaining the first coefficients is to smooth the peaks of the original sequence while still
representing the overall sequence behavior, reflecting the signal redundancy reduction property.
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Figure 8: Signal reconstruction by inverse transforming the first DCT coefficients

Concerning the resource demand, since there are three types of features in a frame, the DCT is applied
separately to each feature. In every case, we take a small number of DCT coefficients per feature to represent
the frame. In this case, a frame is spectrally described by a three-component vector, each formed by a DCT
coefficient for a single feature. Eventually, the mono or multi-dimension DCT representations are vector
quantized with a 128 entries codebook. The result is that each block of the acquired sequences, both in terms
of memory references and resource demand, is described by an integer number.
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7.2 Process Selection

The SPEC CPU2006 is formed by two sets of benchmarks: CINT2006 benchmarks, integer benchmarks,
and CFP2006, floating point benchmarks. In our experiments, we consider all the CINT2006 benchmarks,
formed by twelve programs. Early classification experiments gave the impression that some benchmarks were
classified as the same workload. To explore this impression, we performed the following experiment. Using
the analysis algorithm of Section 7.1, we train a three-hidden-layer Neural Network for each benchmark,
using three different input sets per benchmark. Hence, we have a Neural Network trained for each workload.
Then, the vector-quantized parametric sequence obtained from each benchmark in execution was given as
input to the Neural Network. The output is very close to one if a given workload is given as input to the
Neural Network trained for the same type of workload, and between one and zero for all the others. A
distance matrix among all the twelve workloads is obtained by computing y = 1 — out, where out is the
Neural Network output, and averaging y for the same type of workloads. The size of the distance matrix is
clearly twelve by twelve.

By k-means clustering of the distance matrix, we have a reduction to six processes, which confirms our
first impression. To get a graphical view of this, in Figure 9, we report the 3D graphical plot, obtained
with multidimensional scaling, of the distance matrix. From this Figure, we can see that the distance among
astar, h264, gobmk, and perl is very small, so they can be represented by only one program. Similarly, the
distance between hmm and sjeng is very small and the distance among libquantum, mcf, and xalancbmk is
also very small. In conclusion, the workloads resulting from the clustering reduce to the six benchmarks:
bzip, gee, sjecg, omnetpp, perlbench, and libquantum. The workload classifications reported in the following
are performed using these six benchmarks.
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Figure 9: 3D visualization of the distances among programs

7.3 The Input Data to the Benchmarks

Each benchmark has three sets of input data supplied by SPEC in a text file. The sets of input data provided
by SPEC are used for training the classifiers. Each benchmark, when run, gives rise to three different
processes, one for each set of input data. We can say that each process represents the workload of the
benchmark that generated that process. The processes are used to train the classifiers. Each classifier is
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trained with the different processes so that you can classify the workload of the benchmark.

For each benchmark, we constructed three other sets of input data, other than the above, for the classifi-
cation stage. Fach process generated during benchmark execution with the new sets of input data is classified
by the classifiers trained earlier. This generates a number of classification experiments equal to 3 - N, where
N is the number of benchmarks.

7.4 Sampling Rate

A memory reference value is acquired every 0.5 ms. It is important for computational complexity reasons to
ascertain how much this sample rate can be reduced. We therefore performed classification experiments with
memory reference features at various sampling rates.

For each benchmark, with three different inputs, a Neural Network was trained with the parameters
reported in Table 1.

Table 1: Initial analysis parameters

Frame size 90s
Overlap 50%
Number of DCT coeffs 10
Number of blocks per frame 50
Vector quantization 128 levels

In Figure 10 (a), we show the accuracy obtained at different values of the decimation of the original
sampling rates. We note that by acquiring the memory references and decimating the original sampling
rates by ten, the accuracy drops from 60% to 53%. In view of the fact that this accuracy is improved if the
parameters are tuned, and for reducing the algorithm complexity, we acquired the memory references are
acquired at a 5 ms sampling rate, which corresponds to a decimation factor of ten. The resource demand
features acquisition was decimated accordingly.

Starting from the initial analysis parameters, we conducted some experiments of Neural Network Classi-
fication, using three hidden layers and 50 neurons. First, we obtained the accuracy with different values of
frame size. We find that by slightly decreasing the frame duration from 50 s to 48 s we get a slight accuracy
improvement. We also find that the frame overlap we used initially lead to the best accuracy. The next set
of experiments is directed to the number of DCT coefficients. We found that the best accuracy is obtained
by setting the number of DCT coefficients to sixteen, which is shown in Figure 10 (b).

