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Abstract 

The chaotic dynamics of Roto-Translatory motion for a triaxial Gyrostat satellite is considered in this study 

based on the Hamiltonian approach. Higher complexity in the coupled spin-orbit equations motivates the 

reduction of the Hamiltonian in the study of this nonlinear system. This reduction is done by the use of the 

Deprit canonical transformation developed here by the new Serret-Andoyer variables used as rotational and 

translational variables. The results obtained from the Hamiltonian reduction can be written as a perturbed 

equation near Integrable-Hamiltonian form, where the perturbed part of the equations consists the orbital and 

gravity gradient effects. Increasing the perturbation parameter causes the trajectories of the system to pass 

throughout heteroclinic bifurcation zone introducing chaos in the system. Also heteroclinic bifurcation and 

transversally stable and unstable manifolds are mathematically proven using Melnikov method. Through the 

Melnikov integral, the bounded variations in the design parameters are determined so as to prevent the system 

from a chaotic behavior. The simulation results based on the numerical methods such as the time series 

responses, trajectories of phase portrait, Poincare section, and Lyapunov exponent criterion quantitatively verify 

chaos in the system in the presence of perturbation influences. 
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1. Introduction 

In the recent years, multitude of research works have been done in the general area of chaos present in the chaotic 

dynamics of pure rotational motion of satellites, though none have looked into the problem of Rotation-Translation 

together along the orbit. The lack of such research in the Roto-Translatory motion of satellites is more due to the 

extreme complexity of the motion and the added mathematical burden for the effect of the Gyrostat satellite orbital 

motion leading to highly coupled equations of motion.  

A satellite is mainly a rigid body with a simple dynamic structure. Among the first works in the field of chaotic 

dynamic analysis of satellites, the paper from Gray et al [1] analyzes the chaotic motion and heteroclinic bifurcation in a 

rigid body containing internal moving part and viscous damper using Melnikov method, considering the satellite 

rotational motion only. Bao-Zeng et al [2, 3] studied the chaotic dynamic and heteroclinic bifurcation of a spacecraft 

with a completely liquid-filled cavity and a satellite with flexible appendage using Melnikov integral. Zhou et al [4] 

studied the chaos and its stability in a damped satellite filled partially with liquid.  

Gyrostat satellites, due to the presence of stabilizers in their dynamic structure, are used in the highly technical 

missions, resulting in an increase in the complexity of the dynamic modeling. Tong and Tabarrok introduced the 

analysis of chaotic rotation in the Gyrostat satellite [5]. Kuang et al [6-8] studied the chaotic dynamics of the Gyrostat 

in spin motion under the gravity gradient torques. They have solved the homoclinic orbits in order to use them in the 

Melnikov method. Chaotic motion of Kelvin type Gyrostat with one rotor is numerically analyzed by Shirazi and 

Ghaffari-Saadat [9, 10] using the reduced Hamiltonian equations in their study of chaos. Elip and Lanchares [11] make 

the solution of the heteroclinic orbits for triaxial Gyrostat with one rotor in terms of elliptic functions. Doroshin [12] 

analyzed the attitude motion of variable mass coaxial dual-spin Gyrostat satellite, investigating the phase trajectory.  
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Among limited researches on the Roto-Translatory motion of the satellite, one can point out the work of Celleti et al 

[13, 14] and Palacian [15] that study the behavior of resonances in the spin-orbit coupling motion in celestial mechanics 

and measure the basin of attraction of the dynamic system without chaos analysis. Furthermore, there are some 

publications on the description and application of reduction methods and the procedures for chaos analysis. [16-24]  

According to older works, elimination the effects of orbital motion in the attitude dynamics of the Gyrostat system 

greatly affects the system and it increases the uncertainties between the model and real systems. Therefore, in this work, 

the Roto-translatory motion of triaxial gyrostat satellite with three rotors as the reaction wheels is modeled under the 

gravity gradient torques. Newton-Euler approach is initially used to derive the dynamic model of the system. Due to 

complexity in the coupled equations related to the spin-orbit motion, the Hamiltonian of the system is reduced using the 

new Serret-Andoyer variables by the developed canonical Deprit transformation. Some numerical and exact 

mathematical methods are used in the chaos and bifurcation analysis on the reduced equation of motion. Among the 

numerical methods, time series responses, Poincare section, phase trajectories, and Lyapunov exponent demonstrated 

the intersection of stable and unstable manifolds in the heteroclinic orbits and chaos phenomenon. In fact, the structure 

of the governing equations of motion being in near integrable form motivates us to use Melnikov integral for the 

analysis of chaos and heteroclinic bifurcation mathematically. All these procedures indicate the occurrence of chaos in 

the system when disturbed by the perturbation. According to the results of Melnikov method, we can determine the 

bounds corresponding to the variations for the design parameters of the system not resulting in the chaotic motion. In 

addition, the approach taken in the above analysis also offers an appropriate model for the attitude control of chaos in 

the satellite system. 

