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Abstract. In this paper, we investigate the filter theory of Intuitionistic Linear Algebra (IL-algebra, in short) with
emphasis on the lattice of filters of IL-algebras and relationship between filters and congruences on IL-algebras.
We characterize the filter generated by a subset and give some related properties. The prime filter for IL-algebras
is characterized and the prime filter theorem for IL-algebra is established. We get that the lattice (F (L),⊆) of
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1 Introduction

Intuitionistic Linear Logic is the Intuitionistic restriction of Linear Logic, which is a substructural logic
proposed by Jean-Yves Girard in [7]. Intuitionistic Linear Algebra (IL-algebra, in short) was initiated by
Troelstra in [14] as an algebraic counterpart of intuitionistic Linear Logic. IL-algebra can be found as a FLe-
algebra (see [6, 14]). These algebras are generalizations of residuated lattices. The main difference between
IL-algebras and residuated lattices are that the top of the lattice and the monoidal identity are different in
IL-algebras. Some properties of IL-algebras are studied in [4, 14].

Filters, also called deductive systems play a crucial role in the study of algebraic structures and associated
logic [13]. Indeed, filters correspond in logic to sets of provable formulas and have been widely studied in
residuated lattices [1, 3, 5]. For an IL-algebra L, the set Spec(L) of all prime filters of L, can be endowed with
the Zariski topology τL and (Spec(L), τL) becomes a compact topological space as in the case of Boolean
algebras (see [2]). To make this possible, it is useful to characterize prime filters and establish a prime
filter theorem for IL-algebras. On the other hand, congruences play an important role in the representation,
decomposition as well as classification of algebraic structures. Hence, it is necessary to study filters induced
by congruences, since they imply a lot of properties on congruences.

The filter theory of IL-algebras has been introduced by Islam et al in [4, 10] and few interesting properties
have been obtained. Very recently, the same authors studied the concept of fuzzy filters of IL-algebras in [11].
Using a system of affine filters, the concept of linear topology on IL-algebras is introduced by Islam et al. in
[12]. Many properties of the filters in IL-algebras have not been investigated. The purpose of this paper is
to investigate the filter theory of IL-algebras with an emphasis on the lattice of filters and the relationship
between filters and congruences on IL-algebras.
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∗Corresponding Author: Tenkeu Jeufack Yannick Léa, Email: ytenkeu2018@gmail.com, ORCID: 0000-0003-3907-1546
Received: 24 August 2022; Revised: 13 December 2022; Accepted: 30 December 2022; Published Online: 7 May 2023.
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The structure of the paper is organized as follows: In Section 2, we recall some facts about IL-algebras
and extend some existing results on residuated lattices to IL-algebras. In section 3, we characterize the filter
generated by a subset and establish some related properties. Moreover, we state the prime filter theorem
for IL-algebras and some properties of prime filters on IL-algebras. In the same section, we describe some
properties of the lattice of filters of an arbitrary IL-algebra and we obtain that this lattice is pseudocomple-
mented, algebraic, Brouwerian and endowed with a structure of Heyting algebra. Finally, we introduce the
negative cone L− of an IL-algebra L, we show that L− is a residuated lattice, and the lattice F(L−) of its
filters and the lattice F(L) of filters of L are isomorphic. In Section 4, we establish the relationship between
congruences and filters on IL-algebras. We obtain that, for any IL-algebra L, the lattice of its filters F(L)
and that of its congruences Con(L) are isomorphic.

2 Intuitionistic linear algebra

In this section, we define IL-algebras and recall some properties which will be used in the rest of the paper.

Definition 2.1. (See [11]) An Intuitionistic Linear algebra (IL-algebra, in short) is an algebraic system
L = (L,∨,∧, ∗,→, e,⊥,⊤) of type (2, 2, 2, 2, 0, 0, 0) which satisfies the following conditions:

1. (L,∨,∧,⊥,⊤) is a bounded lattice with least element ⊥ and greatest element ⊤.

2. (L, ∗, e) is a commutative monoid with unit e.

3. For any x, y, z ∈ L, x ∗ y ≤ z if and only if x ≤ y → z (residuation property).

In what follows, we denote by L an IL-algebra (L,∨,∧, ∗,→, e,⊥,⊤). Let L be an IL-algebra, in the case
e = ⊤, L becomes a residuated lattice. The order ≤ in L is defined as follows: x ≤ y iff x∧y = x (equivalently
x ≤ y iff x ∨ y = y). Let n ≥ 1 be a natural number. For any x ∈ L, we define xn = xn−1 ∗ x and x0 = e.

The following proposition provides some known rules of calculus in IL-algebras.

Proposition 2.2. (See [9, 11]) Let L be an IL-algebra, I a non-empty set. For all x, y, x1, y1, yi, z ∈ L, i ∈ I,
the following statements hold:

(c1) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z), if
∨
i∈I

yi exists, then x ∗ (
∨
i∈I

yi) =
∨
i∈I

(x ∗ yi).

(c2) ⊥ → ⊥ = ⊤.

(c3) ⊤ ∗ ⊤ = ⊤.

(c4) If x, y ≤ e, then x ∗ y ≤ x ∧ y.

(c5) If e ≤ x, y, then x ∨ y ≤ x ∗ y.

(c6) (x → y) ∗ (y → z) ≤ (x → z).

(c7) e → x = x.

(c8) If x ≤ y, x1 ≤ y1, then x ∗ x1 ≤ y ∗ y1 and y → x1 ≤ x → y1.

(c9) x → (y → z) = (x ∗ y) → z.

(c10) x ∗ (x → y) ≤ y.

(c11) e ≤ x → x.
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(c12) (z → x) ∧ (z → y) = z → (x ∧ y).

(c13) (x → z) ∧ (y → z) = (x ∨ y) → z.

Example 2.3 ([11], Example 2). Let L7 with L7 = {⊥, a, b, c, d, e,⊤}, where the lattice diagram is given in
Fig1, ∗ and → tables are given below:

..

⊤

.

e

.
a

.

d

.
b

. c.

⊥

.

Fig1

∗ ⊥ a b c d e ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a d c d a ⊤
b ⊥ d b c d b ⊤
c ⊥ c c d c c ⊤
d ⊥ d d c d d ⊤
e ⊥ a b c d e ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

,

→ ⊥ a b c d e ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
a ⊥ e b c b e ⊤
b ⊥ a e c a e ⊤
c ⊥ c c e c e ⊤
d ⊥ e e c e e ⊤
e ⊥ a b c d e ⊤
⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤

Then, L7 is an IL-algebra which is not a residuated lattice, since we have b ∧ c < b ∗ c.

Example 2.4. ([12], Example 1) Let L5 with L5 = {⊥, a, b, e,⊤}. The lattice diagram is given in Fig 2, and
∗ and → tables are given below:

..

⊤

.

b

.

a

. e.

⊥

.

Fig 2

∗ ⊥ a b e ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊤ ⊤ a ⊤
b ⊥ ⊤ ⊤ b ⊤
e ⊥ a b e ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

→ ⊥ a b e ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
a ⊥ e ⊥ ⊥ ⊤
b ⊥ ⊥ e ⊥ ⊤
e ⊥ a b e ⊤
⊤ ⊥ ⊥ ⊥ ⊥ ⊤

This IL-algebra is not a residuated lattice, since a ∗ c = a ≰ a ∧ c = ⊥.

Example 2.5. If (L,∨,∧, ∗,→, e,⊥,⊤) is an IL-algebra and X is a non-empty set, then the set LX := {f :
X → L | f is a map} becomes an IL-algebra (LX ,∨,∧, ∗,→,⊥, e,⊤) with the operations defined pointwise
and ⊥,⊤, e : X → L are the constant functions associated with ⊥,⊤, e.

In all this paper, we assume that L is an IL-algebra in which e ̸= ⊤. In what follows, we state some useful
algebraic properties of IL- algebras that are generalization of those existing in residuated lattices (see [3]).

Lemma 2.6. Let L be an IL-algebra. For any g, h, k ∈ L we have
(c14) (g ∧ e) ∨ ((h ∧ e) ∗ (k ∧ e)) ≥ ((g ∧ e) ∨ (h ∧ e)) ∗ ((g ∧ e) ∨ (k ∧ e)).
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Proof. Let g, h, k ∈ L, we have

[(g ∧ e) ∨ (h ∧ e)] ∗ [(g ∧ e) ∨ (k ∧ e)]

(c1)
= [((g ∧ e) ∨ (h ∧ e)) ∗ (g ∧ e)] ∨ [((g ∧ e) ∨ (h ∧ e)) ∗ (k ∧ e)]

(c1)
= [((g ∧ e) ∗ (g ∧ e)) ∨ ((g ∧ e) ∗ (h ∧ e))] ∨ [((g ∧ e) ∗ (k ∧ e)) ∨ ((h ∧ e) ∗ (k ∧ e))]

(c4)

≤ [(g ∧ e) ∨ (g ∧ h ∧ e)] ∨ [(g ∧ k ∧ e) ∨ ((h ∧ e) ∗ (k ∧ e))]

(c4)

≤ (g ∧ e) ∨ [(g ∧ e) ∨ ((h ∧ e) ∗ (k ∧ e))]

≤ (g ∧ e) ∨ ((h ∧ e) ∗ (k ∧ e)) (by associative and idempotent laws of ∨ ).

□

Corollary 2.7. Let L be an IL-algebra. For any positive integer n ≥ 2 and g, h1, . . . , hn ∈ L, the following
statement holds:

(c15) (g ∧ e) ∨ [(h1 ∧ e) ∗ . . . ∗ (hn ∧ e)] ≥ [(g ∧ e) ∨ (h1 ∧ e)] ∗ . . . ∗ [(g ∧ e) ∨ (hn ∧ e)].