Other classification experiments indicate that the best number of blocks per frame is forty. Thus, the
final optimal analysis parameters are reported in Table 2.

Table 2: Final parameters setup

Frame size 48s
Overlap 50%
Number of DCT coeffs 16

Number of blocks per frame 40
Vector quantization 128 levels




An Artificial Intelligence Framework for Supporting Coarse-Grained
Workload Classification in Complex Virtual Environments. Trans. Fuzzy Sets Syst. 2023; 2(2) 167

0.65 R 06k

0.6
05F

055
04r

Accuracy
o
™
Accuracy

03r
045

02r-
04

0.35

03
10 20 20 40 50 60 70 80 90 100 5 10 15 20 2 30 P 20

Decimation factor DCT coefficients
(a) (b)

Figure 10: Accuracy versus decimation factor (a) - DCT coefficients (b)

7.5 Classification Algorithms

For the sake of completeness, in this Section we present a brief description of the machine learning algorithms
that we used as classifiers.

7.5.1 k-Nearest Neighbor Algorithm

The k-Nearest Neighbor algorithm (k-NN) is a simple machine learning algorithm that does not use any
underlined model acquired during the training phase, as other machine learning algorithms do. Instead,
k-NN is based on the principle that instances within a dataset will generally exist in close proximity to other
instances that have similar properties. If the objects are tagged with a classification label, they are classified
by a majority vote of their neighbors and are assigned to the class most common amongst their k-nearest
neighbors.

k is usually a small odd positive number, and the correct classification of the neighbors is known a priori.
The objects can be considered n-dimensional points within an n-dimensional instance space, where each point
corresponds to one of the n features describing the objects. The distance or closeness to the neighbors of an
unclassified object is determined by using a distance metric (also called the similarity function), for example,
the Euclidean distance or the Manhattan distance.

Our k-NN uses the Euclidean distance to represent the closeness to the neighbors of an unclassified object,
as the high degree of local sensitivity makes k-NN highly susceptible to noise in the training data. In other
words, the value of k strongly influences the performance of the k-NN algorithm.

7.5.2 Neural Network Algorithm

The well-known neural networks are composed of a set of simple processing units which communicate with
each other through a large number of weighted connections. In most cases, it is assumed that each neuron
makes an additive contribution to the neuron to which it is connected. The total input si is simply the
weighted sum of the different outputs of the connected neurons plus a noise factor:
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sk(t) = Y wi(t)u;(t) + Ox(t) (1)
J

where positive wj;, are said to excite the neuron input, and negative w;; are said to inhibit the neuron.

We need to have rules to determine the effect of the total input on the activation of the neuron. It is
well defined a function Fj, that, based on the total input si(t) and the current activation of the neuron y ()
produces the new value of the activation:

yk(t +1) = Fr(yx(t), sk()) (2)

Very often, Fj depends only on the total input at that moment, and then the last Equation can be written
as follows:

yr(t +1) = Z wik(t)y; (t) +0(t) (3)

Normally Fj, has values in the range [—1,...,+1]. The most commonly used functions are the sign
function, the hyperbolic tangent, or the sigmoid function.

We used a neural network with a Feed-forward topology with three hidden layers, where the flow of
information between the input and the output travels one-way to the exit.

o feed-forward networks: here, the flow of information between the input and the output travels one way
to the exit. Processing can be extended to many levels of neurons;

e recursive networks: contrary to feed-forward networks, they have feedback connections. The network
is bound to evolve towards a stable state in which the functions of activation do not change.

As a classic example of the first type is the perception, while the second type is the Hopfield network, a
neural network must be configured in such a way that the application of inputs produce the desired output.
It is therefore necessary to modify the weight of the connections during a training phase.

