
Journal of Industrial Engineering 1 (2008) 9-16

Scheduling in Container Terminals using Network

Simplex Algorithm

Hassan Rashidi
Department of Computer Engineering, Islamic Azad University of Qazvin, Qazvin, Iran

Corresponding author, Hrashi@Gmail.com

Abstract:

In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In

this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by the Network Simplex

Algorithm (NSA). The algorithm is based on graph model and their performances are at least 100 times faster than traditional simplex

algorithm for Linear Programs. Many random data are generated and fed to the model for 50 vehicles. The results show that NSA is fast

and efficient. It is found that, in practice, NSA takes polynomial time to solve problems in this application.

Keywords: Scheduling, Container Terminals, Minimum Cost Flow Problem, Network Simplex Algorithm, Optimization methods.

1. Introduction

The Minimum Cost Flow (MCF) problem is the problem

of flowing resources from a set of supply nodes, through

the arcs of a network, to a set of demand nodes at

minimum total cost, without violating the lower and upper

bounds on flows through the arcs (which represent the

capacities of the arcs). This problem arises in a large

number of industries, including agriculture,

communications, defence, education, energy, health care,

manufacturing, medicine, retailing, and transportation [�0].

This paper has been motivated by a need to schedule

Automated Guided Vehicles (AGVs) in container

terminals. The container terminals components that are

relevant to the problem include quay cranes (QC),

container storage areas, rubber tyred gantry crane (RTGC)

or yard crane, and a road network [see e.g. 5, 6, 10, 16, 17,

�0]. A transportation requirement in a port is described by a

set of jobs, each of which being characterized by the

source location of a container, the destination location and

its pick up or drop-off times on the quay side by the quay

crane. Given a number of AGVs and their availability, the

task is to schedule the AGVs to meet the transportation

requirements.

The structure of this paper is as follows. Section 1 reviews

definition for Minimum Cost Flow (MCF) model and

introduces a formal definition for the MCF model. Section

2 presents the scheduling problem of Automated Guided

Vehicles (AGV) in container terminals as a special case of

Minimum Cost Flow (MCF) problem. The problem is

labelled as MCF-AGV model. Section 3 presents an

algorithm to tackle the MCF-AGV model.

 Experimental results from applying the algorithm to tackle

the model are presented in Section 4. Section 5 is

considered to summary and conclusion.

2. Minimum Cost Flow (MCF) model

This section systematically presents a formal definition

for the MCF model:

Definition 1 [�0]: In an informal description of the MCF

model, let graph G = (N, A) be a directed network defined

by a set of nodes, N, together with a set of arcs, A. Each

arc (i, j) ∈ A has an associated cost cij that denotes the

cost per unit flow on that arc. It is assumed that the flow

cost varies linearly with the amount of flow. The

maximum and minimum amount of flow on each arc (i, j)

∈ A are limited by Mij and mij (mij � Mij), respectively. A

real number bi is associated with each node, representing

its supply/demand. If bi is greater (less) than zero, node i

is a supply (demand) node; and if bi =0, node i is a

transhipment node. The decision variables in the MCF

problem are arc flows, which is represented by fij for arc

(i, j) ∈ A. The standard form of Minimum Cost Flow

model is as follows:

AjiallforMfm

Niallforbff

ToSubject

fcFlowCostMin

ijijij

Aijj

iji

Ajij

ij

Aji

ijij

∈≤≤

∈=−

=

��

�

∈∈

∈

),(,

,

:

.

),(:),(:

),(

These constraints state that flows must be feasible and

conserve each node. For the feasible flows to exist the

MCF problem must also have 0=�
∈Ni

ib , which means

that

the network is balanced. A special graph for the MCF

model is defined as follows:

9/��

Hassan Rashidi et al. /Scheduling in Container Terminals using Network Simplex Algorithm

 Definition 2:

 A MCF Graph GMCF = (G, NP, AP) consists of a graph G

with a couple of properties for the nodes and arcs in G.