Proof. Follows from Lemma 2.6 and induction on n. □

Corollary 2.8. If L is an IL-algebra and g, h ∈ L, n ≥ 1, then

(c16) (g ∧ e) ∨ ((h ∧ e)n) ≥ ((g ∧ e) ∨ (h ∧ e))n.

Proof. It is a consequence of Corollary 2.7 taking hi = h. □

Corollary 2.9. If L is an IL-algebra and g, h ∈ L, m,n ≥ 1, then

(c17) (g ∧ e)n ∨ (h ∧ e)m ≥ ((g ∧ e) ∨ (h ∧ e))mn.

Proof. Let g, h ∈ L, then by Corollary 2.8 we have

(g ∧ e)n ∨ (h ∧ e)m ≥ ((g ∧ e)n ∨ (h ∧ e))m.

Since (g ∧ e)n ∨ (h ∧ e) ≥ ((g ∧ e) ∨ (h ∧ e))m, we get by (c8)

((g ∧ e)n ∨ (h ∧ e))m ≥ ((g ∧ e) ∨ (h ∧ e))mn.

Hence (g ∧ e)m ∨ (h ∧ e)n ≥ ((g ∧ e) ∨ (h ∧ e))mn. □

Lemma 2.10. For all a, b, c ∈ L, the following inequality holds:

(c18) a → b ≤ (a ∗ c) → (b ∗ c).

Proof. Let a, b, c ∈ L, by (c10) a ∗ (a → b) ≤ b, and applying (c8) we get (a ∗ c) ∗ (a → b) ≤ b ∗ c. Using the
associativity of ∗ and the residuation property we obtain a → b ≤ (a ∗ c) → (b ∗ c). □

3 The Lattice of filters in IL-algebras

In order to study the properties of the set of filters of an IL-algebra, the characterization of a filter generated
by a subset plays a central role. In this section, we first characterize the filter generated by a subset and
establish some related properties. Moreover we state the prime filter theorem for IL-algebras.



76 T. J. Y Léa, C. T. Nganteu-TFSS-Vol.2, No.1-(2023)

3.1 Filters generated by a subset

In this subsection, we study filters of IL-algebras with respect to their order structures and generating subsets.

Definition 3.1. (See [11]) Let L be an IL-algebra. A nonempty subset F of L is called a filter if the following
conditions are satisfied:

1. e ∈ F .

2. If x, y ∈ F , then x ∗ y ∈ F and x ∧ y ∈ F .

3. If x ≤ y and x ∈ F , then y ∈ F .

Definition 3.2. (See [12]) Let L be an IL-algebra. A nonempty subset D of L is called deductive system
if the following conditions are satisfied:

1. e ∈ D.

2. If e ≤ x, then x ∈ F .

3. If x, x → y ∈ F , then y ∈ F .

It is easy to check that filters on IL-algebras are deductive systems. A filter F of L is called proper if
F ̸= L, in that case ⊥ ̸∈ F . A filter F is called maximal if if is proper and is not contained in another
proper filter of L.

Example 3.3. Consider the IL-algebra L7. It is easy to see that the sets: F1 = {d, a, b, e,⊤}, F2 = {a, e,⊤},
F3 = {b, e,⊤}, F4 = {e,⊤} and L7 are filters of L7. Clearly F1 is a maximal filter.

Proposition 3.4. (See [11], Proposition 2) If F is a filter of an IL-algebra L, then the following implication
holds for all x, y ∈ L.

(c19) If x ≤ y, then x → y ∈ F.

Remark 3.5. From (c10), x ∗ (x → y) ≤ y. Hence, taking x = e and y = ⊥ we get ⊥ ≤ e ∗ (e → ⊥) ≤ ⊥,
that is ⊥ ≤ e → ⊥ ≤ ⊥. Thus (a) e → ⊥ = ⊥.

For any x ∈ L, we denote by ¬x the negation of x in L defined by ¬x = x → ⊥. An important subset of
lattice with zero is the dense set. For an IL-algebra L we consider the set

D(L) = {x ∈ L | ¬(x ∧ e) = ⊥}.

Proposition 3.6. Let L be an IL-algebra and D(L) as above. Then D(L) is a proper filter of L.

Proof. From Remark 3.5 we have ¬(e ∧ e) = e → ⊥ = ⊥, therefore e ∈ D(L). Assume that x ∈ D(L) and
x ≤ y, then x ∧ e ≤ y ∧ e and (x ∧ e) → ⊥ = ⊥ (1). Using (c8) and (1) we get (y ∧ e) → ⊥ ≤ (x ∧ e) → ⊥,
therefore ¬(y ∧ e) = ⊥. Hence y ∈ D(L).

Let x, y ∈ D(L), then (x ∧ e) → ⊥ = ⊥ (2) and (y ∧ e) → ⊥ = ⊥ (3). We have to show that
x ∗ y, x ∧ y ∈ D(L). Since x ∧ e ≤ x and y ∧ e ≤ y, by (c8) and (c4) we have (x ∧ e) ∗ (y ∧ e) ≤ x ∗ y, x ∧ y.
Clearly we have (x ∧ e) ∗ (y ∧ e) ≤ e. Therefore [(x ∧ e) ∗ (y ∧ e)] ∧ e = (x ∧ e) ∗ (y ∧ e). We have

[(x∧ e) ∗ (y∧ e)] → ⊥ (c9)
= (x∧ e) → [(y∧ e) → ⊥]

(3)
= (x∧ e) → ⊥ (2)

= ⊥. Therefore (x∧ e) ∗ (y∧ e) ∈ D(L).
Since (x ∧ e) ∗ (y ∧ e) ≤ x ∗ y, x ∧ y, we deduce that x ∗ y, x ∧ y ∈ D(L). Hence D(L) is a filter. Since
¬(⊥ ∧ e) = ⊥ → ⊥ = ⊤ ̸= ⊥, we have ⊥ ̸∈ D(L). Thus D(L) is a proper filter. □

Example 3.7. For the IL-algebra L7, D(L7) = {d, a, b, e,⊤} is a maximal filter.
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The elements of D(L) are called dense elements of L.

To show that the collection of filters of L forms a complete lattice, we need the following lemma.

Lemma 3.8. Let L be an IL-algebra and K be a non-emty set. If (Fk)k∈K is a family of filters of L, then
F := ∩

k∈K
Fk is a filter of L.

Proof. Straightforward. □
We denote by F (L) the set of filters of L. From Lemma 3.8 (F (L),⊆) is a complete lattice denoted by

F(L). For every subset S ⊆ L, the smallest filter of L containing S (i.e. the intersection of all filters F ∈ F (L)
such that S ⊆ F ) denoted by ⟨S⟩, is called the filter generated by S. A principal filter is a filter generated
by a singleton and is denoted by ⟨a⟩. For a filter F of L and x ∈ L we set F (x) for the filter generated by
F ∪ {x}. For F1, F2 ∈ F (L), we define F1 ∧ F2 = F1 ∩ F2 and F1 ∨ F2 = ⟨F1 ∪ F2⟩. Clearly (F (L),∧,∨)
is a complete lattice. For a more precise characterization of this lattice we need an explicit characterization
of the filter generated by a subset. For any a, b ∈ L with a ≤ b we set [a, b] = {x ∈ L | a ≤ x ≤ b} and
[a, b[= {x ∈ L | a ≤ x < b}.

For each non-empty subset S of L, the filter generated by S and an explicit characterization of the join
of two filters F1, F2 of L is described in the following proposition.

Proposition 3.9. Let L be an IL-algebra, F, F1, F2 ∈ F (L), a ∈ L and S ⊆ L, S ̸= ∅. Then the following
statements hold:

1. ⟨a⟩ = {x ∈ L | (a ∧ e)n ≤ x ∧ e for some n ≥ e}.

2. ⟨∅⟩ = ⟨e⟩ = {x ∈ L | e ≤ x}.

3. ⟨S⟩ = {x ∈ L | (s1 ∧ e) ∗ . . . ∗ (sn ∧ e) ≤ x ∧ e, for some s1, . . . , sn ∈ S, n ≥ 1}.

4. F1 ∨ F2 = ⟨F1 ∪ F2⟩ = {x ∈ L | ∃f1 ∈ F1, f2 ∈ F2, (f1 ∧ e) ∗ (f2 ∧ e) ≤ x ∧ e}.

5. ⟨F ∪ {a}⟩ = {x ∈ L | ∃f ∈ F, n ≥ 1, (f ∧ e) ∗ (a ∧ e)n ≤ x ∧ e}
= {x ∈ L : (a ∧ e)n → (x ∧ e) ∈ F}.

Proof.

(1) Let

J = {x ∈ L | ∃n ≥ 1, (a ∧ e)n ≤ x ∧ e}.

It is easy to show that J is a filter of L containing a. Let M be a filter of L such that a ∈ M . We will show
that J ⊆ M . Let x ∈ J , then there exists n ≥ 1 such that (a ∧ e)n ≤ x ∧ e. Since M is a filter and a ∈ M ,
we get (a ∧ e)n ∈ M , hence x ∈ M and J ⊆ M . Thus J = ⟨a⟩.

(2) For a = e in (1) we get ⟨e⟩ = {x ∈ L | e ≤ x}. Let F be a filter of L, then e ∈ F and for any x ∈ ⟨e⟩,
e ≤ x, hence x ∈ F . Therefore ⟨∅⟩ = [e,⊤] ⊆ F . Thus ⟨e⟩ = ⟨∅⟩ = {x ∈ L | e ≤ x}.