7.5.3 Hidden Markov Model Algorithm

Markov models are stochastic interpretations of time series. The basic Markov model is the Markov chain,
which is represented by a graph composed by a set of NV states, the graph describes the fact that the probability
of the next event depends on the previous event. A Markov chain is described by the transition matrix A
whose elements are:

Q5 = PT‘Ob(St+1 = j‘St = Z) (4)
and the initial probability vector m;:
T, = P?“Ob(Sl = ’L) (5)
where:
N
i=1

In homogeneous Markov chains, the transition probability depends only on the previous state; in such
cases, the transition probabilities can be represented by a transition matrix. However, in many cases, Markov
models are too simple to describe complex real-life systems and signals.
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In the case of Hidden Markov Models (HMMs), the output of each state corresponds to an output
probability distribution instead of a deterministic event. That is, if the observations are sequences of discrete
symbols chosen from a finite alphabet, then for each state, there is a corresponding discrete probability
distribution that describes the stochastic process to be modeled. In HMMs, the state sequence is hidden
and can only be observed through another set of observable stochastic processes. Thus, the state sequence
is recovered with a suitable algorithm on the basis of optimization criteria. It is important to note that the
observation probabilities can be discrete or continuous feature vectors.

7.5.4 ARMA

Considering the memory reference sequence as a time series of data M;, the ARMA model is a tool for
understanding and, perhaps, predicting future values in this series. The model consists of two parts, an Auto
Regressive (AR) part and a Moving Average (MA) part. Thus, the model is referred to as the ARM A(p, q)
model, where p is the order of the auto-regressive part and ¢ is the order of the moving average part:

P q
My=c+e+ Z oiMe—; + Z Vet (7)
i=1 i=1

where ; and v; are the parameters of the model, ¢ is white noise, and c is a constant. Classification with
ARMA model is performed using the generalized linear model.

8 The Dempster-Shafer Fusion

The goal of the Dempster-Shafer (DS) theory of evidence [18], is to combine different measures of evidence.
At the base of the theory is a finite set of possible hypotheses, say 6 = {61, ...,0k}.

8.1 Basic Belief Assignment

The Basic Belief Assignment (BBA) can be viewed as a generalization of a probability density function. More
precisely, a basic belief assignment m is a function that assigns a value in [0, 1] to every subset A of 6 that
satisfies the following conditions:

> m(A) =1, m(@)=0 (8)
ACO

It is worth noting that m(A) is the belief that supports the subset A of #, not the elements of A. This
reflects some ignorance because it means that we can assign belief only to subsets of 6, not to the individual
hypothesis.

8.2 Belief Function

The belief function, bel(.), associated with the Basic belief assignment m(.), assigns a value in [0, 1] to every
nonempty subset B of 8. It is defined by:

bel(B) = > m(A) (9)

ACB

where the belief function can be viewed as a generalization of a probability function.
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8.3 Combination of Evidence

Considering two Basic belief assignments, m;(.) and ma(.) and the corresponding belief functions, bel;(.) and
bela(.). Let A; and By be subsets of #. Then, mi(.) and ma(.) can be combined to obtain the belief mass
assigned to C C 6 according to the following formula [15]:

Zj,k,.AjﬂBkzc ma (Aj)moa(By)
= 2k, A;nBy—0 M1 (Aj)ma(Br)

where the denominator is a normalizing factor, which measures how much m;(.) and ma(.) are conflicting.

m(C) =my P ma = : (10)

8.4 Belief Functions Combination

The combination rule can be easily extended to several belief functions by repeating the rule for new belief
functions. Thus the sum of n belief functions, bely, belo, . .., bel,,, can be formed as:

((bely @D bels) @ bels) . .. bel, = é bel; (11)

It is important to note that the basic belief combination formula given above assumes that the belief
functions to be combined are independent.

8.5 BBA Based on Single Class Classifiers

In our case, a hypothesis set is defined for each texel in which the image is divided. Within each texel, the
hypothesis concerns the possibility that the pixel (i, j) corresponds to an object or not. In other words, we
have eight hundred hypotheses for each texel, namely:

9 = {61(0,0),...,61(19,19),65(0,0),...,605(19,19)} (12)

where 61(i,7) is the belief that the pixel (i,7) of that texel belongs to an object in the environment and
02(i,7) is the belief that the pixel (i, ) doesn’t belong to an object.

If we have K benchmarks, we can use K classifiers, each trained using the processes generated by each
of the K benchmarks. Each classifier is used as an expert in DS fusion. The goal of the classifiers is to infer
from the benchmark where an unknown process comes from.

