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Abstract 

The heterogeneous fixed fleet open vehicle routing problem (HFFOVRP) is one of the most significant extension problems of the open 
vehicle routing problem (OVRP). The HFFOVRP is the problem of designing collection routes to a number of predefined nodes by a fixed 
fleet number of vehicles with various capacities and related costs. In this problem, the vehicle doesn’t return to the depot after serving the 
last customer. Because of its numerous applications in industrial and service problems, a new model of the HFFOVRP based on mixed 
integer programming is proposed in this paper. Furthermore, due to its NP-hard nature, an ant colony system (ACS) algorithm was 
proposed. Since there were no existing benchmarks, this study generated some test problems. From the comparison with the results of exact 
algorithm, the proposed algorithm showed that it can provide better solutions within a comparatively shorter period of time. 
Keywords: Open Vehicle Routing Problem, Heterogeneous fleet, Ant Colony System, Exact Algorithm, Mixed Integer programming. 

1. Introduction 

In today's commerce world, freight transportation 
plays a significant role in logistics and supply chain 
management. It supports and makes most other social and 
economic activities possible. That is why many 
companies are giving special attention to the 
transportation costs of goods in order to minimize their 
expenses. Companies try to reduce transportation costs by 
using rational manners and effective tools. Consequently, 
Capacitated Vehicle Routing Problem (CVRP) and its 
versions have been receiving much attention by 
researchers and scientists (Yousefikhoshbakht et al., 
2014). The CVRP is the basic version of the VRP, where 
all customers are delivery customers, the demands are 
known, all vehicles are identical and they belong to the 
same central depot. The imposed constraints are related to 
the capacity of the vehicles, may also be restricted in the 
total distance. It can travel and all customers must be 
served by a single route. In this problem, the objective is 
to find a set of delivery routes satisfying these 
requirements and giving minimal total travel cost. To 
make CVRP models more realistic and applicable, there 
are many varieties of the VRP obtained by adding 
constraints to the basic model. Examples of such  

 
 

 
 

 
 
extensions are VRP with Time Windows (VRPTW) 
(Tzeng et  al., 1997), VRP with backhauls (VRPB) 
(Popovic, 1995), Stochastic VRP (SVRP) (Teodorovic et 
al., 1995), Multi-depot VRP (MDVRP) (Geetha et al., 
2012), VRP with simultaneously Pickup and Delivery 
(VRPSPD) (Yousefikhoshbakht et al., 2014), Split 
Delivery VRP (Ozfirat et al., 2010), Open VRP (OVRP) 
(9) and so on with different constraints 
(Yousefikhoshbakht et al., 2012).  

Nowadays, many enterprises contract their physical 
distribution tasks to third party logistics companies. These 
outsourcing carriers are paid on the basis of fixed costs 
and traveling distances of the ‘for-hire’ vehicles. 
Therefore, the vehicle starts at the depot and terminate at 
one of the customers after servicing the last customer on 
its route. This problem is regarded as an OVRP in which 
the route of each vehicle is a Hamiltonian path. At first 
sight, having open routes instead of closed ones looks like 
a minor modification. Indeed, if travel costs are 
asymmetric, there is essentially no difference between the 
open and closed versions. In other words, to transform the 
open version into the closed one, it suffices to set the cost 
to zero for traveling from any customer to the depot. 
However, if travel costs are symmetric, things are more 
subtle. Indeed, the open VRP turns out to be more general 
than the closed VRP, in the sense that any closed version 
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on n customers can be transformed into an open version 
on n customers, but there is no transformation in the 
reverse direction. 

The OVRP is characterized by the following: a fleet of 
predefined vehicles that start to move simultaneously 
from the depot but not come back to the depot after 
visiting customers are used to serve customers distributed 
geographically in the area. The capacity of each vehicle is 
called Q. A customer requires a given shipment to be 
picked up during a single visit by a vehicle. The objective 
is to design a set of minimum cost routes to serve all 
customers so that the load on a vehicle is below vehicle 
capacity Q at each point on the route. In other words, a 
solution to the OVRP consists of a set of Hamiltonian 
paths, rather than Hamiltonian cycles. The problem of 
finding the best Hamiltonian path for each set of 
customers assigned to a vehicle is NP-hard (Syslo et al. 
1983). Hence OVRP is also NP-hard (Branda˜o, 2004). 
An example of a single solution consisting of a set of 
routes constructed for an OVRP is presented in Figure 1. 