(3) Let S ̸= ∅. Set

K = {x ∈ L | (s1 ∧ e) ∗ . . . ∗ (sn ∧ e) ≤ x ∧ e, for some s1, . . . , sn ∈ S, n ≥ 1}.

We have to show that K is the least filter of L containing S.

For all x ∈ S we have x∧ e ≤ x∧ e and x∧ e ≤ e∧ e, hence S ⊆ K and e ∈ K. Let x ∈ K and y ∈ L such
that x ≤ y. Then there exist n ≥ 1 and s1, . . . , sn such that (s1 ∧ e) ∗ . . . ∗ (sn ∧ e) ≤ x ∧ e ≤ y ∧ e, therefore
y ∈ K. Assume that x, y ∈ K, then there exist n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ S such that

(x1 ∧ e) ∗ . . . ∗ (xn ∧ e) ≤ (x ∧ e) (1.1) and (y1 ∧ e) ∗ . . . ∗ (yn ∧ e) ≤ (y ∧ e) (1.2).
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From (1.1), (1.2) combining with (c7) we get

(x1 ∧ e) ∗ . . . ∗ (xn ∧ e) ∗ (y1 ∧ e) ∗ . . . ∗ (ym ∧ e) ≤ (x ∧ e) ∗ (y ∧ e).

Since x ∧ e, y ∧ e ≤ e, by (c8) we have (x ∧ e) ∗ (y ∧ e) ≤ (x ∧ y) ∧ e, (x ∗ y) ∧ e. Therefore x ∧ y, x ∗ y ∈ K
and K is a filter containing S.

Let G be a filter of L containing S, we have to show that K ⊆ G. Let x ∈ K, then there exist
n ≥ 1, s1, . . . , sn ∈ S such that (s1 ∧ e) ∗ . . . ∗ (sn ∧ e) ≤ x ∧ e. Sinc G is a filter and S ⊆ G, we get
(s1 ∧ e) ∗ . . . ∗ (sn ∧ e) ∈ G, therefore x ∧ e ∈ G. Hence x ∈ G and K ⊆ G. Thus J = ⟨S⟩.

(4) Set

F := {x ∈ L | ∃f1 ∈ F1, f2 ∈ F2, (f1 ∧ e) ∗ (f2 ∧ e) ≤ x ∧ e}.

We have to show that F = F1 ∨F2. It is easy to see that F1 ∪F2 ⊆ F . A similar argument used in the proof
of (3) shows that F is a filter. Hence F is a filter containing F1∪F2. Let G be a filter such that F1∪F2 ⊆ G.
Let x ∈ F , then there are f1 ∈ F1, f2 ∈ F2 such that (f1 ∧ e) ∗ (f2 ∧ e) ≤ x∧ e. Since F1 ∪ F2 ⊆ G and G is a
filter, we have (f1 ∧ e) ∗ (f2 ∧ e) ∈ G, hence x ∧ e ∈ G. Therefore x ∈ G. Thus F ⊆ G and F = F1 ∨ F2.

(5) Let F ∈ F (L) and a ∈ L. Set

J = {x ∈ L | ∃f ∈ F, n ≥ 1, (f ∧ e) ∗ (a ∧ e)n ≤ x ∧ e}.

By (4) and (1) F ∨ ⟨a⟩ = ⟨F ∪ ⟨a⟩⟩ = J . It remains to show that ⟨F ∪ {a}⟩ = ⟨F ∪ ⟨a⟩⟩. Clearly we have
⟨F ∪ {a}⟩ ⊆ ⟨F ∪ ⟨a⟩⟩. Let x ∈ ⟨F ∪ ⟨a⟩⟩, then from (4) and (1) there are f ∈ F and an integer n ≥ 1 such
that (f ∧ e) ∗ (a ∧ e)n ≤ x ∧ e. Since f, a ∈ F ∪ {a}, using (3) we deduce that x ∈ ⟨F ∪ {a}⟩, therefore
⟨F ∪ ⟨a⟩⟩ ⊆ F (a). Thus F (a) = ⟨F ∪ ⟨a⟩⟩ = J . Set

K = {x ∈ L | ∃n ≥ 1, (a ∧ e)n → (x ∧ e) ∈ F}.

Our aim is to show that K = J . Let x ∈ J = ⟨F ∪ {a}⟩, then by (5) there exist f ∈ F and an integer n ≥ 1
such that (f ∧ e) ∗ (a ∧ e)n ≤ x ∧ e. Applying residuation law we obtain (f ∧ e) ≤ (a ∧ e)n → (x ∧ e). Since
f ∈ F and F is a filter, we deduce that (a ∧ e) → (x ∧ e) ∈ F , therefore x ∈ J . Hence J ⊆ K.

Conversely, assume that x ∈ K. Then there exists n ≥ 1 such that (a ∧ e)n → (x ∧ e) ∈ F . Set
f = (a ∧ e)n → (x ∧ e). By (c10) we have

(a ∧ e)n ∗ ((a ∧ e)n → (x ∧ e)) ≤ x ∧ e.

Since f ∈ F and ∗ is commutative, by (4) we have x ∈ J , hence K ⊆ J . Thus J = K. □
We denote by Fp(L) the set of principal filters of L. In order to explore some properties of Fp(L) we state

the following lemma.

Lemma 3.10. Let L be an IL-algebra and a, b ∈ L. Then the following statements hold.

1. If a ≤ b, then ⟨b⟩ ⊆ ⟨a⟩.

2. ⟨a⟩ = ⟨a ∧ e⟩.

3. ⟨a ∗ b⟩ ⊆ ⟨a⟩ ∨ ⟨b⟩ = ⟨a ∧ b⟩.

4. ⟨a ∨ b⟩ ⊆ ⟨a⟩ ∩ ⟨b⟩ = ⟨(a ∧ e) ∨ (b ∧ e)⟩.

5. F (a) ∧ F (b) = F ((a ∧ e) ∨ (b ∧ e)).
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Proof. (1) Assume that a ≤ b. Let x ∈ ⟨b⟩, then there exists n ≥ 1 such that (b ∧ e)n ≤ x ∧ e. Using (c8)
and a ≤ b we get (a ∧ e)n ≤ (b ∧ e)n ≤ x ∧ e, hence x ∈ ⟨a⟩. Thus ⟨b⟩ ⊆ ⟨a⟩.

(2) Since a∧e ≤ a, we have ⟨a⟩ ⊆ ⟨a∧e⟩ (by (1)). Since ⟨a⟩ is a filter and a∧e ∈ ⟨a⟩, we have ⟨a∧e⟩ ⊆ ⟨a⟩.
Hence ⟨a⟩ = ⟨a ∧ e⟩.

(3) Since a∧b ≤ a, b, we have ⟨a⟩, ⟨b⟩ ⊆ ⟨a∧b⟩ (by (1)). Therefore ⟨a⟩∨⟨b⟩ ⊆ ⟨a∧b⟩. Since a ∈ ⟨a⟩, b ∈ ⟨b⟩
and ⟨a⟩ ∪ ⟨b⟩ ⊆ ⟨a⟩ ∨ ⟨b⟩, we get a ∧ b ∈ ⟨a⟩ ∨ ⟨b⟩, hence ⟨a ∧ b⟩ ⊆ ⟨a⟩ ∨ ⟨b⟩. Thus ⟨a ∧ b⟩ = ⟨a⟩ ∨ ⟨b⟩. Since
a, b ∈ ⟨a ∧ b⟩, then a ∗ b ∈ ⟨a ∧ b⟩, therefore ⟨a ∗ b⟩ ⊆ ⟨a ∧ b⟩.

(4) Since a, b ≤ a ∨ b, using (1) we get ⟨a ∨ b⟩ ⊆ ⟨a⟩, ⟨b⟩, hence ⟨a ∨ b⟩ ⊆ ⟨a⟩ ∩ ⟨b⟩.
It remains to show that ⟨a⟩ ∩ ⟨b⟩ = ⟨(a ∧ e) ∨ (b ∧ e)⟩. Since (a ∧ e) ∨ (b ∧ e) ≥ (a ∧ e), (b ∧ e), using (1)

and (2) we obtain ⟨(a ∧ e) ∨ (b ∧ e)⟩ ⊆ ⟨a ∧ e⟩ ∧ ⟨b ∧ e⟩ = ⟨a⟩ ∩ ⟨b⟩. Let x ∈ ⟨a⟩ ∩ ⟨b⟩, then there are n,m ≥ 1
such that x ∧ e ≥ (a ∧ e)n and x ∧ e ≥ (b ∧ e)m. We have

x ∧ e ≥ (a ∧ e)m ∨ (b ∧ e)n
(c17)

≥ ((a ∧ e) ∨ (b ∧ e))mn.

Hence x ∈ ⟨(a ∧ e) ∨ (b ∧ e)⟩ and ⟨a⟩ ∩ ⟨b⟩ ⊆ ⟨(a ∧ e) ∨ (b ∧ e)⟩. Thus ⟨a⟩ ∩ ⟨b⟩ = ⟨(a ∧ e) ∨ (b ∧ e)⟩.
The proof of (5) is similar to that of (4). □

Proposition 3.11. The algebra Fp(L) is a bounded sublattice of F(L) with least element ⟨e⟩ and greatest
element L = ⟨⊥⟩.

Proof. Clearly Fp(L) ⊆ F (L). Using (3) and (4) of Lemma 3.10 we obtain the result. □

3.2 Prime filter theorem

Prime filter theorem plays an important role in the factorization, representation and the study of topology
in ordered algebraic structures. In the case of residuated lattices, prime deductive system theorem was
established in [3]. In what follows, we extend the result to IL-algebras.

