
Journal of Industrial Engineering 6(2010) 13-23

13

 A Multi Objective Fibonacci Search Based Algorithm for Resource
Allocation in PERT Networks

Behrouz Afshar Nadjafia,*, Salman Kolyaeia

aIslamic Azad University, Qazvin Branch, Department of Industrial and Mechanical Engineering, Qazvin, Iran

Received 6 Jul., 2010; Revised 27 Jul., 2010; Accepted 8 Aug., 2010

Abstract

The problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. We seek to
minimize the expected cost of the project include sum of resource utilization costs and lateness costs. We assume that the work content
required by the activities follows an exponential distribution. The decision variables of the model are the allocated resource quantities. We
construct a continuous time Markov chain model for the activity network and use the PhaseType distribution to evaluate the project
completion time. Then we use Fibonacci search over the interval of permissible allocations to the activity to seek the minimum expected
cost.

Key words: Fibonacci search; resource allocation; stochastic network; continuous time Markov chain.

1. Introduction

Projects are defined as a finite set of activities that are
required to achieve a specific objective; an activity is
defined as an action that consumes time and resources.
Typically, the use of resources entails an expanse that
varies with the magnitude and duration of their use, and
the project has a promised completion date which should
be considered, else it incurs a tardiness penalty. In this
paper we are concerned with the optimal allocation of
resources to activities in project under stochastic
condition in order to optimize an economic objective
function composed of the sum of the cost of resources
used and the penalty incurred if the project is completed
later than its promised completion date. A great deal of
research has been done pertaining to project scheduling
since the field's inception [6],[17] [12].

The objective of the RCPSP studies is to schedule
activities in such a manner to meet resource availability
and precedence constraints in order to optimize an
objective function typically related to the project
completion time. The RCPSP can be subdivided into
unimodal and multimodal cases. unimodal, or single-
mode problem, imply that each activity has a single
execution mode. In order words both the activity duration
and its requirement for a set of resources are fixed and

Known. In multimodal problem, on the other hand, each
activity can be processed in one of several modes.
Resource constraints can be classified as renewable or
non-renewable. Renewable resource constraints put limits
on the amount of a particular resource that can be utilized
at a particular time in the project. Non-renewable resource
constraints limit the amount of a particular resource that
can be utilized in total throughout the project’s life. The
multimodal RCPSP is closely related to the problem at
hand. These problems are often referred to as Time-Cost
Trade off problems (TCTP). At its core, the TCTP
assumes that the duration of an activity is a function of
the resources assigned to its completion. Normally,
greater resource allocation will demand a greater expense,
thus we have a trade off between the time to complete a
project and its cost. When the task duration is a linear
function of the assigned resources we have the Linear
Time Cost Trade off (LTCT) problem. Notably,
Fulkerson [11] studied this problem under the objective of
minimizing project cost subject to completion before a
due date. He then solved the problem through the use of
primal-dual concepts in linear programming and
developed an approach to compute the complete cost
curve of the project as a function of the project’s due
dates [6], [11], [19], [25].

*
Corresponding author E-mail: afsharnb@ alum.sharif.edu

 Behrouz Afshar Nadjafi et al. / A Multi Objective Fibonacci Search Based Algorithm for Resource...

 If the resource’s allocation is limited to distinct values described a “Policy Iteration-like” approach to achieve
we have the Discrete Time-Cost Trade off (DTCT) the optimum in finite number of steps. Azaron et al. used
problem. Hindelang and Muth developed a dynamic control theory to studied resource allocation in Markov
programming (DP) algorithm to solve this problem in PERT Networks [2].
pseudo-polynomial time when the corresponding AOA
project graph is series-parallel. [14]. In the case where the
graph is not series-parallel, De et al provide an update to 4. Problem Definition
the DP algorithm of Hindelang and Muth [4].
 Valls et al. study the RCPSP with some activities Given a multimodal activity network (‘multimodal’
facing stochastic interruptions and processing times [24]. means that each activity can be performed at any number
Gutjahr et al. consider scheduling problems similar to our of levels of resource intensity applied to it, with resulting
own. However, in their approach activities can have one shorter or longer duration), with a stochastic work content

a a a

14

of two possible distributions depending on whether or not (W
a project is crashed [13]. apply to each activity (x), so that the total cost is j
 minimized. This cost includes the resource cost and the
 delay cost. The duration of an activity depends on its
2. Continuous Time Markov Chains work content and on the amount of resource allocated to
 it. To evaluate the delay cost, a due date must be specified

In this paper, we assume that the work content of any (T), as well as the unit cost per period tardy (c s L

task is an exponentially distributed random variable. As a We imposed the following assumptions:
direct result of this assumption, activity durations are also • The work content of each activity is a random variable
exponential random variables since the duration is derived that follows an exponential distribution with parameter
from the work content via the relation Y = W/x, in which λ j j

