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Abstract 

In this paper the real-world occurrence of the multiple-product multiple-constraint single period newsboy problem with two objectives, in 
which there is incremental discounts on the purchasing prices, is investigated. The constraints are the warehouse capacity and the batch 
forms of the order placements. The first objective of this problem is to find the order quantities such that the expected profit is maximized 
and the second objective is maximizing the service rate. It is assumed that holding and shortage costs, modeled by a quadratic function, 
occur at the end of the period, and that the decision variables are integer. A formulation to the problem is presented and shown to be an 
integer nonlinear programming model. Finally, an efficient hybrid algorithm of harmony search, goal programming, and fuzzy simulation 
is provided to solve the model. The results are illustrated by a numerical example.  

Keywords: Single period newsboy problem; fuzzy variables; mixed integer nonlinear programming; goal programming; harmony search; fuzzy simulation.  

1. Introduction and literature review 

The single period newsboy problem simply deals 
with situations where the demand for a commodity is 
uncertain (random) and the ordered items that remain 
unsold or unused at the end of the cycle become 
obsolete. Hence, on one hand the buyer may incur a 
disposal cost and on the other if he initially decides to 
buy smaller amounts of these commodities, shortages 
may occur, causing loss of revenue. In this problem, 
the commodity has the most important characteristic of 
a "single-period" product, and the question becomes 
how to determine the quantity to be ordered to 
minimize (maximize) the costs (profit). The answer to 
this question is the main objective of the classical 
single period newsboy problem.  
In real world situations, many products have a limited 
selling period, so the single period problem is often 
used to aid decision-making in fashion, sporting, 
Service industries, etc. to manage capacity or evaluate 
advanced booking of orders. Abdel-Malek and 
Montanari [2], Abdel-Malek and Areeratchakul [3], 
and Vairaktarakis [43] considered a multi-product 
newsboy problem with budget constraint. Matsuyama  
 
 

 
 
 
[31] analyzed the single period problem in which a 
fraction of the shortage was backordered. Moreover, 
Alfares and Elmorra [4] analyzed the single period 
problem in both single-periodic and multi-periodic 
frames in which random yield and fixed order cost 
were considered.   
Reyes [34] used the newsboy model in a supply chain 
in which both sides had incomplete information on the 
demand. Mostard and Teunter [32] considered a single-
period model in which a percentage of the sold 
products were returned, assuming that these products 
could be returned in a specific range of time and could 
be sold again if not damaged. Keren and Pliskin [23] 
presented the newsboy problem as a risk-averse model 
and calculated the optimal order quantity by using the 
utility theory. Chen and Chuang [7] analyzed the single 
period newsboy problem along with the shortage level 
constraint. Abdel-Malek and Montanari [2] presented 
the single period problem with budget constraint and 
proposed different formulae to obtain the order 
quantity for three ranges of the budget quantity. 
Furthermore, Abdel-Malek and Areeratchakul [3] used 
the quadratic programming approach in a multi-product 
single period problem with budget, capacity, and order 
constraints. Taleizadeh et al. [37] developed a multi-Corresponding author, e-mail: Niaki@Sharif.edu *  
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product newsboy model with incremental discounts 
and batch orders in which the service level and 
warehouse space assumed constraints. Then, they 
proposed a genetic algorithm to solve the obtained non-
linear integer model.  
Dutta et al. [10] presented a single-period inventory 
problem in an imprecise and uncertain mixed 
environment. The aim of Dutta et al.'s [10] research 
was to introduce demand as a fuzzy random variable. Ji 
and Shao [20] considered the model for the single 
period problem with fuzzy demands and quantity 
discounts in hierarchical decision system by 
manufacturer and retailer. Shao and Ji [35] investigated 
the multi-product single period problem with fuzzy 
demands under budget constraint.  
In this paper, a multi-inventory single-period newsboy 
problem is considered in which the uncertain demand 
follows a Poisson distribution; batch orders and 
warehouse capacity are considered constraints; the 
incremental discount policy is used to purchase the 
items; and the holding and shortage cost are fuzzy 
variables. The overall goal is to establish the optimal 
order quantity for each product that serves the dual 
purpose of maximizing expected profits and service 
level. 
The rest of the paper is organized as follows. In section 
2 some required definitions in fuzzy environment to 
model the problem are given. In section 3 the problem 
is defined in details. The mathematical formulation of 
the problem comes in section 4 and the proposed 
hybrid solution algorithm is explained in section 5. In 
order to demonstrate the application of the proposed 
methodology in real world environment, a numerical 
example is given in section 6. Finally, the conclusion 
and recommendations for future research comes in 
section 7. 