Lemma 3.12. Let F be a filter of L and a, b ∈ L. If (a ∧ e) ∨ (b ∧ e) ∈ F , then ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩ = F .

Proof. Clearly F ⊆ ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩. Let x ∈ ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩, then there are f1, f2 ∈ F, n,m ≥ 1
such that x ∧ e ≥ (f1 ∧ e) ∗ (a ∧ e)n and x ∧ e ≥ (f2 ∧ e) ∗ (b ∧ e)m. We have

x ≥ [((f1 ∧ e) ∗ (a ∧ e)n)] ∨ [(f2 ∧ e) ∗ (b ∧ e)m]

(c14)

≥ [((f1 ∧ e) ∗ (a ∧ e)n) ∨ (f2 ∧ e)] ∗ [((f1 ∧ e) ∗ (a ∧ e)n) ∨ ((b ∧ e)m)]

(c14)

≥ [(f2 ∧ e) ∨ (f1 ∧ e)] ∗ [(f2 ∧ e) ∨ ((a ∧ e)n)] ∗ [(f1 ∧ e) ∨ ((b ∧ e)m)] ∗ [(a ∧ e)n ∨ (b ∧ e)m]

(c16),(c17)

≥ [(f2 ∧ e) ∨ (f1 ∧ e)] ∗ [(f2 ∧ e) ∨ (a ∧ e)]n ∗ [(f1 ∧ e) ∨ (b ∧ e)]m ∗ [(a ∧ e) ∨ (b ∧ e)]mn ∈ F,

because f1, f2 and (a ∧ e) ∨ (b ∧ e) belong to F . Therefore ⟨F ∪ {x}⟩ ∩ ⟨F ∪ {b}⟩ = F . □

Proposition 3.13. If F ∈ F (L), then the following conditions are equivalent.

(i) If F = F1 ∩ F2 with F1, F2 ∈ F (L), then F = F1 or F = F2.

(ii) If a, b ∈ L, with (a ∧ e) ∨ (b ∧ e) ∈ F , then a ∈ F or b ∈ F .

(iii) If F1 ∩ F2 ⊆ F with F1, F2 ∈ F (L), then F1 ⊆ F or F2 ⊆ F .
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Proof. (i)⇒ (ii) Assume that a, b ∈ L such that (a ∧ e) ∨ (b ∧ e) ∈ F , then by Lemma 3.12 we have
⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩ = F , therefore F = ⟨F ∪ {a}⟩ or F = ⟨F ∪ {b}⟩. Hence a ∈ F or b ∈ F .
(ii)⇒ (i) Let F1, F2 ∈ F (L) such that F = F1 ∩ F2. If by contrary F1 ̸= F and F2 ̸= F , then there are
a ∈ F1 \F and b ∈ F2 \F . Let c = (a∧e)∨(b∧e), then c ∈ F1∩F2 = F . Hence a ∈ F or b ∈ F , contradiction.
(ii)⇔(iii) is obtained with similar arguments. □

Definition 3.14. Let L be an IL-algebra. A filter F of L is called a prime filter if F ̸= L and satisfies one
of the conditions of Proposition 3.13.

Example 3.15. It is easy to check that F = {a, e,⊤}, G = {b, e,⊤} and H = {d, a, b, e,⊤} are prime filters
of the IL-algebra L7.

We denote by Spec(L) the set of all prime filters of L. We denote by L(L) the lattice reduct of L (i.e.
L(L) = (L,∨,∧)). We recall that a subset I of a lattice L is called an ideal if I is a ∨-closed subset (i.e. if
a, y ∈ I, then x ∨ y ∈ I) and x ≤ y implies x ∈ I for any y ∈ I and x ∈ L.

Theorem 3.16. (Prime filter theorem for IL-algebras). Let L be an IL-algebra. If F ∈ F (L) and I is an
ideal of the lattice L(L) such that F ∩I = ∅, then there is a prime filter P of L such that F ⊆ P and P ∩I = ∅.

Proof. Let FF := {H ∈ F (L) | F ⊆ H and H ∩ I = ∅}. A routine application of Zorn’s lemma shows
that FF has a maximal element P . Suppose that P is not a prime filter, that is there are a, b ∈ L such that
(a ∧ e) ∨ (b ∧ e) ∈ P but a ̸∈ P, b ̸∈ P . By the maximality of P we deduce that ⟨P ∪ {a}⟩ and ⟨P ∪ {b}⟩
are not in FF , hence ⟨P ∪ {a}⟩ ∩ I ̸= ∅ and ⟨P ∪ {b}⟩ ∩ I ̸= ∅, that is there are p1 ∈ ⟨P ∪ {a}⟩ ∩ I ̸= ∅ and
p2 ∈ ⟨P ∪{b}⟩∩I ̸= ∅. By ( 4) of Proposition 3.9, there exist f, g ∈ P, n,m ≥ 1 such that p1 ≥ (f ∧e)∗(a∧e)n

and p2 ≥ (g ∧ e) ∗ (b ∧ e)m. Therefore

p1 ∨ p2 ≥ ((f ∧ e) ∗ (a ∧ e)n) ∨ ((g ∧ e) ∗ (b ∧ e)m)

(c14)

≥ [(f ∧ e) ∨ (g ∧ e)] ∗ [(g ∧ e) ∨ (a ∧ e)n] ∗ [(f ∧ e) ∨ (b ∧ e)m] ∗ [(b ∧ e)m ∨ (a ∧ e)n)]

(c16),(c17)

≥ [(f ∧ e) ∨ (g ∧ e)] ∗ [(g ∧ e) ∨ (a ∧ e)]n ∗ [(f ∧ e) ∨ (b ∧ e)]m ∗ [(a ∧ e) ∨ (b ∧ e)]mn.

Since (f ∧ e) ∨ (g ∧ e), (g ∧ e) ∨ (a ∧ e)n, (f ∧ e) ∨ (b ∧ e)m ∈ P , we deduce that p1 ∨ p2 ∈ P , but p1 ∨ p2 ∈ I.
Hence P ∩ I ̸= ∅, which is a contradiction. Thus P is a prime filter. □

Corollary 3.17. If L is a nontrivial IL-algebra, then any proper filter of L can be extended to a prime filter
of L.

Proposition 3.18. For a filter P ∈ F (L), the following conditions are equivalent.

(i) P ∈ Spec(L).

(ii) For every x, y ∈ L \ P , there is z ∈ L \ P such that x ∧ e ≤ z and y ∧ e ≤ z.

Proof. (i)⇒ (ii) Let P ∈ Spec(L) and x, y ∈ L\P . By contrary, we suppose that for every a ∈ L, if x∧e ≤ a
and y ∧ e ≤ a, then a ∈ P . Since x∧ e, y ∧ e ≤ (x∧ e)∨ (y ∧ e), we have (x∧ e)∨ (y ∧ e) ∈ P , hence x ∈ P or
y ∈ P , a contradiction.

(ii)⇒ (i) Suppose by contrary that there exist F1, F2 ∈ F (L) such that F1∩F2 = P and F1 ̸= P , F2 ̸= P .
Then, there exist x ∈ F1 \ P and y ∈ F2 \ P . By hypothesis, there is z ∈ L \ P such that x ∧ e ≤ z ∧ e and
y ∧ e ≤ z ∧ e, we deduce that z ∈ F1 ∩ F2 = P , contradiction. □

Corollary 3.19. For a proper filter P ∈ F (L), the following conditions are equivalent:
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(i) P ∈ Spec(L);

(ii) If x, y ∈ L and ⟨x⟩ ∩ ⟨y⟩ ⊆ P , then x ∈ P or y ∈ P .

Proof. (i) ⇒ (ii) Let x, y ∈ L such that ⟨x⟩ ∩ ⟨y⟩ ⊆ P , then (x ∧ e) ∨ (y ∧ e) ∈ P . Since P is a prime filter
we deduce that x ∈ P or y ∈ P .

(ii)⇒ (i) Let x, y ∈ L such that (x ∧ e) ∨ (y ∧ e) ∈ P , then ⟨(x ∧ e) ∨ (y ∧ e)⟩ = ⟨x⟩ ∩ ⟨x⟩ ⊆ P , hence by
hypothesis x ∈ P or y ∈ P . Hence P ∈ Spec(L). □

Corollary 3.20. Let F ∈ F (L) and a ∈ L \ F , then the following statements hold:

(i) There is P ∈ Spec(L) such that F ⊆ P and a ̸∈ P .

(ii) F is the intersection of those prime filters which contain F .

(iii) ∩Spec(L) = ⟨e⟩.

Proof. (i) Consider I = {x ∈ L | x ≤ a}. Clearly I is an ideal of the lattice L(L).
Suppose that F ∩ I ̸= ∅, that is there is an x ∈ F ∩ I. It follows that x ≤ a and x ∈ F , hence a ∈ F ,
contradiction. Thus F ∩ I = ∅. According to the prime filter theorem, there is a prime filter P of L such
that F ⊆ P and a ̸∈ P .

(ii) We have to show that F = ∩{P ∈ Spec(L) | F ⊆ P}. Let G = ∩{P ∈ Spec(L) | F ⊆ P}. Assume
that F ⊊ G, then there exists a ∈ G such that a ̸∈ F . According to (i), there is a prime filter P such that
a ̸∈ P and F ⊆ P , contradiction with a ∈ G. Therefore G = F .