The NP and AP are the Node’s and Arc’s Properties,

respectively. The node property function NP: N�R (Real

numbers; possibly negative) gives the amount of

supply/demand of the nodes. This function for each node is

defined as follows:

NP(i) = NPi= bi where:

nodeenttransshipmaisinodeif0

nodedaisinodeif0

nodesupplyaisinodeif0

=

<

>

i

i

i

b

emandb

b

So that () 0=�
∈Ni

iNP

Each arc in A has three properties:

a lower bound, an upper bound and a cost. The arc

property function AP maps each arc to these properties,

AP: A�R×R×R (Real numbers; nonnegative). For each

arc ∈ A, the mapping is denoted by AP(i,j), or APij in

short. The lower bound, upper bound and cost are denoted

by mij, Mij and cij. Based on Definitions 1 and 2, the

standard Minimum Cost Flow (MCF) problem is defined

formally as follows:

Definition 3: a MCF model is defined as MCF=(GMCF, f,

D, CS, FC) where GMCF = ((N,A), NP, AP) is a graph

with nodes and arcs specific to the MCF model (Definition

2); f is a finite set of decision variables on A (f stands for

flow),f ={ fij | (i, j) ∈ A} ; D = a function which determines

a lower and upper bound for f; D: f � R×R (to be pulled

out from AP); the lower bound and upper bound of fij are

labelled by
ijfD as (D stands for Domain); CS is a finite set

of Constraint on NP and f; FC is an objective function for

the Flow’s Cost on AP and f. The task in a MCF model is

to assign a value to each fij that satisfy all constraints in CS

with regard to the minimum value of FC. The domains,

constraints and objective function in the standard form of

the MCF model are as followed:

(a) For each element in D and f,
ijfD = [mij, Mij], for

∀ (i, j) ∈ A;

(b) The CS is:

() ()

NiNPff i

Ajij

iji

Ajij

ij ∈∀=− ��
∈∈

,
,:,:

;

(c) The FC is
()
�

∈Ajij

ijij fc
,:

3. The special case of the MCF model for Automated

Guided Vehicles Scheduling

In this section, a scheduling problem of Automated Guided

Vehicles (AGVs) in the container terminals is introduced.

The problem is to deploy several AGVs in a port to carry

many containers from the quay-side to yard-side or vice

versa. The main reason to choosing this problem is that the

efficiency of a container terminal is directly related to use

the AGVs with full efficiency [see e.g. 5, 6, 10, 19, 24].

This problem is formulated as a special case of the MCF

model.

3.1 Assumptions

Assumption 1: The layout of a port container terminal

is given [24]. According to a specific layout the travel

time between every combination of Pickup (P) /Drop-off

(D) points is provided.

Assumption 2: It is assumed the vehicles move with an

average speed so that there are no Collisions, Congestion,

Live-locks, Deadlocks [19] and breakdown problem while

they are carrying the containers.

Assumption 3: Every AGV can transport only one

container. Also it is assumed that the start location of each

AGV at the beginning of process is given.

Assumption 4: The yard is divided to several blocks

and RTGCs or yard crane resources are always available

[6], i.e., the AGVs will not suffer delays in the storage

yard location or waiting for the yard cranes.

Assumption 5: The quay side consists of several Quay

Cranes (QCs). For each QC, there is a predetermined job

sequence, consisting of loading or unloading jobs, or a

combination of both. For each loading (unloading) job,

there is a predetermined pickup (drop-off) point in the

yard, which is the origin (destination) of the job.

Assumption 6: There are N jobs and M AGVs in the

problem. The source and destination of jobs as well as

their appointment time on the quay side are given.

Assumption 7: The objectives are to minimize (a) the

total AGV waiting time at the quay side (b) the total AGV

travelling time in the route of port (c) the total lateness

times to serve the jobs. Cheng et al. (2003) minimized the

impact of delays and waiting times of the AGVs at the

quay side [�0].

3.2 Formulation of the problem

Here, a special case of the MCF model is presented for

the scheduling problem of automated guided vehicles in

container terminal. The problem differs primarily in the

arrangement of nodes and arcs with their properties. In

this special case, the property function of nodes assigns

integer values to the nodes. Additionally, the property

function of arcs assigns integer values to the lower bound,

the upper bound and the cost of each arc. Here, the special

Graph of GMCF for the Automated Guided Vehicles

Scheduling (GMCF-AGV) and the special case of the MCF

model for the scheduling problem of AGVs (MCF-AGV)

are presented.