 
Fig. 1. A solution of OVRP 

Branda˜o (2004) observes that Schrage was the first to 
raise the problem in an article dedicated to the description 
of realistic routing problems (Schrage, 1981). However, 
the earliest work which addressed solving the OVRP 
seems to have been introduced in 2000 by Sariklis and 
Powell who did not impose a maximum route length. 
Instead, they developed a heuristic algorithm based on 
two phases including cluster-first route-second (Sariklis et 
al., 2000). In the first phase, customers are assigned to 
vehicles, taking into account the capacity constraint, 
while attempting to create a minimum number of 
vehicles. Then, total travel cost is reduced by applying 
some given rules for moving customers among clusters. 
In the second phase, a minimum spanning tree is created 
for each cluster through a set of operations and then it is 
transformed into an open route which is short as much as 
possible.  

Exact branch-and-cut approach has been proposed by 
Letchford, et al., (2007), addressing the capacitated 
problem with no distance constraints and no empty routes 

allowed (i.e., exactly m vehicles must be used). Besides, 
the authors provide an OVRP integer programming 
formulation together with some valid inequalities. The 
proposed algorithm is capable of solving optimality small 
to medium-sized OVRP instances. When the size of the 
problem increases, the complexity of the problem also 
increases rapidly. Consequently, they provide lower 
bounds for the large scale instances which are helpful for 
assessing the effectiveness of approximate solution 
methodologies.  

Although there are other exact algorithms which 
investigate fewer solutions, it is almost impossible even in 
such cases to find an optimum solution within a 
satisfactory time limit. Therefore, exact algorithms are not 
capable of solving problems for large dimensions. On the 
other hand, heuristics and meta-heuristics are thought to 
be more efficient for complex OVRPs and have become 
very popular for researchers. Different algorithms have 
been developed to solve the OVRP base on heuristic and 
meta-heuristic such as tabu search (Fu et al., 2005), 
record-to-record travel algorithm (Li et al., 2007), 
neighborhood search algorithm (Fleszar et al., 2008), ant 
colony optimization (ACO) (Yousefikhoshbakht et al., 
2012), and particle swarm optimization  (MirHassani et 
al. 2011). 

An efficient tabu search was proposed by Brandeo 
(2004) in which the neighborhood structure is defined by 
insertions and swaps between different routes. It is noted 
that in this algorithm, several features from previous tabu 
search implementations for the classical VRP are used. 
Furthermore, infeasibilities in intermediate solutions are 
managed through penalizing the objective function by two 
penalty terms including for capacity violation and the for 
route length violation. Besides, Fu et al. (2005) and Fu et 
al. (2006) also present a tabu search algorithm. In this 
algorithm, a farthest first heuristic is used for initial 
solution. Furthermore, the two-interchange generation 
mechanism within the same route or between two routes 
are applied, but with a combination of vertex 
reassignment, vertex swap, 2-opt and ‘tails’ swap. A 
variant of the VRP in which the objective is to minimize 
the total distance covered was offered by Tarantilis, et al. 
(2005). In this paper attempting directly to minimize the 
number of vehicles and imposing an upper limit on route 
length, were not considered. Their solution algorithm is a 
single-parameter meta-heuristic method that exploits a list 
of threshold values to guide intelligently a local search 
based on a variety of edge and node exchanges. 

Also, Pisinger et al. (2007) offer an adaptive large 
neighborhood search algorithm. In this proposed 
algorithm, customers can be removed at random from the 
solution and then reinserted in the cheapest possible route. 
Various removal and insertion heuristics can be used to 
diversify and intensify the search for this algorithm, but 
moving from one solution to the next is carried out within 
a simulated annealing framework.  