(iii) Clearly ⟨e⟩ ⊆ ∩Spec(L). Assume that ∩Spec(L) ⊈ ⟨e⟩, then there exists a ∈ ∩Spec(L) such that
a ̸∈ ⟨e⟩. According to (i) there exists P ∈ Spec(L) such that ⟨e⟩ ⊆ P and a ̸∈ P , since by assumption a ∈ P
we obtain a contradiction. □

Corollary 3.21. If L is a nontrivial IL-algebra, then Max(L) ⊆ Spec(L).

Proof. Obvious. □

3.3 The lattice of filters of IL-algebras

It is known that given a residuated lattice L, the lattice F(L) of its filters is algebraic and form a Heyting
algebra (see [3]). In this subsection we show that for an IL-algebra L, the lattice F(L) of its filters has these
properties.

Definition 3.22. (See [2], p.17) Let L = (L,∧,∨) be a lattice.

1. An element a ∈ L is compact if whenever ∨A exists and a ≤ ∨A for A ≤ L, then a ≤ ∨B for some
finite B ⊆ A.

2. The lattice L is compactly generated iff every element in L is a supremum of compact elements.

3. The lattice L is algebraic if L is complete and compactly generated.

4. The lattice L is called brouwerian if it satifies the identity

a ∧ ( ∨
i∈I

bi) = ∨
i∈I

(a ∧ bi) ( whenever the arbitrary joins exist).
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Remark 3.23. If L is an IL-algebra, and Fi ∈ F (L), i ∈ I, then the following equality holds:

∨
i∈I

Fi = ∪
(i1,...,in)∈I⋆

(Fi1 ∨ . . . ∨ Fin)

where I⋆ is the set of finite tuples (i1, . . . , in) ∈ In, n ≥ 1, n ∈ N.

Theorem 3.24. The lattice F(L) is algebraic, Brouwerian and the compact elements are the principal filters.

Proof. From Lemma 3.8, F(L) is a complete lattice. Let F be a compact element of F (L), then F ⊆ ∨a∈F ⟨a⟩.
Since F is compact, there exist a1, . . . , an such that F ⊆ ⟨a1⟩ ∨ . . . ∨ ⟨an⟩ = ⟨a1 ∧ . . . ∧ an⟩ ⊆ F . Therefore
F = ⟨b⟩ with b = a1 ∧ . . . ∧ an. Hence, each compact element of F(L) is a principal filter.

Conversely, let a ∈ L, we show that ⟨a⟩ is a compact element. Let {Fj , j ∈ J} ⊆ F (L) with J an arbitrary
non-empty set such that ⟨a⟩ ⊆ ∨

j∈J
Fj . Since a ∈ ⟨a⟩, from Remark 3.23, there are n ≥ 1 and i1, . . . , in ∈ J

such that a ∈ Fi1 ∨ . . .∨Fin . Therefore ⟨a⟩ ⊆ Fi1 ∨ . . .∨Fin . Hence ⟨a⟩ is a compact element. Since F(L) is a
complete lattice, it remains to show that each member of F (L) is a join of compact elements. Let F ∈ F (L),
then F = ∨

a∈F
⟨a⟩, as each principal filter is a compact element we are done. Therefore F(L) is algebraic.

Let’s show that F(L) is brouwerian. Let F, Fi ∈ F(L), i ∈ K where K is a non-empty set. We have to
show that F ∧ ( ∨

k∈K
Fk) = ∨

k∈K
(F ∧ Fk), that is

F ∩ ( ∨
k∈K

Fk) = ⟨ ∪
k∈K

(F ∩ Fk)⟩ = ∨
i∈I

(F ∩ Fi).

Clearly, ∨
i∈I

(F ∩Fi) ⊆ F ∩ ( ∨
k∈K

Fk). Let x ∈ F ∩ ( ∨
k∈K

Fk) = F ∩ [ ∪
(i1,...,in)∈I⋆

(Fi1 ∨ . . .∨Fin))], then there exist

n ≥ 1, i1, . . . , in ∈ I, aij ∈ Fij , j = 1, . . . , n such that x ∧ e ≥ (xi1 ∧ e) ∗ (xi2 ∧ e) ∗ . . . ∗ (xin ∧ e). Furthermore
we have

x ∧ e ≥ (x ∧ e) ∨ [(xi1 ∧ e) ∗ . . . ∗ (xin ∧ e)]

(c15)

≥ ((x ∧ e) ∨ (xi1 ∧ e)) ∗ . . . ∗ ((x ∧ e) ∨ (xin ∧ e)).

Since (x ∧ e) ∈ F and (xij ∧ e) ∈ Fij , 1 ≤ j ≤ n, we have (x ∧ e) ∨ (xij ∧ e) ∈ F ∩ Fij , hence x ∈
(F ∩ Fi1) ∨ . . . ∨ (F ∩ Fin) ⊆ ∨

i∈I
(F ∩ Fi). Thus F ∩ ( ∨

k∈K
Fk) ⊆ ∨

i∈K
(F ∩ Fi). □

The following result is a consequence of Theorem 3.24.

Corollary 3.25. The lattice F(L) is distributive.

Let L be an IL-algebra. For any F1, F2 ∈ F (L), we set

F1 → F2 = {x ∈ L | ⟨x⟩ ∩ F1 ⊆ F2}.

Lemma 3.26. If L is an IL-algebra and F1, F2 ∈ F (L), then the following statements hold:

(i) F1 → F2 ∈ F (L).

(ii) For any F ∈ F (L), F1 ∩ F ⊆ F2 if and only if F ⊆ F1 → F2 ( that is F1 → F2 = sup{F ∈ F (L) :
F1 ∩ F ⊆ F2}).

Proof. (i) Let F1, F2 ∈ F (L). We have to show that F1 → F2 is a filter of L.
We have ⟨e⟩ ∩ F1 = ⟨e⟩ ⊆ F1, hence e ∈ F1 → F2. Let x ∈ F1 → F2 and y ∈ L such that x ≤ y. We show

that y ∈ F1 → F2. Since x ≤ y, by (1) of Lemma 3.10 we get ⟨y⟩ ⊆ ⟨x⟩. In addition, x ∈ F1 → F2 implies
⟨x⟩ ∩ F1 ⊆ F2. Hence ⟨y⟩ ∩ F1 ⊆ ⟨x⟩ ∩ F1 ⊆ F2. Thus y ∈ F1 → F2.
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Let x, y ∈ F1 → F2, then ⟨x⟩∩F1 ⊆ F1 and ⟨y⟩∩F1 ⊆ F2, so (⟨x⟩∩F1)∨ (⟨y⟩∨F1) ⊆ F2. From Corollary
3.25 the lattice F(L) is distributive, hence (⟨x⟩ ∩ F1) ∨ (⟨y⟩ ∩ F1) = (⟨x⟩ ∨ ⟨y⟩) ∩ F1. By (3) of Lemma 3.10
we get ⟨x⟩ ∨ ⟨y⟩ = ⟨x ∧ y⟩, therefore ⟨x ∧ y⟩ ∩ F1 ⊆ F2, hence x ∧ y ∈ F1 → F2. From (3) of Lemma 3.10 we
get ⟨x ∗ y⟩ ⊆ ⟨x∧ y⟩. Since ⟨x∧ y⟩ ∩F1 ⊆ F2, we deduce that ⟨x ∗ y⟩ ∩F1 ⊆ F2, hence x ∗ y ∈ F1 → F2. Thus
F1 → F2 is a filter.

(ii) Let F, F1, F2 ∈ F (L). Assume that F1 ∩ F ⊆ F2. To show that F ⊆ F1 → F2, let x ∈ F and
t ∈ ⟨x⟩∩F1, then t ∈ F1 and there exists n ≥ 1 such that t∧ e ≥ (x∧ e)n. Since x ∈ F , we have (x∧ e)n ∈ F ,
hence t ∈ F and t ∈ F1. In addition, F ∧ F1 ⊆ F2, we deduce that t ∈ F2. Hence x ∈ F1 → F2.

Conversely, assume that F ⊆ F1 → F2. We will show that F1 ∩ F ⊆ F2. Let x ∈ F1 ∩ F . Since
F ⊆ F1 → F2, we get ⟨x⟩ ∩ F1 ⊆ F2. Since x ∈ ⟨x⟩ and x ∈ F , we have x ∈ ⟨x⟩ ∩ F1 ⊆ F2. Hence x ∈ F2.
□

We recall that an Heyting algebra (see [2]) is a lattice (L,∧,∨) with 0 such that for every a, b ∈ L,
there exists an element a → b ∈ L (called pseudocomplement of a with respect to b) such that for every
x ∈ L, a ∧ x ≤ b if and only if x ≤ a → b (that is, a → b = sup{x ∈ L | a ∧ x ≤ b}).

Theorem 3.27. Let L be an IL-algebra. The algebra (F (L),∧,∨,→, ⟨e⟩) is a complete Heyting algebra,
where for all F1, F2 ∈ F (L),

F1 ∧ F2 = F1 ∩ F2, F1 ∨ F2 = ⟨F1 ∪ F2⟩

F1 → F2 = {x ∈ L : F1 ∩ ⟨x⟩ ⊆ F2}.

Set F ⋆ = F → ⟨e⟩ = {x ∈ L : ⟨x⟩ ∩ F = ⟨e⟩}.
Proof. Clearly (F (L),∧,∨) is a complete lattice with least element ⟨e⟩. By Lemma 3.26 for any F1, F2 ∈
F (L), F1 → F2 ∈ F (L) and F1 → F2 is a pseudocoplement of F1 with respect to F2.

□
A residuated lattice (L,∧,∨, ∗,→,⊥,⊤) is called a Gödel algebra if x2 = x∗x = x, for all x ∈ L. Taking

∗ = ∩ on F (L) and → as above, we consider the algebra

F(L) = (F (L),∧,∨, ∗,→, ⟨e⟩, L).