Based on Definition 2, the following definition is

introduced for the GMCF in a special case:

A MCF Graph for AGV, GMCF-AGV = (GS, NPS, APS), is a

special case of GMCF = (G, NP, AP) (Definition 2). The

graph GS = (NS, AS) will be defined in the subsections

below; the node and arcs properties of GS, NPS and APS,

are also special cases of NP and AP, respectively (NPS:

10/��

Journal of Industrial Engineering 1 (2008) 9-16

NS�N and APS: AS�N×N×N; N is the set of Natural

numbers). The components of GMCF-AGV are formally

described in the two following sub-sections:

3.2.1 Nodes and their properties in the special graph

Let N be the number of jobs and M be the number of

AGVs in the problem. The nodes of the MCF Graph for

the AGV scheduling problem are defined as follows:

a) Supply Nodes: For each vehicle m, a supply node

AGVNm with one unit supply is considered.

Therefore, the set of supply nodes in the graph are

SAGVN = {AGVNm � m=1,2,…,M; NPS(m)=1}

b) Transhipment Nodes: for each job j, a couple of nodes,

Job-Input and Job-Output, are considered. Hence, the

sets of transhipment nodes in the graph are SJIN U

SJOUT where:

c) SJIN = {JINi � i=1,2,…,N; NPS(i)=0} where JINi

is a node through which an AGV enters job i.

d) SJOUT = {JOUTi i=1,2,…,N; NPS(i)=0} where

JOUTi is a node from which an AGV leaves job i.

e) SINK: It stands for a Sink node or a demand node in

the GMCF-AGV with M units demand. This node

corresponds to the end state of the process, after all

container jobs have been served. Hence, for the

property of this node, NPS(SINK) = −M.

f) Therefore, there are M+2*N+1 nodes in the GMCF-AGV:

NS = SAGVN U SJIN U SJOUT U SINK.

3.2.2 Arcs and their properties in the special graph

Below the four types of arcs that join the nodes in GMCF-

AGV, together with their properties are described:

1) Intermediate Arcs: These arcs are directed arcs from

every Job-Output node i to other Job-Input node j.

These arcs with their properties are ARCintermediate ={ (i,

j)�i∈SJOUT, j∈SJIN, j�JINi , APS(m, j)= [0,1,Cij]}

Where:

��

�
�
�

−+×

+≥×++−×
=

OtherwisetDTtP

DTttifDTwDTttw
C

jiji

ijijijijij

ij
)(

))((21
;

In the cost, w1 and w2 are the weight of waiting and

travelling times of the AGVs, respectively; tj and tj is the

appointment time of job i and j on the quay side (to be

unloaded or dropped-off); DTij is Travelling time from

location of job i to location of job j; (see Rashidi's PhD

thesis [�0] for calculation of the DTij in different cases). If

an AGV can serve job j after serving job i (tj � ti +DTij), the

waiting and travelling times of the AGV are calculated

without any lateness time. Otherwise, only the lateness

time of serving job j with a penalty (P) is considered for

the cost (see Assumption 7).

2) Inward Arcs: a set of arcs from SAGVN to SJIN.

These arcs along with their properties are:

 ARCinward = { (m, j)� m ∈ SAGVN, j ∈ SJIN, APS(m,

j) = [0,1,Cmj]}

 Where

()()
()

()�
�

�
�

�

−+×

+≥+×

++−×

=

OtherwisetTTARTAP

TTARTAtifTTARTAw

TTARTAtw

C

jmjm

mjmjmjm

mjmj

mj 2

1

;

In the cost, w1 and w2 are the weight of waiting and

travelling times of the AGVs, respectively; tj is the

appointment time of job j at the quay side (to be unloaded

or dropped-off); RTAm is

Ready time of AGV m at start location, where may be

either the quay-side or yard; TTAmj is the travel time of

AGV m from the start location to the location of job j on

the quay side; (The TTAmi should be calculated in the

similar manner like the calculation of DTij; see

Intermediate arcs). If AGV m could arrive on the quay

side in the appointment time of job j (tj � RTAm+TTAmj),

the waiting and travelling times of AGV m to serve job j

are calculated as the cost. Otherwise, the lateness time to

serving job j with a penalty (P) is considered.

3) Outward Arcs: These are directed arcs from every

Job-Output node i and AGV node m to SINK. These arcs

along with their properties are ARCoutward ={ (i, j)� i ∈

SAGVN U SJOUT, j=SINK; APS(m, j) = [0,1,0] }.

These arcs show that an AGV can remain idle after

serving any number of jobs or without serving any job.

Therefore, a cost of zero is assigned to these arcs.

