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Abstract 

When a change occurs in a process, one expects to receive a signal from a control chart as quickly as possible. Upon the receipt of signal 
from the control chart a search for identifying the source of disturbance begins. However, searching for assignable cause around the signal 
time, due to the fact that the disturbance may have manifested itself into the process sometimes back, may not always lead to successful 
identification of assignable cause(s). If process engineers could identify the change point, i.e. the time when the disturbance first 
manifested itself into the process, then corrective actions could be directed towards effective elimination of the source of disturbance. In 
this paper we develop a maximum likelihood estimator (MLE) for process change point designed to detect changes in process variance of a 
normal quality characteristic when the change follows a linear trend. We describe how this estimator can be used to identify the change 
point when a Shewhart S-control chart signals a change in the process variance. Numerical results reveal that the proposed estimator 
outperforms the MLE designed for step change when a linear trend disturbance is present. 

Keywords: Change point estimation, Maximum Likelihood Estimator, Newton method, Shewhart S-control chart, Assignable cause, Statistical process 
control;  
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1. Introduction 

Statistical process control (SPC) charts are tools that are 
used to monitor the state of a process by distinguishing 
between common causes and special causes of variability. 
When a control chart signals that a special cause is present, 
process engineers must initiate a search for identification of 
the special cause(s) which led to process disturbance. The 
search will depend on the process engineers’ expertise and 
knowledge of their process. Due to the potential delay in 
generating a signal from control charts, the signal does not 
provide process engineers with what caused the process to 
change or when the process change actually occurred. 
Knowing the time of the change could lead to identifying 
the special cause more quickly, and to take the appropriate 
actions immediately to improve quality. Consequently, 
estimating the time of the process change would be useful 
to process engineers. Therefore, most control charting 
procedures and corresponding diagnostic tools are designed 
preliminary for step changes in the parameters of interest.  

Over the last two decades, various estimators have been  

 
 
 
 

introduced to estimate change point of processes with 
ferent assumptions regarding the type of changes and 
distributions for quality characteristic of interest. Much of 
the literature on change point estimation is directed towards 
estimating the change point when the assumed change type 
is a simple step change. The change point properties of 
cumulative sum control chart proposed by [5] and 
exponentially weighted moving average control chart was 
investigated by Nishina [2]. References [15], [16], [13], and 
[14] proposed four maximum likelihood estimators for the 
process change points using the step change likelihood 
function for X , S and C, np charts, respectively. 
Reference [3] also derived a maximum likelihood estimator 
for identifying step change in a geometric control chart that 
used to monitor high yield process. Reference [1] proposed 
a maximum likelihood estimator for identifying the change 
point when a multivariate 2χ -control chart signals a change 
in the process mean. References [11] and [6] compared the 
estimator suggested by [15] and [14] to those suggested by 
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[5] and [2] following signals from CUSUM and EWMA 
control charts, respectively. Considering only step changes, 
they concluded that the estimator suggested by [15] and 
[14] outperforms those offered by the CUSUM and EWMA 
procedures across a wide range of change magnitudes. In 
all the above mentioned works, it is assumed that the 
change type is a simple step change. Although step changes 
are one potential change type, linear trends can also exist. 
For example, step changes can occur as a result of tool 
breakage, while linear trends can occur as a result of tool 
wear. References [7] and [9] proposed maximum likelihood 
estimators for X -chart and C-chart, respectively when a 
linear trend disturbance is present. All the reviewed models 
assume that change types are known and are either in a 
form of simple step change or changes that have linear 
trend. But, in practice, rarely is the type of change known a 
priori and, thus, any deviations in the true change type from 
the assumed change type is likely to affect the performance 
of the estimator. Moreover, a process parameter might also 
experience multiple step changes. For example, this type of 
behavior might occur as a result of one influential process 
input variable changing several times, or several influential 
process input variables changing at different times. 
References [8] and [10] proposed two change point 
estimators derived from the change likelihood function for 
a Poisson rate parameter and process fraction non-
conforming without assuming prior knowledge of the exact 
change type, respectively. The only assumption was that 
the anticipated change type is one from a family of 
monotonic change types. Reference [4] proposed a 
maximum likelihood estimator for the change point of a 
normal process mean with the assumption of monotonic 
change types. 