2. Fuzzy environment 

Let us first present some definitions in fuzzy 
environment that will be used to model the problem at 
hand. We adopt the concepts of the credibility, 
possibility and necessity theory, as well as credibility 
of fuzzy event and the expected value of a fuzzy 
variable based on Liu [29].  
Definition 1: A Fuzzy number is of LR-Type, if there 
exist reference functions L (for the left), R (for the 
right), and scalars 0, 0α β> >  with  
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Where ξ%  is abbreviated form 

of ( , , , )L Rm nξ α β −=% . The Triangular and 
trapezoidal fuzzy variable are specific kind of LR-
Type. 
 
Definition 2: Let ξ%  be a fuzzy number with the 

membership function ( )µ ξ% . Then the possibility, 
necessity, and credibility measure of the fuzzy event 

rξ ≥%  can be represented, respectively, by: 
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Definition 3: The expected value of a fuzzy variableξ%  
is defined as: 
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0

0
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 the expected value of a triangular fuzzy variable 
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Definition 4: Let ξ%  be a fuzzy variable. Then the 

optimistic function of α is defined as: 
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3. Problem definition 

    Consider a company that orders products to a 
supplier with the following rules of placing the orders 
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that take place only once and only at the start of a 
period. The customer demand for each product ( j ) 

follows a Poisson distribution with parameter jλ . The 
order quantity of each product should only be integer 
multiples of packets each with jn  items. There is no 
enforced constraint on the supplier to supply an order. 
The entire capacity of the warehouse is assigned to the 
products. Shortage is licensable and takes the lost sale 
condition. The shortage and holding costs are fuzzy 
and deployed at the end of the period and increase in 
quadratic fashion. The transportation cost is deployed 
to carry the products and has two components as fixed 
cost for each shipment and variable cost for each unit 
of the products. Discount for purchasing items is 
allowed and follows incremental discount rule. Since 
the transportation and the order-processing times are 
relatively very small to the cycle length, we assume 
that the lead-time is equal to zero, which is the 
common practice in the single period problems. The 
goal is to determine the order quantity of each product 
such that the constraints are satisfied and both the 
expected profit and service rate are maximized. 

4. Problem modeling 

     Since the orders are placed only once and at the 
beginning of each period, one may take advantage of 
the classical single period problem and develop a 
mathematical model for the problem at hand. To do 
this, the variables and the parameters of the model are 
first defined. Then, the costs and the constraints are 
determined. Finally, the model is presented. 

4.1. The parameters and the variables 

For 1,2,...,i n=  and 1,2,...,j T=  the parameters 
and the variables of the model are: 

T :  Total number of products. 

jX : The stochastic demand of the thj product. 

jλ : The expected demand of the thj product. 

)x(f jX j
: The probability mass function of 

the thj product demand.  

jV : The number of items in the packets of 

the thj product. 
ˆ ( )jH x : The fuzzy holding cost function of 

the thj product at the end of a period. 

1̂ j
h : The fuzzy linear coefficient of the quadratic 

holding cost function of the thj product. 

2̂ j
h : The fuzzy quadratic coefficient of the 

quadratic holding cost function of the thj product. 
ˆ ( )j xπ : The shortage cost function of 

the thj product at the end of a period. 

1ˆ j
π : The fuzzy linear coefficient of the quadratic 

shortage cost function of the thj product. 

2ˆ
j

π : The fuzzy quadratic coefficient of the 

quadratic shortage cost function of the thj product. 
:A The fixed transportation cost of each shipment. 
:jK The variable transportation cost of each unit 

of the thj product. 
      m : Number of shipments. 

jQ : A decision variable representing the order 

quantity of the thj product. 

jB : A decision variable representing the number 
of packets that have been ordered                      
       for the thj product. 

jf : The space required for each packet of the 
thj product. 

f̂ : The capacity of a shipment. 

jα : The minimum service level of 

the thj product. 

ijq : The thi discount break point of 

the thj product. 

ijC : The purchase cost of the thj product in the 
thi break point. 

F : The total available warehouse space. 

jHC : The expected holding cost of the thj product 

at the end of a period. 

jBC : The expected shortage cost of the thj product 

at the end of a period. 

jPC : The expected purchasing cost of 

the thj product. 

