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Abstract 

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes 
such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain 
degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1)) is the most 
frequently used one. In this paper, we discuss the effect of autocorrelation on the process capability analysis when a set of observations are 
produced by an autoregressive model of order one. We employ a multivariate regression model to modify the process capability estimated 
from the classical method, where the AR (1) parameters are utilized as regression explanatory variables. Finally, the performance of the 
presented method is investigated using a Monte Carlo simulation. 
Keywords: Process capability analysis; Statistical process control; Autocorrelation; AR (1).

1. Introduction 

Process Capability Indices (PCIs) are introduced to 
give a proper indication of the capability of a 
manufacturing process by quantifying the relation 
between the desired engineering specifications and the 
actual performance of the process. In fact, PCIs are 
organized to determine whether a process is capable of 
visiting specification limits on the quality features of 
interest or not. The quantitative measure of PCI indicates 
the amount of customer requirements obtained from 
quality characteristics. Generally, a bigger amount of PCI 
illustrates a better process performance and a smaller 
amount of PCI shows a worse process performance. PCIs 
have been extensively applied in different production 
systems and can be regarded as an effective and superior 
means of determining product quality.  

Basic assumptions in using PCIs are: 1) The 
observations collected are assumed to be identically 
distributed; 2) the observations are always assumed to be 
independent; 3) the observations are normally distributed 
with mean μ and variance σ2. According to the above-
mentioned definitions and assumptions, we can use the 
following well-known capability indices: 
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Eq. (1) determines the capability of a central process. 
According to Eq. (2), we can calculate the capability of a 
process when its specification interval mean is not equal 
to its process mean. The USL and LSL indicate the upper 
specification limit and the lower specification limit, 
respectively. Furthermore, the μ is the process mean and 
the σ is the standard deviation. In general, products with 
multiple features could usually contain huge non-central 
specifications and central specifications. In fact, whenever 
all process capabilities of each characteristic satisfy preset 
specifications, consumers will not reject products. It is 
clear that a single PCI is not able to visit the consumer 
requirements stated above, and it seems that many crucial 
problems are concentrating on central quality 
characteristics. 
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Despite the fact that PCIs are predominantly defined 
under the independency assumption, most of the 
processes in the real world produce autocorrelated data. 
For instance, data exhibit some degree of autocorrelation 
for chemical processes like the production of pig iron. In 
addition, some biological processes are autocorrelated and 
violate the independency assumption. For these processes 
it is proved that the autocorrelation dramatically affects 
the amount of PCIs defined under the independency 
assumption (Mingoti and Oliveira 2011). Nevertheless, no 
significant research has been conducted about the impacts 
of autocorrelation on the amount of PCIs. Therefore, this 
subject is addressed in this study, and a robust estimation 
method for process capability is proposed. 

2. Literature Review 

In the literature there are quite a few studies dealing 
with process capability analysis when one of the three 
basic assumptions is not met. For a comprehensive review 
of these studies, see the review paper with discussion by 
Kotz and Johnson (2002). A comprehensive literature 
review of classified studies on process capability indices 
in the time span of 2000–2009 can also be found in Yum 
and Kim (2010). Yet, the non-normality assumption is 
more investigated (for example, see Clement 1989; 
Somerville and Montgomery 1996; Tang and Than 1999; 
Hosseinifard et al. 2008).  In this paper, we present a new 
way of calculating the PCI when data display an inner 
dependent behavior. More specifically, we explore 
process capability estimation in AR(1) processes.  

There are a few studies dealing with PCI estimation 
for autocorrelated processes. Shore (1997) described some 
of the undesirable effects that autocorrelations may have 
on the sampling distribution of the estimates of mean and 
standard deviation, and, hence, on the PCIs calculated 
through the Monte Carlo simulation. He remarked that 
both Cp and Cpk are biased upward when autocorrelation 
is present, and therefore critical values and confidence 
intervals extracted under the assumption of independent 
data which should not be used as type I and type II errors 
may be high. Finally, he carefully studied differences 
between the two approaches suggested for use in the 
presence of autocorrelation, and demonstrated them 
numerically for an AR(1) model when autocorrelation 
existed. The first procedure was model-free and estimated 
the μ and σ, by തܺ and MR/d2, where the MR was the 
average range observed in the subsamples the size of n 
while the process was in control. This procedure 
appraised the instantaneous capability but the customer 
wished to be aware of the long-term capability of the 
process, which also contained changes in the mean while 
the process was engaged in producing. The second 
procedure was able to estimate long-term capability. It 
was model-dependent and estimated the μ and σ, by the തܺ 
and S2 of all data. As a result, Shore (1997) believed that 
the model-free approach was better than the model-