In this paper, we derive a maximum likelihood estimator 
to identify change point of normal process variance when a 
linear trend disturbance is present. The proposed estimator 
will be used to estimate the change point when a S-control 
chart signals a change in the process variance and its 
performance will be studied based on the likelihood 
function for the process change point. The Monte Carlo 
simulation is used to compare performance of our estimator 
and that proposed by [16] when change of normal process 
variance appears as a linear trend.   

The paper is organized as follows. In section 2, the 
maximum likelihood estimator for change point of a normal 
process variance with linear trend is presented. Section 3 
provides comparisons between the proposed estimator and 
the one developed for the simple step change. Our 
concluding remarks are presented in the final section.  

2. Maximum likelihood estimator 

In this section, we consider a linear trend change model 
for the behavior of a normal process variance. We assume 
that the process is initially in-control with independent 
observations coming from a normal distribution with a 
known mean 0μ  and a known variance 2

0σ . Standard 
deviation or S control chart is used to control process 
dispersion. However, we assume that after an unknown 
point in time τ  (known as the process change point), the 
process variance changes from its in-control state of 

2 2
0σ σ= to an unknown out-of-control state where 2 2

iσ σ=  
and 2 2

0iσ σ>  for 1,  . . . , i τ= + . The functional form of 2
iσ  

is given as follows: 
 

2 2
0 ( )i iσ σ β τ= + − , (1) 

 
Where, β  is the magnitude or slop of the linear trend 

disturbance. 
In the assumed S control chart, let iS  be standard 

deviation calculated for the ith subgroup and Xij is the jth 
observation in subgroup i, iX  is the ith subgroup average 
and n is the number of observations in each subgroup. We 
will assume that TS is the first subgroup standard deviation 
to exceed a control limit and this signal is not a false alarm. 
Thus, 1 2, ,. . . ,S S Sτ  are the standard deviations from the in-
control process and the process variances 2

iσ , 1,  . . . , i τ=  
are equal to its known value 2

0σ . Whereas 1 2, ,. . . , TS S Sτ τ+ +  
are from the changed process and its variances are 

2 2
0 ( )i iσ σ β τ= + −  for 1, 2,  . . . , Ti τ τ= + + .      

In the assumed change model, there are two unknown 
parameters τ and β  that represent the last subgroup taken 
from the in-control process and the slope parameter of the 
linear trend, respectively. This model can be used to derive 
a MLE for process change point. The estimated change 
point will be denoted as τ̂ . If τ  is considered as the true 
change point of normal process variance with linear trend, 
the likelihood function is given as: 
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The maximum likelihood estimator for τ  is the value of 
τ  that maximizes the likelihood function in (2), or 
equivalently, its logarithm. The natural logarithm of (2) is 
given below. After substituting (1) in (3) and 
simplification, the result will be obtained as follows. 
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After substituting (1) in (3) and simplification, the result 
will be obtained as follows. 

 
Where K in (4) is a constant and it can be eliminated from 
the model. Since the value for β is unknown, an expression 
in terms of τ is required for β  that maximizes (4). To do 
this, the partial derivative of (4) with respect to β  is 
required which leads to (5). 
As seen in (5), there is no closed form solution for β . 
Therefore, to provide an estimate of β  for each τ  without 
requiring an explicit closed-form expression, Newton’s 
method is used (for more detail about Newton’s method see 
[12]). 
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Note that, if τ was known and the denominator of (6), is 
nonzero, Newton’s method could be used to solve for β in 
(5). That is, t̂β  at the (k+1)th iteration can be written 
explicitly as:  
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Where ,0

ˆ 0tβ = . It can be proved that the denominator in (6) 
is always negative, which is a necessary condition for (4) to 
have a maximum. Even further, since the process variance 
is greater or equal to zero, β  must be greater or equal to 

2
0 ( )iσ τ− −  for any given 1,...,i t T= + . The procedure in 

(6) will work well for the increasing rate case since β  has 
no upper bound. Whereas, for decreasing rates the linear 
decreasing trend would eventually produce negative rates 
of variance which are impossible. Thus, only increasing 
trends are considered here. 