W is the (random) work content and x is the resource • The amount of resource applied to any activity is
Allocation. Further, when we assume independence of bounded from below and from above; l ≤ x j j j

activity times with respect to one another we have a activity.
Markov PERT Network (MPN) [1], [2]. • The availability of the resource is unlimited and is a
 The term Markov PERT Network originated with continuous variable that may be allocated in any
Kulkarni and Adlakha and referred to stochastic activity intensity within an interval between lower and upper
networks where activity times followed an exponential bounds.
distribution. Further, they provided a method for analysis Note that this assumption does not conflict with the
involving uniformly directed cut sets (UDC’s) that earlier assumption of unlimited resource availability. It
allowed one to transformed the PERT network into a only contains the resource allocation to any individual
Continuous Time Markov Chain [15], [5]. activities.
 • We assume the total resource availability is abundant
 enough to accommodate all activities running in parallel
3. Resources Optimal Allocation at a given time.
 • We assume that the cost of resource allocation to
The literature has been of little help on the problem of activity J is quadratic in allocation over the duration of
resource allocation in project network. Tereso et al. the activity [20], [21], [22], [23].
considered resource allocation in multi-modal activity
networks [20], [23], [22], [23]. They address the 4.1. Project completion time analysis in PERT networks
stochastic version of the problem and assume exponential
distribution for the work content of activities. Morgan Kulkarni and Adlakha developed a methodology for
[18] derived a fast method for optimizing resource transforming a project network with exponentially
allocation in a single stage stochastic activity network. distributed activity completion times into a CTMC. We
Morgan used Sample Path Optimization and appealed to will now describe their notation and methodology [15].
Geometric Programming to solved the single stage Let G = (V,A) be a PERT network with set of nodes V =
problem. Morgan stated that his procedure could be {v , v , . . ., v 1 2 m 1 2 n

applied to any distribution of work content provided it is Duration of activity a A is either an exponentially
amenable to random sampling.[18],[20],[21],[22],[23]. distributed with the parameter λ , or Erlang distributed
Elmaghrby and Ramachandra studied the problem of with the parameters (λ , n). a a
optimal resource allocation in a Markov PERT Network First, we transform the original PERT network into a new
with respect to an economic objective [7], [8], [9]. Their one, in which all activity durations have exponential
objective function was comprised of the expected cost of distributions. To do that, we substitute each Erlang
the resources and the cost of expected tardiness. They activity with the parameters (λ , n) with n

j), we wish to decide on the amount of resource to

) [3], [26].

: Wj ~ exp(λ) .

≤u , for all

} and set of activities A = {a , a , . . ., a }.

a

series of

Journal of Industrial Engineering 6(2010) 13-23

15

exponential activities with the parameter λa. Now, Let G'
= (V',A') be the transformed network, in which V' and A'
represent the sets of nodes and arcs of this transformed
network, respectively. The source and sink nodes are
denoted by s and t, respectively. For a ∈ A', let α(a) be
the starting node of arc a, and β(a) be the ending node of
arc a

Definition 1. Let I(v) and O(v) be the sets of arcs
ending and starting at node v, respectively, which are
defined as follows:
I(V)={a∈A': β(a)=V} (v∈V') (1)

 O(V)={ a∈A': α(a)=V} (v∈V') (2)

Definition 2. If X  V', such that s ∈ X and t ∈ X
= V'- X, then an (s, t) cut is defined as:
 (x,x)={ a∈A' : α(a) ∈X , β(a) ∈X} (3)

An (s, t) cut (X,X) is called an uniformly directed cut
(UDC), if(X,X) is empty.

Example 1. Before proceeding, we illustrate the
material by an example. Consider the network shown in
Fig. 1.

Fig. 1. Example Network

Clearly, (1, 2) is a uniformly directed cut (UDC), because
V' is divided into two disjoint subsets X and X, where s
∈ X and t ∈ X. The other UDCs of this network are (2,
3).

Definition 3. Let D = E  F is a uniformly directed cut
(UDC) of a network. Then, it is called an admissible 2-
partition, if I(β(a))  F, for a ∈F.

Definition 4. During the project execution and at time
t, each activity can be in one of the active, dormant or idle
states, which are defined as follows:
Active: an activity is active at time t, if it is being
executed at time t.
Dormant: an activity is dormant at time t, if it has finished
but there is at least one unfinished activity in I(β(a)). If an
activity is dormant at time t, then its successor activities
in O (β (a)) cannot begin.
Idle: an activity is idle at time t, if it is neither active nor
dormant at time t.
The sets of active and dormant activities are denoted by
Y(t) and Z(t), respectively, and X(t) =(Y(t),Z(t)).

 Tabel 1

All admissible 2-partition cuts of the example network

1. (1a, 3a)

2. (2a, 3a)

3. (1a, 3d)

4. (2a, 3d)

5. (2d, 3a)

6. (, )

Consider Example 1, again. If activity 2 is dormant, it
means that this activity has finished but the activity 3 is
still active. Table 1, presents all admissible 2-partition
cuts of this network. E contains all active while F includes
all dormant activities. Now, let S denote the set of all
admissible 2-partition cuts of the network, and
s=s{(,)}.Note that X(t) = (,) implies that Y(t) =
 and Z(t) = , i.e. all activities are idle at time t and
hence the project is completed by time t. It can be proved
that {X(t), t  0} is a continuous-time Markov process
with state space S.[1],[2]

As mentioned before, E and F contain active and
dormant activities of a UDC, respectively. When activity
a finishes (with the rate of λa), and there is at least one
unfinished activity in I(β(a)), it moves from E to a new
dormant activities set, i.e. to F'. Furthermore, if by
finishing this activity, its succeeding ones, O(β (a)),
become active, then this set will also be included in the
new E', while the elements of I(β (a)), which one of them
belongs to E and the other ones belong to F, will be
deleted from these sets. Thus, the elements of the
infinitesimal generator matrix Q = [q{(E,F),(E',F')}],(E,F)
and(Eً',F ')]∈ S', are calculated as follows:

3

UDC2

λ1=0.1

2λ1=0.2
UDC1

1

λ 3=0.07
1

2

3

 Behrouz Afshar Nadjafi et al. / A Multi Objective Fibonacci Search Based Algorithm for Resource...