dependent approach when both performance and 
convenience with regard to the application are considered, 
and process capability analysis should be used along the 
lines of the model-free approach. It seemed that more 
research was needed yet. Thus, in some other studies 
including Noorossana (2002), Scagliarini (2002), Chen et 
al. (2003), and Vannman and Kulahci (2008) the effect of 
autocorrelation on the process capability was estimated. 
Noorossana (2002) showed through an example that 
autocorrelated data could lead to biased estimates of PCI, 
and eventually to wrong decisions about performance. He 
employed a two-step procedure based on multivariate 
regression and time series modeling to remove the 
autocorrelation that may exist in the data and also to 
estimate model parameters correctly. Scagliarini (2002) 
described properties of the estimator of Cp for 
autocorrelated observations in the presence of 
measurement errors. He derived the performance of the 
estimator of Cp in the case of measurement errors for an 
autoregressive model of order one (AR (1)) and compared 
it with the results achieved in the error free case. 
Vannman and Kulahci (2008) presented a new way to 
perform process capability analysis when observations are 
autocorrelated. It was called the "Iterative skipping" 
strategy, in which the data set was divided into 
subsamples by skipping a pre-determined number of 
observations. It is clear that for the obtained sets the 
independence assumption may be valid. Consequently, 
Equations (1) and (2) could be used to estimate the PCI 
for each subsample of data.  

In another study, the Taguchi method was applied by 
Jing et al. (2009) in order to estimate the PCIs of 
autocorrelated observations. Using this method, the 
impacts of autocorrelation on the μ, σ, and probability 
density function (pdf) were evaluated for the models of 
order one. Moreover, Jing et al. (2010) developed a 
comparison method for five different estimation strategies 
of process capability when observations were not 
independent. Eventually, they succeeded in finding an 
estimation method for process capability analysis when 
observations are autocorrelated. 

It is clear that the existing studies on process 
capability analysis do not predominantly check the 
autocorrelation of observations although it is something 
common in industries and should not be overlooked. As a 
result, this study presents a robust estimation method for 
process capability analysis when a set of observations are 
autocorrelated and produced by an autoregressive model 
of order one. In this regard, the rest of the paper is 
organized as follows: we explain our suggested model in 
the next section, and then Monte Carlo simulation studies 
are presented in Section 3. In Section 4, we investigate the 
performance of the proposed method by applying 
statistical analysis. Section 5 provides conclusions and 
final remarks.    
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3. Description of the Proposed Model 

Hereinafter the estimated PCI for autocorrelated 
processes is called Cp-au. Since AR(1) parameters impact 
on the bias in Cp-au in comparison to the PCI which is 
known for independent observations, we propose to use 
these parameters to diminish autocorrelation effects on the 
PCI estimation. To accomplish this purpose, a 
straightforward way is incorporating AR (1) parameters in 
the PCI formula. Here, we use a multivariate regression 
analysis and nominate the PCI as follows: 

ି௨ܥ = ௨ܥ +  (3)                                                       ݏܾܽ݅

We apply a multivariate regression model as shown in 
Eq. (4) to calculate the Cp-au. It has been known that Cp-au 
is a linear combination of Cpu, φ and ε, where the Cpu 
denotes the PCI in Eq. (2) based on the independence 
assumption, and the φ and ε give us the correlation 
coefficient and model parameter, respectively. 

ି௨ܥ = ௨ܥ + ଵ߮ߚ +  (4)                                              ߝଶߚ

The model coefficients β1 and β2 are estimated from 
the observations of the process by the multivariate 
regression. In fact, the effects that the φ and ε may have 
on the PCIs are the main motivation for using the 
proposed model in the presence of autocorrelation. We 
will present a two-step procedure in order to calculate β1 
and β2. The first step involves generating sets of data 
which are autocorrelated and calculating the Cpu for each 
set of data. Then, the β1 and β2 are estimated by the 
multivariate regression in the second step. To check the 
performance of the model, a Monte Carlo simulation is 
also used. This simulation can be classified into two 
major steps briefly described below:  

(1) Generating sets of autocorrelated data and 
estimating the Cpu for each set of data.    

(2) Using the multivariate regression to estimate the 
β1 and β2 for each set of data. 

