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Abstract:  

In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In 

this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by the Network Simplex 

Algorithm (NSA). The algorithm is based on graph model and their performances are at least 100 times faster than traditional simplex 

algorithm for Linear Programs. Many random data are generated and fed to the model for 50 vehicles. The results show that NSA is fast 

and efficient. It is found that, in practice, NSA takes polynomial time to solve problems in this application. 
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1. Introduction 

 

The Minimum Cost Flow (MCF) problem is the problem 

of flowing resources from a set of supply nodes, through  

the arcs of a network, to a set of demand nodes at 

minimum total cost, without violating the lower and upper 

bounds on flows through the arcs (which represent the 

capacities of the arcs). This problem arises in a large 

number of industries, including agriculture, 

communications, defence, education, energy, health care, 

manufacturing, medicine, retailing, and transportation [�0]. 

This paper has been motivated by a need to schedule 

Automated Guided Vehicles (AGVs) in container 

terminals. The container terminals components that are 

relevant to the problem include quay cranes (QC), 

container storage areas, rubber tyred gantry crane (RTGC) 

or yard crane, and a road network [see e.g. 5, 6, 10, 16, 17, 

�0]. A transportation requirement in a port is described by a 

set of jobs, each of which being characterized by the 

source location of a container, the destination location and 

its pick up or drop-off times on the quay side by the quay 

crane. Given a number of AGVs and their availability, the 

task is to schedule the AGVs to meet the transportation 

requirements. 

The structure of this paper is as follows. Section 1 reviews 

definition for Minimum Cost Flow (MCF) model and 

introduces a formal definition for the MCF model. Section 

2 presents the scheduling problem of Automated Guided 

Vehicles (AGV) in container terminals as a special case of 

Minimum Cost Flow (MCF) problem. The problem is 

labelled as MCF-AGV model. Section 3 presents an 

algorithm to tackle the MCF-AGV model. 

 Experimental results from applying the algorithm to tackle 

the model are presented in Section 4. Section 5 is 

considered to summary and conclusion.  

 

 

2. Minimum Cost Flow (MCF) model 

 

This section systematically presents a formal definition 

for the MCF model:  

 

Definition 1 [�0]: In an informal description of the MCF 

model, let graph G = (N, A) be a directed network defined 

by a set of nodes, N, together with a set of arcs, A. Each 

arc (i, j) ∈ A has an associated cost cij that denotes the 

cost per unit flow on that arc. It is assumed that the flow 

cost varies linearly with the amount of flow. The 

maximum and minimum amount of flow on each arc (i, j) 

∈ A are limited by Mij and mij (mij � Mij), respectively. A 

real number bi is associated with each node, representing 

its supply/demand. If bi is greater (less) than zero, node i 

is a supply (demand) node; and if bi =0, node i is a 

transhipment node. The decision variables in the MCF 

problem are arc flows, which is represented by fij for arc 

(i, j) ∈ A. The standard form of Minimum Cost Flow 

model is as follows:  
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These constraints state that flows must be feasible and 

conserve each node. For the feasible flows to exist the 

MCF problem must also have 0=�
∈Ni

ib , which means 

that  

the network is balanced. A special graph for the MCF 

model is defined as follows: 
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 Definition 2: 

 A MCF Graph GMCF = (G, NP, AP) consists of a graph G 

with a couple of properties for the nodes and arcs in G. 

The NP and AP are the Node’s and Arc’s Properties, 

respectively. The node property function NP: N�R (Real 

numbers; possibly negative) gives the amount of 

supply/demand of the nodes. This function for each node is 

defined as follows: 

 

NP(i) = NPi= bi where: 
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So that ( ) 0=�
∈Ni

iNP  

Each arc in A has three properties:  

a lower bound, an upper bound and a cost. The arc 

property function AP maps each arc to these properties, 

AP: A�R×R×R (Real numbers; nonnegative). For each 

arc ∈ A, the mapping is denoted by AP(i,j), or APij in 

short. The lower bound, upper bound and cost are denoted 

by mij, Mij and cij. Based on Definitions 1 and 2, the 

standard Minimum Cost Flow (MCF) problem is defined 

formally as follows: 