16





















)(00

)(,

)())((}{(},{)((,

)(}{},{},{)((,

)},(),,{(

dwisether

cFFEEif

baBUOaEEaFUaBIEaifa

aFUFaEEaFUaBIEaifa

FEFE
Aa 






In Example 1, if we consider E = {1, 3}, F = (), E' = {2,
3} and F' = (), then E' = (E _ {1}) O(β (1))], and thus
from (4b), q{(E,F), (E',F')} = λ1.
{X(t), t  0} is a finite-state absorbing continuous-time
Markov process. Since q{(,), (,)} = 0, this state

would be an absorbing one and obviously the other states
are transient. Furthermore, we number the states in S such
this Q matrix be an upper triangular one.[1],[2].

Fig. 2. Graphical Representation of the six states of the CTMC

4.2. Continuous Phase-Type Distributions

The name “phase type” distribution stems from the
fact that an Erlang distribution is derived as the sum of
“stages” or “phases”, all exponentially distributed with
the same parameter λ. The generalized Erlang distribution
of order m has m phases (stages) each is exponentially
distributed but with possibly different parameters λ1, · · · ,
λm.[1], [16], [20], [21], [22], [6].

Definition 5. A continuous probability distribution F(·)
is of the phase type (PH-distribution)
if it is the distribution of the time until absorption in a
finite-state Markov process with a single absorbing state;
that is, there exists a probability vector (α, αm+1) and an
infinitesimal generator matrix of the form


















)11()1(

0
)1()(

OO

TT
Q

m

mmm

where e is a m × 1 vector of ones, Ti,i < 0 for 1  i  m,
and Ti,j  0 for i  j.

Also,
Te + T0 = 0 (4)
and the initial probability vector of Q is given by the
vector (α, αm+1), with
α · e + αm+1= 1 (5)

The pair (α,T) is called ‘representation’ of F (·) . In our
case, the process starts in state 1 with probability 1. States

1, . . . , m are transient so that absorption into state m + 1
from any initial state is certain.
The first result is that the matrix T is non-singular (a
necessary and sufficient condition for the states 1, . . . , m
to be transient). Observe that

Tk 0 as k .

Assuming an initial probability vector (α, αm+1), the
c.d.f. of the time to absorption in state m + 1
corresponding to the initial probability vector (α, αm+1) is
given by
F (z) = 1 − α · eTz · e, for z 0 (6)

We make the following observations about the

properties of the distribution F (·):
It has a jump of height αm+1at z = 0. Evidently this is the
probability that the process starts in the absorbing state.
This case is of no concern to us since it implies that the
project is complete at its start, which would imply that
there is no project.
Its density portion f (z) = F' (z) on (0, ) is given by
f (z) = F' (z) = α · eTz · T0 (7)

In our case the “portion” of the domain of x is the whole
real line including the point at the origin because αm+1= 0.

The non-central moments (about the origin) 'i of F (·)
are all finite and given by
'i=(-1)i*i(αT-ie),for i0 (8)

λ 3

λ 3

5

6

λ 2

3

1

2 4

(1a,3a)

(2a,3a) (2d,3a)

(,)

(2a,3d) (1a,3d)

λ 1

λ 2

λ 3

λ 1

Journal of Industrial Engineering 6(2010) 13-23

17

5. Description of Algorithm

In order to solve the problem at hand, we focus our
research on a modified steepest descent algorithm. We
first compute an approximation to the partial derivative of
the expected cost with respect to the allocation to each of
the activities and then choose to modify the allocation to
the activity that has the greatest negative derivative. Next
we use line search techniques to find the minimum
expected cost allocation to the chosen activity while
holding the other allocations constant. The algorithm
iterates using these two steps until a specified stopping
criterion is met. In order to execute any of these steps, we
first must be able to compute the expected cost at a
particular allocation.

5.1. Cost Computation

As previously described, the expected cost of
the project contains two terms:
E[C(X)]=(Xa/λa)+CL.{max(0,m1-Ts)} (9)

The first term relates exclusively to the level of

resource allocation. Since the work content distribution
parameter, λi, is given for each activity the expected cost
of resource allocation can be computed directly. The
second term, which relates to the lateness of the project
with respect to a given due date, Ts, can be computed by
the non-centeral moments of the phase-type distribution.
As previously described, the non-centeral moments
function of the phase-type distribution is obtained
following the relation:
mk=(-1)k*k(αT-ke) (10)

Since that we use the p-state Erlang distribution in our

computation then:

!
)(

P

upp
uf eu  


1

 (11)

)(0001  (12)

T=

With consider the above information we can compute the
expected cost of lateness based on the following relation:
Lateness cost expected = cl*{max (0, project complete
real time-Ts)}
The expected of project complete time is as first-stage
moment of phase-type distribution that with consider the
k-stage moment then:

m1= (-1)1*1(αT-1e) = - αT-1e (13)

that in the above relation ,e, is a ones vector and α is :
α = (1 0 0 0 … 0) (14)

and with substitution in 5.3 relation we have :
Lateness cost expected= cl*{max (0, - αT-1e -Ts)} (15)

With consider the above relation the total costs expect is:
E[C(X)]= (Xa/λa)+ CL.{max(0, -α T-1e -TS)} (16)

5.2. Selecting Candidate Activities

In general, our algorithm optimizes the project cost by
changing the allocation to one activity at-a-time. We now
need to explain the procedure to select activities that are
the best candidates for optimization. The best candidates
in our procedure are those that could lead to the greatest
decrease in expected project cost.

The two terms of the project cost behave diametrically
opposite in their response to changing resource
allocations. The project resource cost increases linearly
with respect to an increase in resource allocation to any
activity. On the other hand, increased resource allocation
to the activities tends to shorten their expected duration
and so the expected lateness cost would decrease with
respect to such a change in allocation. A decrease in
overall cost, therefore, could be obtained from either a
decrease or an increase in resource allocation.

