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Abstract 

This paper is in search of designing the cellular manufacturing systems (CMSs) under dynamic and flexible environment. CM is proper for 
small-to-medium lot production environment that helps the companies to produce variable kind of productions with at least scraps. The 
most important benefits of CM are decline in material handling, reduction in work-in-process, reduction in set-up time, increment in 
flexibility, improved quality, and shorter lead time. In this research  A multi-objective mixed integer model is presented that considers 
some real-world critical conditions same as costs of multi-period cell formation  and  production planning , human resource assignment to 
cells and balancing workload of cells. This model groups  the parts and machines concurrently with labor assignment This study aims to 1) 
minimize various costs including reassignment cost of human resource, the batch inter-cell material handling cost, constant and variable 
cost of machines, relocation and purchase cost of machines, 2) minimize cell load variation and 3) maximize utilization rate of human 
resource. The model is complicate, so it is verified with Lingo 8. 0. Soft ware. Since particle swarm optimization approach less than many 
other metaheuristic approaches have been applied to solve multi-objective CMS problems so far, we utilize this method to solve our model.  
The results are presented at the last part.  
Keywords: Cellular manufacturing systems; Dynamic and flexible environment; Multi objective; Mixed-integer. 

1. Introduction 

Group technology (GT) is a manufacturing philosophy 
which groups the parts into part families according to 
their similarity in processing and/or design functions. 
Cellular Manufacturing (CM) is one specific application 
of GT that allocates the machines into machine-cells 
according to the parts that should be manufactured by 
them. CM is proper for small-to-medium lot production 
environment that helps the companies to produce variable 
kind of productions with at least scraps. The most 
important benefits of CM are decline in material handling, 
reduction in work-in-process, reduction in set-up time, 
increment in flexibility, improved quality, and shorter 
lead time. The design of a cellular manufacturing system 
(CMS) consists of four stages: (1) cell formation (CF) – 
grouping parts with similar geometric design features or 
processing requirements into part families to take 
advantage of their similarities for manufacturing purpose, 
and collecting required machines into machine cells, (2) 
group layout – laying out machines within each cell 
(intra-cell layout) and cells with respect to one another  
 

 
 
 
 
(inter-cell layout), (3) group scheduling – scheduling 
various parts and part families per period for production,  
and (4) resource allocation – transmission various 
resources like tools, manpower and materials capitals in 
to manufacturing system (Wemmerlov and Hyer [16]). 
Although all of these four stages are important for 
designing a CMS, the first stage plays a critical role to 
flourish system. Lately, with considering the concept of 
dynamic cellular manufacturing system (DCMS), it is 
easier to overcome disadvantages of traditional CMS and 
reach to real word conditions. In dynamic cellular 
manufacturing systems suppose that product mix and part 
demands are variable such as seasonal products demands, 
for the total planning horizon. A schema of DCMS 
contains machine relocation for two following periods is 
shown in Fig. 1. 
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Fig. 1. A schema for machine relocation and changing the  number of cells in a DCMS 

2. Literature Review 

In this section, Firstly, a brief description of the works 
which have been done to address dynamic issue in CMS 
will be provided, and then the multi-objective approaches 
in CMS will be temporarily argued. 

2.1. Dynamic Issues in Cellular Manufacturing Systems 

Alternative CF methods such as similarity coefficient 
algorithm, ROC (rank order clustering) algorithms and 
direct clustering algorithm have been proposed in 
literature. Example of these methods was presented by 
Singh [12]. Extensive classifications of studies relate to 
part-machine grouping problems have been presented by 
Kusiak [6], Mansouri et al. [8] and Selim et al. [11]. 
Defersha and Chen [3] presented a comprehensive 
mathematical model and a two-phase genetic-algorithm-
based heuristic to generate manufacturing cells over 
multiple time periods. The model attempted to minimize 
machine investment cost, inter-cell material handling cost, 
operating cost, subcontracting cost, tool consumption 
cost, set-up cost and  system reconfiguration cost in an 
integrated manner. The proposed genetic algorithm 
included a number of problem-specific genetic operators, 
heuristic and two searching phase to form independent 
cells in the first phase. Safaei et al.[10] applied a hybrid 
simulated annealing for solving an extended model of 
dynamic cellular manufacturing system. They developed 
a mixed-integer programming model to design cellular 
manufacturing systems (CMSs) under dynamic 
environment. Mahdavi et al. [7] presented an integer 
mathematical programming model for the design of 
cellular manufacturing systems in a dynamic  

