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Abstract. Generally, linear programming (LP) problem is the most extensively utilized technique for solving and
optimizing real-world problems due to its simplicity and efficiency. However, to deal with the inaccurate data,
the neutrosophic set theory comes into play, which creates a simulation of the human decision-making process by
considering all parts of the choice (i.e., agree, not sure, and disagree). Keeping the benefits in mind, we proposed
the neutrosophic LP models based on triangular neutrosophic numbers (TNN) and provided a method for solving
them. Fuzzy LP problem can be converted into crips LP problem based on the defined ranking function. The
provided technique has been demonstrated with numerical examples given by Abdelfattah. Finally, we found that,
when compared to previous approaches, the suggested method is simpler, more efficient, and capable of solving all
types of fuzzy LP models.
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1 Introduction

One of the most extensively used optimizations approaches in real-world applications is linear programming
and it is a type of mathematical programming that has a linear objective function and a set of linear equality
and inequality constraints. However, in real world issues, data precision is largely misleading, which has an
impact on the best solution to LP problems. With erroneous and ambiguous data, probability distributions
failed to transact. Zadeh [30] in 1965 proposed fuzzy sets to deal with ambiguous and imprecise data.
Zimmermann [31] in 1978 offered the first definition and solution of the fuzzy LP problem. Zimmermann
[32] in 1987, divided the fuzzy LP problems into two groups: symmetric and non-symmetric problems. In
symmetric fuzzy LP problems, the weights of objectives and constraints are equal, whereas in non-symmetric
fuzzy LP problems, the weights of objectives and constraints are not equal. Leung [20] in 2013 divided fuzzy
LP problems into different categories, these are

1. problems with crisp objective and fuzzy constraint.

2. problems with crisp constraint and fuzzy objective.
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3. problems with fuzzy objectives and fuzzy constraints.

4. challenges with robust programming.

Kumar et al. [19] provide a fuzzy LP problem with equality and inequality constraints. Several authors
proposed several methods for solving fuzzy LP with inequality constraints, as well as first converting fuzzy
LP problems to their equivalent crisp model and then getting the best fuzzy solution to the original scenario.
A large number of authors have explored the various aspects of fuzzy LP problems and provided various
solutions. Lotfi et al. [21] introduced the entire fuzzy LP difficulties. Some researchers have proposed
a ranking function for converting fuzzy LP problems into crisp LP analogues, which can then be solved
using standard approaches. Ebrahimnejad and Tavana [12] proposed a novel technique for tackling fuzzy LP
problems based on symmetric trapezoidal fuzzy numbers.

However, because it solely examines the truthiness function, the fuzzy set does not effectively represent
unclear and imprecise information. Then, by considering both the truth and falsity functions, Atanassov [6] in
1986 created the notion of the intuitionistic fuzzy set to handle unclear and imprecise information. Bharati
and Singh [8] proposed completely intuitionistic fuzzy LP problems that are based on the sign distance
between triangular intuitionistic fuzzy integers. Gani and Ponnalagu [15] proposed a method of solving a
fuzzy LP problems based on the intuitionistic triangular fuzzy numbers. Sidhu and Kumar [25] employed
a ranking algorithm to solve intuitionistic fuzzy LP problems. To defuzzify triangular intuitionistic fuzzy
numbers, Nagoorgani and Ponnalagu [23] devised an accuracy function.