An important observation is that the expected project
cost is a convex function with respect to the allocation to
a single activity. This fact is a result of the two convex
components of cost. The expected cost of lateness
decreases convexly due to the exponential distributions on
which it is based. Further, since the resource costs are
linear (hence convex) in the resource allocation, the sum
of the two costs is convex. Thus, repeatedly optimizing
allocations to single activities one-at-a-time will descend
monotonically to reach the optimal solution. Since no
analytical expression is known for the partial derivative of
the cost function with respect to the allocation to any
activity aj, we must rely on approximations to proceed.
Such an approximation would enable us to select the
activities to which a change in allocation could cause the
greatest change in expected cost. If we compute the cost
associated with a small change in allocation, , to a
particular activity we can approximate the derivative of
the cost function by first taking the difference between
this cost and the cost of the initial resource allocation and
then dividing by the magnitude of . Since a decrease in
cost can occur via an increase or a decrease in allocation,
and thanks to the convexity of the cost function, the best
candidate allocations are those with the steepest- descent
causing a decrease in cost. Further, if  is constant across
all activities, we can simply find the change in allocation
reflecting the greatest decrease in cost. Further, if  is

-  0 0 …… 0

 0 -  0 …... 0

 0 0 -  …... 0

 0 0 0 0 ….... 

 Behrouz Afshar Nadjafi et al. / A Multi Objective Fibonacci Search Based Algorithm for Resource...

18

constant across all activities, we can simply find the
change in allocation reflecting the greatest decrease in
cost. Letting X+a = X + , denote the allocation X with the
value of the a th allocation increased by the amount ,
further we allow X-a = X –  to denote the allocation with
the a th allocation decreased. We calculate E[C(X+a)] and
E[C(X-a)] for each activity. With E[C(X)] in hand, we find
E[C(X+a)] – E[C(X)] and E[C(X-a)] – E[C(X)] for each
activity, a, and use this as a value of the derivatives of the
cost function with respect to the allocation to a. We select
the activity corresponding to the greatest decrease in cost
as the candidate activity. If the decrease in cost comes
from X+a , the allocation to activity a must be increased.
Likewise, if this comes from X-a , we must decrease the
allocation to activity a. Since we are dealing with
minimization of the cost function, for certain network
structures both increasing and decreasing the allocation
can cause an increase in cost. Thus it is important to
check both an increase and decrease in allocation rather
than assuming that an increase in cost in one direction
implies a decrease in cost in the opposite.

5.3. Improving Computational Elements of Total Cost

With respect to the cost function in section 4.1 we
must calculate E[C(X+a)] and E[C(X-a)] for each activity.
We let Q (X+a) represent the matrix Q with the allocation
to activity a increased by the value . Note that increasing
the allocation to a single activity may correspond to
increasing the value of several entries in the original Q
matrix, as well as the decreasing their corresponding
elements along the main diagonal. Changing the
allocation to activity i by  implies that we must change
the values in the Q matrix by λi . This change can be
viewed as matrix addition. These facts are best illustrated
with an example from the project in Figure 1, where we
change the allocation to activity 1 (λ1= 0.2) with = 0.1:

Q(X+1)=

Q(X+1)= Q+

Q(X+1)= Q+Ф+1 (17)

where, Q +a represents the matrix corresponding to the
increase in allocation to activity a.

Note that the matrix Q +a ,does not depend on the current
allocation to the other activities. Here are several ways in
which you can enter and format.

5.4. Optimizing the Allocation to a Candidate Activity

With a candidate variable in hand, we now seek to
optimize the allocation of resources to that activity while
leaving the other allocations unchanged. As previously
stated, the expected project cost is a convex function with
respect to the allocation to a single activity. Any convex
optimization procedure could therefore be applicable
here. However, due to the difficulty involved in finding
exact analytical expressions for the partial derivatives of
the cost function, we opt to use Fibonacci search as our
method of determining the optimal allocation to the
selected activity. Note that this “optimal” allocation is
“locally optimal” in a sense as it depends upon the
allocation to the other activities.

At its core, Fibonacci search, often referred to as
“golden mean” search, finds the optimal point in a range
of feasible values by repetitively shrinking the range,
stopping when the range is sufficiently small to suggest a
single optimal point. We define r as the inverse of the
“golden ratio” and use r to give values for Xl and Xu.
 r = 1/1.6180.618 and 1-r = 0.382

Wilde shows is the most computationally efficient
method of finding the optimal value of a variable when
searching along a line. Given a lower bound, l, and an
upper bound, u, on the range, two new points are
calculated within the range: Xl and Xu where Xl < Xu :

 XL=L+(U-L)*0.382
(18)

XU=L+(U-L)*0.618 (19)

For our purposes, these points represent different

resource allocations [7].
If activity j was selected as the candidate activity and

its cost decreases with increased allocation we let l be the
current allocation and let u be upper bound for activity j
while keeping the allocations to the other activities
unchanged. If its cost decreases with decreased allocation,
we define the upper bound as the current allocation and
let l be the lower bound on the allocation to activity j.
With these four values in hand (l, u, Xl, and Xu), we
recursively redefine the new bounds on the range to our
search to the minimum expected cost allocation.
Optimization proceeds by first calculating the expected
costs of allocations Xl and Xu. if E[C(Xl)] < E[C(Xu)] then
the optimal value must lie between l and Xu, otherwise
E[C(Xl)] > E[C(Xu)] and the optimal value must lie
between Xl and u. If the two expected costs are equal,
either bound can be used.

