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Abstract 

In this paper, we develop a capacitated location-covering model considering interval values for demand and service 
parameters. We also consider flexibility on distance standard for covering demand nodes by the servers. We use the 
satisfaction degree to represent the constraint of service capacity. The proposed model belongs to the class of mixed integer 
programming models. Our model can be reduced to the p-median problem in polynomial time so it is NP-Hard. A genetic 
algorithm is proposed to solve the developed model and experimental results of solving the model are presented.   
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1. Introduction 

       Numerous models have been developed in the area of 
location-allocation (LA) problems so far. LA models can 
be divided into discrete and continues models. Our 
orientation in this paper is on discrete location-allocation 
models. For a short review of discrete location models, 
among the different classifications of discrete location-
allocation models we adopt the one, which is proposed by 
Current et al. [4]. They introduced eight basic facility 
location models, which are set covering, maximal covering, 
p-center, p-dispersion, p-median, fixed charge, hub, and 
maxi-sum. Each of these models attempts to optimize a 
specific objective function by locating the new facilities 
within a network. All these models can be developed with 
multi-objective function, or with dynamic assumption, and 
with stochastic structure. 
      Since our model belongs to the class of maximal 
covering model, a short review of related models in 
deterministic and stochastic version is in order. Toregas et 
al. [16], developed the location set covering problem 
(LSCP) that is a version of set covering problem. This 
model was an attempt to locate the least number of servers 
to cover all the demand nodes with at least one server 
within the time or distance standard. This model’s main 
drawback was its unrealistic assumption of unlimited 
budget that leads to the full coverage of all nodes. This led 
to emergence of the Maximal Covering Location Problem  

 
 
 
 
(MCLP) by Church and ReVelle [2]. This model sought to 
maximize the population of calls, which have a server 
within the time or distance standard while imposing a limit 
on the number of servers. As such, not all nodes receive 
coverage.  
At first, let us examine uncapacitated LA problem (see [1], 
[2], [3]) in which the capacities of servers are limitless. In 
this case, it is easy to know that the nearest server should 
cover each demand node. Gradually, more researchers 
investigated capacitated LA problem (see [4], [5], [6]). 
Most of works were done for the deterministic case. 
However in practice many parameters such as, demand rate 
of demand nodes, are not deterministic and some stochastic 
and fuzzy programming models have been proposed for LA 
problem. Zhou [17], and Zhou and Liu [18], presented the 
expected cost minimization model, α-cost minimization 
model and probability maximization model for capacitated 
location-allocation problem with stochastic demands. Zhou 
and Liu [18], also presented the capacitated location-
allocation model with fuzzy demands.  
For the first time, Shavandi and Mahlooji [14], presented 
the idea of flexibility in the distance standard for covering 
through the fuzzy queuing location-allocation model. In 
this paper we want to develop the capacitated location-
allocation model considering interval parameters as well as 
flexibility in distance standard for covering. We also 
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propose a genetic algorithm to solving the developed 
model. There are many works in the literature for solution 
methods of capacitated location-allocation problem (see 
[6], [9]). Since our solution method is genetic algorithm, 
we refer the interested readers to ( [11], [12], [13] ). 

2. . Preliminaries 

  In this section we present some definitions that are 
used in developing the model (Liu [10]).  
Definition 1. Properties for two interval numbers 
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Definition 2. For two interval numbers ] ,[ˆ UL aaa =
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3. The Capacitated Interval Location Covering Problem 
(CILCP) 

This section is devoted to the definition of the stages of 
building the model. At first, the problem definition is 
presented and then the stages to formulation the model will 
be presented.  

3.1. Problem Definition 

Suppose a network that the demand populations are 
present on the nodes, which we name demand nodes. The 
links between nodes are the available roads between the 
nodes and weighted by the shortest distance between nodes, 
which we call dij.  There is a possibility to locate p facilities 
on the nodes of network to serve the demand nodes. The 
problem attempts to maximize the covering of demand 
nodes subject to limited service capacity and constraint on 
covering the nodes by standard covering distance. We 
assume that we can estimate the demand rate of demand 
nodes by interval numbers under uncertain situation. In 
service centers, there is flexibility on service rate and it can 
be stated as an interval number. In addition, we consider 
the flexibility on distance standard by a linear decay 
function. Therefore, to formulate the model according the 

above definition, the parameters, variables, and formulation 
process are presented in the following. 

3.2. The parameters and variables 

The following is a list of the parameters used in the 
model. 
ai : the population of node i  (a crisp number) 

id̂ : ( l
id , u

id ) : the demand call per unit time for service at 
node i (an interval number) 

jĈ : (
l
jC , u

jC ) : 
 the service capacity of server j per unit 

time (an interval number) 

jD̂ : (
l
jD , u

jD ) : the assigned demand calls to server j (an 
interval number) 
α :  the satisfaction degree of server capacity constraint 
inequality (a real number between zero and one) 

ijλ : the degree representing the distance between i and j 
(dij).  it will take value 1 if dij be less than or equal to the 
distance standard, and  zero when dij is more than the upper 
limit of distance standard. It will take a value between zero 
and one if dij is between distance standard and upper limit 
of it. ijλ

 
is calculated by a decay function that will be 

presented in section 3.2. 
  As far as the variables are concerned, our model 

incorporates the following types of variables which have to 
do with locating the servers and allocating the demand 
nodes. 

Xij  : a 0-1 variable which assumes value 1 if node i is 
covered by server j, and 0 otherwise. 

Yj : a 0-1 variable ; it turns 1 if a server is located at node 
j and 0 otherwise. 

3.3. Model formulation 

According to the classical location covering models, the 
underlying assumption for node i to be covered by server j 
was that the distance from node i to server j must not 
exceed the distance standard. As such, a set called Nj was 
defined for each server j that includes any node whose 
distance from node j was less than or equal to the distance 
standard. The allocation variable Xij, consequently, could 
assume value 1 only when node i is a member of set Nj. We 
want to consider the situation that  node i can be covered by 
server j, if the distance between them is almost 
(approximately) less than or equal to the distance standard 
(flexibility in distance standard for covering). So to reach 
this aim we define ijλ . 
       Let s, be the distance standard and u denotes the 
acceptable upper bound for the distance standard. Now, 

ijλ can be calculated by a decay function as follow (see 
figure (1)) : 

ijλ = 
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Fig. 1. The decay function that presents the flexible distance standard 

  
Since the CILCP attempts to maximize the covered 
populations within the distance standard, we can write the 
objective function of model as: 

Z = ∑∑
= =

n

j

n

i
ijiji Xa

1 1
λ                                                                                                        

Since the model attempts to maximize Z, only those Xij’s 
assume value 1 whose ijλ ’s are not zero, i.e., only when 
the distance from node i to server j is approximately less 
than or equal to the distance standard.  
   There are four types of constraints incorporated in 
our model. The first constraint assures that variable Xij can 
assume value 1 only when variable Yj has already taken 
value 1, in other words, it makes certain that demand node i 
can be covered by server j only when a server is located at 
node j. This constraint appears in the model as : 
 

             jij YX ≤   ,  ∀ i, j                                                                                               
The second constraint states that each node can only be 
covered by one server, i.e. ,  

             1
1

≤∑
=

n

j
ijX  ,   ∀ i                                                                                                

The third constraint specifies the total number of servers, 
i.e. ,  

              ∑
=

n

j
jY

1
 = p                                                                                                         

The last constraint states that the satisfaction degree of 

jj CD ˆˆ ≤  , is at least , and presented as 

             jYCDP jjj ∀≥≤  ,       )ˆˆ( α                                                                               

Let  id̂  denote the demand rate for service at node i. If 
node i is covered by server j, Xij will be equal to 1. Under 
these circumstances, the assigned demand rate to service 
center j is calculated   as : 

               ij

n

i
ij XdD ∑

=

=
1

ˆˆ                                                (7)                                                

This is so, because the assigned demand rate for service at 
each server is equal to the sum of the demand rates for all 

the nodes covered by that particular server, where jD̂ is an 
interval number as: 
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So by applying the definition (2), to transform the 
constraint (6) , we will have: 
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By defining 1
jλ  and 2

jλ  as: 
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The relation (9) is converted as follows: 
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Therefore, relations (12) to (16) substitute the constraint 
(6).  An analysis about relation (10), is presented here. 
Since, if L

jD  be equal or more than j
U
j YC  then the 

satisfaction degree of jjj YCD ˆˆ ≤  is zero, however we 
want to have the satisfaction degree at least α, so the 
relation ∑−

i
ij

L
ij

U
j XdYC will always be positive. 

Therefore the ∑−
i

ij
L
ij

U
j XdYC ),0max( will be equal 

to ∑−
i

ij
L
ij

U
j XdYC . So we can use the following 

constraint instead of constraint (13), 
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 jXdYC
i

ij
L
ij

U
jj ∀−= ∑          ,1λ                               (17) 

Now, we can write the final 0-1 integer-programming 
model. 

3.4.  The CILCP mathematical model 

On the basis of the discussion in previous sections, the 
CILCP is proposed as : 
Max  Z = ij
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iji Xa∑
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         Xij = 0,1   ,   Yj = 0,1   ,    

jijj ,           , 0    ,    0 21 ∀≥≥ λλ  

4. Computational procedure 

      Since the p-median problem is NP-Hard ([8]), and the 
proposed 0-1 integer-programming model in this paper can 
be reduced to the p-median problem in polynomial time, so 
it is NP-Hard. Therefore, it cannot be solved in general to 
optimality and it is appropriate to develop a heuristic 
method to solve the problem within a reasonable time. We 
present a genetic algorithm to solve the CILCP in this 
section. 

4.1. Genetic algorithms and the relevant literature 

Hosage and Goodchild [7], first applied genetic 
algorithm to location-allocation problems. Dibble and 
Densham [5], proposed a genetic algorithm for the multi-
criteria facility location problem. Moreno-Perez et al. [12], 
introduced another genetic algorithm for the p-median 
problem. Kratica et al. [9], developed a genetic algorithm 
for the simple plant location problem. Bozkaya et al. [1], 
developed an efficient genetic algorithm for the p-median 
problem that the preliminary results were presented at 
INFORMS conference in 1997 and the final paper was 

published in 2002. They proved that their algorithm was 
more effective than the other genetic algorithms for p-
median problem. Shavandi and Mahlooji [15], introduced a 
genetic algorithm for their developed fuzzy queuing 
location problem. Since the structure of the fuzzy queuing 
location model presented by Shavandi and Mahlooji [15],  
is almost similar to the CILCP, it is possible to use some 
results from the genetic algorithm to advantage for our 
problem. 

4.2. The proposed genetic algorithm 

In this section we first define the notation and provide a 
general outline of the proposed GA and  then describe each 
element of the algorithm. 

4.2.1. Notation and outline 

 The notation that will be used in the proposed GA are 
as follows : 
PZ : size of the population. 
G  : number of generations (stopping rule). 
M : mutation rate. 
Zj :  fitness value or the objective function value for 
solution  j. 
O : number of overlapping solutions from one generation to 
the next. 
 The general outline of the proposed GA is as follows: 
Step 0 : Initialize PZ, G, and M. 
Step 1 : Randomly generate the initial population of size 
PZ. 
Step 2 : Repeat G times :  
 Step 2.1 : Select the parent population with the size of 

2
PZ , according to the roulette wheel method.  

 Step 2.2 : repeat ( PZ -O ) times :  
a. Select two parents P1 and P2 randomly. 
b. Apply the crossover operator to produce two 

offspring from P1 and P2. 
c. With probability M, apply the mutation 

operator to the offspring.   
 Step 2.3 : Replace the offspring with the current 
solutions while keeping the best solution found so far. 
Step 3 : Print the best solution found so far. 
We used 2n (n is the number of nodes at network) for the 
parameter G of proposed GA.  

4.2.2. Encoding 

 In the proposed GA, each chromosome is represented 
by an n-dimensional vector like  A = [ a(1) , a(2) , . . . , a(n) 
] whose ith entry stands for the ith node in the network. The 
value of the ith entry is the number of server which covers 
node i. If a(j) = j, it means that a server is located at node j.  
When  a(j) ≠  j, it means that node j is covered by server 
a(j).  
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4.2.3. Population size 

 Based on the previous work and our limited 
experiments we found the best size of population as:  

( )( )pnp
p
n

PZ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= lnln   

4.2.4. Parent selection 

  Once the best chromosome (solution) in the 
population is determined, the algorithm selects the other 
parent randomly according to the roulette wheel method. 
This method, first sorts the chromosomes of the population 
based on the fitness values in ascending order, and then the 
cumulative function of the sorted solutions according to 
fitness values is calculated. To choose the other parents a 
random number between zero and one is generated and 
multiplied by the total sum of the fitness values, the 
resulting value belongs to the interval formed by two 
consecutive values of the cumulative function. The number 
associated with the upper value is chosen as a parent. 

4.2.5. Crossover  

 The production of offspring is implemented by first 
selecting a pair of parents, then applying the crossover 
operator to produce two offspring. Fixing the location of 
servers, the crossover tries to change the covered nodes. 
Thus, the difference between the generated offspring and 
parents has to do just with the covered nodes (location of 
servers are identical). This operator can be repeatedly 
applied on any pair of parents as many times as a random 
number between 1 and p.  Each time the crossover operator 
is applied, one server from each pair of parent is chosen 
and their covered nodes are exchanged. To prevent 
generation of infeasible offspring, each exchange is 
preceded by a check on the service quality constraint to 
make sure that exchanging the covered nodes is feasible. 

4.2.6. Mutation  

  Once the crossover operator is applied and offspring 
are generated, the mutation operator is applied on offspring 
with probability M. The mutation operator attempts to 
change the location of servers. This operator can be 
repeatedly applied on any of the offspring as many times as 
a random number between 1 and p. Each time the mutation 
operator is applied, one server and one of the nodes 
covered by that particular server are randomly chosen, the 
chosen server is relocated to the location of the chosen 
node, and finally, all other nodes covered by the server 
before relocation will remain under its coverage at the new 
location. Again, to prevent generation of infeasible 

offspring, the service quality constraint is checked on. 
Based on previous works and our limited experiments, the 
suitable value for M, was found to be between 0.2 and 0.3. 

4.2.7. Replacement 

 Once the population of offspring are generated (and 
possibly mutated), they are used to replace the current 
population. The overlapping level O determines the number 
of common solutions in the population of two successive 
generations. For example, O = 0, implies a complete 
replacement of PZ offspring with the current population, 
whereas O = PZ – 1 means that only one solution is 
replaced in each generation. With respect to the 
experiments in Shavandi and Mahlooji ([11]), the best 
performance is achieved by using O = 1, where the single 
overlapping solution is the fittest or best solution. With our 
experiments, it was decided that O = 1, is suitable for the 
proposed GA. 

4.3.Numerical results 

To solve the problems, Delphi version 6.0 computer 
program was used to program the GA and IBM OSL v3, 
was used to obtain the optimum solution of the same 
problems. We wrote a random generator program, which 
generates problems randomly. In this section, we present 
some results obtained by solving such problems. We 
display the parameter values for a 15-node problem in 
Table (1), and solutions for two cases as well as 
comparison between optimal solution obtained by OSL and 
GA solution are presented in Tables (2), and (3). Table (2), 
represents the solutions for α=0.9 and in the optimal 
solution, the servers are located at nodes 8, 9, and 14, and 
nodes 7, and 12 were not covered by servers. However, in 
the case of α=0.8, as was shown in the table (3), the 
location of servers were changed and were located at nodes 
8, 10, and 14, and the uncovered node is only 12. To 
summarize the performance of GA algorithm, based on 
solving problems whose partial results are presented here, 
Table (4), indicates that the overall average percentage of 
discrepancies between the optimal solutions from OSL and 
the GA solutions is less than 4.5%.  

5.Conclusion 

This work presents a model for location covering 
considering interval values for demands and service 
capacity. The model was transformed into a mixed integer-
programming model. Since the proposed model 
computationally belongs to the class of NP-Hard problems, 
a genetic algorithm was developed to solve the model. 
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Appendix – The numerical results 
                           Table 1 
                           Constant data input for the problems whose solutions are presented in Tables 2 and 3 

Number of  nodes (n) = 15 Ĉ = ( 37 , 43 ) 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ai 937 503 524 654 585 597 580 679 782 914 582 628 854 695 912 
dL 2 3 7 6 5 2 4 1 1 7 9 8 4 3 5 
dU 5 8 11 12 9 6 8 5 5 13 13 12 9 8 10 

ijλ  
1 1 1 .2 .5 1 0 .6 1 0 .9 .7 .14 .51 .3 0 
2  1 .2 0 .5 .14 .32 1 .25 .64 .9 .15 .62 0 .7 
3   1 0 .3 .5 .18 .51 .61 .71 .2 .02 0 1 .9 
4    1 .21 .51 .54 .61 .12 .15 0 1 .29 .84 .17 
5     1 1 .9 .8 .14 .21 .51 .3 0 1 .24 
6      1 .2 1 0 .3 .6 .9 .4 .7 .6 
7       1 .2 0 .9 .4 .61 .72 .1 .2 
8        1 .6 0 .9 .8 .4 .7 .61 
9         1 1 .3 .8 .47 .16 .92 

10          1 .2 .7 .8 .14 .61 
11           1 .9 .2 .4 .31 
12            1 .2 .1 .09 
13             1 .8 .12 
14              1 0 
15               1 
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                         Table 2 
                         A comparison of the results obtained from the GA against OSL  

Number of  nodes (n) = 15 α = 0.9 p = 3  
OSL Run-time ≅  0 GA  Run-time ≅  0  

 obj Loc Covered nodes  obj Loc Covered nodes % 
  8 1, 2, 6, 8, 11   8 1, 2, 5, 8, 11  
 8607 9 3, 9,10,15  8311 9 3, 9, 10, 15 3.4 
  14 4, 5, 13, 14   14 4, 6, 13, 14  

                      % =  100
)(

)()(
×

−
OSLobj

GAobjOSLobj  

 
 
                           Table 3 
                           A comparison of the results obtained from the GA against OSL 

Number of  nodes (n) = 15 α = 0.8 p = 3  
OSL Run-time ≅  0 GA  Run-time ≅  0  

 obj Loc Covered nodes  obj Loc Covered nodes % 
  8 2, 6, 8, 11, 15   8 2, 6, 8, 11, 13  
 8956 10 1, 7, 9,10,13  8526 10 1, 3, 7, 9, 10, 15 4.7 
  14 3, 4, 5, 14   14 4, 5, 12, 14  

                          % =  100
)(

)()(
×

−
OSLobj

GAobjOSLobj  

                              
 
  
                       Table 4  
                       A comparison between the optimal solution (OSL) and the solution from the GA 

Number of nodes Number of solved problems Mean run-time 
(seconds) 

Average 
discrepancy  ( % ) 

20 32 ≅ 0 ≅ 4.1 
30 30 ≅ 0 ≅ 3.2 
40 25 ≅ 1 ≅ 4.75 
50 25 ≅ 2 ≅ 5.1 
60 20 ≅ 2 ≅ 4.5 
70 20 ≅ 2 ≅ 3.95 
77 12 ≅ 2 ≅ 5.1 

Overall average discrepancy between the optimal solutions from OSL and the 
GA solutions (%) 

≅ 4.38 
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