However, the intuitionistic fuzzy set does not accurately represent the human decision-making process.
Because making the best decision is basically a matter of organising and explaining facts, Smarandache [27] in
1999 proposed the notion of neutrosophic set theory to deal with ambiguous, imprecise, and inconsistent data.
Neutrosophic set theory replicates human decision-making by taking into account all parts of the process.
The phrase “neutrosophic set” refers to popularisation of fuzzy and intuitionistic fuzzy sets, in which each
element has a membership function for truth, indeterminacy, and falsehood. As a result, the neutrosophic
set may swiftly and effectively ingest incorrect, unclear, and maladjusted information [11]. In uncertainty
modelling, neutrosophic sets play a significant role. The advancement of uncertainty theory is essential in the
formulation of real-life scientific mathematical models and its extensions have been applied in a wide variety
of fields [28] including computer science [14], engineering [17], mathematics [9, 4], health care [5, 22] etc. In
addition, they have been applied to much multi-criteria decision making problems [16, 24, 2]. A neutrosophic
set’s main advantage is that it enhances decision-making by accounting for degrees of truth, falsehood,
and indeterminacy. The degree of indeterminacy is frequently seen as a free component with a significant
commitment in decision-making. Because real-world situations are unpredictable, triangular neutrosophic
linear programming is preferred to classical linear programming. The neutrosophic LP problems are more
beneficial than crisp LP problems since the decision maker is not needed to establish a rigorous formulation
in his or her formulation of the problem. It is recommended that neutrosophic LP concerns be employed
to minimise unrealistic modelling. Abdel-Basset et al. [1] proposed a novel method for solving the fully
neutrosophic linear programming problems based on Tripezoidal neutrosophic numbers which was modified
by Singh et al. [26] to solve fully neutrosophic linear programming problems. Edalatpanah [13] proposed
a direct model to solve triangular neutrosophic linear programming. Wang et al. [29] used a triangular
neutrosophic numbers to solve multi objective linear programming problems. Khatter [18] proposed a model
to convert each triangular neutrosophic number in a linear programming problem to a weighted value using a
possibilistic mean to determine the crisp linear programming problem. Das and Chakraborty [10] employed
a pentagonal neutrosophic number and developed a method for translating it to the corresponding crisp LP
problem using a ranking function. Bera and Mahapatra [7] used a single valued trapezoidal neutrosophic
number to linear programming problems in the simplex method. Abdelfattah [3] proposed a parametric
approach to solve neutrosophic linear programming models. We may now define a neutrosophic LP problem
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as one in which at least one coefficient is represented by a neutrosophic number as a result of ambiguous,
inconsistent, and uncertain data. We proposed a study to solve NLP challenges based on past research.
Ranking functions have been introduced to transform neutrosophic LP difficulties into crisp problems, one
for each problem type. The proposed model was used to address both maximisation and minimization
problems as well as mixed constraint problems.

The remainder of this study is organised as follows:

In Section 2, introduces some basic arithmetic operations of the neutrosophic set. Section 3 presents
the formularization of neutrosophic LP models, whereas Section 4 presents the recommended strategy for
addressing neutrosophic LP problems. In Section 5, the suggested technique is used to solve numerical
examples given by Abdelfattah [3]. Finally, in Section 6, the benefits of current methods are emphasised, and
future directions are discussed.

2 Preliminary

Definition 2.1. [11] Triangular neutrosophic number (TNN) is denoted by X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩,
where the three membership functions for the truth, indeterminacy, and falsity of x can be defined as follows:

τ(x) =



x− xL

xM − xL
ϕx, xL ≤ x ≤ xM

ϕx, x = xM

xU − x

xU − xM
ϕx, xM ≤ x ≤ xU

0, otherwise

(1)

ι(x) =



x− xL

xM − xL
φx, xL ≤ x ≤ xM

φx, x = aM

xU − x

xU − xM
φx xM ≤ x ≤ xU

1, otherwise

(2)

ν(x) =



x− xL

xM − xL
ψx, xL ≤ x ≤ xM

ψx, x = xM

xU − x

xU − xM
ψx, xM ≤ x ≤ xU

1, otherwise

(3)

where 0 ≤ τ(x) + ι(x) + ν(x) ≤ 3, x ∈ X̂.