-0 .27-0.02 0.2+0.02 0.07 0 0 0
 0 -0.17 0 0.07 0.1 0
 0 0 -0.2-0.02 0.2 +0.02 0 0
 0 0 0 -0.1 0 +0.1
 0 0 0 0 -0.07 0.07
 0 0 0 0 0 0

-0.02 0.02 0 0 0 0
 0 0 0 0 0 0
 0 0 -0.02 0.02 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

Journal of Industrial Engineering 6(2010) 13-23

19

5.5. Stopping Criteria

The optimizing algorithm repeats the derivative
approximation and Fibonacci search steps, finding a
resource allocation with a lower expected cost in each
iteration. The algorithm stops when the expected cost in a
given iteration improved the expected cost by only a
small amount. If Xk represents the best resource allocation
after iteration k, the algorithm terminates when:
E[C(Xk-1)] – E[C(Xk)] < p

5.6. An Illustrative Example

Consider the project represented by the graph in
Figure 1. We assume an initial allocation of X0 = (1, 1, 1)
with lower and upper bounds on allocation defined at 1
and 3, respectively. In our calculations we let  =0.05, cL
= 3, Ts = 8, and p =0 .005. First we compute the
expected cost of the initial allocation: E[C(X0)] =
68.9517. Next, we approximate the derivative of the
expected cost with respect to the allocations to activities
1, 2, and 3(Table 2):

Table 2

Example Derivative Approximation

Since activity 3, yields the approximate derivative of

greatest decrease in cost, it becomes the candidate
activity. Thus, we take the bounds l= (1, 1, 1) and u = (1,
1, 3) and we begin the Fibonacci search procedure with
d =٠ .01. The following table (Table 3) details the
optimization procedure: X5 = (1.4306, 1.4977, and

1.4796) at a cost of 62.3555. Ramachandra &Elmaghrby
solved the same example problem, though they limited his
resource allocations to 0.25 increments. [7] His procedure
resulted in a solution of X* = (1.5, 1.5, 1.5) at an expected
cost of 62.38.

Table 3

Fibonacci Search Procedure Example

Iteration L3 U3 XL3 E[C(XL3)] XU3 E[C(XU3)] U3-L3

0 1 3 1.7640 67.9215 2.2360 72.1344 2

1 1 2.2360 1.4722 66.4928 1.7638 67.9202 1.236

2 1 1.7638 1.2918 66.4519 1.4720 66.4923 0.7638

3 1 1.4720 1.1803 66.9318 1.2917 66.4522 0.4720

4 1.1803 1.4720 1.2917 66.4522 1.3606 66.3659 0.2917

5 1.2917 1.4720 1.3606 66.3659 1.4032 66.3789 0.1803

6 1.2917 1.4032 1.3343 66.3823 1.3606 66.3659 0.1115

7 1.3343 1.4032 1.3606 66.3659 1.3769 66.3653 0.0689

8 1.3606 1.4032 1.3769 66.3653 1.3869 66.3684 0.0426

9 1.3606 1.3869 1.3706 66.3647 1.3769 66.3653 0.0263

10 1.3606 1.3769 1.3668 66.3648 1.3706 66.3647 0.0163

11 1.3668 1.3769 1.3707 66.3647 1.3730 66.3648 0.0101

12 1.3668 1.3730 1.3692 66.3647 1.3706 66.3647 0.0062

6. Computational Results

The algorithm was tested on a set of 90 networks
representing a variety of project network structures.
Project networks were generated randomly using

RanGen2, developed by Vanhoucke et al [25] The
RanGen2 generator allows the user to select networks by
specifying values of six parameters. Work content
distribution parameters were generated randomly in
MATLAB. These parameters were sampled from a
uniform distribution between 0.1 to 2 (table 4),2 to 4
(table 5),4 to 6 (table 6). The lower bound on resource

Activity Xa E[C(Xa)] E[C(Xa)]-E[C(X0)]

1, increase (1.05،1،1) 68.7290 -0.2227

1, decrease (0.95،1،1) 69.2479 0.2962

2, increase (1،1.05،1) 68.4048 -0.5469

2, decrease (1،0.95،1) 69.6427 0.691

3, increase (1،1،1.05) 68.2031 -0.7486

3, decrease (1،1،0.95) 69.9052 0.9535

 Behrouz Afshar Nadjafi et al. / A Multi Objective Fibonacci Search Based Algorithm for Resource...

20

allocation was taken as 1 and the upper bound was 3 units
for all activities. Relative lateness costs, cL, were fixed at
3 for all examples and p was fixed at 0.005.
Testing was conducted using the optimization algorithm
initiated from 5 input allocations for each network; the

optimization procedure was repeated 5 times, each with a
different initial resource allocation. Details regarding the
test cases and the test results can be found in Tables 4, 5
and 6.