 

2. Mathematical Model of the System 

Let us consider the symmetric spacecraft in an equatorial circular orbit under the gravitational field of the earth. In this 

modeling approach, we focus on the analysis of the attitude dynamics of the Gyrostat satellite along the translational 

motion. In order to derive the governing equations of motion of the Gyrostat satellite with coupling translational and 

rotational motion, commonly known as the Roto-translatory motion, we use three different right oriented orthogonal 

reference frames as follows.  

1-The inertia geocentric frame   *        + is used with its origin at the mass center of the earth   , the      plane 

coincides with the equatorial plane,    axis passes through the ascending node, and the    axis is aligned with the 

earth's rotational axes. 

2- The orbital frame   *    + used with its origin at the center of mass of the spacecraft, the   axis being along the 

local vertical pointing to the mass center of the earth    called the nadir, the   axis is in the orbital plane coinciding 

exactly with the velocity vector of the satellite when the satellite is translating along the exact circular orbit, and the   

axis is normal to the orbital plane in the direction of the positive angular momentum of the satellite orbital motion. The 

corresponding unit vectors along these axes are ( ̂  ̂  ̂) for the roll, pitch, and yaw, respectively.  

3- The body frame   *    + coincides with the spacecraft principal axes with their unit vectors ( ̂  ̂  ̂) aligned with the 

outward normal to the satellite. (See Fig 1)   

The motion of the satellite in the unperturbed state is assumed circular in orbit with null eccentricity, the angular 

velocity of the satellite around the mass center of the earth is   , and the distance between the mass center of the 

satellite and earth is   . [25, 26] 

The gyrostat satellite consists of a rigid main body with three orthogonal planes and three gyros as reaction wheels. The 

mass of the main body is    and the mass of each of the three gyros is   . The mass center of the main body without 
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wheels is    and    is the mass center of the three gyros (       ), with the overall mass center at point   for the 

gyrostat satellite consisting of the main body along with its three wheels. The reaction wheels are located along the 

principal axes. So the total inertia tensor of the satellite and its three wheels is diagonal. 

 

Fig 1- Configuration of Gyrostat and its coordinate systems 

 

The orientation of the two orbital and body frames relative to one another is obtained by means of three Euler angles 

(     ) in the sequence       (     ). This classical sequence involves the rotation with   (roll) about the x 

axis, followed by the rotation with   (pitch) about the new y axis, and the last rotation with   (yaw) about the new z 

axis. According to the above assumption, the rotational kinematic model of the satellite is as follows. [25] 

 
 

  ̇           ̇    

  
 

  ̇           ̇    

 
 
  ̇   ̇     

 

(1) 

, where       , and    are the angular velocities of the main body expressed in the body frame. The kinematic model 

of the gyrostat satellite is involving the Euler equation for the rotational motion and the Newton law for the translational 

motion. In order to derive the Euler equation, we firstly calculate the total angular momentum of the gyrostat satellite 

related to the overall mass center of the total system ( ) as, (see appendix A) 

 ⃗⃗   (           ) ̂  (           ) ̂  (           ) ̂   (2) 

, where         , and     are related to the attitude rotation of the satellite and orbital angular velocity in the body 

frame as  

                 
                  

             
 

(3) 

, and       , and    are the angular velocities of the reaction wheels relative to the main body with the rotation axes of 

each gyros aligned with the axes of the body frame.        , and     are the inertia elements obtained as  

               (   ̂)

                (   ̂)

              
 (   ̂)

 

(4) 

, where      , and    are the inertia momentum of the main body relative to the   ,    is the inertia momentum of each 

gyro with respect to   ,   is the distance between the mass center of each gyro and the main body, and  ̂  

 √   √  (   ) 

(   ) 
 where         which is derived in the appendix. After derivation of Eq. (2), the Euler equation is 

expressed as  
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    ̇   (       )              