First, we consider an AR(1) process in Eq. (5) to 
generate sets of autocorrelated data where the et is a 
random variable that represents the amount by which the 
tth measurement will differ from the mean owing to the 
effect of common causes. Typically, e1, e2, e3, …, en are 
regarded as a sequence of independent and identically 
distributed random variables with the mean being zero 
and the standard deviation being σ, and parameters μ and 
σ are estimated from the data of the process.  
௧ݔ = ߝ + ௧ିଵݔ߮ + ݁௧                                                       (5) 

Consider a situation where Cp-au=1 in this simulation, 
and then make simulation for certain φ, ε and a pre-
determined sample size of 10000 (N=10000). Afterwards, 
this procedure must be repeated for twenty iterations with 
different φ and ε in each iteration. Eq. (5) can be used to 

obtain the upper specification limit of each set of 10000 
observations. 

ି௨ܥ =
థషభቂ∫ (௫)ௗ௫ೠೞ

షಮ ቃ

ଷ
= థషభ[అೣ(௨௦)]

ଷ
                            (6) 

Where the f(x) and Ψx are the probability density 
function and the cumulative density function of x, 
respectively. It is clear that Eq. (6) can be rewritten as ϕ 
(3Cp-au)=p. Because we initially set Cp-au=1 in each 
iteration, the value of p can be easily determined. Hence, 
it is enough to organize the observations of each set in the 
increasing order, and then choose the p×10000th 
observation as the USL. In fact, the USL is the p×10000th 
observation since we have Ψx (USL)=p according to Eq. 
(6). σ must be also calculated in order to estimate the Cp-

au, but it has been known that calculating σ isn’t correct 
when data are autocorrelated. Therefore, a new technique 
is created to transform the autocorrelated data into 
independent data. In this technique, xt-φxt-1 is used instead 
of xt (∀ݐ ∈ 2,3,… ,10000), and it is proved that xt-φxt-1 
ݐ∀) ∈ 2,3,… ,10000) is always independent. Firstly, Eq. 
(5) is rewritten as xt -φxt-1=ε+et. Obviously, the 
independence assumption for ε+et is valid because the ε is 
N(ε,0) and the et is N(0, σ2). It is clear that the summation 
of these two independent parameters is independent. 
Since xt-φxt-1 is equal to ε+et, it seems reasonable to 
conclude that xt-φxt-1  is N(ε, σ2) , t=2,3,…,10000, and it is 
subsequently an independent variable. 

Cpu can be obtained for each set by using the sample 
standard deviation of xt-xt-1, t=2, 3, … , N instead of the σ 
in Eq. (2) and the p×10000th data as the USL. At the end, 
a multivariate regression is used to estimate the β1 and β2 
when the generation of 10000 observations is repeated for 
twenty times. It should be noted that we use different     
Cp-au=0.5,0.6,0.7,0.8,0.85,0.9,0.95,1,1.05,1.1,1.2,1.25,1.3, 
1.35,1.4,1.45,1.5,1.6,1.7,1.8 for each time, so 400 sets of 
observations are created. For instance, the generated 
observations for Cp-au=0.9, 1 are shown in Table 1 in order 
to make it easy for the readers to understand how Ĉ au-p  
can be estimated. The estimated Cp-au is shown in the 
table, and it can be used for estimating β1 and β2 when 
0<φ<0.2. 

Let us recall that Cp-au=Cpu+β1φ +β1ε. Before assuming 
β1, β2 as the model coefficients, it is vital to determine 
whether the Cp-au , φ and ε are related or not. In this 
regard, it is necessary to test the null hypothesis H0: β1=0 
and H1: β1≠0 for the former, which shows whether the Cp-

au and φ are related or unrelated. In testing this null 
hypothesis, the statistic ݐ = భିభ

ௌభ
 and the confidence 

interval ܣ = ቂ−ഀݐ
మ ,ିଷ

, ഀݐ
మ ,ିଷ

ቃ are used at the significance 
level of α, respectively. Using 400 sets of generated 
observations, the statistics are equal to -9.19, -11.81, -
10.14 and -48.22 when 0 <φ<0.2, 0.2 <φ<0.4, 0.4 <φ<0.6 
and 0.6 <φ<0.8, respectively. 
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Table 1 
The estimated Cp-au when Cp-au=0.9, 1 and 0<φ<0.2 

Iter. No  C au-p
 Ĉ au-p         

     Iter. No  C au-p
 Ĉ au-p         

    