Definition 3: a MCF model is defined as MCF=(GMCF, f, 

D, CS, FC) where  GMCF = ((N,A), NP, AP ) is a graph 

with nodes and arcs specific to the MCF model (Definition 

2); f  is a finite set of decision variables on A (f stands for 

flow),f ={ fij | (i, j) ∈ A} ; D = a function which determines 

a lower and upper bound for f; D: f � R×R (to be pulled 

out from AP); the lower bound and upper bound of fij are 

labelled by 
ijfD as (D stands for Domain); CS is a finite set 

of Constraint on NP and f; FC is an objective function for 

the Flow’s Cost on AP and f. The task in a MCF model is 

to assign a value to each fij that satisfy all constraints in CS 

with regard to the minimum value of FC. The domains, 

constraints and objective function in the standard form of 

the MCF model are as followed:  

(a) For each element in D and f, 
ijfD = [mij, Mij], for 

∀ (i, j) ∈ A;  

(b) The CS is: 

( ) ( )

NiNPff i
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(c) The FC is 
( )
�

∈Ajij

ijij fc
,:

  

 

3. The special case of the MCF model for Automated 

Guided Vehicles Scheduling 

 

In this section, a scheduling problem of Automated Guided 

Vehicles (AGVs) in the container terminals is introduced. 

The problem is to deploy several AGVs in a port to carry 

many containers from the quay-side to yard-side or vice 

versa. The main reason to choosing this problem is that the 

efficiency of a container terminal is directly related to use 

the AGVs with full efficiency [see e.g. 5, 6, 10, 19, 24]. 

This problem is formulated as a special case of the MCF 

model.  

 

3.1 Assumptions 

 

Assumption 1: The layout of a port container terminal 

is given [24]. According to a specific layout the travel 

time between every combination of Pickup (P) /Drop-off 

(D) points is provided.  

Assumption 2: It is assumed the vehicles move with an 

average speed so that there are no Collisions, Congestion, 

Live-locks, Deadlocks [19] and breakdown problem while 

they are carrying the containers. 

Assumption 3: Every AGV can transport only one 

container. Also it is assumed that the start location of each 

AGV at the beginning of process is given. 

Assumption 4: The yard is divided to several blocks 

and RTGCs or yard crane resources are always available 

[6], i.e., the AGVs will not suffer delays in the storage 

yard location or waiting for the yard cranes. 

Assumption 5: The quay side consists of several Quay 

Cranes (QCs). For each QC, there is a predetermined job 

sequence, consisting of loading or unloading jobs, or a 

combination of both. For each loading (unloading) job, 

there is a predetermined pickup (drop-off) point in the 

yard, which is the origin (destination) of the job. 

Assumption 6: There are N jobs and M AGVs in the 

problem. The source and destination of jobs as well as 

their appointment time on the quay side are given.  

Assumption 7: The objectives are to minimize (a) the 

total AGV waiting time at the quay side (b) the total AGV 

travelling time in the route of port (c) the total lateness 

times to serve the jobs. Cheng et al. (2003) minimized the 

impact of delays and waiting times of the AGVs at the 

quay side [�0].  

 

3.2 Formulation of the problem 

 

Here, a special case of the MCF model is presented for 

the scheduling problem of automated guided vehicles in 

container terminal. The problem differs primarily in the 

arrangement of nodes and arcs with their properties. In 

this special case, the property function of nodes assigns 

integer values to the nodes. Additionally, the property 

function of arcs assigns integer values to the lower bound, 

the upper bound and the cost of each arc. Here, the special 

Graph of GMCF for the Automated Guided Vehicles 

Scheduling (GMCF-AGV) and the special case of the MCF 

model for the scheduling problem of AGVs (MCF-AGV) 

are presented. 

Based on Definition 2, the following definition is 

introduced for the GMCF in a special case: 

A MCF Graph for AGV, GMCF-AGV = (GS, NPS, APS), is a 

special case of GMCF = (G, NP, AP) (Definition 2).  The 

graph GS = (NS, AS) will be defined in the subsections 

below; the node and arcs properties of GS, NPS and APS, 

are also special cases of NP and AP, respectively (NPS: 
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NS�N and APS: AS�N×N×N; N is the set of Natural 

numbers). The components of GMCF-AGV are formally 

described in the two following sub-sections: 

 

3.2.1 Nodes and their properties in the special graph  

Let N be the number of jobs and M be the number of 

AGVs in the problem. The nodes of the MCF Graph for 

the AGV scheduling problem are defined as follows: 

 

a) Supply Nodes: For each vehicle m, a supply node 

AGVNm with one unit supply is considered. 