    ̇   (       )              

    ̇   (       )              

 

(5) 

, where    is the control torques due to the reaction wheels used as the system stabilizer defined as follows  

(Ω Ω Ω )

(Ω Ω Ω )

(Ω Ω Ω )

cx W x yy z zz y

cy W y zz x xx z

cz W z xx y yy x

N I

N I

N I

 

 

 

   

   

   

 

(6) 

, and     is the gravity gradient perturbation torques on the system given [25] 

      
  

   

(       )          

      
  

   

(       )         

      
  

   

(       )         

 

(7) 

, where   is the gravity constant. In order to derive the dynamic equations of translational motion of the satellite, 

Newton second law is used in the orbital frame, leading to more simplified relations. Neglecting the acceleration of the 

mass center of the earth with respect to the sun, the orbital equation of motion of the spacecraft is as follows  

∑       (  ̇       ̇ ) ̂  (    
   ̈ ) ̂ 

(8) 

, where ∑   is the gravity and its perturbed gravity gradient forces. Equations (5) along with equation (8) together 

describe the coupled dynamic Roto-Translatory motion of the gyrostat satellite. 

Performing a simulation of the Newton-Euler model of the system using the shared-memory computing system contain 

three computational nodes with excessive run time, the trajectory and time series of angular velocities of the system 

have been obtained and depicted in Fig. 2 and 3, demonstrating quasi periodic-like behavior.  

 

Fig. 2. Trajectory of phase portrait of the system 
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Fig. 3. Time series response of angular velocities of the system 

 

However, due to higher complexity in this modeling, it will be difficult to do much analytical research, making it 

necessary to obtain a reduced and simpler model so that the reduction method is applied on the Hamiltonian of the 

system. 

 

3. Hamiltonian of the system 

According to the above assumption in the previous section, the kinetic energy of the Roto-Translatory motion of the 

gyrostat satellite is computed as follows. [26] 

                         (9) 

, where, 

             
 

 
     

  
 

 
∑     

 

 

   

 

(10) 

, in which     is the velocity of the mass center of the main body and    ,         are the components of the velocity 

of the mass center of each gyro in the three directions, and, 
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(11) 

Simplification of equations (9) to (11) gives the total kinetic energy as follows. 

  
 

 
  ( ̇ 

    
   

 )  
 

 
{      

        
        

 }    (                    )  
 

 
  (  

 

   
    

 )    (                  ) 

(12) 

, where, the first term in the above equation is related to translational motion, and the second and third terms are related 

to the attitude motion of the spacecraft. The other terms express the kinetic energy of the reaction wheels. The 

parameters         , and     are as given in equation (3). We then have, 
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(      )

            
   

 

  

(      )

           
   

 

  

(      )

 

(13) 

, and 

   
  

   

  

 
(14) 

, where    denotes the whole mass of the gyrostat satellite expressed as          . According to the 

gravitational field of the earth, the potential energy of the spacecraft is derived as, 

    
    

  

 
(15) 

, where,   is the universal gravity constant and   is the mass of the earth. In order to derive the equation of motion of 

the system by means of the Hamiltonian method, the Lagrangian of the spacecraft is first calculated as follows. 

        (    ̇ ) (16) 

, where,   ’s are the generalized coordinates describing the Roto-Translatory motion, which involves the rotational 

coordinates (      ) and orbital coordinates (     ) with the    being similar in concept to the definition of eccentric 

anomaly in the astronomy and defined by    
 

  
    ̇ . In this modeling approach, the orbital motion of the 

spacecraft is assumed planar and only two coordinates are allocated to the translational motion. The relations between 

the generalized coordinates (  ) and the angular velocities in equation (12) are expressed by the kinematic model 

described by equations (1) and (3). Consequently, the generalized momentum related to each generalized coordinates is 

derived as follows.  