 
environment. The aim of the proposed model was to 
minimize holding and backorder costs, inter-cell material 
handling cost, machine and reconfiguration costs and 
hiring, firing and salary costs. 

2.2. Multi-objective Approaches in Cellular 
Manufacturing Systems 

Gupta et al. [5] proposed a genetic algorithm based 
solution approach to address the machine cell-part 
grouping problem. Three different objective functions 
considered are (1) minimize total moves (inter-cell as well 
as intra-cell moves), (2) minimize cell load variation, and 
(3) minimize both the above objective functions 
simultaneously. Venugopal and Narendran [15] proposed 
a bi-criteria mathematical model with a solution 
procedure based on a genetic algorithm. Trials on a 
sample problem suggested that the proposed algorithm 
can be a powerful tool that can be gainfully employed in a 
cellular manufacturing environment. The algorithm is 
inherently parallel and is capable of super linear speed-up 
in multi-processor systems. Solimanpur et al. [13] have 
presented a multi-objective integer programming for the 
design of cellular manufacturing systems with 
independent cells. A genetic algorithm with multiple 
fitness functions is proposed to solve the formulated 
problem. The proposed algorithm finds multiple solutions 
along the Pareto optimal frontier.  Sujono and Lashkari 
[14] proposed a method for simultaneously determining 
the operation allocation and material handling system 
selection in an FMS environment with multiple 
performance objectives. The 0–1 integer programming 
model is developed to select machines, assign operations 
of part types to the selected machines, and assign material 
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handling equipment to transport the parts from machine to 
machine, as well as to handle the part at a given machine. 
Mansouri [9] formulated a multi-objective optimization 
problem (MOP) to simultaneously take into account 
optimization of four conflicting objectives regarding: 
intercellular movements, cost, utilization, and workload 
balance. Due to the complexity of the developed MOP, 
neither exact optimization techniques nor total 
enumeration are applicable for large problems. For this, a 
multi-objective genetic algorithm (MOGA) solution 
approach is proposed. Aramoon Bajestani et al.[1] have 
presented a multi-objective dynamic cell formation 
problem, where total cell load variation and sum of 
miscellaneous costs (machine cost, inter-cell material 
handling cost, and machine relocation cost) are minimized 
simultaneously. They designed a new multi-objective 
scatter search (MOSS) for finding locally Pareto-optimal 
frontier. Ghotboddini et al. [4]  have presented a multi-
objective mixed integer model for DCMS. Their model 
solves the part and machine grouping simultaneously with 
labor assignment to minimize the cost of various terms 
like reassignment cost of human resource, over time cost 
of equipments and labors, and maximize utilization rate of 
human resource. They used  the  Benders’ decomposition 
method this to solve Their  model. 

3. Problem Description 

This section describes a nonlinear mixed integer cell 
formation model in a dynamic environment in presence of 
machine flexibility, alternative process plans for part 
types, and the possibility machine-relocation. First object 
is to extend the objective function that Safaei et al. [10] 
have presented in their DCMS model, which minimized 
the function of divers cost variables (machine fixed and 
variable  cost, inter-cell and intra-cell material handling 
cost, machine relocation cost) .in addition to this terms, 
we consider purchase cost, labor inter-cell movement cost 
without considering intra-cell material handling cost. Also 
we consider labor assignment ratio to each cell in each 
period. This objective function tries to maximize the total 
labor assignment ratio for all cells in each period that 
considered by Ghotboddini et al[4]. Furthermore in this 
paper cell load variation concept is considered. 