The classifier C; provides a probability p; as output, ¢ = 1,..., K, where p; is the probability that the
process analyzed by the classifier has been generated by the i-th benchmark. The hypothesis set is given by:

O=1{0,...,0%) (13)

where 0; is the event that the process comes from the benchmark 7, ¢ = 1,..., K. Under this assumption,
the expert 7 provides the probability of the subset {6;}:

m;i({0:}) = pi (14)
If the classifier has been trained with the processes generated by a given benchmark, the probability of
the event 6; shall be distributed to all the other subsets C of O:
1 —p;
Then, we consider K single-class classifiers; each classifier is specialized to recognize the workload of a
particular benchmark. Under this BBA, the i-th classifier is trained using a set of data produced by the
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benchmark ¢ and a set of data not produced by the benchmark ¢, and it provides as output a real value p;
in the range [0,1], that represents the probability that the current input comes from the benchmark i. Each
expert shall assign a belief to the subsets of ©. Under this BBA, the i-th expert assigns m;({6;}) = p; and
mi(C) = 525, C C O, C # {6;}.

8.6 Pseudocode
The application of the rule follows the following pseudocode.

Foreach classifier
Foreach classifier
Translates a set of hypotheses
to the internally used representation.
Add a set of hypotheses to the
evidence and assign a mass to it.
Combine two evidences.

9 Case Study: Workload Categorization in the Context of Anomaly De-
tection Caused by Android Malware

Android mobile devices have become significantly more popular recently, and at the same time, the number
of malicious programs operating on them has also grown significantly. As a result, business and academics
have given a lot of attention to the security and privacy concerns of Android applications and systems, as
Anomaly Detection is crucial due to the increasing dependability of these systems and applications. To this
end, behavior-based anomaly detection systems have been developed to identify irregularities brought on by
Android malware. These systems analyze these anomalies in data on network traffic, battery temperature, and
power usage using machine learning classification algorithms. Hence, we provide in this Section a detailed
case study where we show how our proposed approach can be employed within the context of Anomaly
Detection caused by Android Malware.

According to a new security report, 4.9 million malware attacks were prevented in the first quarter of
2023 by Kaspersky mobile security solutions. Each malware sample must be thoroughly analyzed, which
takes time. Malware analysis systems are therefore overloaded by the sheer volume of malware samples.
Most newly discovered malware samples are polymorphic versions of already existing malware. By grouping
malware samples into different families and then choosing representative samples from each family, we can
speed up the analysis of malware. The familial classification of Android malware is difficult, though, for two
reasons:

e it is difficult to distinguish between dangerous and legitimate components in the bulk of Android
malware samples, which are repackaged versions of popular apps. In fact, 86% of Android malware

samples are malicious component-infected repackaged apps [(7]. In most cases, just a tiny part of the
repackaged apps have dangerous components that have been introduced, which are concealed inside
the features of popular programs. System calls [(4] and sensitive paths [(3] are examples of existing

features that make it difficult to distinguish between malware’s legitimate and harmful parts;

e the same destructive actions are carried out with multiple implementations by polymorphic Android
malware versions that belong to the same family. As a result, malware of this type is readily able to
avoid existing classification techniques that look for a precise match to a given specification [11]. As an
illustration, two malware samples have various ways of carrying out the same task (i.e., obtaining the
device id, phone number, and voice mail number).
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Monitoring data is collected and analyzed to determine system health, workload patterns, and metric
spaces, which are then utilized to discover anomalies. Furthermore, to test the efficacy of anomaly detection,
the detection can be evaluated using different faults to analyze: sensitive API calls, CPU heavy loops, memory
leaks, disk I/O errors, and network anomalies:

e sensitive APT calls: Android malware typically uses sensitive Application Programming Interface (API)
methods, such as getDeviceld(), getLinel Number(), and getVoiceMailNumber(), that operate on sensi-
tive data to carry out harmful actions. For example, in order to gather the consumers’ phone numbers,
the malware may invoke getLinel Number();

e CPU-intensive loops: Malware causes circular waits and never-ending loops in applications, such as
spin lock faults, where CPU resource-intensive operations result in server requests timing out in An-
droid systems and application failures. These injections of fault components result in more computing
processes, which need more CPU resources;

e memory leak: this is brought on by assigning heap memory to objects without releasing them, which
steadily depletes the system’s memory resource and finally causes a system crash. It might take a
system with a memory leak a long time before any significant issues arise, making it challenging to
identify the issue right away;

e disk I/O error: disk I/O access has a predictable pattern, however, disk access can also be impacted
by application-level or hard disk failures in a particular workload pattern. By adding additional disk
reading and writing operations to application components, malware trigger this type of these errors;

e network anomaly: Android-based systems and programs are vulnerable to network assaults because
rogue scripts may be placed into programs to broadcast schematics that suck up network capacity,
saturating servers and leading to service denial. When the injected servlet components are invoked, the
malicious code in the application sends UDP packets to any host on the local network.