     1   0.9  0.76  0.03      3    3.1       1      1  0.98  0.12 10.39 11.83 
     2   0.9  0.97  0.16  11.27  13.4       2      1  0.88 0.004  7.63  7.67 
     3   0.9  0.99  0.08   17.9  19.6       3      1  1.26 0.004  21.8 21.92 
     4   0.9  0.78  0.18   22.3  27.1       4      1 0.71 0.038  0.38  0.37 
     5   0.9  0.88  0.14     6.7     8       5      1  1.11 0.11  19.2 21.77 
     6   0.9  0.82  0.13   6.37   7.4       6      1   0.9 0.012  24.3 24.55 
     7   0.9  0.87  0.06  21.65  23.2       7      1  1.08 0.07  24.7  26.7 
     8   0.9  0.77 0.034     5.8     6       8      1  1.38  0.12  19.7  22.5 
     9   0.9  0.89  0.03  20.13  20.7       9      1  0.95 0.14  10.9  12.8 
    10   0.9  1.11  0.04    22.7  26.3      10      1  1.06  0.13  12.4  14.4 
    11   0.9  0.53  0.08     5.8  6.35      11      1  1.13 0.017   5.4   5.4 
    12   0.9  0.79  0.17      6   7.2      12      1  0.87  0.09    16  17.7 
    13   0.9  0.69   0.1    1.25  1.38      13      1     1  0.08     8    8.7 
    14   0.9  0.46  0.16     1.9  2.31      14      1  1.06  0.07    24  25.8 
    15   0.9  0.89  0.09     16  17.73      15      1  0.86  0.03  18.2  18.8 
    16   0.9  0.77 0.092     4.8   5.27      16      1  0.83  0.13  10.3  11.9 
    17   0.9  0.91  0.09    21.1   23.2      17      1  0.87  0.14  18.7  21.7 
    18   0.9  0.67  0.08    4.35    4.7      18      1  0.94 0.145    6.7   7.9 
    19   0.9  0.57  0.18    4.27    5.2      19      1  1.02 0.096    11  12.2 
    20   0.9  0.78 0.002  24.86  24.9      20      1  1.11  0.11  23.34  26.2 

 
 

Thus, it seems reasonable to reject the null hypothesis 
for 0<φ<0.2, 0.2 <φ<0.4, 0.4 <φ<0.6 and 0.6 <φ<0.8 in 
that the confidence interval is ܣ = [−1.96, 1.96] at the 
5% significance level. Note that β1≠0 means the Cp-

au relates to the φ. Likewise, the null hypothesis H0: β2=0 
and H1: β2≠0 should be tested for the latter, which shows 
whether the Cp-au relate to the ε or not. Here, the statistics 
are correspondingly equal to 0.0014, 0.0008, 0.0009 and -
0.0001, so the null hypothesis H0: β2=0 is not rejected for 
0 <φ<0.2, 0.2 <φ<0.4, 0.4 <φ<0.6 and 0.6 <φ<0.8. As a 
result, the importance of φ and ε are considered as ‘more 
important’ and ‘important’ in the present study, and we 
presume that both of them are the model coefficients to 
increase performance. 

Since  Cp-au=Cpu+β1φ +β1ε , we can assume Cp-au-Cpu as 
a response variable of the multivariate regression, and β1, 
β2 can be also assumed as the model coefficients that are 
estimated from the observations of the process by the 
multivariate regression. The regression equations of Cp-au-
Cpu have been estimated for different intervals of φ and 
displayed in Figure 1 as follows:  

 

 
Fig. 1(a). Regression equations of Cp-au-Cpu when 0<φ<0.2 

 

 
Fig. 1(b). Regression equations of Cp-au-Cpu when 0.2<φ<0.4 

 
Fig. 1(c). Regression equations of Cp-au-Cpu when 0.4<φ<0.6 

 

Fig. 1(d). Regression equations of Cp-au-Cpu when 0.6<φ<0.8
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The equations customarily utilized to estimate Cp-au  are 
obtained by using the multivariate regression and 
displayed on the classification of Figure 2. The quality of 
the output from an autocorrelated process can be easily 
managed by using this classification to monitor the 
difference between customer requirements and actual 
performance of an autocorrelated process. On the other 
hand, this classification is able to create products that 
meet customer requirements, and then maintain the 
autocorrelated process in a ‘capable’ state. 