Because the company may contract its delivery 
activities to a number of outsourcing carriers which may 
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own a heterogeneous fleet of vehicles available for hiring, 
considering a fleet of homogeneous vehicles is not 
practical in the VRP. Hence, the heterogeneous fleet 
vehicle routing problem has been investigated by many 
scientists and researchers (Li et al., 2010). Moreover, if in 
this problem, the number of vehicles available to perform 
the delivery is considered limited and the vehicles have 
different capacities, fixed costs and variable costs per unit 
distance, it is called heterogeneous fixed fleet open 
vehicle routing problem (HFFOVRP).  

The HFFOVRP can be converted into an open vehicle 
routing problem (OVRP) and heterogeneous fixed fleet 
vehicle routing problem (HFFVRP). In more detail, the 
OVRP can be obtained from HFFOVRP by removing the 
constraint of vehicle heterogeneity. Similarly, HFFOVRP 
by removing the constraint of vehicle heterogeneity of 
Hamiltonian path can be converted to a VRP with a 
heterogeneous fixed fleet. Since OVRP and HFFVRP are 
NP-hard combinatorial optimization problems (Cao et al., 
2010), The HFFOVRP is an NP-hard problem.  

Recently, most of the research effort aimed at solving 
the NP-hard problems, have focused on the development 
of various meta-heuristic algorithms. A meta-heuristic can 
be defined as a top-level general strategy which guides 
other heuristics to search for good solutions in feasible 
space. Most of the VRP meta-heuristic algorithms are 
based on some construction and improvement heuristics, 
i.e., they use the so-called local search principle (Reimann 
et al., 2004). The aim of this paper is to apply the exact 
algorithm and ant colony system (ACS) to deal with the 
new variant of the VRPs, HFFOVRP. To reach this goal, 
first we propose a mixed integer programming named as 
node based formulation and then obtained results by the 
CPLEX 12.4 and ACS are compared together for some 
instances.  
The rest of this paper is organized as follows. In Section 
2, a proposed mixed integer model is described. In 
Section 3, the details of the proposed approach are 
introduced. Experimental evaluation of this algorithm is 
reported in Section 4. Finally, we report the 
computational results of the proposed algorithm based on 
the generated benchmark problems. In Section 5, we 
conclude this paper and discuss some possible research 
extensions in future work. 

2. Problem Description and Formulation 

2.1. Problem definition 

From a graph theoretical point of view, we can define the 
HFFOVRP as follows. Let G = (V, E) be an undirected 
connected graph with  V 0,1,..., n as the set of 

vertexes and the set of arcs  E (i, j):0 i, j n   (if 
the graph is not complete, we can compensate the lack of 
each arc with the arc that has infinite size). Node 0 is the 
depot and the customer set C consist of n customers, i.e.

 C 1, 2, ..., n . A nonnegative cost  ijd  (

iid 0, 0 i n   ) associated with each arc i j(v , v ) E.

0v  represents the depot and each vertex iv C  is a 

customer with a non-negative demand ip . The available 
fleet consists of K different type vehicles located at the 
depot and the number of available vehicles of each type is 
fixed and equal to kn . A capacity kQ , a fixed cost kf , 

variable cost k is associated with each type of vehicle k 

and. k is cost per unit of distance corresponding to each 

vehicle type k. Hence, k
ij ij kc d  represents the cost 

of the travel from customer i to j with a vehicle of type k. 
The HFFOVRP deals with finding the minimum total 
transportation cost including the fixed and variable cost 
for a fleet of vehicles which start and end at the depot, so 
that the following constraints are taken into account: 
 The total load of each vehicle cannot exceed the 

capacity of the corresponding vehicle type. 
 The number of vehicles of type k used cannot exceed 

kn .  
 The demand of each customer is satisfied by exactly 

one vehicle in only one visit. 

2.2. Problem formulation 

We present following mathematical formulation for 
HFFVRP using variables and ijy where, k

ijx  take the value 
1 if a vehicle of type k travels directly from customer i to 
customer j, and 0 otherwise; denotes the route. The flow 
variables ijy  specify the quantity of goods that a vehicle 
k is carrying when leaves customer i to service customer j.  