To this end, the reference architecture shown in Figure 11 for Workload Analysis in Familial Classification
of Android Malware, where the architecture is depicted, can be integrated with our proposed Workload
Categorization approach using the Dempster-Shafer theory of evidence [18] that we previously described in
detail in Section 8. And the hierarchical levels include the following:

e Detection of malicious API calls and FASTA files generation: To identify the APIs, malware applications
from different families in reference datasets and benign apps retrieved from Google Play Store are
disassembled and analyzed. Furthermore, the frequency of each API call mentioned in both groups
is computed independently. API calls are found and documented that are regularly used in malware
apps but not in benign apps. Then, based on the suspected Android API types, the API classes
are categorized, and these groupings constitute the API class sequence in FASTA format [15]. This
structure is required to feed the sequence file into machine learning tools for training and assessment;

e Multiple Sequence Alignment (MSA) generation: MSA is created for each app in the family and is used
to build a Profile Hidden Markov Model (PHMM) using machine learning techniques, which is then
trained and utilized as one of the classifiers of unfamiliar Android applications based on a derived score;

e Training and classification: in this layer, the PHMM is trained along with other classifiers such as a
Neural Network and k-NN using some reference datasets which consist of malware samples from several
families, where these samples are selected from the datasets such that they contain multiple apps from
every family. From the selected malware samples, a big percentage of apps is used for training the
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classifiers and the rest for testing, and the training is conducted by decompiling the apps and creating
the API call list. Then, from the API call list, the suspicious APIs are identified, the final APIs are
represented in FASTA format, and the corresponding MSA files are generated. Finally, MSA for all
the families are given to the classifiers to create the profile files corresponding to malware families for
classification. And the scores generated by each classifier will be combined using the Dempster-Shafer
theory of evidence for a final classification;

e Dempster-Shafer fusion: in this layer, the Dempster-Shafer theory of evidence is employed, which
combines different measures of evidence on the basis of a finite set of possible hypotheses, which are in
our case the scores provided by the classifiers. These scores are also, as a result, the belief values of the
assignments represented by the malware families or benign apps that the unknown workload should be
classified to. All follow the particular formula presented in Equation 10.

{ ‘ APK Dissembling

|

’ APl sequence generation

|

— ‘ Suspicious API Filtering

el R R

' ‘ Classification ‘ 1 MSA !
APK I | — o .
: : Dempster-Shafer Malware
‘ FASTA files generation ‘ : —> ' Classifier Fusion Family
l | ] ! AFA File ——>  Training
1 Generation ] i
Training ] 9 ; _ M e o___ 4
D —— Test Data}set I R e
5 Generation
Generation
\ / \ / ~ / ~ /
L ——— N rmm————— - §_\’_/ —5\’—— ______ \’ _____ -
Detection of Malicious API Calls MSA Training Dempster-Shafer
and Generation and Fusion and Classification
FASTA Files Generation Detection

Figure 11: Familial classification of android malware using Dempster-Shafer Fusion

10 Experimental Results and Analysis

First, we specify how the classification experiments that we report in this Section were made. The input
data to the classifiers are the metrics acquired during the execution of the benchmarks, namely the memory
reference and the resource demand features. The six selected benchmarks are executed three times, each with
a different set of input data. We thus obtained the execution sequences that describe the workloads of the
different benchmarks. These execution sequences are preprocessed as described in Section 7 and are used to
train the classifiers that are so ready to perform the classification. For example, a neural network trained
with three different sets of input data but with the same benchmark will become a model of that workload.

The same six benchmarks are then executed with three different sets of input values. Of course, as
mentioned before, these executions are completely different from the first ones, but they share the workload
for the same benchmark. These executions are classified according to the models derived above.
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Let us first consider the result obtained with the memory reference metric. Figure 12 (a) represents the
accuracy obtained with the k-NN classifier (e.g., [1]) versus K. From this Figure, we also note that the best
accuracy (26.3%) is obtained for k& = 15. Figure 12 (b) represents the accuracy of the classification with
HMM. We used a continuous HMM in which the output distribution is represented by 20 Gaussian mixtures.
The used topology is ergodic. This graph shows the classification accuracy as a function of the number of
states. The best accuracy is 52.8% and is obtained with six states.
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Figure 12: Average classification accuracy of k-NN versus k (a) and HMM versus the number of states (b)
using memory reference metrics

Figure 13 shows the accuracy obtained with the neural network. The graph displays the accuracy versus
the number of neurons in each hidden layer. Each curve is related to a different number of hidden layers. In
particular, curves marked with circles, squares and diamonds are obtained with three, four, and five hidden
layers, respectively, and all the other curves are obtained with six up to nine layers. The best accuracy
(65.32%) is obtained with four hidden layers and 120 neurons per layer. However, with 50 neurons per
hidden layer, the accuracy is around 60% for every number of layers.