TC : The transportation cost of the product(s). 

jP : The selling price of the thj product. 

jR : The expected revenue of the thj product. 

PZ : The expected profit. 
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SRZ : The expected service rate. 
 

In the next section, a single-product problem 
is first modeled and then it is extended it to the multi-
product case.  

4.2. Modeling the first objective (profit) 

In order to model the profit associated with a 
single-product problem, first the revenue and then the 
costs (holding, shortage, transportation and purchase) 
are modeled. 

4.2.1. Revenue 

To calculate the revenue obtained from selling 
the thj product in a period, let us assume that if the 
total demand quantity is more than the order quantity, 
then the sold quantity is jQ . Otherwise, it is jX . In 
other words: 
Sold quantity of the thj product  = 

                  if          

     if         

j j j

j j j

Q X Q

X X Q

≥


<                            

(9) 
Since the probability mass function of the demand for 
product j is )x(f jX j

, the expected sold quantity of 

the jth product at the end of the period is determined as: 
1

0
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j j

j j j

Q

j X j j X j
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X f x Q f x
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= =

+∑ ∑                        

(10) 
Hence, the expected revenue is obtained by:  

 
1
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j
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j j j

Q

j j j X j j j X j
X X Q

R P X f x P Q f x
− +∞

= =
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4.2.2.     Costs 

The costs of the problem are holding, 
shortage, transportation and purchasing that are 
determined as follows.  

4.2.2.1.   Holding cost 

Since it is assumed that the holding cost of 
the thj product occurs at the end of the period, the 
determination of the end-point expected inventory at 
the start of the period is needed. If the total demand 

quantity is more than the order quantity, i.e., j jX Q≥ , 
then the inventory quantity at the end of the period is 
zero. However, if the total demand quantity is less than 
the order quantity, then the inventory quantity at the 
end of the period is j jQ X− . In other words 

End-period inventory level of the thj product   =

0                  if          

( )     if         

j j

j j j j

X Q

Q X X Q

≥


− <
                                   

(12) 
Since the probability mass function of the 

demand for product j is )x(f jX j
, then the expected 

inventory at the end of the period is determined as: 
1

0
( ) ( )

j

j

j

Q

j j X j
X

Q X f x
−

=

−∑                                       

(13) 
Finally, considering the quadratic increase of the 
holding cost [28], the expected holding cost at the end 
of the period which is calculated at the start of the 
period is 

( )
1

2
1 2

0

ˆ ˆ( ) ( ) ( )
j

j j j j

j

Q

H j j j j X j
X

C h Q X h Q X f x
−

=
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4.2.2.2. Shortage cost 

If shortage occurs during a period, it will take the lost 
sale condition. Since the holding cost is calculated at 
the end of the period, the expected shortage is 
calculated at the same time. In this case, if the total 
demand quantity is more than the ordered quantity, i.e., 

j jX Q> , then at the end of the period the shortage 

quantity will be j jX Q− . However, if the total 
demand quantity at the end of the period is less than the 
order quantity, the shortage quantity at the end of the 
period will be zero. In other words,  
Shortage quantity at the end of the period=  
 

( )     if     

0                   if    

j j j j

j j

X Q X Q

X Q

− >


≤
                         (15) 

          
Accordingly, the expected shortage at the end of the 
period is: 

1
( ) ( )

j

j j

j j X j
X Q

X Q f x
+∞

= +

−∑                           (16) 

Taking into account the quadratic shortage cost 
function of Lin and Tsai [28], we have 
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4.2.2.3. Transportation cost 

The transportation cost is calculated based on equation 
(18), in which j jf B  is the required space to ship the 
order from the supplier. 

ˆ; 0

ˆ ˆ2 ; 2

ˆ ˆ; ( 1)
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By introducing the binary variables ; 1, 2,...,kY k m= , 
the transportation cost can be incorporated with the 
mathematical model of the problem as 

1
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4.2.2.4.      Purchasing cost under incremental 
discount 

The purchasing cost of the company for the thj product 
at the beginning of a period can be calculated using the 
incremental discount policy. Let the incremental 
discount policy be 

1 1

1 1 2 2 1 2

1 1 2 2 1

1,

                           ;0

( )  ;

          

( )

... ( )  ;   

j
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(20)

 

Where and C  ; 1,2,...,
j jl lq l n=  are the discount 

points and the purchasing costs for each unit of 
the thj product that corresponds to its lth discount break 
point, respectively.  