K n K n n
k k k

k 0 j ij ij
k 1 j 1 k 1 i 0 j 0

Min f x c x
    

                            (1) 

subject to  
K n

k
ij

k 1 i 0
x 1 j 1, 2,..., n

 

        (2)

K n
k
ij

k 1 j 1

x 1 i 1,2,..., n
 

        (3) 

n n
k k
ij ji

i 1 i 1

0 x x 1

j 1,2,..., n , k 1, 2,..., K
 

  

   

                                (5) 

n
k
0 j k

j 1

x n , k 1, 2,..., K


                                  (6) 
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K n K n
k k
ij ji j

k 1 i 0 k 1 i 0

y y p ,

j 1, 2,..., n
   

 

 

 
                      

                  (7) 

k k k
j ij ij k i ijp x y (Q p )x
i, j 0,1,..., n ,i j, k 1, 2,..., K
  

    
                 (8) 

n
k
i0

j 1

x 0, k 1, 2,..., K


                                  (9) 

 k

ijx 0,1 i, j 0,1,..., n , i j , k 1, 2,..., K              (10) 
k
ijy 0 i, j 0,1,..., n , k 1, 2,...,K                  (11) 

The objective function (1) gives the sum of the total fixed 
cost of the vehicles used plus the total variable routing 
cost. Constraints (2) mean that only one arc can be 
entered for each customer; however, constraints (3) show 
that almost one arc can be exited from each customer. 
Constraints (4) states that if a vehicle visits a customer, it 
can remain there or depart from it. The maximum number 
of vehicles available for each vehicle type is guaranteed 
by constraints (5). Equality equations (6) insure that the 
demands of all customers are fully satisfied. Constraints 
(7) state that the vehicle capacity is never exceeded. 
Constraints (8) guarantee that there is not any arc from 
each customer to the depot. Constraints (9) describe that 
each arc in the network has the value 1 if it is used and 0 
otherwise. Finally, Restrictions (10) force the flow to 
remain non-negative. 

3. Solution Method 

In this section at first the classic ACO is explained and 
then modification of EAS as the proposed algorithm is 
explained in more details.  

3.1 Ant Colony Optimization 

Studies on real ants show that although ants lack sight, 
they can find the shortest path from the food sources to 
the nest by depositing pheromones. In other words, when 
ants move from one place to another to find the shortest 
path, they secrete this chemical material both for guiding 
other ants which are going to exit the nest later and for 
recognizing the return path to the nest. Therefore, after a 
few times the route which ants traveled is marked by this 
chemical material and then more ants by instinct select 
this shorter path with more probability and much more 
pheromone remains on this shorter path.  

ACO is one of the most important meta-heuristic 
algorithms used to obtain good enough solutions not 
found by any effective algorithm yet to hard 
combinational optimization problems within a reasonable 
amount of computation time. Dorigo proposed this 
algorithm and proved its acceptable performance for 
traveling salesman problem (Dorigo et al., 1992).  

It has been applied to several NP-hard combinatorial 
optimization problems such as quadratic assignment 
problem (Maniezzo et al., 34), the vehicle routing 
problem (Bullnheimer et al., 1999), bin packing, stock 
cutting (Ducatelle et al., 2001) and RNA secondary 
structure prediction (McMellan, 2006). The inspiring 
source of ACO is the pheromone trail laying and 
following behavior of real ants which use pheromones as 
a communication medium. Similar to ant communication 
system, ACO is based on the indirect communication of a 
colony of simple agents called (artificial) ants which 
communicate by secreting (artificial) pheromone on trails. 
This experience shows that the simple swarm intelligence, 
which is used by ants for finding food, can help to solve 
the hard combinational problems and reach a solution 
which is very close to the optimal situation. 