Corollary 3.28. Let L be an IL-algebra, ∗ and → be the binary operations defined on F (L) as above, then
the algebra F(L) = (F (L),∧,∨, ∗,→, ⟨e⟩, L) is a commutative residuated lattice.

Proof. (1) It is clear that (F (L),∩, L) is a commutative monoid and (F(L),∩,∨, ⟨e⟩, L) is a bounded lattice.
In addition the law of residuation holds in F(L) by (ii) of Lemma 3.26, ∩ is commutative and F ∩L = F for
all F ∈ F(L). Hence F(L) is a residuated lattice. □

For F1, F2 ∈ F (L), we set

F1 ⊕ F2 = {x ∈ L | (x ∧ e) ∨ (y ∧ e) ∈ F2, for all y ∈ F1}.

Proposition 3.29. For all F1, F2 ∈ F (L), F1 ⊕ F2 = F1 → F2.

Proof. First we show that F1 ⊕ F2 ⊆ F1 → F2. Let x ∈ F1 ⊕ F2 and z ∈ ⟨x⟩ ∩ F1, then z ∈ F1 and
z ∧ e ≥ (x ∧ e)n for some integer n ≥ 1 and x ∨ z ∈ F2. We have z ≥ (z ∧ e) ∨ (x ∧ e)n ≥ ((z ∧ e) ∨ (x ∧ e))n

by (c16). It follows that z ∈ F2 (due to (z ∧ e)∨ (x∧ e) ∈ F2), hence x ∈ F1 → F2. Thus F1 ⊕F2 ⊆ F1 → F2.

For the converse inclusion, let x ∈ F1 → F2, then ⟨x⟩∩F1 ⊆ F2. If y ∈ F1, then (x∧e)∨ (y∧e) ∈ ⟨x⟩∩F1,
therefore (x ∧ e) ∨ (y ∧ e) ∈ F2. Hence x ∈ F1 ⊕ F2 and F1 → F2 ⊆ F1 ⊕ F2. Thus F1 → F2 = F1 ⊕ F2. □

Following the result by G. Grätzer on pseudocomplemented lattices ([8], p.99) any lattice that satisfies
the join Infinite Distributive Identity (JID) is a pseudocomplemented distributive lattice. Hence, every
distributive algebraic lattice is pseudocomplemented. An element a⋆ ∈ L is a pseudocomplement of a ∈ L



84 T. J. Y Léa, C. T. Nganteu-TFSS-Vol.2, No.1-(2023)

if a∧ a∗ = 0 and a∧ x = 0 implies x ≤ a⋆. A pseudocomplemented lattice is one in which every element
has a pseudo complement.

We characterize the pseudo-complement of any filter F of L in the sequel. For any filter F of L we set

F ⋆ = {x ∈ L | for any y ∈ F, (x ∧ e) ∨ (y ∧ e) = e}.

Lemma 3.30. Let L be an IL-algebra, F,G ∈ F (L) and F ⋆, G⋆ as above, then the following statements hold.

1. F ⋆ = F → ⟨e⟩ ∈ F (L).

2. If F ⊆ G, then G⋆ ⊆ F ⋆.

3. F ∩ F ⋆ = ⟨e⟩.

4. If F ∩G = ⟨e⟩, then G ⊆ F ⋆.

5. L⋆ = ⟨e⟩ and ⟨e⟩⋆ = L.

Proof. For (1), we just need to show the equality F ⋆ = F → ⟨e⟩. Let y ∈ F → ⟨e⟩, then ⟨y⟩ ∩ F ⊆ ⟨e⟩. Let
x ∈ F , then (x ∧ e) ∨ (y ∧ e) ∈ ⟨y⟩ ∩ F = ⟨e⟩ (since y ∧ e ∈ ⟨y⟩ and x ∧ e ∈ F ), hence (x ∧ e) ∨ (y ∧ e) = e
and y ∈ F ∗. Therefore F → ⟨e⟩ ⊆ F ⋆. Let y ∈ F ⋆, we show that y ∈ F → ⟨e⟩, that is ⟨y⟩ ∩ F ⊆ ⟨e⟩.
Let t ∈ ⟨y⟩ ∩ F , then t ∈ F and there exists n ≥ 1 such that t ∧ e ≥ (y ∧ e)n. Since y ∈ F ⋆, we get
(t ∧ e) ∨ (y ∧ e) = e, (t ∧ e) ∨ (y ∧ e)n = (t ∧ e) ≥ [(t ∧ e) ∨ (y ∧ e)]n = e by (c16) and assumption on y, hence
(t ∧ e) ≥ e, therefore t ≥ e and t ∈ ⟨e⟩. Hence F ∗ ⊆ F → ⟨e⟩. From Lemma 3.26 F → ⟨e⟩ is a filter.

(2) The proof of (2) is easy to check.
(3) Let x ∈ F ∩ F ⋆, then (x ∧ e) ∨ (x ∧ e) = e by definition of F ⋆, hence x ∧ e = e and x ∈ ⟨e⟩. Thus

F ∩ F ⋆ = ⟨e⟩.
(4) Assume that F ∩G = ⟨e⟩. Let’s us show that G ⊆ F ∗. Let x ∈ G and y ∈ F , then (x ∧ e) ∨ (y ∧ e) ∈

F ∩G = ⟨e⟩, that is e ≥ (x ∧ e) ∨ (y ∧ e) ≥ e, hence (x ∧ e) ∨ (y ∧ e) = e and x ∈ F ⋆. Thus G ⊆ F ⋆.
(5) By (1) we have L⋆ = L → ⟨e⟩ = ⟨e⟩ and ⟨e⟩⋆ = ⟨e⟩ → ⟨e⟩ = L ( because L is the greatest element and

⟨e⟩ the least element in the residuated lattice (F (L),∧,∨, ∗,→, ⟨e⟩, L). □

Proposition 3.31. If L is an IL-algebra, then the algebra (F (L),∧,∨,⋆ , ⟨e⟩, L) is a bounded pseudocomple-
mented distributive lattice.

Proof. Using (1),(2),(3) and (4) of Lemma 3.30 we get that for any F ∈ F (L), F ⋆ is a pseudocomplement of
F . Furthermore, by Corollary 3.25 F (L) is distributive. Therefore F (L) is a distributive pseudocomplemented
lattice. □

Theorem 3.32. If every F ∈ F (L) has a unique representation as an intersection of elements of Spec(L),
then (F (L),∧,∨,⋆ , ⟨e⟩, L) is a Boolean algebra.

Proof. Since (F (L),⊆) is a distributive lattice, it remains to show that it is complemented. Let F ∈ F (L).
If F ∈ {⟨e⟩, L}, then F is complemented. Assume that F ̸= L and F ̸= ⟨e⟩. Then by (iii) of Corollary 3.20
there exists Q ∈ Spec(L) such that F ⊈ Q. Therefore F1 = ∩{P ∈ Spec(L) | F ⊈ P} ∈ F (L). Clearly
F ∩ F1 = ⟨e⟩ (by using (ii) and (iii) of Corollary 3.20). We claim that F ∨ F1 = L. Suppose by contrary
that F ∨ F1 ̸= L, then by (i) of Corollary 3.20 there exists P ∈ Spec(L) such that F1 ⊆ P and P ̸= L.
Consequently

F1 = ∩{M ∈ Spec(L) | F ⊈ M} = P ∩ [∩{K ∈ Spec(L) | F ⊈ K}]

which is in contradiction with the assumption. Therefore F ∨ F1 = L and F ⋆ = F1 is the complement of F .
Hence F (L) is complemented. Thus (F (L),⊆) is a Boolean algebra. □
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3.4 Negative cone in IL-algebra

In ([6], p.142), given a non-bounded residuated lattice (L,∧,∨, e, ∗,→), an element a of L is positive if
a ≥ e and negative if a ≤ e and the positive part of L is defined as the set L+ = {x ∈ L | x ≥ e} of all
positive elements of L and the negative part is L− = {x ∈ L | x ≤ e}.

The negative cone of an IL-algebra L is the algebra L− = (L−,∧,∨, ∗L− ,→L, e), where

x →L y = (x → y) ∧ e, x ∗L y = (x ∗ y) ∧ e.

For the IL-algebra L7, we have L−
7 = {⊥, d, a, b, e}.

Proposition 3.33. If L is an IL-algebra which is not a residuated lattice, then the negative cone of L is a
commutative residuated lattice.

Proof. It is clear that L− is a bounded lattice with least element ⊥ and greatest element e. In addition
(L−, ∗L, e) is a commutative submonoid of (L, ∗, e) with a ∗L b = a ∗ b. The residuation law holds in L−

because it holds in L. □

Definition 3.34. A nonempty subset S of L is called a base of a filter F if

F = {x ∈ L | ∃x0 ∈ S, x0 ≤ x}.

Example 3.35. We consider the IL-algebra L7, the set S1 = {a, e} is a base of the filter F1 = {a, e,⊤} and
S2 = {b, e} is a base of the filter G = {b, e,⊤}.

We state the relationship between filter of F(L−) and those of F(L). For any H ∈ F (L−) we set

FH = {x ∈ L | ∃x0 ∈ H,x0 ≤ x}.