4) Auxiliary Arcs: There is a directed arc from every

Job-Input node i to its Job-Output node. These arcs along

with their properties are ARCauxiliary ={ (i, j)� i ∈ SJIN,

j=an unique Job-Output node in SJOUT, correspond to the

Input-Node i; APS(i, j) = [1,1,0]}.These arcs guarantee

that every Job-Input and Job-Output node is visited once

only so that each job is served.

There are M�N+N�(N-1)+M+2�N arcs in the graph

(AS=ARCinward U ARCintermediate U ARCoutward U

ARCauxiliary)

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

∈∀=−

==

∈∀=

=

��

�

�

∈∈

∈

∈

node.Output -Job andInput -Jobevery at balance Flow;;0)3

 set). SAGVNin nodes thefromsent flows (the flow units M ceivingRe;;)2

SAGVNin nodeeach fromnetwork theinto flowunit one Sending ;;1)1

),:(),:(

),:(

),:(

SJOUTSJINiff

SINKiforMf

SAGVNif

CS

ASijj

ji

ASjij

ij

ASijj

ji

ASjij

ij

�

11/��

Hassan Rashidi et al. /Scheduling in Container Terminals using Network Simplex Algorithm

3.2.3 The MCF-AGV model for the Automated Guided

Vehicles Scheduling

Now the model for AGV Scheduling in container

terminals is presented by the following definition:

��

�
�
�

∈∀=

∈∀=

auxiliary

teintermediainward

ARC j) (i, for ;]1,1[)2

ARC ARC(ARC j) (i, for ;]1,0[)1

ij

ij

f

f

D

D ��

Definition 4: A MCF-AGV model is defined as MCF-

AGV=(GMCF-AGV, f, D, CS, FC) where GMCF-AGV = (GS,

NPS, APS) is a graph for the MCF-AGV problem; f = a

finite set of integer decision variables on AS, f ={ fij | (i,

j)∈AS} ; D = a function which determines a lower and

upper bound for f; D: f�N×N (to be pulled out from

APS); each element in D has :

and FC =
()
�

∈ASjij

ijij fc
,:

The MCF-AGV model can be illustrated by Figure1 for

two AGVs and four jobs. Solving the MCF-AGV model

generates M paths, each of which commences from a

vehicle node and terminates at the sink node. Each path

determines a job sequence of every vehicle. Suppose that

for some values of arc costs, the paths given by a solution

are 1�3�4�9�10�11 and 2�5�6�7�8�11. This

states that AGV 1 is assigned to serve jobs 1 and 4, and

AGV 2 is assigned to serve jobs 2 and 3, respectively.

Figure 1. An example of the MCF-AGV model for 2 AGVs and 4 jobs

The MCF-AGV model has a huge search space and the

solution should provide the optimal paths for each AGV

from every node in SAGVN to SINK. As it was mentioned

before, there are M+2×N+1 nodes and M+M×N+N×(N-

1)+2×N arcs in the graph model where N and M specify

the number of jobs and the number of AGVs in the

problem, respectively. The number of paths in the search

space is determined by the following equation:

() () MMN
M

M
N

M
N

M
MpathofNumber

×+−×		

�
��

�
++×−×

		

�
��

�
+××		

�
��

�
+=

!1...2!1

2
1!

1

The equation calculates every possible path in the search

space. The first term represents paths from every node in

SAGVN to SINK. The remaining terms shows the number

of paths when 1, 2,.. , M (M � N) AGVs, respectively, is

selected to serve the jobs.

3. The Algorithm

The Network Simplex Algorithm (NSA) was chosen to

tackle the problem. The main reasons to choose NSA are

as follows:

� The area of development algorithm to tackle the MCF

model by NSA is under-researched and offers fertile

research opportunities for large scale problems. Several

researches have been devoted on this matter [�1, �0�, �0, �0, �0,

�0, �0] in the recent years.

� NSA is based on simple network operations. With

simple network operations, the MCF model can be solved

more than 100 times faster than equivalently sized Linear

Programs. It is the fastest algorithm for solving the

generalized network flow problem in practice [1].