Since the initial version of ACO called Ant System 
(AS) was not competitive with other meta-heuristic 
algorithms of its time for solving small scale TSP 
instances a large number of authors developed newer and 
more advanced versions of ACO by modifying the 
method of updating the local and global pheromones or 
distributing ants on the nodes. These developments led to 
more efficient algorithms like EAS (Dorigo et al., 1996), 
ACS (Bullnheimer et al., 1997) and rank based ant system 
(RAS) (Dorigo et al., 1997). Furthermore, the application 
and the efficiency of these algorithms have gained more 
attention compared to some other meta-heuristic 
algorithms including GA, Simulated Annealing, etc. 
Therefore, more sophisticated models of ACO which are 
used to successfully solve a large number of complex 
combinatorial optimization problems. Theoretical insights 
into the algorithm are now becoming available. For ACO 
convergence proofs, theories and open problems we refer 
the readers to (Dorigo et al., 2005).  

3.2 The proposed Algorithm 

ACS is one of the famous versions of the ACO 
proposed by (Dorigo et al., 1997). This algorithm, 
although strongly inspired by AS, achieves performance 
improvements through the introduction of new 
mechanisms based on ideas not included in the original. 
ACS as an improved algorithm differs from the previous 
AS in three main aspects:  

(1) The state transition rule provides a direct way to 
balance between exploration of new edges and 
exploitation of a priori and accumulated knowledge about 
the problem. 

(2) The global updating rule is applied only to edges 
which belong to the best ant tour. 

(3) While ants construct a solution a local pheromone 
updating rule (local updating rule, for short) is applied. 
Updating the pheromone simulates the changes in values 
of pheromone in any iteration and mainly it is one of the 
reasons that algorithms are different.  

Generally, two operations motivate this updating 
procedure in ACS algorithm: 
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(1) A new transition rule: this rule is introduced that 
favors either exploitation or exploration. From node i, the 
next node j in the route is selected by ant k, among the 
unvisited nodes k

iJ , according to the following transition 
rule which shows the probability of each city being 
visited: 

0

arg max {[ ( )] .[ ( )] }

exp
( ) ( ) ( )

( ) ( )

exp

k
i

k
i

ir irr J

k
ij ij ij

ir irr J

t t

if q q loitation
P t t t

t t

Otherw ise loration







 

 
 




















  (11) 

Where 

ij(t) : The amount of pheromone on the edge joining 
nodes i and j 

ij(t) : The heuristic information for the ant visibility 
measure defined as the reciprocal of the distance between 
node i and node j for the TSP 

, :  The parameters that determine the relative 

importance of the pheromone level ij and the heuristic 

search function ij on the edge joining nodes i and j. 
q: Random number with uniform probability distribution 
between zero and one [0, 1]. 

Real variable that determines the relative importance 

of the exploitation over the exploration ( 0 10  q ). 

It is noted that when q is less than or equal to 0q , the ant 
employs exploitation to select the next node in its tour, 
whereas if q exceeds the ant uses probabilistic exploration 
to select the next node in its tour. 
(2) The local updating: When the ant moves between 
nodes i and j, it updates the amount of pheromone on the 
traversed edge using the formula (12). The effect of local 
updating is that each time an ant traverses an edge (i, j) its 
pheromone trail ij  is reduced, so that edges becomes 
less desirable for the ants in future iterations. This 
encourages an increase in the exploration of edges that 
have not been visited yet. Local updating helps avoid poor 
stagnant situations. 

0( 1) (1 ). ( ) { ( , ) }ij ij kt t if edge i j T        (12) 
Where 

0 : The initial amount of pheromone calculated as 
1

0 )(  inC  
n: The number of customers 

:iC  The cost of the initial tour produced by a 
construction heuristic such as the Nearest Neighbor 
heuristic 

: A parameter in the range [0, 1] called the evaporation 
rate that regulates the reduction of pheromone on the 
edges 
(3) The global updating: When all ants have generated 
their tours, the edges belonging to the best tour are 
updated using the formula (13). It is important to note 
that global updating adjusts only the pheromone on the 
edges belonging to the best tour. This encourages ants in 
future iterations to search in the vicinity of this best tour. 