Lemma 3.36. Let L be an IL-algebra and L− as above. Let H,H1,H2 ∈ F (L−) and G ∈ F (L) and
FHi , i = 1, 2 and FH as above, then the following statements hold:

1. FH ∈ F (L).

2. G ∩ L− ∈ F (L−).

3. H1 ⊆ H2 if and only if FH1 ⊆ FH2.

4. If FH1 = FH2, then H1 = H2.

Proof. (1) Clearly e ∈ FH . Let x ∈ FH and y ∈ L such that x ≤ y. We have to show that y ∈ FH . Since
x ∈ FH , there exists x0 ∈ H such that x0 ≤ x ≤ y, therefore y ∈ G. Let x, y ∈ FH , then there are x1, x2 ∈ H
such that x1 ≤ x, x2 ≤ y. By (c8) we have x1 ∗ x2 ≤ x ∗ y, and x1 ∧ x2 ≤ x ∧ y. Since H is a filter we get
x1 ∧ x2, x1 ∗ x2 ∈ H, hence x ∗ y, x ∧ y ∈ FH . Thus FH is a filter of L.

One observes that for any H ∈ F (L−), FH ∩ L− = H. Using this observation one can easily shows that
(2)-(4) hold. □

Theorem 3.37. The lattices F(L−) and F(L) are isomorphic.

Proof. By Lemma 3.36, the map Φ : F (L−) 7→ F (L),H 7→ Φ(H) = FH is an order-isomorphism with the
inverse isomorphism Ψ given by Ψ(F ) = F ∩ L− for all F ∈ F (L). □
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4 Congruences and filters on IL-algebras

In this section, we establish the relations between congruences and filters in IL-algebras and some related
properties.

Definition 4.1. Let L be an IL-algebra. The equivalence relation θ ⊆ L2 is called a congruence in L if θ is
compatible with →, ∗,∧ and ∨, that is for any (x, y), (a, b) ∈ θ, (x∧ a, y ∧ b), (x → a, y → b), (x ∗ a, y ∗ b), (x∨
a, y ∨ b) ∈ θ.

The set of all congruences of L denoted by Con(L) is a complete lattice ordered by ⊆ ([2]). For any
θ ∈ Con(L), we denote by [a]θ the set {x ∈ L | (a, x) ∈ θ}.

Example 4.2. The equivalence relation defined by its classes θ ∼= {⊥}, {d, a, b, e}, {c}, {⊤} is a congruence
on the IL-algebra L7.

We have [⊤]θ = {⊤} and [e]θ = {e, a, b, c, d}. The class [e]θ is not a filter (since ⊤ ̸∈ [e]θ), and [⊤]θ also
is not a filter, since e ̸∈ [⊤]θ.

Remark 4.3. For an arbitrary congruence θ on an IL-algebra L, the class [⊤]θ (resp. [e]θ) is not always a
filter of L.

Let L be an IL-algebra and θ be a congruence on L, set

Fθ := {x ∈ L | (x ∧ e, e) ∈ θ}.

Proposition 4.4. If θ and β are congruences on L and Fθ, Fβ as above, then the following statements hold:

1. Fθ is a filter of L.

2. If θ ⊆ β, then Fθ ⊆ Fβ.

Proof. (1) We have to show that Fθ ∈ F (L).

Clearly e ∈ Fθ. Assume that x ∈ Fθ and y ∈ L such that x ≤ y. Then x∧e ≤ y∧e and (x∧e)∨(y∧e) = y∧e.
Since (x ∧ e, e) ∈ θ and (y ∧ e, y ∧ e) ∈ θ we have (y ∧ e, e) ∈ θ, therefore y ∈ Fθ. Let x, y ∈ Fθ, then
(x ∧ e, e), (y ∧ e, e) ∈ θ (a). Let’s show that x ∧ y, x ∗ y ∈ F . Since θ is compatible with ∧, we get
((x ∧ e) ∧ (y ∧ e), e ∧ e) = ((x ∧ y) ∧ e, e) ∈ θ, hence x ∧ y ∈ Fθ.

To finish we show that x ∗ y ∈ Fθ. We have (x ∧ e, e), (y ∧ e, e) ∈ θ imply by compatibility with ∗ that
((x ∧ e) ∗ (y ∧ e), e ∗ e) = ((x ∧ e) ∗ (y ∧ e), e) ∈ θ. Furthermore, using (c4) and x ∧ e, y ∧ e ≤ e we have
(x ∧ e) ∗ (y ∧ e) ≤ (x ∧ y) ∧ e ≤ e, therefore ((x ∧ e) ∗ (y ∧ e), e) ∈ θ and (x ∧ e) ∗ (y ∧ e) ∈ Fθ. Since
x∧e, y∧e ≤ x, y, by (c8) we have (x∧e)∗ (y∧e) ≤ x∗y, and [(x∧e)∗ (y∧e)]∧e = (x∧e)∗ (y∧e) ≤ (x∗y)∧e
and (x ∧ e) ∗ (y ∧ e) ∈ Fθ, therefore x ∗ y ∈ Fθ. Thus Fθ is a filter of L.

(2) is obvious. □
For the above congruence θ in the Example 4.2 we get Fθ = {e, a, b, d,⊤} = F . One can check that

(x, y) ∈ θ if and only if x → y, y → x ∈ F .

We need the following lemma for the sequel.

Lemma 4.5. Let L be an IL-algebra and θ ∈ Con(L), then the following statements are equivalent.

1. (a, b) ∈ θ.

2. ((a → b) ∧ e, e) ∈ θ and ((b → a) ∧ e, e) ∈ θ.
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Proof. (1)⇒ (2) Let (a, b) ∈ θ, then (a → a, b → a) ∈ θ. By (c11) we have e ≤ a → a, therefore
e = (a → a) ∧ e and (e, (b → a) ∧ e)) ∈ θ. Since e ≤ b → b and (a → b, b → b) ∈ θ, by compatibility of θ with
∧ we get ((a → b) ∧ e, (b → b) ∧ e) = ((a → b) ∧ e, e) ∈ θ. Therefore ((a → b) ∧ e, (b → a) ∧ e) ∈ θ (since θ is
transitive). Hence (1) ⇒ (2) holds.

(2)⇒(1) Assume that ((a → b) ∧ e, e) ∈ θ (1.1) and ((b → a) ∧ e, e) ∈ θ (1.2).
Let’s show that (a, b) ∈ θ. Using compatibility of θ with ∗, (1.1) and (1.2), we have (((a → b)∧ e)∗a, a) ∈

θ (2.1) and (((b → a) ∧ e) ∗ b, b) ∈ θ (2.2). Set r = [(a → b) ∧ e] ∗ a and s = [(b → a) ∧ e] ∗ b. Since
(a → b)∧ e ≤ a → b, by (c8) ((a → b)∧ e) ∗ a ≤ (a → b) ∗ a ≤ b by (c10), therefore r ≤ b. A similar argument
show that s ≤ a. It follows from (r, a) ∈ θ, (s, b) ∈ θ and θ compatible with ∧ that (r∧ b, b∧a) = (r, b∧a) ∈ θ
and (s ∧ a, b ∧ a) = (s, b ∧ a) ∈ θ, hence (r, s) ∈ θ. Since (r, a) ∈ θ, (s, b) ∈ θ and (r, s) ∈ θ, by transitivity of
θ we have (a, b) ∈ θ. Thus (a, b) ∈ θ and (2)⇒ (1) holds. □

Lemma 4.6. If θ ∈ Con(L) and c ∈ L, then [c]θ is a convex subset of L.

Proof. Straightforward. □

Proposition 4.7. If θ ∈ Con(L), then ⟨[e]θ⟩ = Fθ = {x ∈ L | (x ∧ e, e) ∈ θ}.

Proof. From Proposition 4.4 Fθ is a filter. Let x ∈ [e]θ, then (x, e) ∈ θ and using compatibility of θ with
∧ and (e, e) ∈ θ we get (x ∧ e, e) ∈ θ, hence x ∈ Fθ. Thus [e]θ ⊆ Fθ. Since Fθ is a filter we deduce that
⟨[e]θ⟩ ⊆ Fθ. Let x ∈ Fθ, then (x ∧ e, e) ∈ θ. Since x ∧ e ≤ e and x ∧ e ∈ [e]θ, we deduce by (3) of Proposition
3.9 that x ∈ ⟨[e]θ⟩. Hence Fθ ⊆ ⟨[e]θ⟩. Thus Fθ = ⟨[e]θ⟩. □ For a filter H of L we set

θH = {(a, b) ∈ L2 | ∃h ∈ H,h ∗ a ≤ b and h ∗ b ≤ a},

Θ(H) = {(a, b) ∈ L2 | a → b ∈ H and b → a ∈ H}.

Proposition 4.8. Let L be an IL-algebra, H,F1, F2 ∈ F (L), θ1, θ2, θ ∈ Con(L) and θH and Θ(H) as above,
then the following statements hold:

1. θH = Θ(H).

2. Θ(H) is a congruence relation on L.

3. If [e]θ1 = [e]θ2, then θ1 = θ2.

4. ⟨[e]Θ(H)⟩ = H.

5. If Θ(F1) = Θ(F2), then F1 = F2.

6. Θ(F1) ⊆ Θ(F2) if and only if F1 ⊆ F2.

Proof. (1) Let (a, b) ∈ Θ(H), then (a → b) ∧ e ∈ H and (b → a) ∧ e ∈ H. Set h = (a → b) ∧ (b → a) ∧ e.
Clearly h ∈ H (since H is a filter). Let’s show that h ∗a ≤ b and h ∗ b ≤ a. Since [(a → b)∧ e∧ (b → a)∧ e] ≤
(a → b), (b → a) (3.1) by (c8) h ∗ a ≤ (a → b) ∗ a ≤ b by (c10) and h ∗ b ≤ (b → a) ∗ b ≤ a by (c10), we have
h ∗ b ≤ a and h ∗ a ≤ b, therefore (a, b) ∈ θH and Θ(H) ⊆ θH .