Table 4

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara & Elmaghraby algorithm (Work content between 0.1 to 2)

 network

Indicators as RanGen2
 Number
of States
CTMC

Min CPU
Time, sec

Average
CPU
Time, sec

Min cost
(Proposed
algorithm)

Min cost

(Ramachandara

& Elmaghraby)

Average CPU
Time, sec

(Ramachandara

& Elmaghraby)

I1 I2 I3 I4 I5

1 8 0.25 0 0.16 1 74 0.2656 0.3844 23.457 23.7495 0.5781

2 8 0.25 0 0.83 1 33 0.0781 0.2813 24.1752 24.5335 0.2344

3 8 0.25 1 0.16 1 160 1.3438 2.0812 21.2507 23.1238 3.1406

4 8 0.25 1 0.83 1 130 0.7813 0.8469 30.5796 21.4961 2.0313

5 8 0.25 0.33 1 1 39 0.0938 0.2625 25.2088 25.5161 0.25

6 8 0.75 0.8 1 1 11 0.0938 0.1313 37.8066 38.0995 0.1563

7 8 0.75 0.8 0.5 1 18 0.0781 0.1094 37.7046 37.7862 0.1719

8 8 0.75 0.8 0.5 0.5 17 0.0938 0.1187 37.2581 38.3859 0.1563

9 8 0.75 0.99 0 1 25 0.1406 0.1781 36.0264 36.9784 0.2188

10 8 0.75 0.99 0 0.25 21 0.0781 0.1125 34.6114 36.0189 0.1875

11 12 0.25 0 0.5 0.8 77 1.2813 1.5594 32.2444 32.889 0.3594

12 12 0.25 0 0.16 1 228 4.3906 10.8031 29.5245 32.5352 3.2831

13 12 0.25 0.33 0.21 0.66 220 4.4844 13.143 29.7745 30.5352 3.1094

14 12 0.75 0.75 1 1 16 0.1719 0.2375 49.1488 49.4606 0.1094

15 12 0.75 0.75 0.5 1 18 0.1563 0.2344 50.1333 50.5557 0.0781

16 12 0.75 0.75 0.5 0.61 20 0.1094 0.15 50.5208 50.9168 0.1094

17 12 0.75 0.99 0 1 80 0.6094 0.6719 50.6085 50.0889 0.2969

18 12 0.75 0.99 0 0.28 68 0.3281 0.4031 47.8124 49.4768 0.4063

19 16 0.25 0.22 1 1 93 2.7031 3.0063 41.9197 42.3425 0.7831

20 16 0.75 0.9 0 1 176 6.2188 6.9875 59.2728 59.9054 3.2969

21 16 0.75 0.72 0 0 126 1.9063 2.2563 60.225 59.8496 1.3906

22 16 0.75 0.72 0 1 118 2.1250 2.6781 59.7431 59.9645 1.2031

23 16 0.75 0.72 0 0.5 64 0.4375 0.5938 59.4664 59.0757 0.3906

24 16 0.75 0.81 0.5 0.92 26 0.375 0.45 59.1842 59.9391 0.1875

25 20 0.25 0.08 0.82 1 224 13.475 15.971 65.7850 65.8190 7.0151

26 20 0.75 0.71 0 1 202 10.8125 14.6844 66.9252 67.8665 6.0469

27 20 0.75 0.71 0 0.71 66 0.8281 0.8438 65.2744 66.1366 0.5156

28 20 0.75 0.71 0.42 0.9 178 6.3438 9.1312 67.6033 67.9182 4.3281

29 20 0.75 0.78 1 1 28 0.5469 0.6281 68.2606 68.7138 0.2031

30 20 0.75 0.78 0.62 1 31 0.7031 0.7531 68.6739 69.1353 0.2344

Journal of Industrial Engineering 6(2010) 13-23

21

Table 5

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara & Elmaghraby algorithm (Work content between 2 to 4)

 network

Indicators as RanGen2
 Number
of States
CTMC

Min CPU
Time, sec

Average
CPU
Time, sec

Min cost
(Proposed
algorithm)

Min cost

(Ramachandara

&Elmaghraby)

Average CPU

 Time, sec

(Ramachandara

&Elmaghraby)