Definition 2.2. [11] Suppose X̂1 = ⟨xL1 , xM1 , xU1 ;ϕx1 , φx1 , ψx1⟩ and X̂2 = ⟨xL2 , xM2 , xU2 ;ϕx2 , φx2 , ψx2⟩ two
TNNs. Then The arithmetic relationships are stated as follows:

1. X̂1 ⊕ X̂2 = ⟨xL1 + xL2 , x
M
1 + xM2 , x

U
1 + xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

2. X̂1 − X̂1 = ⟨xL1 − xU2 , x
M
1 − xM2 , x

U
1 − xL2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

3. X̂1 ⊗ X̂1 = ⟨xL1 xL2 , xM1 xM2 , xU1 xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.
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4. λX̂1 =

{
⟨λxL1 , λxM1 , λxU1 ;ϕx1 , φx1 , ψx1⟩, λ > 0

⟨λxU1 , λxM1 , λxL1 ;ϕx1 , φx1 , ψx1⟩, λ < 0

where a ∧ b = min(a, b) and a ∨ b = max(a, b).

Definition 2.3. Based on the definition (2.2), the ranking function can be defined as

R(X̂) =


2(xL + xU )− xM

3
+ ϕx − φx − ψx, if X̂ be a TNN

X̂, if X̂ is real number
(4)

R(λX̂) =


λ

(
R(X̂)− (ϕx − φx − ψx)

)
+ (ϕx − φx − ψx), if λ > 0

λ

(
R(X̂)− (ϕx − φx − ψx)

)
− (ϕx − φx − ψx), if λ < 0

(5)

Definition 2.4. Suppose X̂1 and X̂2 be two TNNs, then two triangular number can be compared by

1. X̂1 ≤ X̂2 iff R(X̂1) ≤ R(X̂2). 2. X̂1 = X̂2 iff R(X̂1) = R(X̂2).

where R(.) is a ranking function.

Example 2.5. Let us consider X̂1 = ⟨10, 14, 17; 0.6, 0.2, 0.3⟩ and X̂2 = ⟨10, 16, 18; 0.4, 0.5, 0.7⟩ are the TNN.
Then

(a) R(X̂1) =
2(10 + 17)− 14

3
+ (0.6− 0.2− 0.3) = 13.433.

(b) 5Â = ⟨50, 70, 85; 0.6, 0.2, 0.3⟩ then R(5X̂1) =
2(50 + 85)− 70

3
+ (0.6 − 0.2 − 0.3) = 66.76, by using

equation (5) we have R(5X̂1) = 5
(
13.433− (0.6− 0.2− 0.3)

)
+ (0.6− 0.2− 0.3) = 66.76

(c) −5X̂1 = ⟨−85,−70,−50; 0.6, 0.2, 0.3⟩ then R(−5X̂1) =
2(−50− 85) + 70

3
− (0.6− 0.2− 0.3) = −66.76,

by using equation (5) we have R(−5X̂1) = −5
(
13.433− (0.6− 0.2− 0.3)

)
− (0.6− 0.2− 0.3) = −66.76

(d) Since R(X̂1) = 13.433 and R(X̂2) = 12.533, then X̂1 > X̂2.

Theorem 2.6. Let us consider X̂1 = ⟨xL1 , xM1 , xU1 ;ϕx1 , φx1 , ψx1⟩ and X̂2 = ⟨xL2 , xM2 , xU2 ;ϕx2 , φx2 , ψx2⟩ are the
TNN. Then

R(X̂1 − X̂2) = R(X̂1)−R(X̂2)−
[
(ϕx1 − ϕx2)− (φx1 − φx2)− (ψx1 − ψx2)

]
+ ϕx1 ∧ ϕx2

− φx1 ∨ φx2 − ψx1 ∨ ψx2 . (6)

Proof. Since, X̂1 − X̂1 = ⟨xL1 − xL2 , x
M
1 − xM2 , x

U
1 − xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩, then

R(X̂1 − X̂2) =
2(xL1 − xL2 + xU1 − xU2 )− (xM1 − xM2 )

3
+ ϕx1 ∧ ϕx2 − φx1 ∨ φx2 − ψx1 ∨ ψx2

=
2(xL1 + xU1 )− xM1

3
− 2(xL2 + xU2 )− xM2

3
+ ϕx1 ∧ ϕx2 − φx1 ∨ φx2 − ψx1 ∨ ψx2

=
[
R(X̂1)− (ϕx1 − φx1 − ψx1)