Therefore, the set of supply nodes in the graph are 

SAGVN = {AGVNm � m=1,2,…,M; NPS(m)=1}  

b) Transhipment Nodes: for each job j, a couple of nodes, 

Job-Input and Job-Output, are considered. Hence, the 

sets of transhipment nodes in the graph are SJIN U 

SJOUT where: 

c) SJIN  = {JINi � i=1,2,…,N; NPS(i)=0} where JINi     

is a node through which an AGV enters job i. 

d) SJOUT = {JOUTi  i=1,2,…,N; NPS(i)=0} where 

JOUTi is a node from which an AGV leaves job i. 

e) SINK: It stands for a Sink node or a demand node in 

the GMCF-AGV with M units demand. This node 

corresponds to the end state of the process, after all 

container jobs have been served. Hence, for the 

property of this node, NPS(SINK) = −M.  

f) Therefore, there are M+2*N+1 nodes in the GMCF-AGV: 

NS = SAGVN U SJIN U SJOUT U SINK. 

 

3.2.2 Arcs and their properties in the special graph  

Below the four types of arcs that join the nodes in GMCF-

AGV, together with their properties are described: 

1) Intermediate Arcs: These arcs are directed arcs from 

every Job-Output node i to other Job-Input node j.  

These arcs with their properties are ARCintermediate ={ (i, 

j)�i∈SJOUT, j∈SJIN, j�JINi , APS(m, j)= [0,1,Cij]}  

Where: 
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In the cost, w1 and w2 are the weight of waiting and 

travelling times of the AGVs, respectively; tj and tj is the 

appointment time of job i and j on the quay side (to be 

unloaded or dropped-off); DTij is Travelling time from 

location of job i to location of job j; (see Rashidi's PhD 

thesis [�0]  for calculation of the DTij in different cases). If 

an AGV can serve job j after serving job i (tj � ti +DTij), the 

waiting and travelling times of the AGV are calculated 

without any lateness time. Otherwise, only the lateness 

time of serving job j with a penalty (P) is considered for 

the cost (see Assumption 7).  

2) Inward Arcs: a set of arcs from SAGVN to SJIN. 

These arcs along with their properties are: 

     ARCinward = { (m, j)� m ∈ SAGVN, j ∈ SJIN, APS(m, 

j) = [0,1,Cmj]}  

  Where   
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In the cost, w1 and w2 are the weight of waiting and 

travelling times of the AGVs, respectively; tj is the 

appointment time of job j at the quay side (to be unloaded 

or dropped-off); RTAm is  

Ready time of AGV m at start location, where may be 

either the quay-side or yard;  TTAmj is the travel time of 

AGV m from the start location to the location of job j on 

the quay side; (The TTAmi  should be calculated in the 

similar manner like the calculation of DTij; see 

Intermediate arcs). If AGV m could arrive on the quay 

side in the appointment time of job j (tj � RTAm+TTAmj), 

the waiting and travelling times of AGV m to serve job j 

are calculated as the cost. Otherwise, the lateness time to 

serving job j with a penalty (P) is considered.  

3) Outward Arcs: These are directed arcs from every 

Job-Output node i and AGV node m to SINK. These arcs 

along with their properties are ARCoutward ={ (i, j)� i ∈ 

SAGVN U  SJOUT, j=SINK; APS(m, j) = [0,1,0] }. 

These arcs show that an AGV can remain idle after 

serving any number of jobs or without serving any job. 

Therefore, a cost of zero is assigned to these arcs.  

4) Auxiliary Arcs: There is a directed arc from every 

Job-Input node i to its Job-Output node. These arcs along 

with their properties are ARCauxiliary ={ (i, j)� i ∈ SJIN, 

j=an unique Job-Output node in SJOUT, correspond to the 

Input-Node i; APS(i, j) = [1,1,0]}.These arcs guarantee 

that every Job-Input and Job-Output node is visited once 

only so that each job is served. 