I1 I2 I3 I4 I5

1 8 0.25 0 0.16 1 74 0.1563 0.1906 5.6026 5.1558 0.6406

2 8 0.25 0 0.83 1 33 0.0469 0.0688 5.0840 5.1558 0.2500

3 8 0.25 1 0.16 1 160 0.8125 0.8812 5.0600 5.1558 2.4844

4 8 0.25 1 0.83 1 130 0.5469 0.5781 5.0300 5.1558 1.5156

5 8 0.25 0.33 1 1 39 0.0625 0.0813 4.8900 5.1558 0.2188

6 8 0.75 0.8 1 1 11 0.0313 0.0563 4.7400 5.1558 0.1406

7 8 0.75 0.8 0.5 1 18 0.0313 0.0563 5.0900 5.1558 0.1406

8 8 0.75 0.8 0.5 0.5 17 0.0313 0.0563 4.7500 5.1558 0.1250

9 8 0.75 0.99 0 1 25 0.0469 0.0750 4.4461 5.1558 0.1536

10 8 0.75 0.99 0 0.25 21 0.0313 0.0594 5.2045 5.1558 0.1875

11 12 0.25 0 0.5 0.8 77 0.2188 0.2375 8.3667 9.5901 0.2813

12 12 0.25 0 0.16 1 228 2.5938 2.9469 8.2595 9.5901 2.8438

13 12 0.25 0.33 0.21 0.66 220 2.5000 2.8000 8.1880 9.5901 0.1094

14 12 0.75 0.75 1 1 16 0.0469 0.0813 11.8230 9.5901 0.0938

15 12 0.75 0.75 0.5 1 18 0.0625 0.0813 8.5453 9.5901 0.0938

16 12 0.75 0.75 0.5 0.61 20 0.0469 0.0844 9.3016 9.5901 0.3281

17 12 0.75 0.99 0 1 80 0.2500 0.2938 7.2338 9.5901 0.2656

18 12 0.75 0.99 0 0.28 68 0.0938 0.1469 7.6864 9.5901 0.2344

19 16 0.25 0.22 1 1 93 0.3750 0.4156 11.0511 11.9808 0.3906

20 16 0.75 0.9 0 1 176 1.8594 1.9406 10.0459 11.9808 1.5625

21 16 0.75 0.72 0 0 126 0.8594 0.8906 10.0106 11.9808 0.7344

22 16 0.75 0.72 0 1 118 0.6875 0.7250 10.5003 11.9808 0.6563

23 16 0.75 0.72 0 0.5 64 0.1875 0.2062 10.7162 11.9808 0.2344

24 16 0.75 0.81 0.5 0.92 26 0.0625 0.0969 10.7580 11.9808 0.1094

25 20 0.25 0.08 0.82 1 224 15.5648 17.2568 15.0010 14.1161 2.5011

26 20 0.75 0.71 0 1 202 3.5156 3.5875 12.3616 14.1161 2.5000

27 20 0.75 0.71 0 0.71 66 0.2656 0.3063 11.5614 14.1161 0.2344

28 20 0.75 0.71 0.42 0.9 178 2.2656 2.3969 11.1153 14.1161 1.5469

29 20 0.75 0.78 1 1 28 0.0781 0.1187 11.6613 14.1161 0.1250

30 20 0.75 0.78 0.62 1 31 0.0938 0.1250 11.9852 14.1161 0.1563

 Behrouz Afshar Nadjafi et al. / A Multi Objective Fibonacci Search Based Algorithm for Resource...

22

Table 6

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara & Elmaghraby algorithm (Work content between 4 to 6)

 network

Indicators as RanGen2
 Number
of States
CTMC

Min CPU
Time, sec

Average
CPU
Time, sec

Min cost
(Proposed
algorithm)

Min cost

(Ramachandara

&Elmaghraby)

Average CPU

 Time, sec

(Ramachandara

&Elmaghraby)

I1 I2 I3 I4 I5

1 8 0.25 0 0.16 1 74 0.1406 0.1596 3.4964 3.6884 0.2813

2 8 0.25 0 0.83 1 33 0.0313 0.0625 3.3076 3.6884 0.1563

3 8 0.25 1 0.16 1 160 0.7344 0.7656 2.5637 3.6884 1.2969

4 8 0.25 1 0.83 1 130 0.3125 0.4406 2.3734 3.6884 0.8906

5 8 0.25 0.33 1 1 39 0.0469 0.1094 3.2650 3.6884 0.1563

6 8 0.75 0.8 1 1 11 0.0156 0.0437 2.7133 3.6884 0.0781

7 8 0.75 0.8 0.5 1 18 0.0156 0.0437 3.3269 3.6884 0.0938

8 8 0.75 0.8 0.5 0.5 17 0.0156 0.0469 2.7610 3.6884 0.0781

9 8 0.75 0.99 0 1 25 0.0313 0.0500 3.2623 3.6884 0.1250

10 8 0.75 0.99 0 0.25 21 0.0156 0.0500 2.6876 3.6884 0.1094

11 12 0.25 0 0.5 0.8 77 0.1875 0.2188 4.5422 5.3054 0.2656

12 12 0.25 0 0.16 1 228 2.1406 2.3750 4.4821 5.3054 3.2188

13 12 0.25 0.33 0.21 0.66 220 2.1563 2.2313 4.6764 5.3054 2.8906

14 12 0.75 0.75 1 1 16 0.0313 0.0563 5.0176 5.3054 0.0938

15 12 0.75 0.75 0.5 1 18 0.0313 0.0563 4.0127 5.3054 0.0938

16 12 0.75 0.75 0.5 0.61 20 0.0313 0.0594 4.5733 5.3054 0.0938

17 12 0.75 0.99 0 1 80 0.1875 0.2313 4.5974 5.3054 0.3281

18 12 0.75 0.99 0 0.28 68 0.1719 0.2000 5.1726 5.3054 0.2344

19 16 0.25 0.22 1 1 93 0.3438 0.3688 5.9100 6.8014 0.4063

20 16 0.75 0.9 0 1 176 1.4375 1.4969 6.4102 6.8014 1.6250

21 16 0.75 0.72 0 0 126 0.6250 0.6531 5.9549 6.8014 0.6250

22 16 0.75 0.72 0 1 118 0.2969 0.5250 5.3433 6.8014 0.6563

23 16 0.75 0.72 0 0.5 64 0.1563 0.1844 6.0259 6.8014 0.2031

24 16 0.75 0.81 0.5 0.92 26 0.0313 0.0750 5.7961 6.8014 0.1094

25 20 0.25 0.08 0.82 1 224 3.9652 4.0125 6.2356 8.1932 2.9652

26 20 0.75 0.71 0 1 202 2.4531 2.6500 6.7732 8.1932 2.4688

27 20 0.75 0.71 0 0.71 66 0.2188 0.2437 7.6308 8.1932 0.2656

28 20 0.75 0.71 0.42 0.9 178 1.0469 1.6625 6.6994 8.1932 0.2344

29 20 0.75 0.78 1 1 28 0.0625 0.0938 6.6575 8.1932 1.6719

30 20 0.75 0.78 0.62 1 31 0.0625 0.0969 7.4988 8.1932 0.1094

These results show that this algorithm is relatively

efficient as many of the networks were solved a few
seconds on average. The computed optimal costs across
all 5 input allocations differed by less than 2% in the
entire test networks. One important observation that
immediately can be seen is the correlation between the
number of states in the CTMC and the computation time
required for optimization. Clearly, as the number of states
in the CTMC grows the computational requirement of the
algorithm increases exponentially. This algorithm in
comparison with Elmaghrby & Ramachandra method is

efficient with respect to quality solution. This topic
statistically is proof as following:

Null hypothesis = 0:µD = 0
Inverse hypothesis = 1: µD >0
α=0.05 , D=-0.7089, Di

2=200.804
SD=((Di

2 - nD2)/n-1)1/2=1.3221
t0= -5.0890
t0.05,89= 1.665 Acceptance area =(-,1.665]

With consider the value of the t0 statistical and the
acceptance limit, the null hypothesis is accepted and the
inverse hypothesis is not accepted. In the other words the

Journal of Industrial Engineering 6(2010) 13-23

23

procedure is stated in this paper improved the solution
quality respect to the Elmaghrby and Ramachandra
method. In continuance about the solution time we have:

Null hypothesis = 0:µD = 0
Inverse hypothesis = 1: µD >0
α=0.05 , D=0.7139, Di

2=600.6387
SD=((Di

2 - nD2)/n-1)1/2=2.4966
t0=9.4891 Acceptance area = (-, 1.665]
That the value of t is not in acceptance area thus

Elmaghrby & Ramachandra method is better from
Viewpoint solution time.

7. Conclusion

In this paper, we investigated the optimal assignment of
resources to the activities of a stochastic project network.
We constructed a continuous time Markov chain (CTMC)
model for the activity network and we used the
PhaseType distribution to evaluate the project completion
time. Then we used Fibonacci search over the interval of
permissible allocations to the activity to seek the
minimum expected cost. Computational results showed
that our proposed algorithm is better than Elmaghrby &
Ramachandra method with respect to solution quality and
computational time.

8. References

[1] Azaron, H. Katagiri, and M. Sakawa. A multi-objective resource
allocation problem in PERT networks, European journal of
operational research , 2004.

[2] A. Azaron, H. Katagiri, and M. Sakawa. Time cost trade off via
optimal control theory in Markov PERT networks. Annals of
Operations Research, 2007.

[3] E. Berman, resource allocation in a PERT network under
continuous activity time-cost function ، Management science،
1964.

[4] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of
the discrete time-cost trade off problem for project networks,
Operations Research, 1997.

[5] R. F. Deckro, J. E. Hebert, W. A. Verdini, P. H. Grimsrud and S.
Venkateshwar, Nonlinear time/cost trade off models in project
management, Computers and Industrial Engineering، 1994.

[6] E. L. Demeulemeester, and W. S. Herroelen. Project Scheduling:
A Research Handbook Springer, 2002.

[7] S. E. Elmaghraby and G. Ramachandra. Optimal resource
allocation in activity networks under stochastic conditions, 2006.

[8] S. E. Elmaghraby, C. D Morgan, Resource allocation in activity
networks under stochastic condition: A geometric programming –
sample path optimization approach، 2006.

[9] S. E. Elmaghraby, on the expected duration of PERT type
networks ، Management science، 1967.

[10] R. M. Freund, The steepest descent algorithm for unconstrained
optimization and a bisection line-search method, 2004.

[11] D. R. Fulkerson, A network flow computation for project curves,
Management Science, 1961.

[12] D. G. Ginzburg, and A. Gonik, Stochastic network project
scheduling with non-consumable limited resources. International
Journal of Production Economics, 1997.

[13] W. J. Gutjahr, C. Strauss and E. Wagner. A stochastic branch and
bound approach to activity crashing in project management.
INFORMS Journal on Computing, 2000.

[14] T. J. Hindelang and J. F. Muth. A dynamic programming
algorithm for decision CPM networks, Operations Research,
1976.

[15] V. G. Kulkarni and V. G. Adlakha. Markov and Markov-
Regenerative PERT networks, operations Research, 1986 .

[16] Z. Laslo, I. Albert, Goldberg.Resource allocation under
uncertainty in a multi-project matrix environment. International
Journal of Project Management, 2008.

[17] J. Matthew, G. Szmerekovsky and V. Tilson, Scheduling project
with stochastic activity duration to maximize expected net present
value, European Journal of Operational Research, 2009.

[18] C. D. Morgan, A sample-path Optimization Approach for Optimal
Resource Allocation in Stochastic Projects. North Carolina State
University, Department of Industrial and Systems Engineering,
2006.

[19] F. Stork, Stochastic Resource-Constrained Project Scheduling,
PhD thesis, Technical University of Berlin, School of
Mathematics and Natural Sciences, 2001.

[20] A. P. Tereso, M. M. T. Araújo and S. E. Elmaghraby, Adaptive
Resource Allocation in Multimodal Activity Networks,
International Journal of Production Economics, 2001.

[21] A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby, Experimental
results of an adaptive resource allocation technique to stochastic
multimodal projects. Technical report, Universidade do Minho,
Guimarães, Portugal, 2003a.

[22] A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby, Basic
approximations to an adaptive resource allocation technique to
stochastic multimodal projects, Technical report, Universidade do
Minho, Guimarães, Portugal, 2003b.

[23] A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby, The optimal
resource allocation in stochastic activity networks via the
electromagnetism approach. In Ninth International Work shop on
Project Management and Scheduling (PMS ’04), Nancy, France,
2004.

[24] V. Valls, M. Laguna, P. Lino, A. Perez, and S. Quintanilla,
Project scheduling with stochastic activity interruptions, Project
Scheduling: Recent Models, Algorithms and Applications,
Kluwer Academic Publishers, 1998.

[25] M. Vanhoucke, J. Coelho, D. Debels, B. Maenhout and L. V.
Tavares, An evaluation of the adequacy of project network
generators with systematically sampled networks, European
Journal of Operational Research ،2008.

[26] R. D. Wollmer, Critical path planning under uncertainty,
Mathematical Programming Study, 1985.