]
−
[
R(X̂2)− (ϕx2 − φx2 − ψx2)

]
+ ϕx1 ∧ ϕx2 − φx1 ∨ φx2 − ψx1 ∨ ψx2

= R(X̂1)−R(X̂2)−
[
ϕx1 − ϕx2 − (φx1 − φx2)− (ψx1 − ψx2)

]
+ ϕx1 ∧ ϕx2 − φx1 ∨ φx2 − ψx1 ∨ ψx2

□
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Theorem 2.7. Let X̂i = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩ be n TNNs. Then

R

( n∑
i=1

X̂i

)
=

n∑
i=1

R(X̂i)−
n∑

i=1

(ϕxi − φxi − ψxi) +

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi (7)

Proof. Let X̂i = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩, then
n∑

i=1

X̂i =

⟨ n∑
i=1

xLi ,
n∑

i=1

xMi ,
n∑

i=1

xUi ;
n∧

i=1

ϕxi ,
n∨

i=1

φxi ,
n∨

i=1

ψXi

⟩

R

( n∑
i=1

Âi

)
=

2
(∑n

i=1 x
L
i +

∑n
i=1 x

U
i

)
−

∑n
i=1 x

M
i

3
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=

n∑
i=1

(
2(xLi + xUi )− xMi

3

)
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=

n∑
i=1

(
2(xLi + xUi )− xMi

3
+ (ϕxi − φxi − ψxi)

)
−

n∑
i=1

(ϕxi − φxi − ψxi)

+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=
n∑

i=1

(
R(X̂i)

)
−

n∑
i=1

(ϕxi − φxi − ψxi) +
n∧

i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi .

□
Theorem 2.8. Let X̂i = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩ be n TNNs and if λi > 0. Then

R

( n∑
i=1

λiX̂i

)
=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψAi)

)
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi (8)

Proof.

For λi > 0,
n∑

i=1

λiX̂i =

⟨ n∑
i=1

λix
L
i ,

n∑
i=1

λix
M
i ,

n∑
i=1

λix
U
i ;

n∧
i=1

ϕxi ,
n∨

i=1

φxi ,
n∨

i=1

ψxi

⟩
, then

From definition 2.2, we have

R

( n∑
i=1

λiX̂i

)
=

2
(∑n

i=1 λix
L
i +

∑n
i=1 λix

U
i

)
−

∑n
i=1 λix

M
i

3
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=
n∑

i=1

λi

(
2(xLi + xUi )− xMi

3

)
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=
n∑

i=1

λi

(
2(xLi + xUi )− xMi

3
+ (ϕxi − φxi − ψxi)

)
−

n∑
i=1

λi(ϕxi − φxi − ψxi)

+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

□
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Theorem 2.9. Let Âi = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩ be n TNNs and if λi < 0. Then

R

( n∑
i=1

λiX̂i

)
=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
− 2

n∑
i=1

(ϕxi − φxi − ψxi) +
n∧

i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

(9)

Proof. For λi < 0, using theorem 2.7 and defination 2.2, we have

R

( n∑
i=1

λiX̂i

)
=

n∑
i=1

(
R(λiX̂i)

)
−

n∑
i=1

(ϕxi − φxi − ψxi) +

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=

n∑
i=1

(
λi
(
R(X̂i)− (ϕxi − φxi − ψxi)

)
− (ϕxi − φxi − ψxi)

)
−

n∑
i=1

(ϕxi − φxi − ψxi)

+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

=
n∑

i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
− 2

n∑
i=1

(ϕxi − φxi − ψxi) +
n∧

i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi

□

Theorem 2.10. Let X̂i = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩ and Ŷj = ⟨yLj , yMj , yUj ;ϕyj , φyj , ψyj ⟩ are the TNNs, and
λi, δj > 0 for i = 1, 2, 3, · · · , n j = 1, 2, 3, · · · ,m,. Then

R

( n∑
i=1

λiX̂i −
m∑
j=1

δj Ŷj

)
=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
−

m∑
j=1

δj

(
R(Ŷj)− (ϕyj − φyj − ψyj )

)

+
( n∧

i=1

ϕxi ∧
m∧
j=1

ϕyj

)
−

( n∨
i=1

φxi ∨
m∨
j=1

φyj

)
−

( n∨
i=1

ψxi ∨
m∨
j=1

ψyj

)
(10)
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Proof.