Finally, Figure 14 shows the accuracy obtained with the ARMA model (e.g., [33]) with p = 8 and ¢ = 4.
The average classification accuracy is 44.15%. The benchmarks are respectively from 1 to 6: 401.bzip2,
408.gce, 458.sjeng, 471.omnetpp, 400.perlbench, and 462.libguantum.

The Dempster-Shafer data fusion combines the output values from the classifiers. We used different
workload metrics and the best classification algorithms according to the results reported in Table 2. The
results shown in Figure 15 are obtained by fusing Neural Networks with memory reference features, indicated
by NNmr, Neural Networks with resource demand features, indicated by NNrd and HMM with memory
references, denoted by HMMmr. In this Figure, the bars show the classification accuracies obtained with,
respectively from left to right, the fusion between NNmr and HMMmr, between NNmr and NNrd, between
HMMmr and NNrd, and the fusion of HMMmr, NNrd, and NNmr. As shown, the best results are obtained
with data fusion between NN with memory reference features and NN with resource demand features, and
the obtained accuracy is 79.35%.

The first bar is the data fusion of different classifiers with the same feature (mr), while the other bars are
related to the usage of two different features (mr and rd). As shown in Figure 15, the best results are obtained
with data fusion between NN with memory reference features and NN with resource demand features, and the
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Figure 14: Average classification accuracy obtained with the ARMA model with MA order of 8 and AR
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obtained accuracy is 79.3%. This is an important result that shows that data fusion is effective in boosting
classification accuracy with features having different time constants and different computational complexity.

As highlighted so far, using Dempster-Shafer data fusion, we can build a high-quality classifier using
lower-quality classifiers. Now, we will show that these high-quality classifiers can be used to find the category
of an unknown workload. By testing an unknown execution sequence with the classifier trained on a given
workload W, we get an indication of how much the unknown execution sequence can be assigned to the
category of the workload W. In fact, if an execution sequence with the workload W is tested with the
high-quality classifier trained with a given workload W, the output will be close to one. If an execution
sequence with a workload similar to W is tested with the same classifier, the output will be close to 1, and
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so forth. This property can be used to assign a workload category to an unknown execution sequence. In
the experiment described in this Section, we used this property to evaluate distances among the benchmarks
from the point of view of the workload they represent. Figure 16 shows a graphical view of the distances
among workloads.
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Figure 16: 3D visualization of distances among programs

This Figure shows that 429.mcf can be given the category of 462.libquantum, and that 456.hmmer can
be given the category of 458.sjeng and the workloads of 445.gobmk and 464.h26 ref are very close.
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11 Concluding Remarks and Future Work

In this paper, we deal with the classification of application workloads in a virtualized environment as a means
of improving the efficiency and reliability of Cloud-based big data applications. We show that, using lower-
quality classifiers, we can build a higher-quality classifier using data fusion algorithms. There may be several
applications for this type of classification, from user profiling to malware detection. To this end, we used the
SPEC benchmarks that were run in a virtual environment. Different sets of input data were used. The Neural
Network classifier gives better results than Hidden Markov Models and K-NN. Final results are obtained by
Dempster-Shafer fusion of the Neural Network classification with memory reference and resource demand
features, which are workload metrics with completely different time constants. The best classification rate is
about 80%.

An obvious extension of the work described in this paper is to use other benchmarks in order to include
other workload activities. Also, we plan to further improve the characteristics of our framework by integrating
solutions for dealing with novel aspects of massive big data set processing, on top of which workloads may still
be defined, such as data compression techniques (e.g., [20]), fragmentation approaches (e.g., [19]), privacy-
preservation approaches (e.g., [18]) that, particularly, may be extremely useful when combined with malware
detection issues. In addition, we are planning to further enrich our proposed framework by means of emerging
big data trends (e.g., [5, 16, 39, 15, 38, 25])
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