There are M�N+N�(N-1)+M+2�N arcs in the graph 

(AS=ARCinward U ARCintermediate U  ARCoutward U 

ARCauxiliary ) 
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3.2.3 The MCF-AGV model for the Automated Guided 

Vehicles Scheduling 

Now the model for AGV Scheduling in container 

terminals is presented by the following definition:  

��
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Definition 4: A MCF-AGV model is defined as MCF-

AGV=(GMCF-AGV, f, D, CS, FC) where GMCF-AGV = (GS, 

NPS, APS) is a graph for the MCF-AGV problem; f  = a 

finite set of integer decision variables on AS, f ={ fij | (i, 

j)∈AS} ; D = a function which determines a lower and 

upper bound for f; D: f�N×N  (to be pulled out from 

APS); each element in D  has : 

and FC =
( )
�

∈ASjij

ijij fc
,:

 

The MCF-AGV model can be illustrated by Figure1 for 

two AGVs and four jobs. Solving the MCF-AGV model 

generates M paths, each of which commences from a 

vehicle node and terminates at the sink node. Each path 

determines a job sequence of every vehicle. Suppose that 

for some values of arc costs, the paths given by a solution 

are 1�3�4�9�10�11 and 2�5�6�7�8�11. This 

states that AGV 1 is assigned to serve jobs 1 and 4, and 

AGV 2 is assigned to serve jobs 2 and 3, respectively. 

 

 

 
Figure 1. An example of the MCF-AGV model for 2 AGVs and 4 jobs 

 

The MCF-AGV model has a huge search space and the 

solution should provide the optimal paths for each AGV 

from every node in SAGVN to SINK. As it was mentioned 

before, there are M+2×N+1 nodes and M+M×N+N×(N-

1)+2×N arcs in the graph model where N and M specify 

the number of jobs and the number of AGVs in the 

problem, respectively. The number of paths in the search 

space is determined by the following equation:  

( ) ( ) MMN
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The equation calculates every possible path in the search 

space. The first term represents paths from every node in 

SAGVN to SINK. The remaining terms shows the number 

of paths when 1, 2,.. , M (M � N) AGVs, respectively, is 

selected to serve the jobs. 

 

 

3. The Algorithm 

 

The Network Simplex Algorithm (NSA) was chosen to 

tackle the problem. The main reasons to choose NSA are 

as follows: 

� The area of development algorithm to tackle the MCF 

model by NSA is under-researched and offers fertile 

research opportunities for large scale problems. Several 

researches have been devoted on this matter [�1, �0�, �0, �0, �0, 

�0, �0] in the recent years. 

� NSA is based on simple network operations. With 

simple network operations, the MCF model can be solved 

more than 100 times faster than equivalently sized Linear 

Programs. It is the fastest algorithm for solving the 

generalized network flow problem in practice [1]. 

This section reviews the algorithm. Every connected  

network has a spanning tree [1]. The network simplex 

algorithm maintains a feasible spanning tree at each 

iteration and successfully goes toward the optimality 

conditions until it becomes optimal. At each iteration, the 

arcs in the graph are divided into three sets; the arcs belong 

to the spanning tree (T); the arcs with flow at their lower 
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pound (L); the arcs with flow at their upper bound (U). A 

spanning tree structure (T, L, U) is optimal if the reduced 

cost for every arc (i,j)∈L is greater than zero and at the 

same time the reduced cost for every arc (i,j)∈U is less 

than zero [1]. With those conditions, the current solution is 

optimal. Otherwise, there are arcs in the graph that violate 

the optimal conditions. An arc is a violated arc if it belongs 

to L (U) with negative (positive) reduced cost. The 

algorithm in Figure 2 specifies steps of the method [�0,�0]. 

 

 
Figure 2. The Network Simplex Algorithm (NSA) 

 

To create the initial or Basic Feasible Solution (BFS), an 

artificial node 0 and artificial arcs are appended to the 

graph. The node ‘0’ will be the root of spanning tree (T) 

and the artificial arcs, with sufficiently large costs and 

capacities,  connect the nodes to the root. The set L 

consists of the main arcs in the graph, and the set U is 

empty [�0]. Appending the entering arc (k, l), which is a 

violated arc, to the spanning tree forms a unique cycle, W, 

with the arcs of the basis. In order to eliminate this cycle, 

one of its arcs must leave the basis. The cycle is eliminated 

when we have augmented flow by a sufficient amount to 

force the flow in one or more arcs of the cycle to their 

upper or lower bounds. By augmenting flow in a negative 

cost augmenting cycle, the objective value of the solution 

is improved. The first task in determining the leaving arc is 

the identification of all arcs of the cycle. The flow change 

is determined by the equation � = min { fij for all (i, j) ∈ 

W}.  The leaving arc is selected based on cycle W. The 

substitution of entering for the leaving arc and the 

reconstruction of new tree is called a pivot. After pivoting 

to change the basis, the reduced costs for each arc (i, j) ∉  

T is calculated. If the reduced costs for all (i, j) ∈ {L + U} 

satisfy the optimality condition then the current basic 

feasible solution is optimal. Otherwise, an arc (i, j) where 

there is a violation should be chosen and operations of the 

algorithm should be repeated.  

