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Abstract. Ideals in MV algebras are, by definition, kernels of homomorphism. An ideal is the dual of a filter in
some special logical algebras but not in non-regular residuated lattices. Ideals in residuated lattices are defined
as natural generalizations of ideals in MV algebras. Spec(L), the spectrum of a residuated lattice L, is the set
of all prime ideals of L, and it can be endowed with the spectral topology. The main scope of this paper is to
characterize Spec(L), called the stable topology. In this paper, we introduce and investigate the notion of pure ideal
in residuated lattices, and using these ideals we study the related spectral topologies.

Also, using the model of MV algebras, for a De Morgan residuated lattice L, we construct the Belluce lattice
associated with L. This will provide information about the pure ideals and the prime ideals space of L. So, in this
paper we generalize some results relative to MV algebras to the case of residuated lattices.
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1 Introduction

In fuzzy logic theory, residuated lattices play an important role because they provide an algebraic framework
to fuzzy logic and fuzzy reasoning. From a logical point of view, various filters and ideals correspond to
various sets of provable formulae. The notion of the ideal has been introduced in many algebraic structures
such as lattices, rings of MV algebras. By definition, the ideals of MV algebras are kernels of homomorphisms.
An ideal is the dual of a filter in some special logical algebras but not in non-regular residuated lattices. For
terminology and theory of residuated Lattices we refer the reader to the papers (see [16], [18]).

For a residuated lattice, L, P(L), the set of all prime ideals of L, can be endowed with the spectral
topology τL in the same manner as in the case of commutative rings of bounded distributive lattice.

For an ideal I of L, V (I) = {P ∈ Spec(L) : I ⊈ P} is open in (P(L), τL) and V (I) = P(L)\V (I) = {P ∈
P(L) : I ⊆ P} is closed; Thus V (I) is stable under descent and V (I) is stable under ascent. So, clopen sets
are stable, that is, these are simultaneous stable under ascent and descent.

The characterization of open stable sets relies on the concept of pure ideal (see also, [7]) for commutative
rings with the unit, (see [8]) for bounded distributive lattices, and (see [3], [6]) for MV algebras).

The scope of this paper is to introduce and investigate pure ideals in residuated lattices, using the model
of MV algebras.

In Section 2 and Section 3 we recall basic results about residuated lattices and ideals in residuated lattices
and we give new characterizations for prime and maximal ideals.
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In Section 4, we introduce the notion of pure ideal. Their properties and characterizations are obtained.
We will use pure ideals in Section 6 to characterize the stable open sets relative to the spectral topology.

Using the model of MV algebras, (see [2]), in Section 5, for a De Morgan residuated lattice L, we construct
the Belluce lattice [L] associated with L. The Belluce lattice will provide some insight about pure ideals and
prime ideals space of L (see Theorem 5.8, Corollary 6.2, Corollary 6.5). The Belluce lattice [L] is a Boolean
algebra iff L is a hyperarchimedean De Morgan residuated lattice, (see Theorem 5.4).

Section 6 contains topological results relative to the spectral topology τL and the stable topology SL,
coarser than the spectral one. For a De Morgan residuated lattice L, P(L), and Spec([L]) are homeomorphic,
and (see Corollary 6.2) the stable topology SL coincides with the spectral topology τL iff L is a hyperar-
chimedean, (see Theorem 6.4, Corollary 6.5, Corollary 6.6, Corollary 6.7) study the connections between
pure ideals of L and open stable subsets of P(L).

2 Preliminaries

A residuated lattice is an algebra (L,∧,∨,⊙,→, 1) of type (2, 2, 2, 2, 0) satisfying the following axioms:

(RL1) (L,∧,∨) is a bounded lattice (the partial order is denoted by ≤);

(RL2) (L,⊙, 1) is a commutative monoid;

(RL3) For every x, y, z ∈ L, x⊙ z ≤ y iff z ≤ x → y for any x, y, z ∈ L (residuation).

A residuated lattice L is called an MTL algebra if (x → y) ∨ (y → x) = 1 for every x, y ∈ L, (see [12],
[13], [16]) and is called a De Morgan residuated lattice if (x∧ y)∗ = x∗ ∨ y∗, for every x, y ∈ L, (see [16], [18]).
Examples of De Morgan residuated lattices are Boolean algebras, MV algebras, BL algebras, MTL algebras,
Girard algebras.

MV algebras are particular cases of residuated lattices, (see [16]). A residuated lattice L is an MV algebras
if it satisfies the additional condition:(x → y) → y = (y → x) → x, for every x, y ∈ L.

Example 2.1. (See [12]) Let L = {0, a, b, c, 1} with 0 < a, b < c < 1, and a, b incomparable. L is a
commutative residuated lattice with the following operations:

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

⊙ 0 a b c 1

0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Example 2.2. (See [12]) Let L = {0, b, c, d, 1} with 0 < b, c < d < 1 but b, c are incomparable. L is a
commutative residuated lattice with the following operations:

→ 0 b c d 1

0 1 1 1 1 1
b d 1 d 1 1
c d d 1 1 1
d d d d 1 1
1 0 b c d 1

⊙ 0 b c d 1

0 0 0 0 0 0
b 0 0 0 0 b
c 0 0 0 0 c
d 0 0 0 0 d
1 0 b c d 1

Let L be a residuated lattice. For x ∈ L and x ≥ 0 we denote x0 = 1, xn = xn−1⊙x for n ≥ 1, x∗ = x → 0
and x∗∗ = (x∗)∗.
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Recall (see [1]) that an element x ∈ L is called complemented if there is an element y ∈ L such that x∨ y = 1
and x ∧ y = 0; y is the complement of x.

If we denote by B(L) the set of all complemented elements in the lattice (L,∧,∨, 0, 1), then B(L) is a
Boolean subalgebra of L, called the Boolean center of L and e ∈ B(L) iff e ∨ e∗ = 1, (see [16]).

For x, y, z ∈ L we have the following rules of calculus, (see [14], [16], [18]):

(c1) x → 1 = 1 and 1 → x = x, x → x = 1;

(c2) x ≤ y iff x → y = 1 and x ≤ y → x, x⊙ (x → y) ≤ y;

(c3) If x ≤ y then z ⊙ x ≤ z ⊙ y, z → x ≤ z → y, y → z ≤ x → z, y∗ ≤ x∗;

(c4) x → (y → z) = (x⊙ y) → z = y → (x → z);

(c5) 0∗ = 1, 1∗ = 0, x⊙ x∗ = 0, x⊙ 0 = 0, x ≤ (x∗)∗;

(c6) (x ∨ y)∗ = x∗ ∧ y∗ and (x ∧ y)∗ ≥ x∗ ∨ y∗;

(c7) x → y∗ = y → x∗ = (x∗)∗ → y∗ = (x⊙ y)∗;

(c8) (x → y)∗∗ ≤ x∗∗ → y∗∗, (x⊙ y)∗∗ = x∗∗ ⊙ y∗∗;

(c9) x ∨ y = 1 implies x⊙ y = x ∧ y and xn ∨ yn = 1, for every n ≥ 1;

(c10) for x ≥ 1, xn ∈ B(L) iff x ∨ (xn)∗ = 1.

In a residuated lattice L, for x, y ∈ L we define x⊕ y = x∗ → y and x⊞ y = (x∗ ⊙ y∗)∗ = x∗ → y∗∗. We
remark that x⊞ y = x⊕ y∗∗ and for x ∈ L, we will use the notation (n+1)x := nx⊞x, for a natural number
n ≥ 1.

Let L be a commutative residuated lattice, for x, y, z ∈ L and m,n ≥ 1 we have the rules of calculus, (see
[5] and [14]):

(c11) x, y ≤ x⊕ y, (x⊕ y)⊕ z = x⊕ (y ⊕ z);

(c12) x⊞ y = y ⊞ x, (x⊞ y)⊞ z = x⊞ (y ⊞ z);

(c13) x ∧ (y ⊞ z) ≤ (x∗∗ ∧ y∗∗)⊞ (x∗∗ ∧ z∗∗) and (mx) ∧ (ny) ≤ (mn)(x∗∗ ∧ y∗∗).

Lemma 2.3. If L is a De Morgan residuated lattices and x, y, z ∈ L, then

(c14) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z);

Proof. To prove (c14) we have to show that (x ∧ y)∗ → z = (x∗ → z) ∧ (y∗ → z). To do this we prove that

(i) (x ∧ y)∗ → z ≤ x∗ → z, y∗ → z;

(ii) If t ≤ x∗ → z, y∗ → z ⇒ t ≤ (x ∧ y)∗ → z.

We have x ∧ y ≤ x ⇒ x∗ ≤ (x ∧ y)∗ ⇒ (x ∧ y)∗ → z ≤ x∗ → z and similarly (x ∧ y)∗ → z ≤ x∗ → z.
Because L is a De Morgan residuated lattice, we have x∗ ≤ t → z, y∗ ≤ t → z ⇒ (x ∧ y)∗ = x∗ ∨ y∗ ≤ t →
z ⇒ (x ∧ y)∗ ≤ t → z ⇒ t ≤ (x ∧ y)∗ → z. □

Lemma 2.4. Let x, y, z ∈ L and n ≥ 2. Then:

(c15) x⊕ (y ⊕ z) = y ⊕ (x⊕ z) and 1⊕ x = x⊕ 1 = 1 and x⊞ x∗ = 1;
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(c16) x∗ ⊙ y∗ = (x⊞ y)∗ and [(x∗)n]∗ = nx;

(c17) If L is a De Morgan residuated lattice x∧(y⊕z) ≤ (x∧z)⊕(x∧z), x∧y = x∧z = 0 then x∧(y⊕z) = 0.