R

( n∑
i=1

λiX̂i −
m∑
j=1

δj Ŷj

)
= R

( n∑
i=1

λiX̂i

)
−R

( m∑
j=1

δj Ŷj
)
−

[ n∧
i=1

ϕxi −
m∧
j=1

ϕyj −
( n∨

i=1

φxi −
m∨
j=1

φyj

)
−

( n∨
i=1

ψxi −
m∨
j=1

ψyj

)]
+

( n∧
i=1

ϕxi ∧
m∧
j=1

ϕyj

)
−

( n∨
i=1

φxi ∨
m∨
j=1

φyj

)
−

( n∨
i=1

ψxi ∨
m∨
j=1

ψyj

)
=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
+

n∧
i=1

ϕxi −
n∨

i=1

φxi −
n∨

i=1

ψxi −
[ m∑
j=1

δj

(
R(Ŷj)−

m∨
j=1

φyj

)
− (ϕyj − φyj − ψyj )

)
+

m∧
j=1

ϕyj −
m∨
i=1

φyj −
m∨
i=1

ψyj

]
−

[ n∧
i=1

ϕxi −
m∧
j=1

ϕyj −
( n∨

i=1

φxi

−
( n∨

i=1

ψxi −
m∨
j=1

ψyj

)]
+

( n∧
i=1

ϕxi ∧
m∧
j=1

ϕyj

)
−

( n∨
i=1

φxi ∨
m∨
j=1

φyj

)
−

( n∨
i=1

ψxi ∨
m∨
j=1

ψyj

)
=

n∑
i=1

λi

(
R(X̂i)− (ϕxi − φxi − ψxi)

)
−

m∑
j=1

δj

(
R(Ŷj)− (ϕyj − φyj − ψyj )

)
+

( n∧
i=1

ϕxi ∧
m∧
j=1

ϕyj

)
−

( n∨
i=1

φxi ∨
m∨
j=1

φyj

)
−

( n∨
i=1

ψxi ∨
m∨
j=1

ψyj

)

□

3 Triangular Neutrosophic Linear Programming Problem

Consider the standard form of linear programming problem with m constraints and n variables.

Min / Max
n∑

j=1

cjxj

s.t.
n∑

j=1

αijxj (≤,=,≥) bj , ∀ i = 1, 2, 3, · · · ,m. (11)

The corresponding neutrosophic linear programming problem having all coefficients and resources are
represented triangular neutrosophic numbers as follows:

Min / Max

n∑
j=1

ĉjxj

s.t.
n∑

j=1

α̂ijxj (≤,=,≥) b̂i ∀i = 1, 2, 3, · · · ,m. (12)

where ĉj = ⟨cLj , cMj , cUj ;ϕcj , φcj , ψcj ⟩, α̂ij = ⟨αL
ij , α

M
ij , α

U
ij ;ϕαij , φαij , ψαij ⟩ and b̂i = ⟨bLi , bMi , bUi ;ϕbi , φbi , ψbi⟩,

that is



162 K. K. Mohanta, V. Chaubey, D. S. Sharanappa, V. N. Mishra-TFSS Vol.1, No.1, (2022)

Min / Max

n∑
j=1

⟨cLj , cMj , cUj ;ϕcj , φcj , ψcj ⟩xj

s.t.

n∑
j=1

⟨αL
ij , α

M
ij , α

U
ij ;ϕαij , φαij , ψαij ⟩xj (≤,=,≥) ⟨bLi , bMi , bUi ;ϕbi , φbi , ψbi⟩

∀ i = 1, 2, 3, · · · ,m.

which is the general form of fully Triangular neutrosophic linear programming problem.