In order to include the incremental discount 
policy in the inventory model, equation (21) is used to 
model the incremental discount policy. 

  

1 1 2 2 ...
jP j j j j nj njC C W C W C W= + + +  

1 2 ...j j j njQ W W W= + + +  

1 2 1 1 1j j j j jq W qλ λ≤ ≤  

( ) ( )2 1 3 2 2 1 2j j j j j j jq q W q qλ λ− ≤ ≤ −

M
  

                                                                            
(21) 
0 nj njW Mλ≤ ≤    

1 2j j njλ λ λ≥ ≥ ≥L  

0,1       ,        1, 2, ,ij i i nλ = ∀ = L  

in which ; 1, 2,...,  and 1,2,...,ijW i n j T= =  are the 
modeling variables to convert equation (20) to (21) and 
M is a very big number.  

4.2.3. Modeling the second objective (service rate) 

Let the service rate of the thj product ( SRZ ) be the 
ratio of the expected customers’ demands that are 
satisfied in a period to the average costumers’ demand. 
Since the expected satisfied demand at the end of a 
period is determined by: 

1

0
( ) ( )

j

j

j

Q

j j X j
X

Q X f x
−

=

−∑                                      

(22) 
Then the second objective is obtained as: 
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4.2.4. Constraints 

The constraints of the problem at hand are the 
warehouse space and ordering in batch form. Since the 
space required for each packet of the thj product 

is jf square meters, the number of packets that have 

been ordered for the thj product is jB , and the total 

available warehouse space is F square meters, the 
warehouse space constraint becomes 

j jf B F≤                                                                    
(24) 
However, we need the orders to be placed in packets of 
size jV . In this case, we have 

j j jQ V B=                                                      
(25) 
Finally, the multi-product model with incremental 
discount and fuzzy costs will be: 
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s.t: 

              1
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j
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     ,      1, 2,...,j j jQ V B j j T= ∀ =  

                

1 2 1 1 1          ,           1, 2,...,j j j j jq W q j j Tλ λ≤ ≤ ∀ =
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0  ,  1, 2,..., , M is a big number
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1
1
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1
1 , 0,1 ; 1,2,...,

m

k k
k

Y Y k m
=

= = ∀ =∑  

        

1 2          ,           1, 2, ,
jj j n j j j Tλ λ λ≥ ≥ ≥ ∀ =L L

 
0,1    ,   1, 2,  and , 1, 2, ,ij j j T i i nλ = ∀ = ∀ =L L

0 and integer     ,           1, 2, ,jB j j T≥ ∀ = L         
(26) 

5. A solution algorithm 

Since the model in (26) is mixed-integer-nonlinear in 
nature, reaching an analytical solution (if any) to the 
problem is difficult (Gen and Cheng [12]). As a result, 
in this section a stochastic search algorithm is used to 
solve the model. However, since the models have two 
objectives, a goal programming framework is first 
applied to formulate them and then a Harmony search 
algorithm is employed to solve it.  

5.1. Goal programming modeling 

The scope of this research is limited to the application 
of goal programming (GP) approach to real life 
manufacturing situations in a multi-objective 
environment. For a rigorous mathematical analysis of 
multi-objective programming approach, the reader is 
referred to Steuer [36].  
The multi-objective models in the context of 
manufacturing were formulated and solved in the 
recent past (a few sample studies include Kalpic, et al. 
[22]; Nagarur, et al. [33]) to provide information on the 
trade-off among multi-objectives. However, although it 
represents a viable approach to production planning, 

1

1 0

( ) ( )1:
j

j

j

QT
j j X j

SR
j X j

Q X f x
Max Z

T λ

−

= =

−
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multi-objective goal programming (MOGP) is not as 
widespread among manufacturing companies as 
desired. 
The GP appears to be an appropriate, powerful and 
flexible technique for decision analysis of the troubled 
modern decision maker who is burdened with 
achieving multiple conflicting objectives under 
complex environmental constraints. The extensive 
surveys of the GP by Tamiz, et al. [42], and Aouni and 
Kettani [6] have reflected this. The modeling approach 
of GP does not attempt to maximize or minimize the 
objective function directly as in the case of 
conventional linear programming. Instead it seeks to 
minimize the deviations between the desired goals and 
the actual results to be obtained according to the 
assigned priorities. A commonly used generalized 
model for goal programming is as follows (Kwak et al. 
[25]): 