As a result, using the procedure defined in (6), the value 
for β can be obtained at each potential change point value. 
The procedure is then repeated T times, once for each 
potential value of τ . Then, the estimated values of  β at 
each potential change point value ( τ̂β ) are substituted in (4) 
and the change point of normal process variance ( τ̂ ) is 
obtain using (7). 
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Where τ̂  is the MLE for the last subgroup number 
obtained from the in-control process.  

The proposed MLE framework can be applied when any 
process dispersion control chart gives an out-of-control 
signal, including the CUSUM, EWMA and Shewhart S 
chart. In the following section we use Monte Carlo 
simulation to compare the performance of the proposed 
estimator with a step change estimator proposed by [16]. 

3. Comparison of the change point estimators 

In this section, Monte Carlo simulation is conducted to 
make a comparison between the proposed estimator with 
the one suggested by [16] when linear trend disturbance is 
present. In the following comparisons, τ  and ŜCτ are used 
to show the results of the derived estimator for linear trend 
and the simple step change estimator, respectively. In the 
simulation study, S-chart is used to monitor process 
dispersion.  

3.1. False alarm 

The simulation modeling of false alarms needs to be 
carefully addressed. So, in this subsection the handling of 
false alarms in the simulation model is discussed. 
Following the path in the literature of change points, when  
a control chart signals an out-of-control condition at 
subgroup, then the signal is considered as a false alarm 
because no change has actually taken place in the process. 
When a false alarm is encountered in a simulation run, it is 
treated in the same way that a false alarm would be treated 
on an actual process. Namely, if one determines that a 
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signal is indeed a false alarm, then one is affirming that the 
process is currently in-control and could restart their 
monitoring of the process. Thus, when a false alarm is 
encountered at subgroup, the control chart is restarted at 
subgroup while not altering the scheduled change point. 
This is the same approach considered by researchers 
including [9]. 

3.2. Comparisons of accuracy performances and Precision 
performances of the estimators 

In this subsection, to make comparisons between the two 
mentioned estimators, the simulation study is organized as 
follows; for subgroup1,2,..., 50τ = , observations are 
generated randomly from a normal distribution with known 
mean 0 100μ = and variance 2

0 25σ = . Then, starting with 
subgroup 51, observations are generated randomly from a 
normal distribution with mean 0 100μ =  and changed 
variance 2

iσ ; until the S -chart issued a signal at T that is 
not a false alarm. Recall that after subgroupτ , the variance 
changes with linear trend based on (1). For given value of 
T , the change point estimators, τ̂ and the one developed 
for step change, i.e. ŜCτ , are computed and recorded. This 
procedure is repeated a total of 10,000 times for different 
values of slope parameter β  and size of subgroup n  (here 
only the results of estimators for subgroups with size 5n =  
and 15 are presented). Afterwards, the average of τ̂  and 

ŜCτ  (denoted as τ̂  and ŜCτ ) over all simulations are 
determined along with the mean square errors (denoted 
as ˆ( )MSE τ  and ˆ( )SCMSE τ ). The results of simulation for 
accuracy performance study with 5n =  are shown in Table 
1.As seen in Table 1, the results show that when size of 
subgroup is 5n = , the derived estimator for linear trend 
disturbance provides much better accuracy performance  
over all ranges of β  values in comparison with the simple 

step change estimator suggested by Samuel, Pignatiello, 
and Calvin [16]. 
 