   
  

  ̇
       

  

  ̇
       

  

  ̇
       

 
  

  ̇ 

       
 

  

  ̇ 

 
(17) 

Using the Legendre transformation, the Hamiltonian of the system is then obtained as  

   ̇    ̇    ̇    ̇    
  ̇    

   (18) 

It is noted that the determination of the above Hamiltonian and its related equations of motion are quite complex. Since 

the order of magnitudes of   
  and     

  in the translational motion are insignificant compared to those of the other 

coordinates, we can write the kinetic energy in the control torque-free case in the following simple form as  

    (    ̇ )      (    ̇ )    
   (  ) (19) 

, in which 

   
 

 
,      -, ̃-,      -  

 

 
    

   
  

 

 
   ̇ 

  
(20) 

   
 

 
,           -, ̃-,      -  

(21) 

   
 

 
,           -, ̃-,           -  

(22) 

, where  

 ̃  *

      
      
      

+ 

, and  ( )      ( ) and  ( )      ( ), also using equations (15) and (19), the Hamiltonian in the new form is obtained by 

the Legendre transformation as 
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  * ̇    ̇    ̇    ̇    
  ̇    

+  *   (  )   (  
 )     + (23) 

According to equation (19), the first part of the above Hamiltonian is simplified, which is then written in the form [9] 

     (  )   (  
 )      (24) 

Using the principal axes of coordinate system (        ), the matrices in equations (20) to (22) becomes diagonal with 

the rotation matrix whose columns involve the eigenvectors of original matrix. Therefore, the Hamiltonian of the 

system in the new principal coordinates is obtained as  

      (  )   (  
 )   (25) 

, and 

   
 

 
      

  
 

 
      

  
 

 
      

  
 

 
(    

 )  
  

 

 
   ̇ 

  
    

  

 
(26) 

 (27) 

                                  

   
 

 
     

   
  

 

 
     

   
  

 

 
     

  
(28) 

, where    is the Hamiltonian in the principal coordinate of the inertia tensor  ̃, which is defined under equation 

(22),         and     are the angular velocity components of the satellite along the principal axes of  ̃, and        , 

and     are the principal inertia momentum of the Gyrostat satellite equivalent to the eigenvalues of  ̃. The (     ) are 

the new set of Euler angles in the direction of the principal axes of  ̃, coinciding with the (     ) angles after 

transformation to new principal coordinates. The generalized momentum based on the Hamiltonian of the system using 

the new coordinate (     ) are computed using equations (17). 

   (       )    (       )    (     )    (     
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   (     )    (     )    (                   )   (30) 

   (   )    (     )   (31) 
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 (  ) ̇  (33) 

Equations (29) to (33) will now be used to solve for the generalized velocities with respect to the generalized 

momentum variables. Using these results then, the Hamiltonian in equation (24) is written in the form  

                   (34) 

, where 
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(36) 

                     
  

(      
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(37) 

, with      
  and          

 . In equation (34), the Hamiltonian for the torque-free motion is written in the form of 

a complete integrable term     and two other perturbation terms     and     which are related to the parameters 

consisting of the orbital angular velocity    and the orbital radius vector of the satellite   .  



Chaos and Bifurcation in Roto-Translatory Motion of Gyrostat Satellite  Abtahi & Sadati 

 

90 

 

There are some salient points of importance according to equations (34) to (37). Among them, it is noted that the 

derivation of the Hamiltonian in the form of Eq. (34) helps to use the perturbation method to analyze the system. It is 

also evidence that the effect of the translational motion of the satellite is much less than that of the rotational ones. This 

indicated that the relative rotational energy is quite larger than the translational energy. Furthermore, the integrability 

and regularity of the rotational motion is increased. One important point noted in the above Hamiltonian is its extreme 

complexity, making the system analysis quite difficult. On the other hand, finding some "constant of motion" in the 

system can reduce the Hamiltonian to a simple form. This is done by means of the new Deprit transformation.  

 

4. Reduction of Hamiltonian using new Deprit Transformation 

Considering the Hamiltonian obtained in the previous section, since the coordinate   does not directly appear in the 

Hamiltonian equation,   is a cyclic coordinate. Therefore, the generalized momentum    related to this cyclic 

coordinate is an integral of motion, making it one of the constants of motion. It indicates the possibility of system 

reduction to a system with exactly one less degree of freedom using a proper canonical transformation. This reduction is 

done with the help of the Deprit canonical transformation by defining the new Serret-Andoyer variables for the Roto-

Translatory motion to transform the old variables to the new ones according to the spherical triangle shown in Fig. 4 

and its related. [16-18] 

The old variables are  

*                        
    

+ 

, and the new variables under transformation are  

*                        
    

+ 

The new Serret-Andoyer relations of transformation are defined as follows.  

      (38) 

            (39) 

      (40) 

   
    

 (41) 

   
    

 (42) 

 

Fig. 4. Definition of Serret-Andoyer variables in Deprit Transformation [16] 
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Equations (38) to (40) are related to the rotational motion and equations (41) and (42) correspond to the translational 

motion. Then the relations based on the spherical triangle        are as follows [16, 27].  