This section reviews the algorithm. Every connected

network has a spanning tree [1]. The network simplex

algorithm maintains a feasible spanning tree at each

iteration and successfully goes toward the optimality

conditions until it becomes optimal. At each iteration, the

arcs in the graph are divided into three sets; the arcs belong

to the spanning tree (T); the arcs with flow at their lower

12/��

Journal of Industrial Engineering 1 (2008) 9-16

pound (L); the arcs with flow at their upper bound (U). A

spanning tree structure (T, L, U) is optimal if the reduced

cost for every arc (i,j)∈L is greater than zero and at the

same time the reduced cost for every arc (i,j)∈U is less

than zero [1]. With those conditions, the current solution is

optimal. Otherwise, there are arcs in the graph that violate

the optimal conditions. An arc is a violated arc if it belongs

to L (U) with negative (positive) reduced cost. The

algorithm in Figure 2 specifies steps of the method [�0,�0].

Figure 2. The Network Simplex Algorithm (NSA)

To create the initial or Basic Feasible Solution (BFS), an

artificial node 0 and artificial arcs are appended to the

graph. The node ‘0’ will be the root of spanning tree (T)

and the artificial arcs, with sufficiently large costs and

capacities, connect the nodes to the root. The set L

consists of the main arcs in the graph, and the set U is

empty [�0]. Appending the entering arc (k, l), which is a

violated arc, to the spanning tree forms a unique cycle, W,

with the arcs of the basis. In order to eliminate this cycle,

one of its arcs must leave the basis. The cycle is eliminated

when we have augmented flow by a sufficient amount to

force the flow in one or more arcs of the cycle to their

upper or lower bounds. By augmenting flow in a negative

cost augmenting cycle, the objective value of the solution

is improved. The first task in determining the leaving arc is

the identification of all arcs of the cycle. The flow change

is determined by the equation � = min { fij for all (i, j) ∈

W}. The leaving arc is selected based on cycle W. The

substitution of entering for the leaving arc and the

reconstruction of new tree is called a pivot. After pivoting

to change the basis, the reduced costs for each arc (i, j) ∉

T is calculated. If the reduced costs for all (i, j) ∈ {L + U}

satisfy the optimality condition then the current basic

feasible solution is optimal. Otherwise, an arc (i, j) where

there is a violation should be chosen and operations of the

algorithm should be repeated.

Different strategies are available for finding an entering

arc for the basic solution. These strategies are called

pricing rules. The performance of the algorithm is affected

by these strategies. The standard textbook [1] provided a

detailed account of the literature on those strategies.

Bradley, Brown and Graves (1977), used a dynamic queue,

containing the indices of so-called ‘interesting’ nodes and

admissible arcs. Their method is called BBG Queue

pricing scheme. An ‘interesting’ node is a node whose

incident arcs have not been re-priced in recent iterations.

At each iteration, the entering arc is selected from the

queue. Goldfarb and Reid (1977) proposed a steepest edge

pricing criterion. Mulvey (1978) suggests a major and

minor loop to select the entering arc. A limited number of

favourably priced entering arcs are collected by scanning

the non-basic arcs in a major iteration. In the minor

iteration, the most favourably priced arc in the list is

chosen to enter the basis. Grigoriadis (1986) describes a

very simple arc block pricing strategy based on dividing

the arcs into a number of subsets of specified size. At each

iteration, the entering arc is selected from a block with

most negative price. Andrew (1997) studied practical

implementation of minimum cost flow algorithms and

claimed that his/her implementations worked very well

over a wide range of problems [4]. Masakazu (1999) used

a primal-dual symmetric pivoting rule and proposed a new

scheme in which the algorithm can start from an arbitrary

pair of primal and dual feasible spanning tree [14].

Eppstein (1999) presented a clustering technique for

partitioning trees and forests into smaller sub-trees or

clusters [7]. This technique has been used to improve the

time bounds for optimal pivot selection in the primal

network simplex algorithm for minimum-cost flow

problem. Lobel (2000) developed and implemented the

multiple pricing rules to select an entering arc, a mixture

of several sizes for the arc block [13]. A general pricing

scheme for the simplex method has been proposed by

Istvan [11]. His pricing scheme is controlled by three

parameters. With different settings of the parameters, he

claimed that it creates a large flexibility in pricing and

applicable to general and network simplex algorithms.

Ahuja et al. (2002) developed a network simplex algorithm

with O(n) consecutive degenerate pivot [2]. They

presented an anti-stalling pivot rule, based on concept of

13/��

Hassan Rashidi et al. /Scheduling in Container Terminals using Network Simplex Algorithm

strong feasible spanning tree. The basis structure (T, L, U)

is strongly feasible if we can send a positive amount of

flow from any node to root along arcs in the spanning tree

without violating any of the flow bounds.