Table 1 
Accuracy performances for two different MLEs of the change point 
following a genuine signal from a S-control chart. 5n = , 50τ =  and 

10,000N =  independent runs 
 
β  ( )E T  τ̂  ˆSCτ  ˆ( )MSE τ  ˆ( )SCMSE τ  

0.05 151.8 103.79 113.38 2893.60 4017.60 

0.20 102.3 69.51 77.59 380.54 761.00 

0.35 88.6 62.83 69.17 164.60 367.57 

0.65 77.4 57.89 62.42 62.23 154.32 

1.00 71.2 55.87 58.92 34.47 79.52 

1.50 66.7 53.91 56.63 15.27 43.92 

2.00 64.0 53.13 55.36 9.78 28.69 

3.00 61.0 52.20 53.89 4.82 15.10 

 
Afterwards similar Monte Carlo simulations are 

conducted to estimate precision performances for simple 
step change and the proposed estimators. In the precision 
performance study, the probability of correct estimation of 
true change point will be estimated for situations that 
estimated change points are within specific observations of 
the true change point. The results of precision performance 
study of two mentioned estimators for subgroups with size 
n=5 are presented in Table 2. 

In the next simulation, the subgroups are generated with 
size 15n = . The results of this simulation are shown in 
Table3. 3.    

Table 2 
Estimated precision performances over a range of β  values for τ̂  and ˆSCτ (shown in parenthesis) following a genuine signal from a S-control 

chart. 5n = , 50τ =  and 10,000N =  independent runs. 

β  0.05 0.20 0.35 0. 65 1 1.5 2 3 

ˆ ˆ(| | 0)P τ τ− =  0.01 0.01 0.02 0.02 0.04 0.4 0.05 0.07 
(0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.05) 

ˆ ˆ(| | 1)P τ τ− ≤  0.02 0.04 0.05 0.07 0.10 0.13 0.16 0.20 
(0.02) (0.02) (0.03) (0.05) (0.06) (0.08) (0.10) (0.14) 

ˆ ˆ(| | 2)P τ τ− ≤  0.03 0.07 0.08 0.12 0.17 0.21 0.26 0.33 
(0.02) (0.04) (0.05) (0.08) (0.11) (0.14) (0.17) (0.25) 

ˆ ˆ(| | 3)P τ τ− ≤  0.04 0.09 0.11 0.17 0.23 0.29 0.36 0.45 
(0.03) (0.05) (0.07) (0.11) (0.15) (0.20) (0.26) (0.36) 

ˆ ˆ(| | 4)P τ τ− ≤  0.05 0.11 0.14 0.21 0.29 0.36 0.44 0.55 
(0.04) (0.07) (0.09) (0.14) (0.19) (0.27) (0.34) (0.47) 

ˆ ˆ(| | 5)P τ τ− ≤  0.06 0.13 0.18 0.26 0.34 0.44 0.52 0.64 
(0.04) (0.08) (0.11) (0.17) (0.25) (0.34) (0.43) (0.57) 

ˆ ˆ(| | 10)P τ τ− ≤  0.10 0.23 0.32 0.47 0.60 0.73 0.82 0.91 
(0.08) (0.16) (0.23) (0.37) (0.53) (0.68) (0.80) (0.91) 
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   Similar to Table 1, the results in Table 3 indicated that, 
when the size of the subgroups is 15n = , the derived 
estimator for the linear trend provides much better accuracy 
performance over all ranges of β  values in comparison 
with the simple step change estimator suggested by Samuel 
et al [16]. 

Table 3 
 Accuracy performances for two different MLEs of the change point 
following a genuine signal from a S-control chart. 15n = , 50τ =  and 

10,000N =  independent runs. 