Different strategies are available for finding an entering 

arc for the basic solution. These strategies are called 

pricing rules. The performance of the algorithm is affected 

by these strategies. The standard textbook [1] provided a 

detailed account of the literature on those strategies. 

Bradley, Brown and Graves (1977), used a dynamic queue, 

containing the indices of so-called ‘interesting’ nodes and 

admissible arcs. Their method is called BBG Queue 

pricing scheme. An ‘interesting’ node is a node whose 

incident arcs have not been re-priced in recent iterations. 

At each iteration, the entering arc is selected from the 

queue. Goldfarb and Reid (1977) proposed a steepest edge 

pricing criterion. Mulvey (1978) suggests a major and 

minor loop to select the entering arc. A limited number of 

favourably priced entering arcs are collected by scanning 

the non-basic arcs in a major iteration. In the minor 

iteration, the most favourably priced arc in the list is 

chosen to enter the basis. Grigoriadis (1986) describes a 

very simple arc block pricing strategy based on dividing 

the arcs into a number of subsets of specified size. At each 

iteration, the entering arc is selected from a block with 

most negative price. Andrew (1997) studied practical 

implementation of minimum cost flow algorithms and 

claimed that his/her implementations worked very well 

over a wide range of problems [4]. Masakazu (1999) used 

a primal-dual symmetric pivoting rule and proposed a new 

scheme in which the algorithm can start from an arbitrary 

pair of primal and dual feasible spanning tree [14]. 

Eppstein (1999) presented a clustering technique for 

partitioning trees and forests into smaller sub-trees or 

clusters [7].  This technique has been used to improve the 

time bounds for optimal pivot selection in the primal 

network simplex algorithm for minimum-cost flow 

problem. Lobel (2000) developed and implemented the 

multiple pricing rules to select an entering arc, a mixture 

of several sizes for the arc block [13]. A general pricing 

scheme for the simplex method has been proposed by 

Istvan [11]. His pricing scheme is controlled by three 

parameters. With different settings of the parameters, he 

claimed that it creates a large flexibility in pricing and 

applicable to general and network simplex algorithms. 

Ahuja et al. (2002) developed a network simplex algorithm 

with O(n) consecutive degenerate pivot [2]. They 

presented an anti-stalling pivot rule, based on concept of 
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strong feasible spanning tree. The basis structure (T, L, U) 

is strongly feasible if we can send a positive amount of 

flow from any node to root along arcs in the spanning tree 

without violating any of the flow bounds.  

Istvan reviewed a collection of some known pricing 

schemes in the original simplex algorithm [�0]. These 

schemes are First improving candidate, Dantzig rule, 

Partial pricing, Multiple pricing and Sectional pricing. 

These schemes can be applied to NSA. First improving 

candidate chooses the first violate arc as the entering arc. It 

is cheap but it usually leads to a very large number of 

iterations. In Dantzig rule all non-basic arcs are checked 

(full pricing) and one which violates the optimality 

condition the most is selected. This rule is quite expensive 

but overall is considerably better than the previous method. 

The Partial pricing scans only a part of the non-basic arcs 

and the best candidate from this part is selected. In the next 

step, the next part is scanned, and so on. In Multiple 

pricing, some of the most profitable candidates (in terms of 

the magnitude) are selected during one scanning pass. 

They are updated and a sub-optimization is performed 

involving the current basis and the selected candidates 

using the criterion of greatest improvement. The Sectional 

pricing behaves as a kind of partial pricing, but in each 

iteration sections or clusters of arc are considered. 