   ( )     ( )    ( )      ( )    ( )    ( ) (43) 

   (   )     (   )    ( )     (   )    ( )     ( ) (44) 

   (   )     (   )    ( )      (   )    ( )     ( ) (45) 

, where, 

   ( )  
  

  
           ( )  

  

  
 

(46) 

Substituting equations (43) to (46) and their results into equations (34) to (37), the reduced Hamiltonian in its simplest 

form here is obtained as  
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, where  
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(50) 

Consequently, the canonical equations of motion based on the reduced Hamiltonian of the system using generalized 

coordinates and momentum in the absence of the external control torques are evaluated as follows.  
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(60) 

, where           
  is the perturbation parameter of the gravity gradient torques and     is the gravity gradient 

torques based on equation (7) after transformation by Serret-Andoyer variables, and we have  

      
           



Chaos and Bifurcation in Roto-Translatory Motion of Gyrostat Satellite  Abtahi & Sadati 

 

92 

 

       
   

  
 

 
          

 

           
   

      
 

 
(       )  

      
 

 
     

    

        (      )       

    
 

 

 
(       )       

    
               

According to the equations (51-60) in the unperturbed and torque free system, we have two constant parameter named 

     and two integral of motion due to be zero the value of       
. As a result, using the new Deprit transformation, 

the system with order of 5 is reduced to the system with order of 3 in the unperturbed system.  

 

 

5. Numerical Analysis of Chaos 

The reduced Hamiltonian in the previous section can be used for a thorough and precise analysis study on the nonlinear 

system. Since the translational motion of the gyrostat satellite affects through perturbation terms, the rotational motion 

of the system dynamics is considered to be the more essential part, expressed by equations (53) and (58) rewritten as 

follows.  

 ̇    (
 

   

 
  

 

   

 
  

 

   

)   (  ) 
(61) 
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(62) 

, where       
  is a unique perturbation parameter consisting of          and, 

   
 

  

*  
          + 

   
   

 {
 

 
(       )      }  

 

  

*             +  
  

   
*      

         
 + 

, and    is the orbital velocity of the spacecraft. According to equations (61) and (62), the unperturbed system (   ) 

has five fixed points based on the values of inertia moments. The fixed point (   ) is hyperbolic saddle point 

corresponding to the spin about the intermediate axis (  ), and the two equilibrium points ( 
 

 
  ) are on the border of 

stability margin corresponding to the spin around the minor (  ) and major (  ) axes, respectively. The fixed points 

(     √
   

   
(
       

       
)     ) are related to the upper and lower limits of the phase portrait which are beyond the region of 

interest.  

In order to numerically analyze the dynamical system, the equations of motion in (51) through (60) are simulated using 

the Range-Kutta method. The procedure for the Poincare map is then used to study the nonlinear system for      

       . The Poincare map of the system is generated by intersecting the trajectories of the phase portrait with plane 

    in mod   . The Poincare section of the system is demonstrated in Fig. 5 in the unperturbed case (   ) 

for                          , and        . This figure clearly shows the regularity in the unperturbed system. 

The Poincare section of the perturbed system under the translational effects and gravity gradient torques is 

demonstrated in Fig. 6.  

According to the intersection of stable and unstable manifolds in the heteroclinic orbits in Poincare plane, the chaotic 

behavior can occur in the system. Based on the Smale-Brikhoff theorem, heteroclinic intersection in Poincare plane can 



Analytical and Numerical Methods in Mechanical Design 

 

93 

 

describe the behavior of the system by a horseshoe map. When a heteroclinic intersection occurs, one trajectory on the 

unstable manifold joins another trajectory on the stable manifold.  

 

Fig. 5. Regular Poincare section of the unperturbed system for      

 

Fig. 6. chaotic Poincare section of the perturbed system for          

 

Fig. 7. Poincare section and chaotic band near the saddle point for          

 

In fact, a trajectory near the saddle point approaches to it by the stable manifold, and that trajectory is then forced away 

from a saddle point by the unstable manifold. Hence, a heteroclinic tangling is developed around the saddle point and 

the trajectories can seem to wander randomly near the saddle point, introducing a basin of attraction in some dissipative 

systems. Stated differently, the stretching, compression, and folding in the trajectories of the system around the saddle 

points are actually influenced by the heteroclinic intersection. Therefore, it shows a horseshoe map behavior and 

ultimately a heteroclinic tangling may show chaotic trajectories According to Fig. 7, a chaotic behavior appears near the 

saddle point, where the chaotic band with chaos windows is shown in the figure clearly. [23, 24] 
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Fig. 8. Growth of the irregularity of the system with increase in   

 

Another procedure for chaos analysis is the global heteroclinic bifurcation that shows the effects of perturbation on the 

system. As Fig. 8 shows, the variation of phase portrait of the system is demonstrated with respect to the changes of the 

perturbation parameter. Fig 8(1) is related to the unperturbed system (   ) which includes a regular stable limit cycle 

with periodic behavior. However, increasing the perturbation parameter causes to intensify the irregularity in the limit 

cycle and as in Fig. 8(2), the dynamics of the system is similar to a quasi-periodic manner. Finally, based on the true 

value of the perturbation parameter (        ) as shown in Fig. 8(3), the behavior of the system will become like a 

chaotic system. 

One of the strong tools for numerical analysis of a chaotic system is the Lyapunov exponent method. The Lyapunov 

exponent measures exponentially the attraction or divergence of two adjacent orbits in time in the phase space with 

close initial conditions. Furthermore, the Lyapunov exponent displays the sensitivity of the system to initial condition. 

The Lyapunov exponent ( ) for each state variable (  ( )) is mathematically defined as  

     
   

 

 
∫   ( ( ))  

 

 

    
   

 

 
  |

   ( )

   ( )
| 

(63) 

, where,   ( ) is the initial condition, and   ( ( )) is the real eigenvalue of the Jacobian matrix related to the 

divergence rate of the system. Therefore, if the largest Lyapunov exponent is negative, then the orbits converge together 

and, if it is positive, then the distance between the adjacent orbits grows exponentially and the system exhibits 

sensitively dependence on the initial condition. As a result, if the system has at least one positive Lyapunov exponent, it 

usually indicates chaos [21, 24].  

In this section, after calculation of the Lyapunov exponent for each state, the diagram for the largest Lyapunov 

exponent with respect to the increase in the perturbation parameter is obtained. According to Fig. 9, increasing the 

perturbation parameter of the system results in a Lyapunov exponent sign change to positive, which in turn increases the 

possibility of chaos in the system. The results shown in Fig. 9 completely agree with those of the heteroclinic 

bifurcation diagram of Fig. 8.  
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Fig. 9. Largest Lyapunov exponent of the system with increasing the   

 

Simulation results of the system are obtained under the initial condition                             
 

        
      , and    

         
       

        
        

    . Poincare section and trajectories of the 

system demonstrate a total chaotic behavior in the perturbed system. For instance, the Poincare section of the system 

that includes the intersection of       trajectory of the system with the plane       in mod    is shown in Fig. 10, 

verifying the chaotic behavior in the system. In addition, the trajectories of the system under the above initial condition 

are demonstrated in Figs. (11) to (13), again indicating chaotic behavior.  

 

 

Fig. 10. Poincare section of the system in I-J plane with 

         

Fig. 11. Chaotic trajectory       of the phase portrait of 

the system  

  

Fig. 12. Chaotic trajectory     of the phase portrait of the 

system  

Fig. 13. Chaotic trajectory     of the phase portrait of the 

system  

 

6. Mathematical Analysis of Chaos Using Melnikov Method 
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In this section, chaotic dynamic and heteroclinic bifurcation is analyzed mathematically on the Roto-Translatory motion 

of the gyrostat system. In order to analyze the chaos mathematically, we use Melnikov method. The Melnikov method 

is a perturbation technique for proving the existence of intersecting heteroclinic orbits in a class of time-periodic vector 

field. The existence of intersection of heteroclinic orbits implies the existence of horseshoes and chaos phenomenon due 

to the Smale-Brikhoff theorem with the chaos appearance near the unperturbed heteroclinic orbits. The essential idea is 

to use the solution of the unperturbed system in studying the perturbed solution. Since the system under consideration is 

expressed with its perturbation equations, this method can be a proper means for chaos analysis [2-8, 24].  

In order to apply the Melnikov method, particular attention is due to the equations of motion (51) through (60). Since 

the equations (54), (55), (59), and (60) are related to the translational motion affecting the perturbation, we use only the 

rotational equations of motion in the Melnikov integral and its solutions of the heteroclinic orbits.  