Conversely, suppose that (a, b) ∈ θH , then there exists h ∈ H such that h ∗ a ≤ b and h ∗ b ≤ a. By
the residuation property we have h ∗ a ≤ b implies h ≤ a → b and h ∧ e ≤ (a → b) ∧ e. Since h, e ∈ H, we
get h ∧ e ∈ H, therefore (a → b) ∧ e ∈ H. From h ∗ b ≤ a, by the residuation property we get h ≤ b → a,
hence (b → a) ∧ e ∈ H (since e, h ∈ H and H is a filter). Therefore (a, b) ∈ Θ(H) and θH ⊆ Θ(H). Thus
θH = Θ(H).

(2) Obviously Θ(H) is reflexive and symmetric. Let’s show that Θ(H) is transitive. Assume that
(x, y), (y, z) ∈ Θ(H). Then x → y, y → x, y → z, z → y ∈ H. We have (x → y) ∗ (y → z) ≤ x → z ∈ F and
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(z → y) ∗ (y → x) ≤ z → x ∈ F by (c6) and F is an upper set. Therefore (x, z) ∈ Θ(H). Hence Θ(H) is
transitive. It remains to show that Θ(H) is compatible with ∨,∧,→, ∗. Assume that (x, y), (u, v) ∈ Θ(H).
Then x → y, y → x, u → v, v → u ∈ F . We have to show that (xαu, yαv) ∈ Θ(H) with α ∈ {∗,→,∨,∧}.

We have (x ∧ u) → (y ∧ v)
(c12)
= [(x ∧ u) → y] ∧ [(x ∧ u) → v] ≥ (x → y) ∧ (u → v) by (c8), hence

(x ∧ u) → (y ∧ v) ∈ F ( since x → y, u → v ∈ F and F is an upper set). A similar argument shows that
(y ∧ v) → (x ∧ u) ∈ F . Thus (x ∧ u, y ∧ v) ∈ Θ(H).

For →, we have (y → x)∗(x → u)∗(u → v) ≤ (y → v) by (c8) and (c6) and using the residuation property
we get (z → x) ∗ (u → v) ≤ (x → u) → (y → v). Since y → x, u → v ∈ F , we deduce (y → x) ∗ (u → v) ∈ H,
so (x → u) → (y → v) ∈ H. A similar argument shows that (y → v) → (x → u) ∈ F . Hence Θ(H) is
compatible with →.

For ∨, we have

(x ∨ u) → (y ∨ v)
(c13)
= (x → (y ∨ v)) ∧ (u → (y ∨ v)) ≥ (x → y) ∧ (u → v) ∈ H.

Therefore (x ∨ u) → (y ∨ v) ∈ H. Similarly (y ∨ v) → (x ∨ u) ∈ H. Hence Θ(H) is compatible with ∨.
For ∗, first we show that (x ∗ z, y ∗ z) ∈ Θ(H) for any z ∈ L. We have x → y ≤ x ∗ z → y ∗ z (by

(c18). Since x → y ∈ H and H is an upper set, we deduce that x ∗ z → y ∗ z ∈ H. A similar argument
shows that y ∗ z → x ∗ z ∈ H, hence (x ∗ z, y ∗ z) ∈ Θ(H) for any z ∈ L. Therefore, taking z = u we have
(x ∗ u, y ∗ u) ∈ Θ(H), (u ∗ y, v ∗ y) ∈ Θ(H). Since Θ(H) is transitive, we deduce that (x ∗ u, y ∗ v) ∈ Θ(H).
Thus Θ(H) ∈ Con(L).

(3) For θ1, θ2 ∈ Con(L), assume that [e]θ1 = [e]θ2 . We will show that θ1 = θ2. Let (a, b) ∈ θ1, then by
Lemma 4.5 we have ((a → b) ∧ e, e) ∈ θ1 and ((b → a) ∧ e, e) ∈ θ1, that is (a → b) ∧ e ∈ [e]θ1 = [e]θ2 and
(b → a) ∧ e ∈ [e]θ1 = [e]θ2 , hence ((a → b) ∧ e, e), ((b → a) ∧ e, e) ∈ θ2 and we deduce by Lemma 4.5 that
(a, b) ∈ θ2, therefore θ1 ⊆ θ2. A similar argument show that θ2 ⊆ θ1, hence θ1 = θ2.

(4) Let H be a filter of L and Θ(H) as above. We will show that ⟨[e]Θ(H)⟩ = H. Set F = ⟨[e]Θ(H)⟩. Let
h ∈ F , then h, e ∈ H, hence h∧ e ∈ H. Since h∧ e ≤ e, we get (h∧ e) → e ∈ H due to H is a filter, therefore
((h ∧ e) → e) ∧ e ∈ H (⋆1). From (c7), e → (h ∧ e) = h ∧ e, this implies (e → (h ∧ e)) ∧ e = (h ∧ e) ∧ e ∈ H
(⋆2). From (⋆1), (⋆2) and Lemma 4.5 we get h∧ e ∈ [e]Θ(H). Since [e]Θ(H) ⊆ F and F a filter, we deduce that
h ∈ F due to h ∧ e ≤ h. Hence H ⊆ F .

Now we show that F ⊆ H. If we show that [e]Θ(H) ⊆ H we are done. Let a ∈ [e]Θ(H), then (a, e) ∈ Θ(H),
that is (a → e) ∧ e ∈ H and (e → a) ∧ e ∈ H. By (c7) we have e → a = a, hence (e → a) ∧ e = a ∧ e ∈ H.
Since a ∧ e ≤ a and H is a filter, we have a ∈ H, hence [e]Θ(H) ⊆ H. Therefore F ⊆ H. Thus F = H and
(4) holds.

(5) Assume that Θ(F1) = Θ(F2). We show that F1 = F2. Since Θ(F1) = Θ(F2), [e]Θ(F1) = [e]Θ(F2), and
using (4) we deduce that F1 = F2.

(6) Assume that Θ(F1) ⊆ Θ(F2). We have to show that F1 ⊆ F2. Let h ∈ F1, then h ∧ e ∈ [e]Θ(F1) ⊆
[e]Θ(F2) ⊆ F2 (by (4)), hence F1 ⊆ F2. Conversely, assume that F1 ⊆ F2, using Lemma 4.5 we can easily see
that Θ(F1) ⊆ Θ(F2). □

Example 4.9. Consider the IL-algebra L7 and F = {d, a, b, e,⊤}. Clearly F is a filter and the congruence
Θ(F ) is given by its classes

[⊤]Θ(F ) = {⊤}, [e]Θ(F ) = {e, a, b, d}, [c]Θ(F ) = {c}.

Definition 4.10. (See [6], p.28) Let L be an algebra. If there is an element a ∈ L such that for any
θ, η ∈ Con(L) we have [a]θ = [a]η implies θ = η, then L is called a-regular.

One of consequences of Proposition 4.8 is:
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Corollary 4.11. Any IL-algebra L is e-regular.

Proof. According to (3) of Proposition 4.8 we are done. □
Theorem 4.12. The lattices Con(L) and F (L) are isomorphic, the isomorphism is given by

Φ : F (L) → Con(L),H 7→ Θ(H)

with the inverse given by
Ψ : Con(L) → F (L), θ 7→ Ψ(θ) = ⟨[e]θ⟩.

Proof. Using (1), (2), (4), (5) and (6) of Proposition 4.8, we get that Φ is an order-isomorphism with the
inverse the map Ψ. □
Definition 4.13. (See [2], p.57) An algebra L is a subdirect product of an indexed family (Li)i∈I of algebras
if

(i) L ≤ Πi∈ILi,

(ii) πi(L) = Li for each i ∈ I.

An algebra L is subdirectly irreducible if for every subdirect embedding

α : L → Πi∈ILi

there is an i ∈ I such that πi ◦ α : L → Li is an isomorphism.

Theorem 4.14. (See [2], p.57) An algebra L is subdirectly irreducible if and only if L is trivial or there is a
minimum congruence in Con(L) \ {∆} (where ∆ = {(x, x) | x ∈ L}).

We end this paper by the following theorem that characterizes subdirectly irreducible IL-algebras.

Theorem 4.15. Let L be a non-trivial IL-algebra that is not a residuated lattice (e ̸= ⊤). Then L is
subdirectly irreducible if it has a unique subcover of e. Hence it is simple iff [⊥, e] = {⊥, e}.

Proof. According to Theorem 4.14 and Theorem 4.12, an IL-algebra L is subdirectly irreducible if it has a
unique minimal filter F . Obviously, any such filter F must be a principal filter ⟨d⟩ for some d ≤ e, d ̸= e and
moreover d ∈ ⟨a⟩ for any a ≤ e, a ̸= e. That means d is the greatest element in the set [⊥, e[. In the case
[⊥, e] = {⊥, e}, F (L) = {⟨e⟩, L} and by Theorem 4.12 L has exactly two congruences, L2 and ∆. □

5 Conclusion

We have described the filter generated by an arbitrary subset of an IL-algebra, and shown that the set of
principal filters forms a bounded sublattice of the lattice of filters. Prime filters are characterized and the
prime filter theorem for IL-algebras is established. We have also shown that the lattice (F (L),⊆) is algebraic,
pseudocomplemented, brouwerian and endowed with a structure of Heyting algebra. Given an IL-algebra L
which is not a residuated lattice, we defined the negative cone L− of L which is a residuated lattice and
we established that, the lattices F(L) and F(F−) are isomorphic. Finally, we established the relationship
between filters and congruences by showing that the corresponding lattices are isomorphic.

Our future work is concerned with the study of some subclass of particular filters in IL-algebras and
extends some existing results on spectral topology in residuated lattices to that of IL-algebras.
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