Proof. (c15) x⊕ (y ⊕ z) = x∗ → (y∗ → z) = (y∗ → (x∗ → z)) = y ⊕ (x⊕ z).
Also, 1⊕ x = 1∗ → x = 0 → x = 1, x⊕ 1 = x∗ → 1 = 1 and x⊞ x∗ = (x∗ ⊙ x∗∗)∗ = 1.
(c16) x∗ ⊙ y∗ = (x∗ ⊙ y∗)∗∗ = (x∗ → y∗∗)∗ = (x ⊞ y)∗. The proof that [(x∗)n]∗ = nx for arbitrary n is

a mathematical induction argument. 2x = x ⊞ x = x∗ → x∗∗ = (x∗ ⊙ x∗)∗ = [(x∗)2]∗. If we suppose that
nx = [(x∗)n]∗, then (n+ 1)x = x⊞ (nx) = x∗ → (nx)∗∗ = x∗ → [(x∗)n]∗ = [(x∗)n+1]∗.

(c17) From (c14) we have (x∧y)⊕(x∧z) = [x⊕(x∧z)]∧ [y⊕(x∧z)] = (x⊕x)∧(x⊕z)∧(y⊕z)∧(y⊕z) ≥
x∧(y⊕z) since by (c11), x⊕x, x⊕z, y⊕x ≥ x. If x∧y = x∧z = 0, then x∧(y⊕z) ≤ 0⊕0 = 0∗ → 0 = 1 → 0 = 0,
so x ∧ (y ⊕ z) = 0. □

3 Ideals in residuated lattices

Let L be a residuated lattice. A nonempty subset I of a residuated lattice L will be called an ideal of L, (see
[13], [14]) if it satisfies:

(I1) If x ≤ y and y ∈ I, then x ∈ I;

(I2) If x, y ∈ I, then x⊕ y ∈ I.

An ideal I called proper if I ̸= L (that is, 1 /∈ I). We denoted by Id(L) the set of all ideals of L. If
I ∈ Id(L), then 0 ∈ I and x ∈ I iff x∗∗ ∈ I, (see [14]). Also, since x, y ≤ x ∨ y ≤ x ⊕ y, if x, y ∈ I then
x ∨ y ∈ I, so I is a Lattice ideal.

Remark 3.1. I ∈ Id(L) iff it satisfies the conditions (I1) and (I
′
2): x, y ∈ I implies x ⊞ y ∈ I. Indeed , if

I ∈ Id(L) then x, y ∈ I implies y∗∗ ∈ I, so, x⊕ y∗∗ = x⊞ y ∈ I. Conversely, if I ⊆ L satisfies the conditions
(I1) and (I

′
2), then x⊕ y ≤ x⊞ y, for every x, y ∈ I, so, x⊕ y ∈ I and I ∈ Id(L).

Let L be a residuated lattice and I ∈ Id(L). In (see [14]), on L is defined as a congruence relation x ∼I y
iff (x → y)∗, (y → x)∗ ∈ I. Moreover, I = {x ∈ L : x ∼I 0}.

As an immediate consequence we have:
Let L be a residuated lattice. For x ∈ L we denote by x/I the congruence class of x concerning to ∼I

by x/I and the quotient set L/ ∼I by L/I. Since ∼I is a congruence on L, L/I becomes a residuated lattice
with the natural operations induced from those of L.

Clearly, in L/I, 0 = 0/I = {x ∈ L : x ∈ I}, 1 = 1/I = {x ∈ L : x∗ ∈ I} and for x, y ∈ L, x/I ≤ y/I iff
(x → y)∗ ∈ I.

For a nonempty subset S of L, we denoted by (S] the ideal of L generated by S and x ∈ L we denoted by
(x] = ({x}].

Also, for I ∈ Id(L) and x ∈ L we denote by I(x) = (I ∪ {x}].

Proposition 3.2. (See [5], [4]) Let L be a residuate lattice, S ⊆ L a nonempty subset, x, y ∈ L and I ∈ Id(L).
Then:

(i) (S] = {z ∈ L : z ≤ s1 ⊞ ...⊞ sn, for some n ≥ 1 and s1, ..., sn ∈ S} and (x] = {z ∈ L : z ≤ nx, for some
n ≥ 1};

(ii) I(x) = {z ∈ L : z ≤ i⊞ nx , for some i ∈ L and n ≥ 0}and I(x ∧ y) ⊆ I(x) ∩ I(y) ⊆ I(x∗∗ ∧ y∗∗);

(iii) (Id(L),⊆) is a complete Brouwerian lattice, where for I1, I2 ∈ Id(L), I1∧I2 = I1∩I2 and I1∨I2 = (I1∪I2].
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Remark 3.3. If e ∈ B(L), then (e] = {z ∈ L : z ≤ e}, since e⊞ e = e∗ → e∗∗ = e∗ → e = e, so ne = e, for
every n ≥ 1.

In a residuated lattice L, the order of an element x ∈ L, denoted by ord(x), is the smallest natural number
n such that xn = 0 and we write ord(x) = n. If no such n exists (that is, xn ̸= 0 for every n ≥ 1) we say that
the order of x is infinite and we write ord(x) = ∞.

A residuate lattice L is called locally finite if every non-unit element of L has finite order.

Lemma 3.4. Let L be a residuated lattice and x ∈ L. Then there is I ∈ Id(L) proper such that x ∈ I iff
ord(x∗) = ∞.

Proof. Let I ∈ Id(L) proper ideal and x ∈ I such that ord(x∗) ̸= ∞. Then there is n ≥ 1 such that
(x∗)n = 0 so, [(x∗)n]∗ = 1. From (c16), [(x

∗)n]∗ = nx ∈ I, thus, 1 ∈ I, a contradiction so ord(x∗) = ∞.
Conversely, suppose that ord(x∗) = ∞. If (x] is not proper then 1 ∈ (x], thus, 1 = nx, so 0 = (nx)∗, for

some n ≥ 1. Using (c16), (x
∗)n = 0, so ord(x∗) ̸= ∞, a contradiction. Thus, (x] is proper. □

Using Lemma 3.4, we deduce that:

Proposition 3.5. If L is a residuated lattice and x ∈ L, then (x] is proper iff ord(x∗) = ∞

In a residuated lattice L, an ideal P ∈ Id(L) is called prime, (see [15]) if P ̸= L and P is a prime element
in (Id(L),⊆), that is, if I, J ∈ Id(L) and I ∩ J ⊆ P , then I ⊆ P or J ⊆ P .

We denote by P(L) the set of prime of L. Since (Id(L),⊆) is a distributive lattice, meet-irreductible and
meet-prime elements coincide, so, P ∈ P(L) iff [I, J ∈ Id(L) with I ∩ J = P , implies I = P or J = P ].

Theorem 3.6. Let L be a residuated lattice and P ∈ Id(L). Then P ∈ P(L) iff [x∗∗ ∧ y∗∗ ∈ P implies x ∈ P
or y ∈ P ].

Proof. Let P ∈ P(L) and x, y ∈ L such that x∗∗∧y∗∗ ∈ P . By Proposition 3.2, P (x)∩P (y) = P (x∗∗∧y∗∗) =
P . Since P ∈ P(L) we deduce that P (x) = P or P (y) = P , that is, x ∈ P or y ∈ P .

Conversely, let I, J ∈ Id(L) such that I ∩ J ⊆ P . If we suppose that I ⊈ P and J ⊈ P , then there are
x ∈ I and y ∈ J such that x, y /∈ P . Then x∗∗ ∈ I, y∗∗ ∈ J so x∗∗ ∧ y∗∗ ∈ I ∩ J ⊆ P . By hypothesis, x ∈ P
or y ∈ P , a contradiction. □

Theorem 3.7. Let L be a residuated lattice and P ∈ Id(L). We consider the following assertions:

(i) P ∈ P(L);

(ii) If x ∧ y ∈ P , then x ∈ P or y ∈ P ;

(iii) For every x, y ∈ L, (x → y)∗ ∈ P or (y → x)∗ ∈ P ;

(iv) L/P is a chain.

Then (ii), (iii), (iv) ⇒ (i) but (i) ⇏ (ii), (iii), (iv).
Proof. (ii) ⇒ (iii). Let x, y ∈ L such that x∗∗ ∧ y∗∗ ∈ P . Since x ∧ y ≤ x∗∗ ∧ y∗∗ we deduce that x ∧ y ∈ P .
From hypothesis, x ∈ P or y ∈ P . Using Theorem 3.6, we conclude that P ∈ P(L).