 

4. Experimental Results  

 

This section presents the Experimental Results from the 

implementation and running the algorithm. As it was 

mentioned, the pricing rule or scheme to choose the 

entering arc in Step 1 determines the speed of algorithm. In 

the literature, the pricing rules are reviewed. Actually, 

there is the trade-off between time spent in pricing at each 

iteration and the ‘goodness’ of the selected arc in terms of 

reducing the number of iterations required to reach the 

optimal solution. The First improving candidate and 

Dantzig rule represent two extreme choices for the entering 

arc. Other pricing schemes strike an effective comprise 

between these two extremes and have proven to be more 

efficient in practice [�0]. Kelly and Neill [�0�] implemented 

several pricing schemes and ran their software for different 

classes of minimum cost flow problems. In their results, 

the block pricing scheme provided a better performance 

compared with others. The block pricing scheme therefore 

was chosen. This scheme is based on dividing the arcs of 

the graph into a number of subsets of specified size. A 

block size of between 1% and 8.5% of the size of the arcs 

in the graph has been recommended by Grigoriadis [�0�], for 

large MCF problems. The number was set to 5% by the try 

and error.  

To test the model and the algorithm, a hypothetical port 

was designed. The parameters in table 1 were used to 

define the port, the objective function, the number of 

vehicles and to generate the jobs. The software was 

implemented in Borland C++. Then, it was run to solve 

several random problems. The sources and destinations of 

jobs were chosen randomly. The CPU-Time required to 

solve the problems by the algorithm has been drawn in 

Figure 3 and Figure 4, according to the number of jobs and 

the number of arcs, respectively. Also the power 

estimation for the curve has been shown on the figures. All 

experiments were run on a Pentium 2.4 GHz PC with 1 

GMB RAM. 

 

 
     Table 1 

     Value of Parameters for the simulation 

 Description of the Parameters Values 

Number of Vehicles in the port 50 

Number of Quay Cranes 7 

Number of Blocks in the yard (Storage area inside the port) 32 

Time Window of the Cranes 120 second 

Travelling Time between every two points in the port (see Assumption 1)  Random between 1 and 100 seconds 

Weight of waiting Times for the AGVs in the cost of the objective function  1 

Weight of travelling Times for the AGVs in the cost of the Objective Function 5 

P as the penalty in the costs of the objective function 10,000 
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Figure 3. CPU-Time to solve the static problem by NSA, based on the number of jobs 

 

From the experiments, the following observations are 

gotten: 

Observation 1: NSA is fast and efficient.   

Observation 2: NSA is run in polynomial time to solve 

the MCF-AGV model, in practice. 

Observation 3: Although NSA is efficient and provides 

the optimal solution, it can only work on problem with 

certain limits in size.  

There are two different types of iteration in NSA, 

degenerate and non-degenerate [�2]. In every non-

degenerate iteration, the value of the objective function is 

decreased whereas degenerate iterations do not change the 

objective function’s value. In degenerate iterations, a flow 

change of zero causes cycling. Observation 1 shows that 

cycling is rare in this experience. 

In order to confirm that NSA is run in polynomial time 

to solve the MCF-AGV model (Observations 2), the 

complexity of the algorithm was estimated. The result 

showed that the CPU-Time required to tackle the problem, 

is a function with degree 3 of the number of jobs in the 

problem [�0].  

An important question related to Observation 3 is that 

how big (the number of vehicles, the number of jobs) of a 

problem can be solved by NSA within time t, a minute for 

example? The answer is that there is no limitation in NSA, 

theoretically. In practice, the answer is based on the 

platform and implementation. The limitations due to 

available memory to put the MCF-AGV model into (see 

section 2.2 for the number of nodes and arcs). The largest 

problem, which has been solved by the software, was a 

MCF-AGV model consists of 11,058,350 arcs (M=50; 

N=3,300). Based on this maximum number of arcs and the 

related formula, the number of vehicles (M) and number of 

jobs (N) can be had different values.  
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5. Conclusion  

 

In this paper, a scheduling problem in the container 

terminal was presented and modelled. Then, the standard 

version of Network Simplex Algorithm (NSA) with the 

block pricing scheme was applied to the problem. To test 

the program, Random data were generated and fed to the 

model for fifty vehicles. The experiment shows that the 

Network Simplex Algorithm is efficient and run in 

polynomial time to tackle the problem. Although the 

algorithm is efficient and provides the optimal solution, it 

can only work on problems with certain limits in size. 

When the size of problem goes beyond the limit, 

incomplete solution methods should be used.  
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