 
: ( )i i i iMin z w p d d+ −= +∑  

s.t.: 
, 1, 2,...,ij ij i i i

j
a x d d b i i m− ++ − = ∀ =∑  

                  
, , 0ij i ix d d− + ≥

 
. 0 , ( 1,2,..., ; 1,2,... ) (27)i id d i m j n− + = = =

 
where ip  is the preemptive factor/priority level 
assigned to each relevant goal in rank order 

1 2( ... )np p p≥ ≥ ≥ and iw  are non-negative 
constants representing the relative weights assigned 
within a priority level to the deviational variables, 

,i id d+ −  for each ith corresponding goal, ib . The 

ijx represents the decision variables and ija  represents 
the decision variable coefficients. 
Based upon the generalized GP model in (27), in this 
section, the model in (26) is changed into a goal 
programming form. To determine the goal (b1,b2) this 
model is first solved as single objective ones. However, 

2 1b =  is considered by default. The new model for 
incremental discount policy will become:  
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e
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d d d d B
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=

=

≥ ≥

∀ = L

                                             

5.2. Harmony search 

New ways have been found to optimize problems for 
less than a century, but nature has used various ways of 
optimization for millions of years. Recently scientists 
mimicked nature to solve different kinds of complex 
optimization problems. Most of these problems are so 
complicated and time consuming that we cannot use an 
exact algorithm to solve them. Thus, typically some 
non-precise algorithms are used to find a near optimum 
solution in a shorter period. We call these algorithms 
meta-heuristic (Dorigo and Stutzle [8]).  

Many researchers have successfully used 
meta-heuristic methods to solve complicated 
optimization problems in different fields of scientific 
and engineering disciplines. Some of these meta-
heuristic algorithms are simulating annealing (Aarts 
and Korst [1], Kirkpatrick et al. [24], Taleizadeh et al. 
[38], ), threshold accepting (Dueck and Scheuer [9]), 
Tabu search (Joo and Bong [21]), genetic algorithms 
(Goldberg [19], Al-Tabtabai and Alex [5], Taleizadeh 
et.al [40]), neural networks (Gaidock et al. [11]), ant 
colony optimization (Dorigo and Stutzle [8]), fuzzy 
simulation (Taleizadeh et al. [39]), evolutionary 
algorithm (Laumanns et al. [26]), harmony search (Lee 
et al. [27], Geem et al. [13]), and particle swarm 
optimization (Taleizadeh et.al. [41])  
Lee et al. [27] and Vasebi et al. [44] showed that the 
Harmony Search (HS) algorithm outperforms Genetic 
Algorithm (GA) because of its multi-vector 
consideration and fast computation. One of the main 
advantages of HS versus GA is its simple 
implementation. Unlike GA that has genetic operators 
like crossover and mutation, the HS algorithm does not 
have these types of operators for new generations. This 
causes an iteration to be faster in HS than that in GA. 
Therefore, we employ a HS algorithm to solve the 
models under different criteria. The HS algorithm 
(Geem et al. [13]), which is inspired from the act of 
musician groups, was introduced in an analogy with 
music improvisation process where musicians in an 
ensemble continue to polish their pitches in order to 
obtain better harmony. Similar to musician groups 
when several notes from different musical instruments 
are played simultaneously by set of the pitch adjusting 
on a random basis to achieve pleasant harmony in 
several practices, this algorithm seeks the optimum 
solution by generating random vector solutions in a 
Harmony Memory (HM) that are improved iteration by 
iteration with some pitch adjusting and updating 

methods to reach global optimum. In summary, 
according to the analogy of improvisation and 
optimization, fantastic harmony is considered as global 
optimum, aesthetic standard is determined by the 
objective function, pitches of instruments are desired 
values of the variables, and each practice is the same at 
each iteration. 
The HS optimization method has been applied 
successfully to various engineering problems such as 
satellite heat pipe design (Geem and Hwangbo [14]), 
vehicle routing (Geem et al. [16]), water network 
design (Geem et al. [15] and [17]) and structural design 
(Lee and Geem 2004). Mahdavi et al. [30] described an 
Improved Harmony Search (IHS) algorithm for solving 
optimization problems. IHS employs a novel method 
for generating new solution vectors that enhances 
accuracy and convergence rate of HS algorithm. They 
discussed the impacts of constant parameters on HS 
algorithm and presented a strategy for tuning these 
parameters.  
Although HS algorithm has proven its ability of finding 
near global regions within a reasonable amount of time, 
it is comparatively inefficient in performing local 
search. Fesanghari et al. (2008) proposed a Hybrid 
Harmony Search (HHS) algorithm to solve engineering 
optimization problems with continuous design 
variables and employed a Sequential Quadratic 
Programming (SQP) model to speed up local search 
and improve precision of the HS solutions. 
The HS optimization algorithm applied in this paper is 
performed by the following steps. 