(iii) ⇒ (i). Let x, y ∈ L such that x∗∗ ∧ y∗∗ ∈ P and we suppose that (x → y)∗ ∈ P .It follows
that (x → y)∗ ⊕ (x∗∗ ∧ y∗∗) = (x → y)∗∗ → (x∗∗ ∧ y∗∗) ∈ P . From (c8), (x → y)∗∗ ≤ x∗∗ → y∗∗, so
(x∗∗ → y∗∗) → (x∗∗∧y∗∗) ≤ (x → y)∗∗ → (x∗∗∧y∗∗). Since P is an ideal and x∗∗ ≤ (x∗∗ → y∗∗) → (x∗∗∧y∗∗),
we deduce that x∗∗ ∈ P , thus x ∈ P . Similarly, if (y → x)∗ ∈ P we obtain y ∈ P , so P ∈ P(L).

(iv) ⇒ (i). Suppose that L/P is a chain and let x, y ∈ L such that x∗∗ ∧ y∗∗ ∈ P . Then x∗∗/P ∧ y∗∗/P =
0/P , so x∗∗/P = 0/P or y∗∗/P = 0/P . We deduce that, x∗∗ ∈ P or y∗∗ ∈ P , so, x ∈ P or y ∈ P . Hence
P ∈ P(L).
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(i) ⇏ (ii), (iii), (iv). If we consider the residuated lattice L = {0, b, c, d, 1} from Example 2.2, it is easy
to see that 0∗∗ = 0, b∗∗ = c∗∗ = d∗∗ = d and 1∗∗ = 1. Obviously, P = {0} ∈ P(L) because if x∗∗ ∧ y∗∗ = 0
implies x = 0 or y = 0. But b ∧ c = 0 ∈ P and b, c /∈ P , thus (i) ⇏ (ii).

Also, (i) ⇏ (iii) since (b → c)∗ = (c → b)∗ = d∗ = d /∈ P

Also, for b/P = {x ∈ L : (b → x)∗ = (x → b)∗ = 0} = {x ∈ L : b → x = x → b = 1} = {b} and
c/P = {x ∈ L : (c → x)∗ = (x → c)∗ = 0} = {x ∈ L : c → x = x → c = 1} = {c}. But {b} ⊈ {c} and
{c} ⊈ {b}, so, L/P is not a chain, thus, (i) ⇏ (iv). □

If L is a De Morgan residuated lattice then P ∈ P(L) iff [x ∧ y ∈ P implies x ∈ P or y ∈ P ], (see [11]).

Corollary 3.8. Let L be an MTL algebra and P ∈ Id(L). Then the following conditions are equivalent:

(i) P ∈ P(L);

(ii) If x ∧ y ∈ P , then x ∈ P or y ∈ P ;

(iii) For every x, y ∈ L, (x → y)∗ ∈ P or (y → x)∗ ∈ P ;

(iv) L/P is a chain;

(v) For x, y ∈ L, if x ∧ y = 0, then x ∈ P or y ∈ P ;

(vi) For every x, y ∈ L, x⊙ y∗ ∈ P or x∗ ⊙ y ∈ P .

Proof. (i) ⇒ (ii). (See [11]).

(ii) ⇒ (iii). From (x → y)∨(y → x) = 1, for every x, y ∈ L, we deduce that (x → y)∗∧(y → x)∗ = 0 ∈ P .
Thus, (x → y)∗ ∈ P or (y → x)∗ ∈ P .

(iii) ⇒ (i) From Theorem 3.7.

(iv) ⇒ (ii). If L/P is a chain and x ∧ y ∈ P then x/P ∧ y/P = 0/P , so x/P = 0/P or y/P = 0/P , that
is, x ∈ P or y ∈ P .

(ii) ⇒ (v). Obviously, x ∧ y = 0 ∈ P , so x ∈ P or y ∈ P .

(v) ⇒ (iv). Let x/P, y/P ∈ L/P ; since (x → y)∗ ∧ (y → x)∗ = 0 ∈ P , we deduce that (x → y)∗ ∈ P or
(y → x)∗ ∈ P , so x/P ≤ y/P or y/P ≤ x/P .

(i) ⇒ (iv). Since (x⊙y∗)∗∗∧(x∗⊙y)∗∗ = (y∗ → x∗)∗∧(x∗ → y∗) = [(y∗ → x∗)∨(x∗ → y∗)]∗ = 1∗ = 0 ∈ P ,
we deduced that x⊙ y∗ ∈ P or x∗ ⊙ y ∈ P .

(vi) ⇒ (i). Suppose that x∗∗ ∧ y∗∗ ∈ P and x⊙ y∗ ∈ P . It follows that (x⊙ y∗)⊕ (x∗∗ ∧ y∗∗) ∈ P . From
(c14),(x⊙ y∗)⊕ (x∗∗ ∧ y∗∗) = [(x⊙ y∗)⊕x∗∗]∧ [(x⊙ y∗)⊕ y∗∗] ≥ x∧x = x, since (x⊙ y∗)⊕x∗∗ = (x⊙ y∗)∗ →
x∗∗ ≥ x∗∗ ≥ x and (x ⊙ y∗) ⊕ y∗∗ = (x ⊙ y∗)∗ → y∗∗ = (x → y∗∗) → y∗∗ ≥ x. We conclude that x ∈ P , so,
P ∈ P(L).

Similarly, if x∗ ⊙ y ∈ P , we obtain that y ∈ P , so, P is a prime ideal of L. □
In general, in a residuated lattice L , if P ∈ P(L) and I is a proper ideal such that P ⊆ I, then I is not

prime. Also, the set of proper ideals including a prime ideal is not a chain, (see [5]).

Theorem 3.9. If L is an MTL algebra then:

(i) Every proper ideal of L that contains a prime ideal is prime;

(ii) For every prime ideal P of L, the set IP = {I ∈ Id(L) : P ⊆ I and I ̸= L} is totally ordered by inclusion.

Proof. (i). Let P ∈ P(L) and I a proper ideal of L such that P ⊆ I and x, y ∈ L. From Corollary 3.8, (vi),
x⊙ y∗ ∈ P or y ⊙ x∗ ∈ P . Since P ⊆ I, we obtain x⊙ y∗ ∈ I or y ⊙ x∗ ∈ I, so I ∈ P(L).
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(ii). Let I1, I2 ∈ I and suppose that I1 ⊈ I2 and I2 ⊈ I1. Then, there are x1, x2 ∈ L such that x1 ∈ I1\I2
and x2 ∈ I2\I1. Since P is prime, x1 ⊙ x∗2 ∈ P ⊆ I2 or x2 ⊙ x∗1 ∈ P ⊆ I1. We deduce that x2 ⊕ (x1 ⊙ x∗2) =
x∗2 → (x1 ⊕ x∗2) ∈ I2 or x1 ⊕ (x∗1 ⊙ x2) = x∗1 → (x∗1 ⊙ x∗2) ∈ I2 or x1 ⊕ (x∗1 ⊙ x2) = x∗1 → (x∗1 ⊙ x2) ∈ I1. But
x1 ≤ x2 ⊕ (x1 ⊙ x∗2) and x2 ≤ x1 ⊕ (x∗1 ⊙ x2), so x1 ∈ I2 or x2 ∈ I1, a contradiction.

□

Remark 3.10. (i) In a residuated lattice L, if (Pi)i∈I ⊆ P(L) is a totally ordered family of prime ideals of
L then P = ∩i∈IPi ∈ Spec(L) and Q = ∨i∈IPi ∈ Spec(L). Indeed, let x, y ∈ L such that x∗∗ ∧ y∗∗ ∈ P ,
if by contrary x /∈ P and y /∈ P then there are i1, i2 ∈ I such that x /∈ Pi1 and y /∈ Pi2. Since Pi1 , Pi2

are prime ideals and x∗∗ ∧ y∗∗ ∈ Pi1 , Pi2 then x ∈ Pi2 and y ∈ Pi1. Since the family (Pi)i∈I is totally
ordered, then Pi1 ⊆ Pi2 or Pi2 ⊆ Pi1. If Pi1 ⊆ Pi2 then y ∈ Pi2, a contradiction. Similarly, if Pi2 ⊆ Pi1.
It follows that x ∈ P or y ∈ P , that is, P ∈ P(L). Also, we remark that Q = ∪i∈IPi and the proof for
Q ∈ P(L) is obvious.

(ii) In general, an intersection of prime ideals in a residuated lattice is not necessary a prime ideal. For
example, if we consider the residuated lattice L from Example 2.1, then Id(L) = {{0}, {0, a}, {0, b}, L}
and P(L) = {{0, a}, {0, b}}. {0} = {0, a} ∩ {0, b} /∈ P(L), a∗∗ ∧ b∗∗ = 0 but a, b ̸= 0.

Theorem 3.11. (Prime ideal theorem , see [5]) Let L be a residuated lattice. If I ∈ Id(L) and F is a filter
of the lattice (L,∧,∨, 0, 1) such that I ∩ F = Ø, then there is P ∈ P(L) such that I ⊆ P and P ∩ F = Ø.

Obviously, in a residuated lattice, any proper ideal of L can be extended to a prime ideal.

Corollary 3.12. Let L be a residuated lattice and x ∈ L. Then ord(x∗) < ∞ iff x /∈ P for every P ∈ P(L).