Istvan reviewed a collection of some known pricing

schemes in the original simplex algorithm [�0]. These

schemes are First improving candidate, Dantzig rule,

Partial pricing, Multiple pricing and Sectional pricing.

These schemes can be applied to NSA. First improving

candidate chooses the first violate arc as the entering arc. It

is cheap but it usually leads to a very large number of

iterations. In Dantzig rule all non-basic arcs are checked

(full pricing) and one which violates the optimality

condition the most is selected. This rule is quite expensive

but overall is considerably better than the previous method.

The Partial pricing scans only a part of the non-basic arcs

and the best candidate from this part is selected. In the next

step, the next part is scanned, and so on. In Multiple

pricing, some of the most profitable candidates (in terms of

the magnitude) are selected during one scanning pass.

They are updated and a sub-optimization is performed

involving the current basis and the selected candidates

using the criterion of greatest improvement. The Sectional

pricing behaves as a kind of partial pricing, but in each

iteration sections or clusters of arc are considered.

4. Experimental Results

This section presents the Experimental Results from the

implementation and running the algorithm. As it was

mentioned, the pricing rule or scheme to choose the

entering arc in Step 1 determines the speed of algorithm. In

the literature, the pricing rules are reviewed. Actually,

there is the trade-off between time spent in pricing at each

iteration and the ‘goodness’ of the selected arc in terms of

reducing the number of iterations required to reach the

optimal solution. The First improving candidate and

Dantzig rule represent two extreme choices for the entering

arc. Other pricing schemes strike an effective comprise

between these two extremes and have proven to be more

efficient in practice [�0]. Kelly and Neill [�0�] implemented

several pricing schemes and ran their software for different

classes of minimum cost flow problems. In their results,

the block pricing scheme provided a better performance

compared with others. The block pricing scheme therefore

was chosen. This scheme is based on dividing the arcs of

the graph into a number of subsets of specified size. A

block size of between 1% and 8.5% of the size of the arcs

in the graph has been recommended by Grigoriadis [�0�], for

large MCF problems. The number was set to 5% by the try

and error.

To test the model and the algorithm, a hypothetical port

was designed. The parameters in table 1 were used to

define the port, the objective function, the number of

vehicles and to generate the jobs. The software was

implemented in Borland C++. Then, it was run to solve

several random problems. The sources and destinations of

jobs were chosen randomly. The CPU-Time required to

solve the problems by the algorithm has been drawn in

Figure 3 and Figure 4, according to the number of jobs and

the number of arcs, respectively. Also the power

estimation for the curve has been shown on the figures. All

experiments were run on a Pentium 2.4 GHz PC with 1

GMB RAM.

 Table 1

 Value of Parameters for the simulation

 Description of the Parameters Values

Number of Vehicles in the port 50

Number of Quay Cranes 7

Number of Blocks in the yard (Storage area inside the port) 32

Time Window of the Cranes 120 second

Travelling Time between every two points in the port (see Assumption 1) Random between 1 and 100 seconds

Weight of waiting Times for the AGVs in the cost of the objective function 1

Weight of travelling Times for the AGVs in the cost of the Objective Function 5

P as the penalty in the costs of the objective function 10,000

14/��

Journal of Industrial Engineering 1 (2008) 9-16

Figure 3. CPU-Time to solve the static problem by NSA, based on the number of jobs

From the experiments, the following observations are

gotten:

Observation 1: NSA is fast and efficient.

Observation 2: NSA is run in polynomial time to solve

the MCF-AGV model, in practice.

Observation 3: Although NSA is efficient and provides

the optimal solution, it can only work on problem with

certain limits in size.

There are two different types of iteration in NSA,

degenerate and non-degenerate [�2]. In every non-

degenerate iteration, the value of the objective function is

decreased whereas degenerate iterations do not change the

objective function’s value. In degenerate iterations, a flow

change of zero causes cycling. Observation 1 shows that

cycling is rare in this experience.

In order to confirm that NSA is run in polynomial time

to solve the MCF-AGV model (Observations 2), the

complexity of the algorithm was estimated. The result

showed that the CPU-Time required to tackle the problem,

is a function with degree 3 of the number of jobs in the

problem [�0].