3.1. Assumptions 

1. There are several operations for each part type which 
must be processed according to their numbers.  

2. Process time for all operations of a part type on 
various machine types are known and constant.  

3.  Part types’ demands in each period are known and 
constant. 

4. Purchasing price is known and constant over the 
planning horizon. 

5.  Fixed cost of each machine type is known and 
deterministic. It covered overall service and 
maintenance cost.  

6. Variable cost of each machine type is known and 
constant. It covered operating cost depending on the 
workload assigned to the machine. 

7. There is not inventory and back order. All demands 
must be complete during certain period. 

8. All machine types are multipurpose. Then there is no 
modification cost for performing one or more 
operations. 

9. Total number of labors is fixed for all periods. Firing 
and hiring are not allowed. 

10. Inter-cell relocation cost of each machine between 
periods is known and constant. 

11. Labor inter-cell transferring cost is known and 
deterministic for each period. 

12. Intra-cell movement cost of machines and labors is 
not considered. 

13. Machine capacity of each machine type is known 
and deterministic. 

3.2. Indices 

p   Index for part types (p= 1,. . . , P) 

j   Index for operations belong to part p  (j=1,…, pJ ) 
m   Index for machine types (m= 1,. . . , M) 
c   Index for manufacturing cells (c= 1,. . . , C) 
t    Index for time periods (t= 1,. . . , T) 

3.3. Input Parameters 

pB  Batch size for inter-cell movements of part p  

pη   Inter-cell material handling cost per batch of part p  

mπ  Constant cost of machine type m  in each period 

mλ   Variable cost of machine type m for each unit time 

jpmh  Processing time required to perform operation j  of 
part type p  on machine type m  

jpmδ =1 if operation j  of part p  can be done on 
machine type m ; 0 otherwise 

mr      Relocation cost of machine type m  

mγ     Time-capacity of machine type m in each period  

UB    Upper bound for cell size cell size 

mϕ     Purchase cost of machine type m  
( )tDP Demand for part p  in period t  

L        Total number of labors 

( )tβ   Constant cost of inter-cell labor moving in period 
t  
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jpmq   Manual workload time required to perform 

operation j  of part type p  on machine type m  

jpma  =1 if operation j  of part p can be done on machine 
type m ; 0 otherwise 

3.4. Decision Variables 

ܰሺݐሻ  Number of machines type m allocated to cell c in 
period t 
ܭ

ା ሺݐሻ  Number of machines type m added in cell c in 
period t  
ܭ

ି ሺݐሻ  Number of machines type m removed from cell 
c  in period t  
ܫ

ା ሺݐሻ  Number of machines type m purchased in period t 
ܫ

ି ሺݐሻ Number of machines type m sold in period t 
 ሻ=1 if operation j of part type p is done onݐሺݕ
machine type m in cell c  in period t; 0 otherwise 
 ሻ Workload on machine m by part p in cell cݐሺݓ
during period t 

ܷሺݐሻ Average intra-cell processing time for part p in 
cell c during period t 
 ሻ  Number of labors assigned for cell c in period tݐሺܮ
ܮ

ାሺݐሻ  Number of labors added in cell c in period t 
ܮ

ିሺݐሻ  Number of labors removed in cell c in period t 
0(t)    Minimum labor ratio for period t 