Proof. Suppose that ord(x∗) < ∞ and there exists P ∈ P(L) such that x ∈ P . Thus, there is n ≥ 1 such
that (x∗)n = 0. Hence 1 = [(x∗)n]∗ = nx ∈ P , so P = L, a contradiction. Conversely, we suppose that
x /∈ P for every P ∈ P(L) and ord(x∗) = ∞. By Proposition 3.5 and Theorem 3.11, (x] is proper so, there is
P ∈ P(L) such that (x] ⊆ P , hence x ∈ P , is a contradiction. □

As immediate consequences of Theorem 3.11 we have:

Corollary 3.13. If L is a residuated lattice then ∩{P ∈ P(L)} = {0} and for every I ∈ Id(L), I = ∩{P ∈
P(L) : I ⊆ P}.

Proof. If x ̸= 0 there is a prime ideal P ∈ P(L) such that x /∈ P , so x /∈ ∩{P ∈ P(L)}. □

Proposition 3.14. Let L be a residuated Lattice, L1 ⊆ L a subalgebra of L and P1 ∈ P(L1). Then there
exists P ∈ P(L) such that P1 = P ∩ L1.

Proof. Let I be the ideal generated by P1 in L. Then I = {x ∈ L : x ≤ x1⊞ ...⊞xn, for some x1, ..., xn ∈ P}.
Then I ∩ (L1\P1) = Ø. Indeed, if there is i ∈ I ∩ (L1\P1), then i ∈ I, i ∈ L1 and i /∈ P1. From i ∈ I, there
exists p ∈ P1 such that i ≤ p, hence i ∈ P1, is a contradiction.

Clearly, 0 /∈ L1\P1 and 1 ∈ L1\P1. Let x, y ∈ L1\P1. Then x, y /∈ P1 so x ∧ y /∈ P1 (since P1 is prime in
L1). Thus, x ∧ y ∈ L1\P1, hence L1\P1 is a ∧− closed subset of L. By Theorem 3.11, there exists P ∈ P(L)
such that I ⊆ P and P ∩ (L1\P1) = Ø, hence P ∩L1 ⊆ P1. Then P1 ⊆ I ∩L1 ⊆ P ∩L1 ⊆ P1, so P1 = P ∩L1.
□

We recall that an ideal M of a residuated lattice L is called maximal, (see [5], [14]), if it is proper and is
not contained in any other proper ideal of L, i.e., for every ideal I ̸= L, if M ⊆ I, then M = I.

We denote by M(L) the set of maximal ideals of L. Obviously, M(L) ⊆ P(L).
Also, if M is a proper ideal of a residuated lattice L, then M ∈ M(L) iff for every x ∈ L, x /∈ M iff

(nx)∗ ∈ M , for some n ≥ 1, (see [5], [15]).
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Theorem 3.15. Let L be a residuated lattice and M ∈ Id(L) be a proper ideal. Then M ∈ M(L) iff L/M
is locally finite.

Proof. Suppose that M ∈ M(L) and let x/M ̸= 1/M . Then x∗ /∈ M , so there is a natural number
n ≥ 1 such that (nx∗)∗ = [(x∗∗)n]∗∗ ∈ M . Since M ∈ Id(L), (x∗∗)n ∈ M , so xn ∈ M . We deduce that
xn/M = (x/M)n = 0/M , so, L/M is locally finite.

Conversely, let I ∈ Id(L), I ̸= M be an ideal of L such that M ⊂ I. Then there is x ∈ I\M , so,
x∗/M ̸= 1/M (since if we suppose that x∗/M = 1/M , thus x∗∗ ∈ M , so x ∈ M). But L/M is locally finite,
thus (x∗/M)n = 0/M , for some n ≥ 1. We conclude that (x∗)n ∈ M ⊂ I. Since I is an ideal and x ∈ I, then
nx = [(x∗)n]∗ ∈ I, so (x∗)n ⊕ [(x∗)n]∗ = [(x∗)n]∗ → [(x∗)n]∗ = 1 ∈ I. Thus I = L and M ∈ M(L).

□
As an immediate consequence of Zorn’s lemma, every proper ideal of L can be extended to a maximal

ideal.

Theorem 3.16. Every prime ideal of an MTL algebra L is contained in a unique maximal ideal of L.

Proof. For P ∈ P(L), the set IP = {I ∈ Id(L) : P ⊆ I and I ̸= L} is totally ordered by inclusion, from
Theorem 3.9. Therefore, P = ∪I∈IP is proper, since 1 /∈ P , so P is the only maximal ideal containing P. □

We recall that a residuated lattice L is called local if it has a unique maximal ideal (see [16]).

Proposition 3.17. Let L be a residuated lattice and I = {x ∈ L : ord(x∗) = ∞}. The following assertions
are equivalent:

(i) I ∈ Id(L);

(ii) (I] is a proper ideal of L;

(iii) L is local;

(iv) M(L) = {I}.

Proof. (i) ⇒ (ii). Suppose I ∈ Id(L) implies (I] = I ̸= L since 1 /∈ I.
(ii) ⇒ (i). Obviously, 0 ∈ I. Let x, y ∈ L such that x ≤ y and y ∈ I. Then ord(y∗) = ∞. Since y∗ ≤ x∗

we deduce that ord(x∗) = ∞, thus, x ∈ I. Let now, x, y ∈ I. Since I ⊆ (I] we have x, y ∈ (I]. If we suppose
by contrary that x ⊞ y /∈ I, then there is n ≥ 1 such that [(x ⊞ y)∗]n = 0. But [(x ⊞ y)∗]n = (x∗ ⊙ y∗)n =
(x∗)n ⊙ (y∗)n = 0. Thus, 1 = [(x∗)n ⊙ (y∗)n]∗ = [(x∗)n]∗∗ → [(y∗)n]∗ = (nx)∗ → (ny) = (nx) ⊕ (ny), a
contradiction since (I] is proper.

We conclude that I ∈ Id(L).
(iv) ⇒ (iii). Clearly.
(i) ⇒ (iv). To prove that I is maximal, let x ∈ L such that x /∈ I. Then (x∗)n = 0 for some n ≥ 1.

Thus, (nx)∗ = [(x∗)n]∗∗ = 0∗∗ = 0 ∈ I, so I ∈ Max(L). To prove that I is the unique maximal ideal of L,
we consider I1 ∈ Id(L) such that I1 ̸= L. If by contrary, I1 ⊈ I, then there is x ∈ I1 such that x /∈ I. Then
(x∗)n = 0 for some n ≥ 1, hence 1 = [(x∗)n]∗ = nx ∈ I1 and I1 = L, a contradiction. Therefore I contains all
the proper ideals of L, thus, I is the unique maximal ideal of L.

(iii) ⇒ (iv) and (i). Let M be the unique maximal ideal of L. Since Proposition 3.5 every element x ∈ I
generates a proper ideal (x] which can be extended to a maximal ideal Mx, we obtain M = Mx, so for every
x ∈ I, x ∈ M hence I ⊆ M . Since M is proper, from Lemma 3.4, M ⊆ I, hence M = I. □
Theorem 3.18. In a local residuated lattice L, for every x ∈ L, ord(x) < ∞ or ord(x∗) < ∞.

Proof. Suppose that there exists x ∈ L such that xn > 0 and (x∗)n > 0 for every n ≥ 1. Thus, (x∗∗)n > 0
for every n ≥ 1. Then x, x∗ ∈ (I] so x ⊞ x∗ = 1 ∈ (I], so, (I] = L in contradiction with Proposition 3.17.
□
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4 Pure ideals in residuated lattices

Let L be a residuated lattice. For x ∈ L we denote x⊥ = {y ∈ L : x ∧ y = 0}.

Lemma 4.1. Let L be a De Morgan residuated lattice and x, y ∈ L, e ∈ B(L). Then:

(i) x⊥ ∈ Id(L) and x ≤ y implies y⊥ ⊆ x⊥;

(ii) x⊥ = L iff x = 0;

(iii) x⊥ ∩ y⊥ = (x⊕ y)⊥ = (x ∨ y)⊥ and e⊥ = (e∗].

(iv) x⊥ ∩ y⊥ = (x⊞ y)⊥.

Proof.(i) Let t, z ∈ L such that t ≤ z and z ∈ x⊥. Then x ∧ z = 0. Since x ∧ t ≤ x ∧ z = 0, we deduce that
t ∈ x⊥. Also, if t, z ∈ x⊥, then x∧ z = x∧ y = 0. Using (c17), x∧ (t⊕ z) = 0, so t⊕ z ∈ x⊥ and x⊥ ∈ Id(L).
Now, suppose that x ≤ y and let z ∈ y⊥. Then z ∧ x ≤ z ∧ y = 0, so z ∧ x = 0, thus , z ∈ x⊥.

(ii) x⊥ = L iff 1 ∈ x⊥ iff 1 ∧ x = 0 iff x = 0.

(iii). From x, y ≤ x⊕ y, we deduce that x, y ≤ x ∨ y ≤ x⊕ y. Using (i), (x⊕ y)⊥ ⊆ (x ∨ y)⊥ ⊆ x⊥ ∩ y⊥.
Now z ∈ (x⊕y)⊥. Then x∧z = y∧z = 0. Using (c17), z∧(x⊕y) = 0, so, z ∈ (x⊕y)⊥ and x⊥∩y⊥ ⊆ (x⊕y)⊥

and we have obtained the equalities.

Finally, for e ∈ B(L), since e ∧ e∗ = 0 we deduce that e∗ ∈ e⊥ so, (e∗] ⊆ e⊥. Let x ∈ e⊥. Then x ∧ e = 0.
Since e∗ ∈ B(L), x∧ e∗ = x⊙ (x → e∗) = x⊙ (x⊙ e)∗ = x⊙ 0∗ = x⊙ 1 = x, so x ≤ e∗, that is, x ∈ (e∗], thus,
e⊥ = (e∗].