4 Method for Solving Triangular Neutrosophic Linear Programming Prob-
lem

Consider two scenarios for a completely triangular neutrosophic LP problem with n variables and m con-
straints in a standard form.

Step 1: Check, if the triangular neutrosophic linear programming problem is one of the scenarios provided.

Scenario 1: Suppose the triangular neutrosophic LP problem does not contain any negative term in
the objective function and constraint.

Min / Max
n∑

j=1

ĉjxj

s.t.

k∑
j=1

α̂ijxj (≤,=,≥) b̂i, ∀ i = 1, 2, 3, · · · ,m. (13)

Scenario 2: Suppose the TNLP problem contain any negative term in the objective function and
constraint.

Min / Max
s∑

j=1

ĉjxj −
n∑

j=s+1

ĉjxj

s.t.

k∑
j=1

α̂ijxj −
n∑

j=k+1

α̂ijxj (≤,=,≥) b̂i, ∀ i = 1, 2, 3, · · · ,m.

where

ĉj = ⟨cLj , cMj , cUj ;ϕcj , φcj , ψcj ⟩,
α̂ij = ⟨αL

ij , α
M
ij , α

U
ij ;ϕαij , φαij , ψαij ⟩,

b̂i = ⟨bLi , bMi , bUi ;ϕbi , φbi , ψbi⟩.

Step 2: Applying the ranking function in the TNLP problem based on definition (2.2) and (2.3), and theorem
(2.6)-(2.10) and convert it into crips LP problem.
Scenario 1:

Min / Max R
( n∑

j=1

ĉjxj

)
s.t. R

( n∑
j=1

α̂ijxj

)
(≤,=,≥) R

(
b̂i

)
, ∀ i = 1, 2, 3, · · · ,m.
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that is

Min / Max

n∑
j=1

(
R(ĉj)− (ϕcj − φcj − ψcj )

)
xj +

n∧
j=1

ϕcj −
n∨

j=1

φcj −
n∨

j=1

ψcj

s.t.

k∑
j=1

(
R(α̂ij)− (ϕαij − φαij − ψαij )

)
xj +

n∧
j=1

ϕαij −
n∨

j=1

φαij −
n∨

j=1

ψαij (≤,=,≥) R
(
b̂i

)
∀ i = 1, 2, 3, · · · ,m.

Scenario 2:

Min / Max R
( s∑

j=1

ĉjxj −
n∑

j=s+1

ĉjxj

)

s.t R
( k∑

j=1

α̂ijxj −
n∑

j=k+1

α̂ijxj

)
(≤,=,≥) R

(
b̂i

)
, ∀ i = 1, 2, 3, · · · ,m.

that is

Min / Max
s∑

j=1

(
R(ĉj)− (ϕcj − φcj − ψcj )

)
xj −

n∑
j=s+1

(
R(ĉj)− (ϕcj − φcj − ψcj )

)
xj

+

n∧
j=1

ϕcj −
n∨

j=1

φcj −
n∨

j=1

ψcj

s.t.

k∑
j=1

(
R(α̂ij)− (ϕαij − φαij − ψαij )

)
xj −

n∑
j=k+1

(
R(α̂ij)xj − (ϕαij − φαij − ψαij )

)
+

n∧
j=1

ϕαij −
n∨

j=1

φαij −
n∨

j=1

ψαij (≤,=,≥) R
(
b̂i

)
, ∀ i = 1, 2, 3, · · · ,m.

which are the crips LP problem.

Step 3: Solve this crips LP problem using any method and find the optimal solution.

The step by step solution procedure of triangular neutrosophic LP problems is shown in the given flow chart
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Figure 1: Step wise solution procedure of TNLP problem

5 Numerical Example

In this section, to prove the applicability and advantages of our proposed model of NLP problems, we solved the same
problem which introduced by Abdelfattah [22].