3.5. Mathematical Model 
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The first objective function given in Eq. (1) is to 
minimize the sum of various costs. The first term 
indicates sum of constant cost of all machines like 
maintenance costs which we use over the planning 
horizon for entire cells. The second term represents the 
variable cost of machines in whole cells and periods. This 
cost is incurred by the time-workload allocated to each 
machine type during each period. The third term 
represents machines relocation costs. The forth term 
points to the total purchasing cost for entire machines 
during all periods. The fifth term represents inter-cell 
material handling costs. The last term of this equation 
considers the total cost of labor’s inter-cell transference 
over the planning horizon. Coefficient ½ in the third, fifth 
and sixth term is inserted, because each relocation in the 
model has taken into account two times. 
The second objective function given in Eq. (2) is to 
minimize the sum of machines workload variation squares 
for entire machines during all periods. It causes balancing 
of cells workload.  
The third objective function given in Eq. (3) is to 
maximize the sum of minimum labor ratio for entire 
periods. This ratio is defined in Eq. (10) for each period. 
When the third objective is maximized, the whole labors’ 
ideal time is minimized and we could utilize manpower 
proportion in each cell for each period. In this situation 
assignment of labors to each cell is more efficient over the 
planning horizon.  
The first constraint is presented in Eq. (4) ensures that 
each operation is assigned only to one machine and one 
cell. Eq. (5) guarantees that machines capacity are not 
exceeded. Eq. (6) specifies the upper bounds for cell size. 
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Eq. (7) indicates that the number of machines type in the 
current period in a specific cell equals to the number of 
the same machine type in the previous period, plus the 
number of machines moved into and minus the number of 
machines eliminated from that cell. This restriction is 
called balance constraint. Eq. (8) indicates that the 
number of labors in the current period in a specific cell 
equals to the number of the labors in the previous period, 
plus the number of labored moved into and minus the 
number of  labors  eliminated from that cell. Eq. (9) 
indicates that number of labors is assigned to each cell at 
each period equals to the total number labors. Eq. (10) 
defines the minimum labor ratio for period t . The right-
hand side of constraint is a fraction which its numerator is 
number of labors in cell c for period t and its denominator 
is total required manual workload time for each cell. This 
fraction defines for entire cells in a period, and then all of 
them compare with o as an index.  Eq. (11) represents the 
workload on machine m in cell c during period t. Eq. (12) 
defines the average intra-cell processing time for part p in 
cell c during period t. Eq. (13) shows the number of each 
machine type we buy or sell during each period.  Eq. (14) 
represents that variable y equals to 0 or 1.  Eq. (15) is the 
integer constraint. Eq. (16) defines that labor ratio O(t) 
has a positive amount. 

4.  A Numerical Example 

 The aim of this section is to verify the applicability of the 
proposed model by a hypothetical example with randomly 
generated data. This example is solved by branch and 
bound (B&B) method under Lingo 8.0 software on an 
Intel(R), core (TM) i5, 3.23 GHz lap top with 512 Mb 
RAM. For solving the model with Lingo software, we use 
of Standardized method for converting multi-objective 
optimization problem into a single objective optimization 
problem. First of all in this approach, each objective 
function has to be solved independently, considering all 
related constrains. Then all the objective functions’ 
optimal values are considered to create a new standard 
objective function. The standardized objective function is 
defined as (17): 

( ) ( ) ( ) ( ) ( ) ( ) ( )xf
xf

xf
xf

xf
xf

xfMin 3
3

2
2

1
1

*1*1*1 ∗∗∗ −+=           (17) 

Where fi(x) is the ith objective function and  fi
*(x) is 

optimal value of  ith objective function. Since the model 
is NP-Hard problem and linearization with exact methods 
is not possible, therefore we solved that as nonlinear 
model with branch & bound algorithm under lingo 
software. The random example is generated according to 
the information provided in Table 1.  
 

Table 1 
Test problem generation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In table 1, term ‘‘U’’ implicates to the uniform 
distribution. The data set related to the considered 
example is shown in Table 2. The considered example 
consists of three part types, four machine types, twenty 
labors  and three periods in which each part type is 
assumed to have three operation must be processed 
respectively. Table 2 includes the machines and parts 
information like variable, constant and relocation cost of 
machines, quantity of demand and batch sizes for each 
part type. Runtime is limited to one hour. Thus, the best 
solution for each objective function found after one hour 
(Zi best) and z normal are reported in Table 3. Also costs 
that introduced in the model are shown in this table. The 

cell configurations for three periods corresponding to the 
best obtained solution are shown in Fig. 2. This figure 
shows some of the characteristics and advantages of the 
proposed model. The sequence of operations can be 
recognized by the numbers shown in the column 
associated with each part type. For example, the first and 
second operations of part 1 in period 1 must be performed 
on machines 3 and 4 respectively in cell 1, but its third 
operation must be performed on machine 1 in cell 1. 
Thus, the process plan allocated to part 1 needs one intra-
cell movements and one inter-cell movement. The number 
of inter cell movements in 3 periods is same as to each 
other, but the difference is in their locations, also in the 

parameter value parameter value parameter value 

L U jpmδ)20و40(   )4,2(~
1

u
m

j
jpm∑

=

δ  mλ  U)1و10( 

M  (p/2)+2  hjpm )1,1.0(u  mγ  U)400و600( 

UB  ⎡ ⎤12,15.1 ++ pp

  
Dp(t)

 
)1000,100(U rm

 Um ×π (.4,.6) 

pB ) U  φ୫ U(10000,20000))10و50(  )tβ  100 

pη U)0.06و(U  π୫ 0.08)45و55(    ×mϕ jpmq  
( )12,8u
hjpm

 

Journal of Optimization in Industrial Engineering 7 (2011) 1-9

5



 

nu
pa
ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ta
Ty
M

 47

 54

 45

 50

    

    

    

    

    

 

    

  L

    

    

  C

T
B

 
 
 
 

D

U
β

umber of intra
art 3 has two 
ell movemen

able 2  
ypical test problem
achine info.         

(hour)           

73                        

40                        

54                        

00                        

                           

                           

                           

                           

                           

                           

L:20 

     :4  

      :100 

C:2 

 
Table 3 
Best obtained sol

Z1best 
43136.11 

Machine constan

15126.04 
 

perio

  

M1 

M4 

M2 

 M3 

M4 

  

π

( )tDp

pB

η

UB
( )tβ

a-cell moveme
intra-cell mov

nt in period 

m 
                           

   ($)                    

720                   6

862                   3

1020                 4

 950                  6

                           

                           

                           

                           

                           

                           

lution in details 
Z
6

nt cost Machine

27

od 1 C1 C2

P3 P1

2 3 

1,3  

  

 1 

 2 

    

mπ mλ

ents. For exam
vements, but 

2. In add

Fig.2. Best obtain

                           

($)            ($)     

6               393      

3               500      

4               462      

6               385      

                          

                          

                           

       

                           

                           

Z2best 
6.6499 

e variable cost M

7492.57 

Table 4 
Obtained s

Z1 
47159

2 

1 P2  

  

3  

1  

2  

   

   

mr

mple in period
it has one intr

dition inter-c

ned cell configur

                           

          ($)           

   12000      M1  

   11000      M2  

    17000      M3

    15000      M4

                  perio

                  perio

                  perio

                           

                           

Z3bes
0.180

Machine Reconfi

517.50

olution by MOPS
Z

  6

period 2 

  

M1 

M4 

M2 

 M3 

M4 

  

mϕ

d 1 
ra-

cell 

m
pa
to

rations for typical

          P1             

           p11       p1

          0.31     0.7

          0          0   

         0.29      0   

         0           0   

d1   900              

d2  125               

d3  200               

     34                  

     48                  

st 
7 

guration cost M

00 

SO 
Z2 Z
6.97 0

C1 C2 

P3 P1 P

2,3 3 

1  3

  1

 1 2

 2  

     

movements in p
art 2, while in
o part1 and par

l test problem pre

                        p

12      p13         p2

72     0.25      0.14

        0           0.18

       0.78        0   

        0            0  

                   745  

                   863  

                  350   

                37     

                  46    

Amount of Z no
1.12944

Machine Purchasi

0 

Z3 CPU
0.1976 76.

P2  

 

3  

1  

2  

 

 

periods1, 2 mu
n period 3 inte
rt 3. 

esented in Table 2

p2                         

21       p22     p23

4        0.8        0    

8      0.28     0.92 

       0.19     0.78 

      0          0.34  

                          

                           

                           

                          

                           

ormal 

ing cost Inter-c

U time(s) 
87 

period 3 C1 

  P3 

M1 1,2 

M2  

M3  

M4 3 

    

ust be perform
er-cell movem

2. 

           p3 

3         p31      p32

        0.45    0.15 

         0         0     

         0         0     

       0.45       0.4

        780 

        575 

        379 

           10 

            49 

CPU time 
3600 

cell movements c

0 

C2 

P1 P2 

3  

 1 

1 2 

2  3 

    

med for part1a
ments are relat

2        p33 

       0.57 

       0 

      0 

5         0.47 

ost labor 
transfer cos

0 

 

 

 

 

 

 

and 
ted 

st 

Mohammad Saidi-Mehrabad et al./ Developing a Multi0objective Mathematical...

6



 

Table 5  
Solving some problems with small, medium and large sizes with MOPSO algorithm            

NO. Size of problem M-P-O-C-T-L z1 z2 z3 CPU time(s) Percent of feasible solutions 

1 4-4-[3,5]-2-2-20 82153 5.7443 0.3083 83.16 100% 
2 5-6-[3,5]-3-2-20 175842 12.46468 0.19806 135.12 80% 
3 6-8- [3,5]-3-2-20 156558 9.1522 0.15072 148.18 90% 
4 7-10- [3,5]-3-2-20 181780 19.58294 0.07678 181.92 88% 
5 8-10- [3,5]-3-2-20 245342 33.4754 0.04816 207.64 60% 
6 9-14- [3,5]-3-2-22 411860 44.9739 0.0404 235.64 40% 
7 10-16- [3,5]-3-2-20 397040 52.2477 0.0274 278.20 60% 
8 10-16- [3,5]-3-2-22 308940 53.4087 0.0487 250.24 80% 
9 11-18- [3,5]-3-2-22 390310 52.848 0.037 281.07 50% 
10 12-20- [3,5]-3-3-24 528960 93.6942 0.0333 435.34 60% 
11 14-24- [3,5]-3-3-26 886730 147.449 0.0266 597.06 40% 
12 16-28- [3,5]-4-3-28 1162500 196.2805 0.0269 833.51 40% 
13 17-30- [3,5]-4-3-30 988200 140.0854 0.033 895.34 80% 
14 17-30- [3,5]-5-3-30 1001400 145.2228 0.0374 1066.59 40% 
15 17-30- [3,5]-5-3-40 1332000 159.3593 0.0508 1143.13 30% 

 

  

  

 

 

 

 

 

Fig.3. Final result of solving model by MOPSO algorithm. 

5. Solution Algorithm 

5.1. Particle Swarm Optimization Approach 

Cell formation problems with their combinatorial nature 
are usually known to be NP-hard and so finding an 
optimal even a feasible solution in a reasonable time is 
difficult. Therefore in lots of studies heuristic or Meta 
heuristic algorithms are used to solve cell formation 
models. Between Meta heuristic algorithms PSO is a 
useful method because of its reasonable run time and 
effectiveness. 

5.2. The main steps of MOPSO [2] 

1. Initialize the population POP: 
a) FOR 

particlesofnumbertoi 0=  

b) Initialize POP[i]  

2. Initialize the speed of each particle: 

a) FOR
particlesofnumbertoi 0=  

b) [ ] 0=iVEL  

3. Evaluate each of particles in POP . 
4. Store the positions of the particles that represent 

nondominated vectors in the repository REP . 
5. Generate hypercubes of the search space explored so 

far, and locate the particles using this hypercubes as 
a coordinate system where each particles coordinates 
are defined according to the values of its objective 
functions. 