(iv) From x, y ≤ x⊞y we deduce (x⊞y)⊥ ⊆ x⊥∩y⊥. Now we consider z ∈ x⊥∩y⊥. Then x∧z = y∧z = 0
From (c13), z ∧ (x ⊞ y) ≤ (z∗∗ ∧ x∗∗) ⊞ (z∗∗ ∧ y∗∗) = (z ∧ x)∗∗ ⊞ (z ∧ y)∗∗ = 0 ⊞ 0 = 0∗ → 0∗∗ = 1 → 0 = 0.
We deduce that z ∈ (x⊞ y)⊥, thus, x⊥ ∩ y⊥ = (x⊞ y)⊥. □

For a residuated lattice L and I ∈ Id(L) we denote by σ(I) = {x ∈ L: there are i ∈ I and y ∈ x⊥ such
that i⊕ y = 1}. For MV-algebras, (see [6]).

Also, for a distributive lattice (L,∧,∨, 0, 1) we denote by Id(L) the set of ideals of L, Spec(L) the set of
prime ideals and by Max(L) the set of maximal ideals of L. About notations involving lattices and their
spectral topologies, (see [8]).

We recall, (see [8], [9]), that if L is a distributive lattice L, if I ∈ Id(L), then σ(I) = {x ∈ L : there are
i ∈ I and y ∈ x⊥ such that i ∨ y = 1} ∈ Id(L) and σ(I) ⊆ I. Moreover, an ideal I ∈ Id(L) is called pure if
σ(I) = I, (see [8], [9]).

We denote by Pure(L) the set of pure ideal of L.

Remark 4.2. In a residuated lattice L, if I ∈ Id(L), then σ(I) = I
′
where I

′
= {x ∈ L: there are i ∈ I and

y ∈ x⊥ such that i⊞ y = 1}. Obviously, σ(I) ⊆ I
′
since i⊕ y ≤ i⊞ y. Conversely, let x ∈ I

′
. Then there are

i ∈ I and y ∈ x⊥ such that 1 = i ⊞ y = i ⊕ y∗∗. Since x⊥ ∈ Id(L) and y ∈ x⊥ we deduce that y∗∗ ∈ x⊥, so
x ∈ σ(I) and I

′ ⊆ σ(I).

Theorem 4.3. Let L be a De Morgan residuated lattice and I, J ∈ Id(L). Then

(i) σ(I) ∈ Id(L) and σ(I) ⊆ I;

(ii) I ⊆ J implies σ(I) ⊆ σ(J);

(iii) σ(I ∩ J) = σ(I) ∩ σ(J) and σ(I) ∨ σ(J)) ⊆ σ(I ∨ J).

(iv) σ(I) ̸= {0} then there is i ∈ I such that ord(i∗∗) = ∞.
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Proof. (i). Let x1, x2 ∈ L, x1 ≤ x2 and x2 ∈ σ(I), then there are i ∈ I and y ∈ x⊥2 such that i⊕ y = 1.
Since x⊥2 ⊆ x⊥1 so y ∈ x⊥1 . We deduce that x1 ∈ σ(I).
For x1, x2 ∈ σ(I), there are i1, i2 ∈ I and y1 ∈ x⊥1 , y2 ∈ x⊥2 such that i1 ⊕ y1 = i2 ⊕ y2 = 1. Denoting

i = i1 ⊕ i2 ∈ I and y = y1 ∧ y2, we have y ∧ (x1 ⊕ x2) ≤ (y ∧ x1)⊕ (y ∧ x2) = 0⊕ 0 = 0, so y ∈ (x1 ⊕ x2)
⊥.

Also, i ⊕ y = (i1 ⊕ i2) ⊕ (y1 ∧ y2) = i1 ⊕ [(i2 ⊕ y1) ∧ (i2 ⊕ y2)] = i1 ⊕ [(i2 ⊕ y1) ∧ 1] = i1 ⊕ (i2 ⊕ y1) =
i2 ⊕ (i1 ⊕ y1) = i2 ⊕ 1 = 1, so x1 ⊕ x2 ∈ σ(I), that is σ(I) ∈ Id(L).

To prove that σ(I) ⊆ I, let x ∈ σ(I). Then there are i ∈ I and y ∈ x⊥ such that i ⊕ y = 1. We have
i∗∗ = i⊕ 0 = i⊕ (x ∧ y) = (i⊕ x) ∧ (i⊕ y) = (i⊕ x) ∧ 1 = i⊕ x. Hence x ≤ i∗∗ , so x ∈ Iand σ(I) ⊆ I.

(ii) Obviously.
(iii). By (ii) σ(I ∩ J) ⊆ σ(I) ∩ σ(J). Let x ∈ σ(I) ∩ σ(J). Then there are i ∈ I, j ∈ J, y1, y2 ∈ x⊥ such

that i ⊕ y1 = j ⊕ y2 = 1. Since x⊥, I, J are ideals we deduce that y = y1 ⊕ y2 ∈ x⊥ and k = i ∧ j ∈ I ∩ J .
Then k⊕y = (i∧ j)⊕y = (i⊕y)∧ (j⊕y) = [i⊕ (y1⊕y2)]∧ [j⊕ (y1⊕y2∧)] = [(i⊕y1)⊕y2]∧ [y1⊕ (j⊕y2)] =
(1 ⊕ y2) ∧ (y1 ⊕ 1) = 1 ∧ 1 = 1. We deduce that x ∈ σ(I ∩ J), so σ(I) ∩ σ(J) ⊆ σ(I ∩ J). Hence
σ(I ∩ J) = σ(I) ∩ σ(J). From (ii), we obtain σ(I) ∨ σ(J) ⊆ σ(I ∨ J).

(iv). For x ∈ σ(I), x ̸= 0, there are i ∈ I and y ∈ x⊥ such that i⊕ y = 1. Then i∗ → y = 1, so i∗ ≤ y and
(y∗)n ≤ (i∗∗), for every n ≥ 1. Obviously, if we prove that ord(y∗) = ∞, then ord(i∗∗) = ∞. From x ∧ y = 0
we deduce that x∗ ∨ y∗ = 1, so, from (c9), (x

∗)n ∨ (y∗)n = 1, for every n ≥ 1. If suppose by contrary that
(y∗)n = 0 for some n ≥ 1, then (x∗)n = 1, so, x∗ = 1 and x∗∗ = 0. Thus, x = 0, a contradiction. □

Corollary 4.4. If L is a local De Morgan residuated lattices and I ∈ Id(L) is proper,then σ(I) = {0}.

Proof. Suppose σ(I) ̸= {0}. From Theorem 4.3 (iv), there is i ∈ I such that ord(i∗∗) = ∞. Since L is local,
by Theorem 3.18, ord(i∗) < ∞, so, (i∗)n = 0 for some n ≥ 1. Thus, 1 = [(i∗)n]∗ = ni ∈ I, so I = L, a
contradiction. □

Definition 4.5. An ideal I of a residuated lattice L is called pure in L if σ(I) = I.

For a residuated lattice L, we denote by Pure(L) the set of pure ideals of L.

Remark 4.6. For a residuated lattice L,

(i) {0}, L ∈ Pure(L). Indeed, since {0} ⊆ σ({0}) ⊆ {0} we deduce that σ({0}) = {0}. Also, since for every
x ∈ L there are 1 ∈ L and 0 ∈ x⊥ such that 1⊕ 0 = 1 we deduce that x ∈ σ(L), so σ(L) = L.

(ii) If I, J ∈ Pure(L), then I ∩ J and I ∨ J ∈ Pure(L) . Indeed, σ(I) = I and σ(J) = J , so by Theorem
4.3, σ(I ∩ J) = σ(I) ∩ σ(J) = I ∩ J , hence I ∩ J is a pure ideal in L. Also, we deduce that I ∨ J =
σ(I) ∨ σ(J) ⊆ σ(I ∨ J), so, σ(I ∨ J) = I ∨ J , hence I ∨ J is pure in L.

By Corollary 4.4 we deduce that:

Corollary 4.7. If L is a local MTL algebra, then the unique pure ideals in L are {0} and L.

Example 4.8. If we consider the residuated lattice L = {0, a, b, c, 1} from Example 2.1 then 0⊥ = L, a⊥ =
{0, b}, b⊥ = {0, a} and 1⊥ = c⊥ = {0}. It is easy to prove that every ideal of L is a pure ideal, so Pure = Id(L).

5 The Belluce lattice associated with a De Morgan residuated lattice

In this section, we consider L a De Morgan residuated lattice L.
On L we define the relation ≡ (modP(L)) on L by x ≡ y(modP(L)) iff for every P ∈ P(L), x ∈ P iff

y ∈ P . Thus, x ≡ y(modP(L)) iff no prime P ∈ P(L) can separate x and y.

Lemma 5.1. ≡ (modP(L)) is an equivalence relation compatible with ∧ and ∨.
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Proof. Obviously, ≡ (modP(L)) is an equivalence relation on L. Let x, y, z, t ∈ L such that x ≡ y(modS)
and z ≡ t(modS). Also, let P ∈ S such that x ∨ z ∈ P . Since x, z ≤ x ∨ z then x, z ∈ P , y, t ∈ P and
y ∨ t ∈ P . Then y⊕ t ∈ P . But P is an ideal and y ∨ t ≤ y⊕ t, so y ∨ t ∈ P . Suppose now x∧ z ∈ P , since P
is prime then x ∈ P or z ∈ P . Thus y ∈ P or t ∈ P . In either case y∧ t ∈ P . So, ≡ (modP(L)) is compatible
with ∨ and ∧. □

For every x ∈ L we denote by [x] the equivalence class of x and by [L]S the set of these equivalence classes.
In this case, we denote [L]S by [L]. On [L] we define [x] ∧ [y] = [x ∧ y], [x ∨ y] = [x] ∨ [y],0 = [0] =

∩{P : P ∈ P(L)} = {0} and 1 = [1] = {x ∈ L : x /∈ P , for every P ∈ P(L)}. Also, we define [x] ≤ [y] iff
[x] ∧ [y] = [x] iff [x] ∨ [y] = [y]. Obviously, the relation ≤ is well defined and ([L],∧,∨,0,1) is a bounded
lattice.

Using the model of MV algebra, (see [2], [3]), [L] will called Belluce lattice associated with L.

Lemma 5.2. Let x, y ∈ L then:

(i) x ≤ y implies [x] ≤ [y];

(ii) [x] = 0 iff x = 0 and [x] = 1 iff ord(x∗) < ∞;

(iii) [x ∨ y] = [x⊕ y] = [x⊞ y], so [nx] = [x], for every n ≥ 1.

Proof. (i). x ≤ y implies x ∧ y = x, so, [x] = [x ∧ y] = [x] ∧ [y]. Thus, [x] ≤ [y]. (ii) x = 0, implies [x] = 0.
Conversely, let x ∈ L such that [x] = 0, then x ∈ ∩{P : P ∈ P(L)} = {0}, since 0 ∈ P for every P ∈ P(L).
Thus, [x] = 0 iff x = 0.

Now, let x ∈ L such that ord(x∗) < ∞. Then there exists n ≥ 1 such that (x∗)n = 0, so, (x∗)n ∈ P for
every P ∈ P(L). Hence x /∈ P for every P ∈ P(L), since if we suppose that there is P ∈ P(L) such that
x ∈ P , then (nx) ⊞ (x∗)n ∈ P . But (nx) ⊞ (x∗)n = [(x∗)n]∗ ⊞ (x∗)n = [(x∗)n]∗∗ → [(x∗)n]∗∗ = 1 ∈ P , a
contradiction. Hence [x] = 1. Conversely, suppose that [x] = 1 but ord(x∗) = ∞. Then, using Proposition
3.5 (x] is proper there is P ∈ P(L) such that (x] ⊆ P . Thus x ∈ P , a contradiction. We conclude that [x] = 1
iff ord(x∗) < ∞.

(iii). Let P ∈ P(L) if x∨ y ∈ P , then x, y ∈ P , so x⊞ y ∈ P . Conversely, since x∨ y ≤ x⊕ y ≤ x⊞ y ∈ P
if x⊞ y ∈ P then x∨ y ∈ P . Using (i), [x∨ y] = [x⊕ y] = [x⊞ y]. Obviously, [nx] = [x], for every n ≥ 1 since
[x⊞ y] = [x ∨ y]. □

Theorem 5.3. ([L],∧,∨,0,1) is a distributive lattice.

Proof. For x, y, z ∈ L, we have [x]∨ ([y]∨ [z]) = ([x]∨ [y])∧ ([x]∨ [z]) iff [x∨ (y ∧ z)] = [(x∨ y)∧ (x∨ z)]. To
prove this equality, let P ∈ P(L) such that x ∨ (y ∧ z) ∈ P . Since P ∈ P(L), we have x, y ∈ P or x, z ∈ P .
If x, y ∈ P then (x ∨ y) ∧ (x ∨ z) ∈ P and similarly, if x, z ∈ P . Conversely, if (x ∨ y) ∧ (x ∨ z) ∈ P , then
x∨ y ∈ P or x∨ z ∈ P . We deduce that x ∈ P, y ∈ P or x ∈ P, z ∈ P . Hence x, y ∧ z ∈ P , so x∨ (y ∧ z) ∈ P .
We deduce that [L] is distributive bounded lattice. □

As in case of MV algebra, (see [3]), for residuated lattice L, an element x ∈ L is called archimedean if
there is n ≥ 1 such that nx ∈ B(L). The residuated lattice L is called hyperarchimedean if all its elements
are archimedean.

Remembering that a De Morgan residuated lattice L is hyperarchimedean iff P(L) = M(L), (see [9]), we
have:

Theorem 5.4. Let L be a De Morgan residuated lattice. Then [L] is a Boolean algebra iff L is hyperar-
chimedean.

Proof. If [L] is a Boolean algebra, then for every x ∈ L, there is y ∈ L such that [x]∨ [y] = 1 and [x]∧ [y] = 0.
From [x] ∨ [y] = 1 we deduce that [x ∨ y] = 1, so by Theorem 5.3, ord(x ∨ y)∗ = ord(x∗ ∧ y∗) < ∞, hence
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there is n ≥ 1 such that (x∗ ∧ y∗)n = 0. Since [x] ∧ [y] = [0] then x ∧ y = 0, hence x∗ ∨ y∗ = 1. From (c9),
(x∗)n ∨ (y∗)n = 1. Also, (x∗)n ∧ (y∗)n = (x∗)n ⊙ (y∗)n = (x∗ ⊙ y∗)n ≤ (x∗ ∧ y∗)n = 0, hence (x∗)n ∈ B(L), so
[(x∗)n]∗ = nx ∈ B(L) and L is hyperarchimedean.

Conversely, suppose that L is hyperarchimedean. From Theorem 5.3, [L] is a bounded distributive lattice
and for every x ∈ L there is n ≥ 1 such that nx ∈ B(L) i.e., (nx) ∨ (nx)∗ = 1 and (nx) ∧ (nx)∗ = 0. Then
[x] ∨ [(nx)∗] = [1] = 1 and [x] ∧ [(nx)∗] = [0] = 0, so, [L] is a Boolean algebra.

□
For I ∈ Id(L) and J ∈ Id([L]), we denote I∗ = {[x] : x ∈ I} and J∗ = ∪{[x] : [x] ∈ J}.

Proposition 5.5. (i) If I ∈ Id(L), then I∗ ∈ Id(L); Moreover, if P ∈ P(L), then P ∗ ∈ Spec([L]);

(ii) If J ∈ Id([L]), then J∗ ∈ Id(L); Moreover, if Q ∈ Spec([L]), then Q∗ ∈ P(L);

(iii) If I1, I2 ∈ Id(L) and I2 ∈ P(L), then I1 ⊆ I2 iff I∗1 ⊆ I∗2 ;

(iv) If J1, J2 ∈ Id([L]), then J1 ⊆ J2 iff (J1)∗ ⊆ (J2)∗.

Proof. (i) Let x, y ∈ L such that [x] ≤ [y] and [y] ∈ I∗. Thus, there is y1 ∈ I such that [y] = [y1]. Then
[x] = [x] ∧ [y] = [x] ∧ [y1] ∈ I∗, since y1 ∈ I and x ∧ y1 ≤ y1. If [x], [y] ∈ I∗, then there are x1, y1 ∈ I such
that [x] = [x1] and [y] = [y1]. Hence x1 ∨ y1 ∈ I and [x] ∨ [y] = [x1] ∨ [y1] = [x1 ∨ y1] ∈ I∗, so I∗ ∈ Id([L]).

Also, if P ∈ P(L), then P ̸= L, we deduce P ∗ ̸= [L]. If by contrary, P ∗ = [L] then 1 ∈ P ∗, so 1 ∈ P
and P = L, a contradiction. Let x, y ∈ L such that [x] ∧ [y] ∈ P ∗. Then [x ∧ y] ∈ P ∗, so x ∧ y ∈ P . Since
P ∈ P(L), x ∈ P or y ∈ P . We deduce that [x] ∈ P ∗ or [y] ∈ P ∗, that is P ∗ ∈ Spec([L]).

(ii). Let x, y ∈ L such that x ≤ y and y ∈ J∗(hence [y] ∈ J). Then by Lemma 5.2, (i), [x] ≤ [y] and since
[y] ∈ J then [x] ∈ J , so x ∈ J∗. If x, y ∈ J∗ then [x], [y] ∈ J so [x] ∨ [y] = [x ∨ y] ∈ J . Since [x ∨ y] = [x⊕ y],
we obtain that [x⊕ y] ∈ J , so x ⊕ y ∈ J∗ and J∗ ∈ Id(L). Also, for Q ∈ Spec([L]), if Q∗ = L, then 1 ∈ Q∗,
so, 1 ∈ [x]. Thus, [1] = [x] ∈ Q, so Q = [L], a contradiction. Let x, y ∈ L such that x ∧ y ∈ Q∗. Then
[x ∧ y] = [x] ∧ [y] ∈ Q. Since Q ∈ Spec([L]), [x] ∈ Q or [y] ∈ Q, so x ∈ Q∗ or y ∈ Q∗. Thus, Q∗ ∈ P(L).