An important question related to Observation 3 is that

how big (the number of vehicles, the number of jobs) of a

problem can be solved by NSA within time t, a minute for

example? The answer is that there is no limitation in NSA,

theoretically. In practice, the answer is based on the

platform and implementation. The limitations due to

available memory to put the MCF-AGV model into (see

section 2.2 for the number of nodes and arcs). The largest

problem, which has been solved by the software, was a

MCF-AGV model consists of 11,058,350 arcs (M=50;

N=3,300). Based on this maximum number of arcs and the

related formula, the number of vehicles (M) and number of

jobs (N) can be had different values.

15/��

Hassan Rashidi et al. /Scheduling in Container Terminals using Network Simplex Algorithm

5. Conclusion

In this paper, a scheduling problem in the container

terminal was presented and modelled. Then, the standard

version of Network Simplex Algorithm (NSA) with the

block pricing scheme was applied to the problem. To test

the program, Random data were generated and fed to the

model for fifty vehicles. The experiment shows that the

Network Simplex Algorithm is efficient and run in

polynomial time to tackle the problem. Although the

algorithm is efficient and provides the optimal solution, it

can only work on problems with certain limits in size.

When the size of problem goes beyond the limit,

incomplete solution methods should be used.

6. Refrences

[1] Ahuja R.K., Magnanti T.L., Orlin J.B., Prentice Hall (1993).

[2] Ahuja R.K., Orlin J. B., Sharma P., Sokkalingam P.T., Operations

Research, (2002), Vol 30(3),141-148.

[3] Ahuja R.K., Orlin J.B., Giovanni M.S., Zuddas P, Management

Science, (1999), Vol 45(10), 1440-1455.

[4] Andrew V.G., Journal of Algorithms, (1997) Vol 22(1), 1-29.

[5] Böse J., Reiners T., Steenken D., Voß S., Proceedings of the 33rd

Annual Hawaii International Conference on System Sciences, (2000),

IEEE, 1-10.

[6] Cheng Y., Sen H., Natarajan K., Teo C., Tan K., Technical Report,

National University of Singapore (2003).

[7] Eppstein D, In Proc. 5th ACM-SIAM Symposium. Discrete

Algorithms, (1999) 160–166.

[8] Goldberg A.V., Kennedy, R. Technical Report, Stanford University

(1993),.

[9] Helgason R., Kennington J., Handbook on Operations Research and

Management Science Volume 7, North-Holland, Amsterdam, (1995), 85-

133.

[10] Huang Y., Hsu W.J., CAIS, Technical Report, School of Computer

Engineering, Nan yang Technological University, Singapore 639798

(2002).

[11] Istvan M, Technical Report, Department of Computing, Imperial

College, London (2003).

[12] Kelly D.J., ONeill G.M.,Master Degree Dissertation, University

College, Dublin (1993).

[13] Löbel A., Technical Report, Konrad-Zuse-Zentrum für

Informationstechnik Berlin (ZIB) (2000).

[14] Masakazu M., Journal of Operations Research of Japan, (1999), Vol

43, 149-161.

[15] Murty K.G., Jiyin L., Yat-Wah W, Zhang C, Maria C.L. Tsang,

Richard J. Linn. Decision Support System, (2002), Vol 39, 309-332.

[6] Patrick J.M., Dekker R.,Technical Report EI 2001-22, Erasmus

University of Rotterdam, Econometric Institute (2003).

[17] Patrick J.M., Wagelmans P.M.,Technical Report EI 2001-33,

Erasmus University of Rotterdam, Econometric Institute (2001).

[18] Patrick J.M., Wagelmans P.M.,Technical Report EI 2001-19,

Erasmus University of Rotterdam, Econometric Institute (2001).

[19] Qiu L., Hsu W.-J., Huang S.-Y and Wang H. International Journal of

Production Research, Taylor & Francis Ltd, (2002), Vol. 40 (3), 745-760

[20] Rashidi, H.R Department of Computer Science, University of Essex

(2006).

[21] Rashidi H. & Tsang E.P.K Proceedings, 2nd Multidisciplinary

International Conference on Scheduling: Theory & Applications

(MISTA), New York, (2005), Vol 2, 677-69

[22] Sen H., Technical Report, HPCES Programme, Singapore-MIT

Alliance (2001).

[23] Tsang E.P.K.,British Telecom Technology Journal, (1995) Vol.13

(1), Martlesham Heath, Ipswich, UK.

[24] Wook B.J., Hwan K.K., International Journal of management

science, (2000) Vol 6 (2), pp 47-60.

16/��

