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Abstract 

This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization 
assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various 
slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while 
keeping simplicity is necessary. In this paper, a new linear approximation is derived for solving the deferential equations of a rocking block 
in order to include wider range of blocks with various slenderness. The proposed method is verified by numerical solutions of the 
governing equations utilizing two methods of: average acceleration and fourth order Runge-Kutta. Verifications revealed more reasonable 
accuracy of the proposed method in comparison with the current linearization assumptions.  
Keywords: Rigid; Block; Rocking; Linearization; Equipment 

1. Introduction 

During earthquakes, many rigid structures such as 
nonstructural components, electrical substations, 
industrial equipments, and concrete radiation shields may 
be affected by ground motions and set into the rocking 
motions and toppling. The large amounts of nonstructural 
damages mostly due to the toppling of the rigid 
nonstructural components in the past earthquakes 
highlighted the need for modification of the current 
building codes for such components [1]. For rocking 
response analysis of such rigid components, a model 
composed of a rigid block in a rigid base has been widely 
used. The wide application and simplicity of this model 
has stimulated many researchers to use such a model [2-
8]. An early analytical study in this field is Housner in 
which, minimum acceleration amplitude of a half-sine 
pulse required for toppling of a rigid block was derived 
analytically [8]. Housner concluded that toppling of a 
given block depends on the product of the acceleration 
amplitude of the pulse by its duration. Alsam et al 
analytically and experimentally showed that the response 
of a rigid block under seismic excitation is in line with  
 

 
 
 
response to single pulse excitation [6]. This research was  
taken up and continued by Spanos and Koh in which 
“safe” and “unsafe” regions were introduced [9]. Tso and 
Wong studied steady-state rocking responses of a rigid 
block analytically and experimentally and concluded 
inconsistencies between analytical and experimental 
results [10, 11] that further clarified Hogan by introducing 
the concepts of orbital stability and Poincaré maps [4,5]. 
Based on Alsam et al and Iwan and Chen, Makris studied 
[2,6,12] rocking responses of a rigid block using 
equivalent pulse of near-field earthquakes and declared 
that Housner’s derivation for the required minimum 
amplitude of a half-sine pulse for overturning of a rigid 
block is un-conservative. For rocking response analysis, 
the appropriate rocking governing equations can be solved 
numerically by direct integration or analytically by 
incorporating some linearization into the governing 
equations. Incorporation of such a linearization may cause 
some inconsistencies between real response and 
approximated response by using linearization. The wide 
applications of analytical solutions in derivation of 
valuable outcomes, such as minimum toppling 
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acceleration, justifies more efforts for more accurate 
derivation of analytical solutions. Whereas the major 
assumption in derivation of analytical solution is 
slenderness of the blocks, this assumption limits the 
applicability of such derivations. The purpose of this 
research is developing analytical solutions based on 
modified linearization method that can match numerical 
solutions better without incorporating complex terms and 
can be applicable for wider ranges of blocks.  

2. Governing Equation 

In this study, a free-standing object is modelled as a 
rectangular rigid body subjected to the horizontal 
excitation as shown in Fig. 1. 

 
Fig. 1. Rigid Block on rigid base 

 
Assuming that the coefficient of friction is large 

enough, no sliding will occur between block and base. In 
such a case, depending on the ground acceleration, block 
may move rigidly with the base or set into the rocking 
motion. It is assumed that the block will oscillate rigidly 
about centres of O ( )0θ and O′ ( )0θ . By taking 
moment about rotation centres of O  and O′  , the dynamic 
governing equations can be written as the following: 

)()( θαθαθ −−−−= RCosuMMgRSinI g
         

0 θθ cr                                            (1) 

)()( θαθαθ +−++= RCosuMMgRSinI g
        

0θθ cr−                                         (2) 
Where: 

:M Mass of block 
:I Moments of inertia about point O  or O′ and can be 

defined as: 3/4 2MRI =  
:g Gravity acceleration 

:crθ Critical rotation of block ( αθ =cr )   
Housner [8] took into account simplifying assumptions 
for derivation of analytical solutions from equation(1) and 
(2) as the following: 

1)( ≅±θαCos     θαθα ±≅± )(Sin     (3) 
By using the above assumptions and also assuming

)sin( ψω += tau pg  , governing equation (1) and (2) can 
be rewritten as follows: 

αψωθθ 222 )( pptSin
g

a
p p −+−=−                  

0 θθ cr                                             (4)                           

αψωθθ 222 )( pptSin
g

a
p p ++=−                    

0θθ cr−                                           (5)                          
Where:  

:p System parameter and can be defined as 
R
gp

4
3

=        

:ψ Phase difference which can be defined as following: 

)/(sin 1
pagαψ −=                 

The analytical solution of equation of (4) and (5) can be 
formed as follows (Makris[2]); 
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The above linearization and appropriate derivations are in 
line with many published researches in assessment of 
various aspects of rigid block dynamics (e.g. [2-8]),  but 
because of Housner’s initiation for using such an 
assumption hereinafter it will be called “Housner 
linearization”. 

3. Modified Approximation 

In the new modified linearization, as mentioned before, 
it is tried to use better approximation of governing 
equations while keeping simplicity. The new assumptions 
can be expressed as follows: 

)()( αθα CosCos ≅±                          (11) 
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)()()()()()()( αθαθαθαθα CosSinSinCosCosSinSin ±≅±=±
(12) 
Substituting equations (11) and (12) in the governing 
equations of (1) and (2), these equations can be rewritten 
as: 

)(
)().()()()( 222

α
α

ααψωθαθ
Cos
CosSinpCosptSin

g
a

Cosp g −′+=−            

0 θθ cr                                (13) 

)(
)().()()()( 222

α
α

ααψωθαθ
Cos
CosSinpCosptSin

g
a

Cosp g +′+=−          

0θθ cr−                                  (14) 
Where: 

))tan(/(sin)/./(sin 11 αψ pp agHBag −− ==′  
Finally,  the governing equation can be formed as follows: 

)tan()( 222 αψωθθ pptSin
g

a
p p ′−′′+=′−         

0 θθ cr                                              (15) 

)tan()( 222 αψωθθ pptSin
g

a
p p ′+′′+=′−       

0θθ cr−                                           (16) 
In which: 

)(αCospp =′  
By solving equations of (14) and (15) analytically, 
response equations can be formed as follows: 
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By comparison of the equations (7) to (21), it is clear that 
the new linearization substantially affects the system 
parameter of p  and changes it to p′ ( )cos(αp ). As 
concluded by Yim, the hyperbolic divergent nature of 
rocking response is one the factors which causes 

sensitivity of response to initial conditions and system 
parameters [7]. Considering Yim’s conclusion, changing 
parameters of p  into p′  that incorporates hyperbolic 
terms may make major differences between the proposed 
linearization and Housner linearization. 
This matter is also valid for changing constants of 4,3,,2,1A  

into 4,3,2,1A′  that multiply into hyperbolic terms. In the 
following sections, the efficiency of the proposed 
linearization will be examined against numerical results. 

4. Numerical Solution 

Whereas dynamic behaviour of a rigid block is 
geometrically nonlinear and also chaotic, more care must 
be taken in choosing the numerical algorithm [1,2,3,4]. 
Yim et al utilized the fourth order Runge-Kutta method in 
assessment of rigid block dynamics under seismic 
excitation with small time steps in order to satisfy 
numerical stability [7]. The fourth order Runge-Kutta was 
examined by Xiefor nonlinear damped and un-damped 
doffing oscillator [12]. Although Xie declared that this 
method usually is not used in finite element codes for 
transient dynamic analysis but conclusions of his study  
showed far more accurate results of this method in 
comparison with Hoboult, Wilson-θ , and central 
difference method when time step is small enough. In 
utilizing implicit methods in solving nonlinear problems, 
Batheas a general recommendation proposed using a 
combination of unconditionally stable methods (e.g. 
average acceleration) and modified Newton-Raphson. In 
this research, two solvers of fourth order Runge-Kutta and 
average acceleration using modified Newton Raphson 
were utilized and as shown in Fig (2), results show a good 
compatibility of these two methods [13]. 

Besides the choice of a suitable solver, another 
important issue in assessment of dynamic response of a 
rigid block, as can be seen in equations (1) to (21), is 
finding contact time of the block to its base. This time, the 
governing equation suddenly switches from one set to 
another set of equations with new initial velocity 
condition; therefore, a locating event algorithm, as 
pointed out by Bernal, is needed [14]. 
In this research, fractional time stepping algorithm is 
utilized as already used by Mahin and Nau in developing 
nonlinear response spectra [15,16]. The schematic 
procedure of this method according to the Mahin research 
can be seen in Fig (3) [15]. 

This procedure will repeat for required fractions till the 
event with prescribed criteria is detected. Allen and Duan 
assumed 610−θ  criteria for detecting contact; in this 
research, the same criteria has been taken into account for 
detecting the event [17]. For better interpretation of the 
comparison of the results, this algorithm was not only 
used for numerical solutions but also in analytical 
solutions.  
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(a) 

 
(b) 

Fig. 2. Comparison of the rocking time histories using Average-
acceleration and fourth order Runge-Kutta for:

4.0/,3,1 === gamHmB , πω 2=   

 
Fig. 3. Schematic procedure of fractional time  

stepping according Mahin research [15] 

5. Comparison of Results 

In order to compare the modified linearization and 
Housner linearization, first, a comparison of time histories 
for arbitrary  blocks under half-sine and full-sine pulse 
was done and following that, a sensitivity analysis with 
selection of  maximum rotation ratio ( crθθ / )as the 
comparison criterion was performed. The aim of this 
sensitivity analysis is examining generality of modified 
linearization efficiency in a wide range of excitations and 
block sizes. 

The results of the first section (comparison of time 
histories) are presented in Fig (4) for half-sine excitation 

and in Fig(5) for full-sine excitation. As it is obvious in 
Fig (4), the differences between numerical results using 
Housner linearization increased with the decrease in 
aspect ratio ( BH / ), although the consistency between 
numerical results and modified linearization was kept 
reasonably. This observation is also valid for full-sine 
pulse excitation and as can be seen in some cases like Fig 
(5-b) and Fig (5-c) Housner results lead to overturning 
conclusions tough the numerical and modified 
linearization results still report survival of block under 
such an excitation. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Comparison of results under half-sine excitation:  
(a) 2.0/,3,5.0 === gamHmB   

(b) 4.0/,5.1,5.0 === gamHmB  
(c) 7.0/,1,5.0 === gamHmB , in all cases πω 2=  
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In sensitivity analysis, three aspect ratios( BH / ) of 2:1 
3:1 and 4:1 were selected and in each aspect ratio two 
block widths of 0.5m and 1m for incorporating size 
effects in sensitivity analysis were selected. In selection of 
pulse amplitudes, whereas minimum acceleration for 
initiation of rocking mode is gHB )/(  ,an aptitude bigger 
than this value is needed for conclusion of rocking 
motion;  

 
(a) 

 
(b) 

(c) 
Fig. 5. Comparison of results under full-sine excitation:  

(a) 2.0/,3,5.0 === gamHmB  
(b) 4.0/,5.1,5.0 === gamHmB   

(c) 6.0/,1,5.0 === gamHmB , in all cases πω 2=  

in this analysis, amplitudes of: gHBap )05.0/( +=  and 
gHBap )1.0/( +=  for half-sine pulse excitation and 
gHBa p )1.0/( +=  and gHBap )125.0/( +=  for full-sine pulse 

excitation were selected arbitrarily. 
In each selected block with prescribed excitation 

amplitude, the excitation frequency (ω ) sweeps ranges 
from p1.0  to p4  with increments of p1.0 . The final 
results of these four excitations are presented in Fig (6) to 
Fig (9). As it can be seen in Figures (6) to (9), in high 
frequency excitation, all methods (i.e. numerical analysis, 
Housner and modified linearization) lead to close 
estimation of maximum rotation though in low 
frequency(e.g. )1/ ≈pω the deviation between Housner 
linearization and numerical analysis is noticeable; 
inversely, the modified linearization kept its consistency 
with numerical results reasonably. 

While comparing the two blocks with different aspect 
ratio, the block with a smaller aspect ratio presented more 
deviation between Housner linearization and Modified 
Linearization method. 

Although sensitivity analysis repeated for a vast range 
of pulse amplitudes rather than the above mentioned 
excitations, all conclusions were in line with the results 
and conclusions presented in this paper. 

6. Conclusion 

In this study, a new linearization method targeting at 
the reduction of inconsistencies between numerical results 
and analytical results was introduced. Although the 
fundamentals of the new linearization seem simple, it was 
showed that they can cause noticeable modifications in 
final results. This study is only one-step-forward and for 
better approval of modified linearization efficiency more 
follow up analyses are recommended. Based on this study 
and other analyses not presented in the current paper, the 
following conclusions can be made:  

a) The system parameter of p  does not seem as a 
suitable parameter for introducing a block characteristic 
and it seems that the parameter of )cos(αp  can make a 
better consistency with the nature of block and may lead 
to closer solutions with numerical methods when 
incorporated in the final equation.. 

b) In the fragility analysis based on “safe” and “unsafe” 
regions using Housner linearization, which has been used 
widely in the literature, can cause misleading results and 
as shown in this paper, in some cases (even aspect ratio of 
1:3), results report toppling; hence, numerical results do 
not show toppling.  

c) In the application of dynamical response of a rigid 
block in seismic vulnerability assessment of nonstructural 
components, facilities, equipments and so on, researchers 
may face varieties of slenderness ratios that can be 
assessed by using modified linearization and wider range 
of blocks with results closer to the numerical solutions. 
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(a) 

 
(b) 

 
(c) 

Fig. 6. Comparison of maximum rotation which are calculated using various methods under half-sine pulse excitation , (a):aspect ration=2:1, (b) aspect 
ratio=3:1, (c):aspect ratio=4:1, in each section left figures are for blocks with width of 0.5m and right figures for width of 1 m , gHBap )05.0/( +=  
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(a) 

 
(b) 

 
(c) 

Fig. 7. Comparison of maximum rotation which are calculated using various methods under half-sine pulse excitation , (a):aspect ration=2:1, (b) aspect 
ratio=3:1, (c):aspect ratio=4:1, in each section left figures are for blocks with width of 0.5m and right figures for width of 1 m, gHBap )1.0/( +=    
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(a) 

 
(b) 

 
(c) 

Fig. 8. Comparison of maximum rotation which are calculated using various methods under full-sine pulse excitation: (a):aspect ration=2:1, (b) aspect 
ratio=3:1, (c):aspect ratio=4:1, in each section left figures are for blocks with width of 0.5m and right figures for width of 1 m, gHBap )125.0/( +=  
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(a) 

 
(b) 

 
(c) 

Fig. 9. Comparison of maximum rotation which are calculated using various methods under full-sine pulse excitation: (a):aspect ration=2:1, (b) aspect 
ratio=3:1, (c):aspect ratio=4:1, in each section left figures are for blocks with width of 0.5m and right figures for width of 1 m, gHBap )125.0/( +=  
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