(iii) Suppose that I1 ⊆ I2 and we consider x ∈ I1 such that [x] ∈ I∗1 ; then x ∈ I2, so [x] ∈ I∗2 that is ,
I∗1 ⊆ I∗2 . Suppose now that I∗1 ⊆ I∗2 and let x ∈ I1. Then [x] ∈ I∗1 ⊆ I∗2 so [x] ∈ I∗2 . Then there is y ∈ I2 such
that [x] = [y]. Since I2 ∈ P(L) and y ∈ I2 we deduce that x ∈ I2, so I1 ⊆ I2.

(iv) Suppose J1 ⊆ J2 and let x ∈ (J1)∗. Thus, [x] ∈ J1. Then [x] ∈ J2 so x ∈ (J2)∗. We deduce
(J1)∗ ⊆ (J2)∗. Conversely, suppose (J1)∗ ⊆ (J2)∗ and let [x] ∈ J1. Then x ∈ (J1)∗ ⊆ (J2)∗, thus x ∈ (J2)∗.
Hence [x] ∈ J2, so J1 ⊆ J2. □

The following results hold:

Proposition 5.6. Let I ∈ Id(L), J ∈ Id([L]) and x ∈ L. Then

(i) x ∈ σ(I) implies [x] ∈ σ(I∗);

(ii) If [x] ∈ σ(I∗), then there exists z ∈ [x] such that z ∈ σ(I);

(iii) [x] ∈ σ(J) iff x ∈ σ(J∗);

(iv) (σ(I))∗ = σ(I∗) and (σ(J))∗ = σ(J∗).

Proof. (i). x ∈ σ(I) ⊆ I implies x ∈ I, so [x] ∈ I∗. From x ∈ σ(I) there are i ∈ I and y ∈ x⊥ such that
i⊞ y = 1. Hence [1] = [i⊞ y] = [i ∨ y] = [i] ∨ [y] and [x] ∧ [y] = [x ∧ y] = [0]. Since [i] ∈ I∗ and [y] ∈ [x]⊥ we
deduce that [x] ∈ σ(I∗).

(ii). For [x] ∈ σ(I∗) ⊆ I∗ there is z ∈ [x] ∩ I such that [x] = [z].
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Since [L] is a distributive lattice and [x] ∈ σ(I∗) there are [i] ∈ I∗, [y] ∈ [x]⊥ such that [i] ∨ [y] = [1] and
[x] ∧ [y] = [0]. Thus, 0 = [z] ∧ [y] = [z ∧ y] so, z ∧ y = 0. We conclude that y ∈ z⊥.

Since [1] = [i]∨ [y] = [i∨ y] = [i⊞ y], we deduce that i⊞ y /∈ P for every P ∈ P(L). Using Corollary 3.12,
ord((i⊞ y)∗) < ∞ so there is n ≥ 1 such that [(i⊞ y)∗]n = 0. Since n, [i] = [ni] ∈ I∗ we deduce that there is
t ∈ [ni] ∩ I such that [t] = [ni].

To prove that ord([(ny) ⊞ t]∗) < ∞, we show that (ny) ⊞ t /∈ P for every P ∈ P(L). If (ny) ⊞ t ∈ Q for
some Q ∈ P(L) then ny, t ∈ Q. Since t ∈ Q we deduce that ni ∈ Q, so (ni)⊞ (ny) = n(i⊞ y) = n · 1 = 1 ∈ Q,
a contradiction.

Then there is a natural number m such that ord([(ny)⊞ t]∗) = m, so, 1 = {[(ny⊞ t)∗]m}∗ = m[(ny)⊞ t] =
(mny)⊞ (mt), with mt ∈ I. Since y ∈ z⊥ and z⊥ ∈ Id(L), we deduce that mny ∈ z⊥. Hence z ∈ σ(I).

(iii) First, suppose [x] ∈ σ(J) ⊆ J . Then [x] ∈ J and x ∈ J∗. From [x] ∈ σ(J) there are [j] ∈ J and
[y] ∈ [x]⊥ such that [j] ∨ [y] = [1]. Thus [1] = [j ∨ y] = [j ⊞ y], so j ⊞ y /∈ P for every P ∈ P(L), that is,
ord((j⊞y)∗) < ∞. Then [(j⊞ y)∗]n = 0 for some n ≥ 1, so 1 = {[(j⊞ y)∗]n}∗ = n(j⊞ y) = (nj)⊞ (ny). Also,
from [y] ∈ [x]⊥ we deduce that [0] = [x]∧ [y] = [x∧ y], so x∧ y = 0. Since j ∈ J∗, y ∈ x⊥ and J∗, x

⊥ ∈ Id(L).
We obtain that nj ∈ J∗, ny ∈ x⊥, so x ∈ σ(J∗). Conversely, let x ∈ L such that x ∈ σ(J∗) ⊆ J∗. Then x ∈ J∗
and [x] ∈ J . Moreover there are j ∈ J∗, y ∈ x⊥ such that j⊞y = 1. We have that [j]∨[y] = [j∨y] = [j⊞y] = [1]
and [y] ∈ [x]⊥, since x ∧ y = 0 implies [x] ∧ [y] = [0]. Hence, [x] ∈ σ(J).

(iv) Let [x] ∈ (σ(I))∗. Then [x] = [x1] with x1 ∈ σ(I). From Proposition 5.6, (i), [x1] ∈ σ(I∗), so
(σ(I))∗ ⊆ σ(I∗). Conversely, let x ∈ L such that [x] ∈ σ(I∗). By Proposition 5.6, (ii), there exists z ∈ [x]
such that z ∈ σ(I). We deduce that [z] ∈ (σ(I))∗. But z ∈ [x] so [z] = [x]. Then [x] ∈ (σ(I))∗, so
σ(I∗) ⊆ (σ(I))∗. Thus, (σ(I))∗ = σ(I∗).

Finally, x ∈ (σ(J))∗, then [x] ∈ σ(J), so x ∈ σ(J∗) and (σ(J))∗ ⊆ σ(J∗). Conversely, if x ∈ σ(J∗) then
[x] ∈ σ(J). Implies x ∈ (σ(J))∗ so σ(J∗) ⊆ (σ(J))∗. We conclude that (σ(J))∗ = σ(J∗). □

Theorem 5.7. (i) If I ∈ Id(L), then (I∗)∗ = I;

(ii) If J ∈ Id([L]), then (J∗)
∗ = J ;

((iii) If M ∈ Max(L), then M∗ ∈ Max([L]).

Proof. (i). Clearly, I ⊆ (I∗)∗. Let x ∈ (I∗)∗. Then x ∈ ∪{[y] : [y] ∈ I∗}, so there exists y0 ∈ I such that
x ∈ [y0]. Since I = ∩{P ∈ Spec(L) : I ⊆ P} so for every P ∈ P(L) such that I ⊆ P we deduce y0 ∈ P so
x ∈ P . Thus, (I∗)∗ ⊆ ∩{P ∈ P(L) : I ⊆ P} = I, so (I∗)∗ ⊆ I. Hence (I∗)∗ = I.

(ii). For x ∈ L, [x] ∈ (J∗)
∗ iff [x] ∈ J , so, (J∗)

∗ = J .

(iii). Obviously, M∗ is a proper ideal in [L]. Let, J ∈ Id([L]) such that M∗ ⊆ J . Then (M∗)∗ ⊆ J∗ so,
M ⊆ J∗. Thus, J∗ = L or J∗ = M . If J∗ = L, then J = [L]. If J∗ = M , then J = (J∗)

∗ = M∗. Thus
M∗ ∈ Max([L]). □

Theorem 5.8. The assignment P ⇝ P ∗ is an one-one map from P(L) to Spec([L]). This mapping carries
M(L) onto in Max([L]).

Proof. Let P,Q ∈ P(L) such that P ∗ = Q∗. Using Proposition 5.5 and Theorem 5.7 , P ∗, Q∗ ∈ Spec([L])
and P = (P ∗)∗ = (Q∗)∗ = Q. If R ∈ Spec([L]), then R∗ ∈ Spec(L) and (R∗)

∗ = R. Let M ∈ M(L).
From Theorem 5.7, M∗ ∈ Max([L]). Let I ∈ Max([L]) and J a proper ideal of L such that I∗ ⊆ J . Then
I = (I∗)

∗ ⊆ J∗ ̸= [L]. Hence I = J∗. If x ∈ J , then [x] ∈ I so x ∈ I∗. Thus J = I∗, so I∗ ∈ M(L) and this
map carries M(L) onto in Max([L]). □

Theorem 5.9. Let I ∈ Id(L) and J ∈ Id([L]). Then

(i) σ(I) ∈ Pure(L);
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(ii) If I ∈ Pure(L) then I∗ ∈ Pure([L]);

(iii) If σ(I) ∈ P(L) then I ∈ Pure(L) iff I∗ ∈ Pure([L]);

(iv) J ∈ Pure([L]) iff J∗ ∈ Pure(L).

Proof. (i) Dualizing Lemma 3.3 from ([9]) we obtain that σ(I∗) is pure, that is, σ(I∗) = σ(σ(I∗)). Now,
from Proposition 5.6, Theorem 5.7 we obtain σ(I) = σ(σ(I)), that is, σ(I) is a pure ideal.

(ii). I ∈ Pure(L) implies σ(I) = I. By Proposition 5.6, I∗ = (σ(I))∗ = σ(I∗).
(iii). From Proposition 5.6, (σ(I))∗ = σ(I∗) = I∗ and using Proposition 5.5 we obtain I ∈ Pure(L).
(iv) J ∈ Pure([L]) implies σ(J) = J , so, by Proposition 5.6, J∗ = (σ(J))∗ = σ(J∗). Thus, J∗ ∈ Pure(L).

Conversely, J∗ ∈ Pure(L) implies, using Proposition 5.6, J∗ = σ(J∗) = (σ(J))∗. From Proposition 5.5,
J ∈ Pure([L]). □

6 The spectral topology on a residuated lattice

In ([15]), for a residuated lattice L, P(L) was endowed with the spectral topology as in case of bounded
distributive lattices. For I ∈ Id(L) we denote V (I) = {P ∈ Spec(L) : I ⊈ P}. Then τL = {V (I) : I ∈ Id(L)}
is a topology on P(L), called the spectral topology. Moreover, the mapping V : Id(L) → τL defined above
is a bijection. Also, for every x ∈ L, we denote V (x) = {P ∈ Spec(L) : x /∈ P}. We recall that the family
{V (x) : x ∈ L} is a basis for the topology τL on P(L) and the compact open subsets of P(L) are exactly the
sets of the form V (x).

Now, let L be a De Morgan residuated lattice. We compare the spectral topologies on P(L) and Spec([L]).
Since {V (x)}x∈L generate the spectral topology τL on P(L), we consider the family of sets V ([x]) = {Q ∈
Spec([L]) : [x] /∈ Q} which determines a topology on [L].

For a subsets S ⊆ P(L) we denote S∗ = {P ∗ ∈ S}.

Theorem 6.1. Let L be a De Morgan residuated lattice and x, y ∈ L. Then

(i) (V (x))∗ = V ([x]) and (V (x))∗ = (V (y))∗ implies V (x) = V (y);

(ii) (V (x) ∩ V (y))∗ = (V (x))∗ ∩ (V (y))∗;

(iii) (∪x∈IV (x))∗ = ∪x∈I(V (x))∗, for I ⊆ L.

Proof.(i) Let R∗ ∈ (V (x))∗ = {P ∗ : P ∈ V (x)}. Then x /∈ R, so [x] /∈ R∗. Thus, R∗ ∈ V ([x]). Conversely,
let I ∈ V ([x]). Then by Proposition 5.5 and Theorem 5.7, I = P ∗ for some P ∈ P(L). So [x] /∈ P ∗, hence
x /∈ (P ∗)∗ = P . So P ∈ V (x) and P ∗ = I ∈ (V (x))∗. Finally, (V (x))∗ = (V (y))∗ implies V ([x]) = V ([y]). So
for every P ∈ Spec(L) we have [x] /∈ P ∗ iff [y] /∈ P ∗. This implies x /∈ P iff y /∈ P since P = P ∗

∗ . Therefore
V (x) = V (y).

(ii) From ([15]) V (x) ∩ V (y) = V (x∗∗ ∧ y∗∗). Thus, by, (i), (V (x) ∩ V (y))∗ = (V (x∗∗ ∧ y∗∗))∗ = V ([x∗∗ ∧
y∗∗]) = V ([(x ∧ y)∗∗]) = V ([x ∧ y]) = V ([x]) ∩ V ([y]) = (V (x))∗ ∩ (V (y))∗.

(iii)Let P ∗ ∈ (∪x∈IV (x))∗. Then P ∈ ∪x∈IV (x), so, for some x ∈ I, P ∈ V (x) Thus P ∗ ∈ (V (x))∗.
So (∪x∈IV (x))∗ ⊆ ∪x∈I(V (x))∗. Conversely, if P ∗ ∈ ∪x∈I(V (x))∗ then P ∗ ∈ (V (x))∗ for some x ∈ I so
P ∈ V (x) ⊆ ∪x∈IV (x). Hence P ∗ ∈ (∪x∈IV (x))∗ and (∪x∈IV (x))∗ ⊇ ∪x∈I(V (x))∗.

□
To summarize, we have:

Corollary 6.2. If L is a De Morgan residuated lattice, then

(i) the map V (x)⇝ (V (x))∗ is one-one, onto and preserves arbitrary unions and finite intersections;
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(ii) the prime ideal spaces P(L) and Spec([L]) are homeomorphic.

Since in a residuated lattice L, for I ∈ Id(L), V (I) = {P ∈ P(L) : I ⊈ P} is open in P(L) and
V (I) = P(L)\V (I) = {P ∈ P(L) : I ⊆ P} is closed, then obviously, V (I) is stable under descent (that is, if
P ∈ V (I), Q ∈ P(L) and Q ⊆ P(L) and P ⊆ Q, then Q ∈ V (I) and V (I) is stable under ascent (that is, if
P ∈ V (I), Q ∈ P(L) and P ⊆ Q then Q ∈ V (I)).

So, the sets simultaneous open and closed (clopen sets in P(L), are stable, that is, are stable under ascent
and descent.

As in the case of MV algebras, by stable topology for L, we mean a collection SL of stable open subsets
V (I) of P(L), that is SL = {V (I) : I ∈ Id(L)} and V (I) is stable under ascent.

Proposition 6.3. Let L be a residuated lattice and I ∈ Id(L). Then V (I) is stable in P(L) iff V (I∗) is
stable in Spec([L]).

Proof. Suppose that V (I) is stable in P(L) and let P,Q ∈ Spec([L]) such that P ⊆ Q and P ∈ V (I∗).
Then I∗ ⊈ P and by Theorem 5.7 we deduce that I = (I∗)∗ ⊈ P∗, so P∗ ∈ V (I). Since P∗ ⊈ Q∗ and V (I) is
stable, then Q∗ ∈ V (I). But Q∗ ∈ V (I) iff I ⊈ Q∗. Then I∗ ⊈ Q∗ = Q so Q ∈ V (I∗). Thus, V (I∗) is stable
in P(L). Conversely, suppose that V (I∗) is stable in Spec([L]) then for P,Q ∈ P(L) such that P ⊆ Q and
P ∈ V (I). We have I ⊈ P . Thus I∗ ⊈ P ∗, so P ∗ ∈ V (I∗). Since P ∗ ⊆ Q∗ and V (I∗) is stable in Spec([L])
then Q∗ ∈ V (I∗). But Q∗ ∈ V (I∗) iff I∗ ⊈ Q∗ iff I ⊈ Q. Thus, Q ∈ V (I), that is ,V (I) is stable in P(L).
□

Theorem 6.4. Let L be a De Morgan residuated lattice and I ∈ Id(L). Then I ∈ Pure(L) iff V (I) is stable
in P(L).

Proof. Suppose that I ∈ P(L) and let P,Q ∈ P(L) such that P ⊆ Q and P ∈ V (I). Then I ⊈ P , so
there exists i0 ∈ I such that i0 /∈ P . Since I = σ(I), then i0 ∈ σ(I), so i∗∗0 ∈ σ(I). Then there are i ∈ I
and y ∈ (i∗∗0 )⊥ such that i ⊕ y = 1. Since y∗∗ ∈ (i∗∗0 )⊥ we deduce that i∗∗0 ∧ y∗∗ = 0 ∈ P . But i0 /∈ P so,
y ∈ P ⊆ Q, thus y ∈ Q. If by the contrary, Q /∈ V (I) then I ⊆ Q so i ∈ Q. From y, i ∈ Q we deduce that
i⊕ y = 1 ∈ Q. Hence Q = L, a contradiction.

Conversely, we suppose that V (I) is stable in P(L). If by contrary I is not pure in L, then there is x0 ∈ I
such that x0 /∈ σ(I), so x0 ̸= 0. From (see [14], Corollary 23), there is a minimal prime ideal P such that
σ(I) ⊆ P and x0 /∈ P . Thus I ⊈ P , hence P ∈ V (I). Since x0 /∈ σ(I), then for every i ∈ I and x⊥0 we
have i ⊞ y ̸= 1. This implies that i /∈ x⊥0 ∨ I, that is x⊥0 ∨ I is proper in L. From Theorem 3.11, there is
Q ∈ Spec(L) such that x⊥0 ∨ I ⊆ Q. But σ(I) ⊆ I ⊆ Q and by minimally of P, P ⊆ Q. Since V (I) is stable,
we deduce Q ∈ V (I). But I ⊆ Q, hence Q /∈ V (I), a contradiction. Thus, σ(I) = I and I is pure L. □

From Proposition 6.3 and Theorem 6.4 we obtain:

Corollary 6.5. Let L be a De Morgan residuated lattice and I ∈ Id(L). Then the following are equivalent:

(i) I ∈ Pure(L);

(ii) V (I) is stable in P(L);

(iii) V (I∗) is stable in Spec([L]).

Corollary 6.6. For a residuated lattice L, the assignment I ⇝ V (I) is a bijection between from Pure(L)
and the set of stable open subsets of P(L).

Corollary 6.7. Let L be a De Morgan residuated lattice. Then the spectral topology coincides with a stable
topology on P(L) iff L is hyperarchimedean.
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Proof. By Theorem 5.4, L is hyperarchimedean iff [L] is a Boolean algebra. Using Corollary 6.2 and Theorem
4, (see [8]) we deduce the conclusion. □
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