( 1) (1 ). ( ) (1/ )
{ ( , ) }

ij ij b

b

t t C
if edge i j T

      


                             (13) 

Where  
:bC The cost of the best tour bT  has been found since 

the start of the algorithm.  
ACS works on HFFOVRP as follows: m group of ants in 
which each group has n ants are initially positioned depot. 
Each ant builds a Hamiltonian path (i.e., a feasible 
solution to the HFFOVRP) by repeatedly applying the 
state transition rule. While constructing its tour, an ant 
also modifies the amount of pheromone on the visited 
edges by applying the local updating rule. Once all ants 
have terminated their path, the amount of pheromone on 
edges is modified again by applying the global updating 
rule. As was the case in ACS, ants are guided, in building 
their tours in formula (11), by both exploitation (they 
prefer to exploit a priori and accumulated knowledge 
about the problem), and by exploration: A new edge is 
exploited by algorithm. The pheromone updating rules are 
designed, so that they tend to give more pheromone to 
edges which should be visited by ants.  
The vast amount of literature on ACOs tells us that, a 
promising approach to obtaining high-quality solutions is 
to couple a local search algorithm with a mechanism to 
generate initial solutions. A local search approach starts 
with an initial solution and searches within neighborhoods 
for better solutions. In the proposed algorithm, after each 
group has constructed their solutions, the best groups’ 
solution is improved by applying a local search. The idea 
here is that a better solution may have a better chance to 
find a global optimum. We first apply a local search based 
on an insert move to the ant (Figure 2), and then apply the 
swap move (Figure 3). In insert algorithm a node is 
moved. However, in swap algorithm a node is swapped 
with another node. The new solution will be only 
accepted in a state that, novel tour will gain better value 
for problem than previous solutions. It is noted that if the 
best solution till now does not improve within a given ten 
generations in the ACS, the algorithm will be stopped. A 
pseudo-code of our algorithm for the HFFOVRP is 
presented in the Figure 4. 

 

0 :q
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Fig. 2. Insert move for single route (left) and for multiple routes (right) 

 
Fig. 3. Swap move for single route (left) and for multiple routes (right) 

 
Procedure ACS for solving HFFOVRP 

*s = ;                                    // *s  is the best solution found yet // 
* : ;f                                    // *f  is the value of the *s //  

n= the number of nodes;    // n is the number of ants // 
Initialize pheromone trails as u; 

             While do // main cycle // 
Begin 

**s = ;                                 // **s  is the best solution found in current iteration // 
** : ;f                                 // **f  is the value of the **s //  

        S:= none;                     // S is a matrix and  population of solutions // 
For i := 1 to n do 
Begin 

Construct a feasible solution is by using formula (11) and gain f ( is ) as the value of the is  

S=S is ; 

If f ( is ) < **f  
Begin 

** : ( )
i

f f s ; 
**

i
ss  ; 

End 
End; 
Apply insert and swap algorithms on **s  and gain **f  again. 

                       If f ( **s ) < *f  
                      Begin 

                     
* **: ( )f f s ; 

                     
* **s s ; 

                     End 
                    Increase pheromone respectively on arcs belong to **s ; 
                    Update pheromone trails;  

      Until the stop condition is satisfied. 

     Show *s  and *f  
End // procedure // 

Fig. 4. The ACS for HFFOVRP 
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4. Computational Results 

In this section, our proposed meta-heuristic algorithm was 
tested on a set of HFFOVRP benchmark problems and 
compared to the solver Cplex 12.4 in AIMMS. AIMMS is 
an advanced development environment for building 
advanced planning systems and optimizing the problems 
in applied research studies. The ACS presented in Section 
3, was coded in Matlab 7. All the experiments were 
implemented on a PC with Pentium 4 at 2.4GHZ and 2GB 
RAM running Windows XP Home Basic Operating 
system. Therefore, a new set consisting of eight tests 
numbered from 1 to 8 with sizes ranging from 11 to 50 
nodes without the depot were derived from the well-
known Taillard’s benchmark for Heterogeneous fleet 
Vehicle Routing Problem (HFFVRP). In this section, we 
first introduce the benchmark problems and then the 
detailed computational results obtained. 

The specifications of these eight problems are reported 
in Table 1. The data for the depot and the customers 
(demand and coordinates) were taken from the Taillard’s 
examples (Taillard, 1999). All the examples randomly 
located over a square with no service time. Besides, they 
have a fixed fleet with capacity restrictions and with no 
route length restrictions. Euclidean distances are used in 
the all problems. 