9

5 Numerical Example

In this section, to prove the applicability and advantages of our proposed model of neutrosophic LP problems,
we solved the same problem which introduced by Abdelfattah [3].

Example 5.1. (Minimization Problem)
Let us consider a minimization problem

Min ⟨2, 6, 8; 1, 0, 0⟩x1 + ⟨1, 3, 6; 1, 0, 0⟩x2
s.t. ⟨0.5, 2, 3; 0.7, 0.4, 0.1⟩x1 + ⟨0, 4, 6; 0.6, 0.3, 0.1⟩x2 ≥ ⟨12, 16, 19; 0.5, 0.3, 0.5⟩,

⟨1, 4, 12; 0.5, 0.4, 0.2⟩x1 + ⟨1, 3, 10; 0.7, 0.4, 0.3⟩x2 ≥ ⟨20, 24, 28; 0.8, 0.3, 0.3⟩
and x1, x2 ≥ 0.

We have used the ranking function in the above neutrosophic linear programming problem, it follows that

Min R
(
⟨2, 6, 8; 1, 0, 0⟩x1 + ⟨1, 3, 6; 1, 0, 0⟩x2

)
s.t. R

(
⟨0.5, 2, 3; 0.7, 0.4, 0.1⟩x1 + ⟨0, 4, 6; 0.6, 0.3, 0.1⟩x2

)
≥ R

(
⟨12, 16, 19; 0.5, 0.3, 0.5⟩

)
R
(
⟨1, 4, 12; 0.5, 0.4, 0.2⟩x1 + ⟨1, 3, 10; 0.7, 0.4, 0.3⟩x2

)
≥ R

(
⟨20, 24, 28; 0.8, 0.3, 0.3⟩

)
and x1, x2 ≥ 0.
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By using definition (2.2) and theorem (2.8), we have

Min 4.67x1 + 3.67x2 + 1

s.t. 1.67x1 + 2.67x2 + 0.2 ≥ 15.03

7.33x1 + 6.33x2 − 0.2 ≥ 24.2

and x1, x2 ≥ 0.

The optimal solution of the problem as x1 = 0.0000, x2 = 5.5543 and Z∗ = 21.3843.

Example 5.2. (Maximization Problem)
Let us consider the maximization problem

Max ⟨30, 40, 50; 0.7, 0.4, 0.3⟩x1 + ⟨40, 50, 60; 0.6, 0.5, 0.2⟩x2
s.t. ⟨0.5, 1, 3; 0.6, 0.4, 0.1⟩x1 + ⟨0, 2, 6; 0.6, 0.4, 0.1⟩x2 ≤ ⟨20, 40, 60; 0.4, 0.3, 0.5⟩

⟨1, 4, 12; 0.4, 0.3, 0.2⟩x1 + ⟨1, 3, 10; 0.7, 0.4, 0.3⟩x2 ≤ ⟨100, 120, 140; 0.7, 0.4, 0.3⟩
and x1, x2 ≥ 0.

We have used the ranking function in the above neutrosophic linear programming problem, it follows that

Max R
(
⟨30, 40, 50; 0.7, 0.4, 0.3⟩x1 + ⟨40, 50, 60; 0.6, 0.5, 0.2⟩x2

)
s.t. R

(
⟨0.5, 1, 3; 0.6, 0.4, 0.1⟩x1 + ⟨0, 2, 6; 0.6, 0.4, 0.1⟩x2

)
≤ R

(
⟨20, 40, 60; 0.4, 0.3, 0.5⟩

)
R
(
⟨1, 4, 12; 0.4, 0.3, 0.2⟩x1 + ⟨1, 3, 10; 0.7, 0.4, 0.3⟩x2

)
≤ R

(
⟨100, 120, 140; 0.7, 0.4, 0.3⟩

)
and x1, x2 ≥ 0.