β  ( )E T  τ̂  ˆSCτ  ˆ( )MSE τ  ˆ( )SCMSE τ  

0.05 147.3 81.64 99.12 1001.40 2412.80 

0.20 93.7 60.90 69.87 118.81 394.90 

0.35 81.3 56.75 63.33 45.56 177.58 

0.65 71.1 54.07 58.34 16.59 69.63 

1.00 66.0 52.76 55.87 7.60 34.41 

1.50 62.2 51.88 54.34 3.53 18.81 

2.00 60.1 51.41 53.41 1.98 11.61 

3.00 57.7 50.99 52.26 0.99 5.10 

 
In the next simulation we choose subgroups with size 

n=15 and compute the precision performances of the two 
mentioned estimators. These results are shown in Table 4. 
As similar to Table 2, the results of Table 4 indicate that 
the derived estimator for the linear trend estimates the true  
change point of process with a higher precision, 
specifically when the slope parameter is small. As seen in  

 
Table 4, when the slope parameter increases, the 
probability of correct estimation using step change  

estimator begins to become better. 
In this paper, the results for a two values of sample size, i.e. 
n=5 and 15 are reported. Although not shown here, 
simulation studies show that the same relative 
performances are obtained regardless of the value of τ , 2

0σ  
and β . Therefore, in general, based on these results, we 
conclude that proposed estimator ( τ̂ ) outperforms the 
simple step change estimator ( ˆSCτ ) suggested by Samuel, 
Pignatiello, and Calvin [16] with regards to accuracy and 
precision performances when a linear trend disturbance is 
present. 

4. Conclusion 

In this paper, a maximum likelihood estimator for 
identifying the time of linear trend change in a normal 
process variance is proposed. We used the Newton’s 
method to estimate the slope parameter β at each potential 
change point value. Afterwards, the Monte Carlo 
simulation was applied to compare the performance of the 
proposed estimator to the one developed by Samuel, 
Pignatiello, and Calvin [16] for a simple step change in 
terms of accuracy and precision when a linear trend 
disturbance is present. The results of simulation showed 
that the proposed estimator outperforms the MLE designed 
for simple step changes especially in the cases of small  
 slope parameters.                          .

 
Table 4 
Estimated precision performances over a range of β  values for τ̂  and ˆSCτ (shown in parenthesis) following a genuine signal from a S-control chart. 

15n = , 50τ =  and 10,000N =  independent runs. 

β  0.05 0.20 0.35 0.65 1 1.5 2 3 

ˆ ˆ(| | 0)P τ τ− =  0.01 0.02 0.03 0.05 0.06 0.08 0.09 0.12 
(0.01) (0.01) (0.02) (0.02) (0.03) (0.05) (0.06) (0.08) 

ˆ ˆ(| | 1)P τ τ− ≤  0.03 0.06 0.09 0.13 0.17 0.21 0.25 0.34 
(0.01) (0.03) (0.04) (0.06) (0.09) (0.13) (0.16) (0.24) 

ˆ ˆ(| | 2)P τ τ− ≤  0.04 0.09 0.14 0.21 0.27 0.34 0.40 0.51 
(0.02) (0.05) (0.07) (0.11) (0.16) (0.22) (0.28) (0.41) 

ˆ ˆ(| | 3)P τ τ− ≤  0.06 0.13 0.19 0.28 0.36 0.45 0.53 0.66 
(0.03) (0.06) (0.10) (0.15) (0.23) (0.32) (0.41) (0.59) 

ˆ ˆ(| | 4)P τ τ− ≤  0.07 0.16 0.24 0.35 0.44 0.55 0.65 0.77 
(0.04) (0.08) (0.13) (0.21) (0.31) (0.43) (0.54) (0.73) 

ˆ ˆ(| | 5)P τ τ− ≤  0.09 0.20 0.28 0.42 0.52 0.64 0.74 0.86 
(0.04) (0.10) (0.16) (0.26) (0.39) (0.54) (0.66) (0.83) 

ˆ ˆ(| | 10)P τ τ− ≤  0.15 0.36 0.49 0.68 0.82 0.92 0.96 0.98 
(0.09) (0.21) (0.34) (0.57) (0.77) (0.91) (0.96) (0.98) 
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