4. Statistical Analysis and the Model’s Validity 

We should investigate whether there is a significant 
difference between the capability index and the estimated 
capability index at a given significance level. To obtain a 
suitable decision rule, the hypothesis can be formulated 
as: 

H0: 0ˆ- au-pau-p CC
        

 H1: 0ˆ- au-pau-p CC
         

(7) 

We can use the hypothesis to obtain a suitable 
decision rule. To test the hypothesis, we use t statistic 
where the standard deviation of the pair differences is not 
known. The t statistic is defined as follows:  
 
ݐ = ௗതି

ௌഥ
                                                                            (8) 

 
And the confidence interval is defined as:   
 
ܣ = ቂ−ഀݐ

మ ,ିଵ
, ഀݐ

మ ,ିଵ
ቃ                                                      (9) 

 

Note that di is obtained by subtracting the ith member of 

Cp-au from the ith member of au-pĈ . Subsequently, the 

average of di can be determined as ݀̅ =
∑ ௗ

సభ


 for a 
population the size of n. The null hypothesis will be 
rejected whenever 	ݐ > ഀݐ

మ ,ିଵ
 or < ഀݐ−

మ ,ିଵ
 , where the 

constant ഀݐ
మ ,ିଵ

 is determined so that the significance level 
of the test is α for a sample size of n observations. If the 
null hypothesis is not rejected, there is no significant 

difference between Cp-au  and au-pĈ . Table 2 shows 

au-pau-p
ˆ-CC  for the given 0<φ<0.2. 

 
Table 2 
Calculating 

au-pau-p
ˆ- CC  when 0<φ<0.2 

Iter. No  CCd ˆ
au-p au-p

  Ĉ au-p  C au-p
 

    1              0.005 -     1.005      1 
    2                0.103  0.797    0.9 
    3              0.013 -      0.936   0.95 
    4               -0.037  1.087   1.05 
    5                0.004  1.096    1.1 
    6                0.03   1.17    1.2 
    7              0.01 -    1.26   1.25 
    8              0.08-     1.38    1.3 
    9              0.13 -   1.48   1.35 
   10                0.1 -    1.5    1.4 
   11              0.08 -   1.53   1.45 
   12                0.04  1.46    1.5 
   13                0.14  1.46    1.6 
   14                0.21  1.49    1.7 
   15                 0.2   1.6    1.8 
   16                0.07  0.78   0.85 
   17                0.03  0.77    0.8 
   18                0.13  0.57    0.7 
   19                 0.1   0.5    0.6 
   20                0.03  0.47    0.5 

 006.066.0216.0puˆ au-p  CC   

 001.0782.29.0puˆ au-p  CC   

Fig. 2. The estimated Cp-au when data are autocorrelated with 0<φ<0.2 , 0.2<φ<0.4 , 0.4<φ<0.6 , 0.6<φ<0.8 
 

 008.0132.1123.0puˆ au-p  CC   

Finish 

Data are autocorrelated 

0.6<φ<0.8 0.4<φ<0.6 0<φ<0.2 0.2<φ<0.4 

 011.0778.0277.0puˆ au-p  CC   

Start 

Selecting random sample of population 

Independence test 

φ=0 Observations are independent 
Calculate Cp with classical methods 
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According to Table 2, we can calculate the test statistic as 

follows: 

ݐ = ௗതି
ௌ

= .ଷଵ

ටబ.బబవబఱమబ

= 1.486093                                    (10) 

The nominal significance level in this test is 0.05 for a 
sample of n=20 and 0<φ<0.2; therefore, the confidence 
interval can be defined as ܣ = ,	.ଶହ,ଵଽݐ−ൣ .ଶହ,ଵଽ൧ݐ =
[−2.093	, 2.093]. It has been known that the null hypothesis 
will be accepted whenever |ܲ − value	| ≤   ..ଶହ,ଵଽݐ
Under these assumptions, the calculated P-value is equal 
to 0.15. This means that there are no significant 

differences between Cp-au and au-pĈ  in this situation. 
According to this procedure, the statistics are also equal to 
0.8, 0.151 and 0.1 when 0.2 <φ<0.4, 0.4 <φ<0.6 and 0.6 
<φ<0.8, respectively, so it seems reasonable to conclude 
that there are no significant differences between Cp-au  and 

au-pĈ  for these values of φ . 

5. Conclusion 

It is common to come across biological and chemical 
processes which, because of their inborn nature, produce 
autocorrelated data. If these autocorrelated data are 
treated independently during capability analysis, the 
conclusions may lead to wrong decisions. To prevent such 
wrong decisions, we proposed a strategy to handle 
problems that occur during capability analysis when the 
observations are not independent. This strategy is based 
on subtracting consecutive observations from each other 
in order to obtain samples with independent observations, 
and then using regression analysis to calculate the PCI at 
different levels of autocorrelation. Using this strategy, we 
can find powerful decision rules to determine the 
capability of a process at a given significance level. In this 
study, a Monte Carlo simulation was then employed to 
evaluate the obtained results. For future research, we 
recommend the extension of this strategy to estimate 
process capability index for AR(P) or non-normal 
processes. 
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