The commercial linear programming software 
including ILOG and Cplex could find optimal solutions 
for the small-scale of the problems, like HFFOVRP and 
hence can be used to evaluate the accuracy of the 
proposed model. We show characteristics of instances and 
the results obtained by AIMMS on the set of benchmark 
instances in Table 2. This table gives the following 
information: the number of customers (n); the number of 
constraints (c); the number of variables (v); the number of 
integer variables (iv); the number of iterations (ni); the 
best LP bound (bb); the best found solution (bfs); 
respective computing time in seconds (t); program status 
of the software (ps) and solver status of the software (ss). 
Based on this table, AIMMS obtained the optimal 
solution only for instances 1 and 2 and in the other 
instance automatically terminated before reaching to 
optimal solution. Also in problems 7 and 8 it failed to 
obtain a feasible solution. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1 
 Data for the problem set 

Instance n k Qk Fk હܓ  Nk 

1 11 

1 20 20 1 1 
2 30 40 1.1 1 
3 40 70 1.3 2 
4 70 200 1.7 1 

2 16 

1 30 60 1 1 
2 60 100 1.1 1 
3 80 250 1.5 1 
4 150 300 2 1 

3 21 

1 20 70 1 1 
2 35 120 1.1 2 
3 50 200 1.2 2 
4 120 250 2 3 

4 
 

26 
 

1 25 50 1 2 
2 35 80 1.1 2 
3 50 200 1.2 3 
4 120 250 1.7 3 

5 31 

1 25 35 1 3 
2 35 50 1.1 2 
3 50 75 1.2 4 
4 120 150 1.7 4 

6 36 
1 50 60 0.7 1 
2 120 75 1 2 
3 160 200 1.1 3 

7 41 
1 60 60 1 3 
2 140 075 1.7 2 
3 200 200 2 1 

8 50 

1 20 20 1 4 
2 30 35 1.1 2 
3 40 50 1.2 4 
4 70 120 1.7 4 
5 120 225 2.5 2 
6 200 400 3.2 2 

Table 3 presents the results of the ACS method over the 
new eight benchmark instances and compares them to the 
results of solver CPLEX 12.4 on AIMMS software. Since 
the ACS is a meta-heuristic algorithm, the results are 
reported for ten independent runs. The information in 
Table 3 consists of the number of customers, the solution 
costs obtained from AIMMS, the running time in seconds 
of AIMMS, the best solution costs of ACS and its 
computing time. Finally in the last column, the percentage 
difference (Gap) of the AIMMS solution cost comparison 
to the ACS solution costs was shown.  

 value of ACS- value of AIMMS
Gap=100  

value of AIMMS
  
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Table 2 
Obtained Results by AIMMS 

Instance n c v iv ni bb bfs t ps ss 

1 11 1186 1057 828 30493 400.53 400.53 8 Optimal 
Normal 

completion 

2 16 2361 2177 1088 7934670 416.80 416.80 5299 Optimal 
Normal 

completion 

3 21 3936 3697 1848 11171820 688.02 723.90 14528 Integer solution 
Terminated by  

the solver 

4 26 5911 5617 2808 8823699 705.20 734.99 18953 Integer solution 
Terminated by  

the solver 

5 31 8286 7937 3968 4379852 773.83 827.51 11734 Integer solution 
Terminated by  

the solver 

6 36 8323 7993 3996 428002269 481.98 530.18 131144 Integer solution 
Terminated by  

the solver 

7 41 10708 10333 5166 79667129 646.21 - 267161 
Intermediate 
 infeasible 

Terminated  
by the solver 

8 50 31363 30601 15300 59665480 796.77 - 645442 
Intermediate  

infeasible 
Terminated  

by the solver 

 
Table 3 
 Comparison results for problem set 

Instance n AIMMS Cost Time (Sec) ACS Cost Time (Sec) Gap 
1 11 400.53 8 400.53 4.12 0 
2 16 416.80 5299 416.80 5.35 0 
3 21 723.90 14528 721.35 9.45 0.35 
4 26 734.99 18953 734.11 28.61 0.12 
5 31 827.51 11734 827.23 43.81 0.03 
6 36 530.18 131144 527.56 96.25 0.49 
7 41 - 267161 766.45 88.82 - 
8 50 - 645442 651.33 84.71 - 