Thus, what is important about the use of Melnikov's method is that it is capable of giving the solution of the 

unperturbed heteroclinic orbits usable for the perturbed system. In order to solve the unperturbed heteroclinic orbits 

more efficiently, it is best to write the rotational Euler equation (5) in terms of the angular momentum in the 

unperturbed and torque-free case. This results in the equations  

 ̇  
(       )

      

      

 ̇  
(       )

      

      

 ̇  
(       )

      

      

 

(64) 

Equations (64) are nondimensionalized next using the parameters defined as follows. [2, 3] 

   
  

  

             
   

   

             
   

   

          ( )  
   

  

( )̇             
   

   

 

, in which   is the nondimensional time and    is the overall angular momentum of the system defines as  

  
    

    
    

     
     

  (65) 

, where    is constant due to the torque-free motion. The translational motion of the satellite is in the circular orbit in 

the unperturbed case, therefore,    
, and    

 are constant, and equation (65) is summarized as  

  
    

    
    

    
     

     
           

    
    

  (66) 

After applying the nondimensional parameters on equation (64), we have  

    (
    

  
)      

    (
     
    

)      

    (
    

  
)      

 

(67) 

The energy equation of the system including kinetic and potential energy is defined as  

  
 

 
      

  
 

 
      

  
 

 
      

  
 

 
   ̇ 

  
 

 
(    

 )  
  

    

  

 
(68) 

, where   is constant since the satellite moves in a conservative environment. Also, the terms related to the translational 

kinetic energy and potential energy are constant. Consequently, the energy equation is expressed as  

 ̃  
  

 

  
   

  
  

 

  
 

(69) 
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, where,  ̃ is the nondimensional kinetic energy defined as  ̃  
     

   in which   is the kinetic energy of the system. The 

spherical phase portrait for the unperturbed system is demonstrated in Fig. 14 showing the hyperbolic saddle point and 

heteroclinic orbits. Any trajectory on the momentum sphere defined in equation (66) is determined by the intersection 

of the momentum sphere and the energy ellipsoid defined in equation (69) in the body coordinates. The angular 

momentum vector always remains on a particular intersection of the momentum sphere and energy ellipsoid. The sphere 

radius is     and must lie between the smallest and largest semi axes of the ellipsoid.  

 

Fig. 14. Momentum sphere of the system with the heteroclinic orbits and hyperbolic saddle points 

 

Since,              or as dimensionless          , the condition on the radius of sphere is given by    ̃    

    ̃. Also, the heteroclinic orbits are formed when the momentum sphere and energy ellipsoid are tangent at the saddle 

point (      ), as shown by equation (67). Therefore, the energy level for the heteroclinic orbits must be given as 

 ̃    or          . According to the above explanation and using equations (66), (67), and (69), the solution of the 

angular momentum along the heteroclinic orbits is given by [1, 5-8]  

    (
  (    )

     

)

 
 

     (  )

         (  )

    (
  (    )

     

)

 
 

     (  )

 

(70) 

, where,   √(    )(    )      and     is chosen to eliminate constants of integration and the appropriate signs 

are chosen to give the four heteroclinic trajectories around the saddle point. Now, based on the Serret-Andoyer 

relations, the solution of the heteroclinic orbits in equation (70) is transformed by the Deprit variables, leading to 

equations (71) below, which are similar to the spherical coordinates in its overall structure. [6]  

                 (
  (    )
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(71) 
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On the other hand, based on the equations (51) to (60) in the unperturbed case, the states                  
    

and   

are constant and the states     , and   are determined from the solutions of heteroclinic orbits and equations (71). 

Therefore,   

     √
  (    )

  (    )
     (  ) 

(72) 

          (  ) (73) 

Since    is constant and for values of     near the    ,    is estimated by equation (52) by     . Accordingly, the 

equations of motion of the system are rewritten for the perturbed system to be used in the Melnikov integral. Hence,  

 ̇       (   ) (74) 

 ̇       (   ) (75) 

 ̇       (   ) (76) 
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Then the Melnikov function can be written in the integral form of  

 (  )  ∫  (  ( ))   (  ( )     )  
  

  

 
(78) 

, where   is a Hamiltonian vector field and  (   ) is a small perturbation,   ( ) is the solution of the heteroclinic 

orbits in the unperturbed system, and the symbol   is the wedge operator defined by (             ). 