6. Initialize the memory of each particle (this memory 
serves as a guide to travel through the search space. 
This memory is also stored  in the repository): 

a) FOR 
particlesofnumbertoi 0=  

b) PBEST[i]=POP[i] 

period 3 C1 C2 

  P3 P1 P2   

M1 1,2 1, 3     

M2     1   

 M3    2   

M4 3 2  3   

          

period 2 C1 C2 

  P3 P1 P2   

M1 3 3    

M4 1 , 2       

M2    1   

 M3  1 2,3   

M4  2     
          

period 1 C1 C2 

  P3 P1 P2   

M1 2     

M4 1,3       

M2    1   
 M3  1,3 2,3   

M4  2     
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7. While maximum number of cycles has not been 
reached do: 

a) Compute the spead of each particle using the 
following expression: 

ሾ݅ሿܮܧܸ ൌ ܹ ൈ ሾ݅ሿܮܧܸ  ܴଵ ൈ ሺܲܶܵܧܤሾ݅ሿ െ ܱܲܲሾ݅ሿሻ
 ܴଶ ൈ ሺܴܲܧሾ݄ሿ െ ܱܲܲሾ݅ሿ 

 R1, R2 are random numbers; PBEST[i] is the best position 
that the particle i has had; REP[h] is a value that is taken 
from the repository; the index h is selected in the 
following way: those hypercubes containing more than 
one particle are assigned a fitness equal to the result of 
dividing any number 1fx  by the number of particles 
that they contain. This aims to decrease the fitness of 
those hypercubes that contain more paerticles and it can 
be seen as a form of fitness sharing. Then, we apply 
roulette-wheel selection using these fitness values to 
select the hypercube from which we will take the 
corresponding particle. Once the hypercube has been 
selected, we select randomly a particle within such 
hypercube. POP[i] is the current value of the particle i . 
b) Compute the new positions of the particles adding 

the speed  produced from the previous step: 
POP[i]=POP[i]+VEL[i]  

c) Maintain the particles within the search space in case 
they go beyond their boundaries. When a desition 
variable goes beyonds its boundaries, then we do 
two things: (1) the desition variable takes the value 
of its corresponding boundry (either the lower or the 
upper boundary), and (2) its velocity is multiplied by 
(-1) so that it searches in the opposite direction. 

d) Evaluate each of the particles in POP. 
e) Update the contents of REP together with the 

geographical representation of the particles within 
the hypercubes. This update consists of inserting all 
the currently nondominated locations into the 
repository. Any dominated locations from the 
repository are eliminated in the process. Since the 
size of repository is limited, whenever it gets full, 
we apply a secondary criterion for retention: those 
particles located in less populated areas of objective 
space are given priority over those lying in highly 
populated regions. 

f) When the current position of the particle is better 
than the position contained in its memory, the 
particle’s position is updated using: 

PBEST[i]=POP[i]  

The criterion to decide what position from memory 
should be retained is simply to apply pareto dominance. 

g) Increment the loop counter 
8. End while. 

6. Experimental Result 

In order to evaluate the effectiveness of Particle swarm 
optimization algorithm for solving a DCMS problem, 
numerical example in section 4 was tested again. General 
assumption are as follow: number of population=100, 
max iteration = 100, W=1, 1R = 2R =2  . Final result after 
100 iteration is shown in fig.3 and table 4. Also in table 5 
some problems with small, medium and large sizes are 
produced randomly and solved with MOPSO algorithm 
under MATLAB software. In this table results including 
the amount of each of objective functions, CPU time and 
percent of feasible solutions have been reported. These 
results are the average of 10 times run. In all of this 
problems, Number of operations has been considered in 
the range of [3,5].  

7. Conclusions 

This paper proposes a multi-objective mathematical 
model to solve the problems of DCMS. This model is a 
non-linear mathematical model that minimizes cell-
formation costs like constant and variable costs of 
machine, inter - cell material handling costs by assuming 
the operation sequence, machine relocation costs. Also 
the model minimizes cell load variation and maximizes 
utilization rate of human resource. The model is verified 
with one small-size test problem that solved by Lingo 
software and MOPSO algorithm and it is implemented for 
small, medium and large size test problems under 
MOPSO algorithm. We suggest utilizing of heuristic or 
other meta-heuristic approaches to solve the proposed 
model for real-sized problems and compare their results 
with the results of MOPSO. Furthermore, considering 
some variables such as demand variables in an uncertain 
environment and solving the mode with suitable methods 
such as fuzzy goal programming is useful. 
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