Like every meta-heuristic algorithm, the ACS’s 
solutions were dependent on the seed used to generate the 
sequence of pseudo-random numbers and on the different 
values of the search parameters of the algorithm. The 
parameter setting procedure is necessary to reach the best 
balance between the quality of the solutions obtained and 
the required computational attempt. We should mention 
that there is no way of defining the most effective values 
of the parameters. Therefore, they were established based 
on perception and on experiments. The results confirm 
that our parameter setting work well. However, there 
might exist better solutions. There are four parameters 

including    0, , , .q The ranges of four parameters 
were set to   {1, 2, 3, 4},
 



 

0 {0.85, 0.9, 0.95, 0.99}

{1, 2, 4, 6}, {0.1, 0.2 , 0.3, 0.4},

q
. When tuning the 

parameters, the instance 5 was determined as the test 
problem. Then, the algorithm with each parameter 
combination for this instance was tested five times. 

Based on the gained results, the algorithm with the 
smaller weight parameter  of pheromone trails (i.e.  

 1 ) possesses higher performance. This may be 
attributed to the fact that in the ACS the initial pheromone 
trails are large values. If using the large control factor of 
pheromone trail, the effect of visibility value is weakened 
and results in a premature convergence. In addition, the  

qualities of the solutions of the algorithms with  4  are 
better than 2, 6 and 8. 

From the test results, it can be found that by setting 
the evaporation factor to 0.1, the proposed algorithm can 
yield better solutions. This can be attributed to the fact 
that if pheromone evaporation is too rapid, it is easier to 
result in the search that is trapped in the local minima. In 
other words, the smaller evaporation factor can ensure the 
sufficient diversity of search space and guide following 
ants to explore better solutions. 

Finally, the ACS, in which 0q is set to 0.90, can 
provide better solutions in compared with other values. 
Thus, the combinations of optimal parameters are 
determined: 

   0q{  = 1,  =4, =0.1, 0.90}.  
The ACS algorithm produced the optimal solutions for 

two out of the eight problem instances in a reasonable 
time. Furthermore, this algorithm can obtain a better 
solution than AIMMS in 3, 4, 5 and 6. For instances 7 and 
8, the ACS can gain feasible solution against AIMMS. 
Finally, the ACS in average improves the solution cost as 
much as 0.17% of these instances compared to AIMMS. 
However as noted in (41), direct comparisons of the 
required computational times cannot be conducted, as 
they closely depend on various factors such as the 
processing power of the computers, the programming 
languages, the coding abilities of the programmers, the 
compilers and the running processes on the computers. 
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In addition, in order to demonstrate the efficiency of the 
algorithm, some of the solutions found in the examples in 
Table 6 are presented in Figure 5. It should be noted that 
in the two examples presented in this figure, the ACS has 
been able to find the optimum solution. 

 

 
                                               

Fig. 5. Some of the Solutions to the HFFOVRP Found by ACS 
 

5. Conclusions 

In this paper, a mixed integer linear programming 
model was proposed for HFFOVRP. The ACS as one of 
the famous meta-heuristic methods was also applied to 
this problem successfully. The results have proven that 
the method is appropriate and is capable of finding high 
quality solutions within a reasonable computing time. In 
addition, the proposed model’s performance on eight new 
HFFOVRP problems which was compared with the well-
known software AIMMS with solver CPELX, shows the 
solution quality and better CPU time. On average, the 
ACS solutions show a 0.17% improvement over AIMMS. 
It also seems that the combination of the proposed 
algorithm with tabu search algorithm or a more powerful 
local search algorithm such as Lin-Kernigan will yield 
better results for this problem. Furthermore, using the 
proposed algorithm for other versions of the VRP such as 
HFFOVRP with pick-up and delivery or HFFOVRP with 
time windows are suggested for future research.  
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