By using definition (2.2) and theorem (2.8), we have

Max 40x1 + 50x2 − 0.2

s.t. 2x1 + 3.33x2 + 0.1 ≤ 39.6

7.3x1 + 6.33x2 − 0.3 ≤ 126.3

and x1, x2 ≥ 0.

The optimal solution of the mixed constrained problem as x1 = 14.6008, x2 = 3.0926 and Z∗ = 738.1623.

Example 5.3. (Mixed Constraint Problem)

Max ⟨380, 400, 430; 0.7, 0.4, 0.3⟩x1 + ⟨170, 200, 210; 0.6, 0.5, 0.2⟩x2
s.t. ⟨0.5, 1, 3; 0.6, 0.5, 0.1⟩x1 + ⟨1, 2, 4; 0.6, 0.4, 0.2⟩x2 = ⟨50, 70, 100; 1, 0, 0⟩

⟨1, 2, 5; 0.5, 0.3, 0.2⟩x1 + ⟨5, 8, 12; 0.7, 0.6, 0.5⟩x2 ≥ ⟨72, 80, 89; 1, 0, 0⟩
⟨0, 1, 4; 0.7, 0.5, 0.2⟩x1 + ⟨0, 0, 3; 0.8, 0.3, 0.2⟩x2 ≤ ⟨30, 40, 55; 1, 0, 0⟩

and x1, x2 ≥ 0.
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We have used the ranking function in the above neutrosophic linear programming problem, it follows that

Max R
(
⟨380, 400, 430; 0.7, 0.4, 0.3⟩x1 + ⟨170, 200, 210; 0.6, 0.5, 0.2⟩x2

)
s.t. R

(
⟨0.5, 1, 3; 0.6, 0.5, 0.1⟩x1 + ⟨1, 2, 4; 0.6, 0.4, 0.2⟩x2

)
= R

(
⟨50, 70, 100; 1, 0, 0⟩

)
R
(
⟨1, 2, 5; 0.5, 0.3, 0.2⟩x1 + ⟨5, 8, 12; 0.7, 0.6, 0.5⟩x2

)
≥ R

(
⟨72, 80, 89; 1, 0, 0⟩

)
R
(
⟨0, 1, 4; 0.7, 0.5, 0.2⟩x1 + ⟨0, 0, 3; 0.8, 0.3, 0.2⟩x2

)
≤ R

(
⟨30, 40, 55; 1, 0, 0⟩

)
and x1, x2 ≥ 0.

By using definition (2.2) and theorem (2.8), we have

Max 406.67x1 + 186.67x2 − 0.2

s.t. 2x1 + 2.67x2 − 0.1 = 77.67

3.33x1 + 8.6x2 − 0.6 ≥ 81.67

2.33x1 + 2x2 ≤ 44.33

The optimal solution of the mixed constrained problem as x∗1 = 0.0000, x∗2 = 39.4257 and Z∗ = 7359.4.

6 Conclusion

Neutrosophic sets are a relatively new academic topic that is rapidly growing in popularity and being used for a
wide range of decision-making concerns, particularly mathematical programming problems. The focus of this
study is on linear programming models with neutrosophic coefficients. We solved the triangular neutrosophic
linear programming problem in this article. We provided a unique ranking function for converting TNNs to
their crisp counterparts, and we thoroughly investigated the arithmetic operations of triangular neutrosophic
numbers. After utilising this ranking technique to convert the problem to its crisp values and solve it in any
traditional way. Real-world modelling of triangular neutrosophic LP optimization may be simplified using
the proposed approach, and it may be straightforward to use from a computational viewpoint. We used
triangular neutrosophic linear programming problems to explain three basic problems offered by Abdelfattah
[3]. We found that our proposed model is simpler, more efficient, and yields better outcomes than others.

Furthermore, researchers can successfully apply the concept of triangular neutrosophic number based
linear programming strategy in a broad range of research domains. The real benefit of the proposed technique
is that it can handle both symmetric and non-symmetric TNNs. Comparing results allows decision-makers
to choose their own acceptance, imprecise, and falsehood criteria.
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