Substituting equations (74-77) into equation (78) yields  

 (  )  ∫ *      (    )        (    )+  
  

  

 ∫ *      (    )        (    )+  
  

  

 
(79) 

After solving the above integral using integral tables, integration by parts, Cauchy's integral, and residue theory, the 

Melnikov function is derived as [27]  

 (  )          (   )       (   )       (    ) (80) 

, in which  
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, where   √
  (    )

     
 and   √

  (    )

     
. 

Equation (80) can be written in a simpler form as  

 (  )          (     )       (    ) (81) 

, with    √        and         (
  

  
).   

According to equation (81), it has Zero-Crossing if, 

             (82) 

This indicates the transversally in the heteroclinic orbits and a possible chaos in the system. Based on the values of the 

system parameters in the simulation in the previous section, condition (82) is in fact satisfied, and the Melnikov method 

mathematically proves the chaotic behavior in the system. Furthermore, if  

         (83) 

, then (81) has no Zero-Crossing and the system is definitely not chaotic. Therefore, we can design the parameters of the 

system based on satisfying condition (83), and as a result, the incidence of chaos in the system can be prevented. 

 

7. Conclusion 

This work considers the modeling and chaos analysis of the Roto-translatory motion of a gyrostat satellite with three 

reaction wheel stabilizers under the gravity gradient torques. In order to derive the dynamic model of the system, 

coupled Newton-Euler equations is initially modeled. However, the complexity inherent in the coupled spin-orbit 

equations is a strong incentive to reduce the order of the system model. Therefore, the dynamics of the system is re-

derived using the Hamiltonian approach. The developed canonical Deprit transformation with the new Serret-Andoyer 

variables reduced the system with five degrees of freedom to a system with three degrees of freedom, rendering it 

possible to perform a thorough, yet less laborious nonlinear analysis of the system. Simulation results of the reduced 

system consisting of the phase space trajectories and Poincare section demonstrate the heteroclinic bifurcation in the 

system. The existence of intersecting heteroclinic orbits then implies the existence of horseshoe and chaos based on the 

Smale-Brikhoff Theorem. In addition, the Lyapunov exponent satisfies numerically the chaos phenomenon in the 

perturbed system. On the other hand, the Melnikov method can be an appropriate means for the analysis of chaotic 

systems when the model of the system is derived as a perturbed Hamiltonian system. Therefore, according to the results 

obtained from Melnikov function, the intersection of stable and unstable manifolds in the heteroclinic orbits is verified 

and the chaos and heteroclinic bifurcation is mathematically demonstrated. Consequently, the bounds on the values of 
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the design parameters can be determined for the system such that the system does not fall in a state of chaos in the 

absence of a control system. 

 

8. Appendix A: Deriving the total angular momentum 

In order to proving of equation (2), the total angular momentum of the Gyrostat satellite with respect to   is as 

 ⃗⃗    ⃗⃗     ∑ ⃗⃗    

 

   

 

(A.1) 

, where  ⃗⃗     is the angular momentum of the main body relative to  , that is derived as 

 ⃗⃗      ⃗⃗     
 (      ⃗   

) (A.2) 

, where  ⃗⃗     
 is the angular momentum of the main body with respect to   ,    is the vector    

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and  ⃗   
 is the 

velocity of the   . Furthermore,  ⃗⃗     is the angular momentum of each gyro relative to   and it is derived as follows. 

 ⃗⃗      ⃗⃗     
 (       ⃗   

)               (A.3) 

, where  ⃗⃗     
 is the angular momentum of the each gyro relative to   ,     is the vector    

⃗⃗ ⃗⃗ ⃗⃗  , and  ⃗   
 is the velocity of 

the   . Substituting equations (A.2) and (A.3) into Eq. (A.1) and placing the center of coordinate system in  , the total 

angular momentum of the system is derived as follows. 

 ⃗⃗   ,(      )        - ̂  [(      )        ] ̂  ,(      )        - ̂

 *     ( ⃗⃗     )+  *∑      ( ⃗⃗      )

 

   

+ 

(A.4) 

Then, using the vector triple product formulae as    ( ⃗⃗     )  (     ) ⃗⃗   (    ⃗⃗  )   in equation (A.4), where  ⃗⃗   is 

the total angular velocity of the Gyrostat based on equations (3), and simplifying these relations, ultimately equation 

(A.4) results equation (2). 
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