5.2.1. Initialization 

The process of initialization has two parts; parameter 
initialization and HM initialization as described below. 

5.2.2. Parameter initialization 

The constant parameters of the HS algorithm include 
Harmony Memory Size ( HMS ), Harmony Memory 
Considering Rate ( HMCR ), Pitch Adjusting Rate 
( PAR ), Number of decision variables ( N ), and the 
maximum Number of Improvisations ( NI ). The 
HMS is the number of simultaneous solution vectors 
in HM. Based on the frequently used HMS  values in 
other HS applications available in the literature (Geem 
[18], Geem and Hwangbo [14], Geem et al. [13, 14, 
16], it seems that using a small HMS  is a good and 
logical choice with the added advantage of reducing 
space requirements. Furthermore, since HM resembles 
the short-term memory of a musician and since the 
short-term memory of the human is known to be small, 
it is logical to use a small HMS . In this paper, the 
numbers 10, 20 and 30 are chosen as different values 
of HMS .  
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The HMCR  is the probability of choosing HM. 
Choosing a very small HMCR  decreases the 
algorithm efficiency and the HS algorithm behaves like 
a pure random search, with less assistance from the 
HM. Hence, it is generally better to use a large value 
for the HMCR  (i.e. ≥ 0.9). In this research 0.93, 0.95 
and 0.99 have been used for HMCR . The pitch 
adjustment is similar to the adjustment of each musical 
instrument in a jazz so that pleasing harmony can be 
achieved. The efficiency of the algorithm lies within 
this pitch adjustment because of the fact that once a 
feasible design is determined, it searches new solution 
vectors around this design vector rather than generating 
arbitrary design vectors. Thus, this operation prevents 
stagnation and improves the HM for diversity with a 
greater chance of reaching the global optimum. The 
PAR is the probability of pitch adjustment where its 
typical value ranges from 0.3 to 0.99. In this research, 
0.3, 0.7 and 0.9 have been utilized for PAR .  
The value of N , the number of variables for 
optimization, is fully depended on the characteristics of 
the problem. Finally, NI  is the maximum number of 
iterations that the objective function is evaluated In this 
research, 100, 500 and 1000 are chosen as different 
iteration numbers.  

5.2.3. Harmony memory initialization 

The HM is a two-dimensional matrix with HMS  rows 
and 1N +  columns. The last column of HM is 
specified by the value of the objective function for each 
solution vector. Figure (1) shows a sample HM in 
which j

iX  is one of the decision variables used in HS 

algorithm, ( )jf x  is the value of the objective 
function for jth vector solution, i indicates the index of 
the decision variable in vector X, and j is used as an 
index for the vector solution in HM. The HM is 
initialized with randomly generated solutions in a 
specific range limited by upper and lower bounds 
determined by the problem at hand. However, because 
of the constraints described in section 4.2.4, only those 
solution vectors that satisfy the constraints are included 
in HM. 

5.2.4. New harmony generation 

New Harmony improvisation is based on three rules: 
(i) random selection (ii) HM consideration, and (iii) 
pitch adjustment. In random selection rule, the new 
value of each decision variable ix′  is randomly chosen 

within the allowable range of the vector solution jX . 
Then, ' ' ' '

1 2, ,..., Nx x x =  X will represent the new 

vector solution. In HM algorithm, the random choosing 

from HM occurs with probability HMCR  and the 
random selection is performed with 
probability1 HMCR− . Algorithm (1) shows the 
choosing and the selection processes. 

 
Memory Columns 

 

 
Fig. 1. The sample of harmony memory 

 
 
For  1:i N=  
         If   

    ;     (0,1)i iRand HMCR Rand Uni<   

                         1 2[ , , , ]HMS
i i i i ix x x x x′ ′← ∈ L  

        Else 
                           

generate a new one within the allowable rangeix ′ ←
     
       End If 
End For  
   
Algorithm (1): The choosing and selection processes of 

HM algorithm 
 

In pitch adjustment, every component obtained by the 
memory consideration, is examined to determine 
whether it should be pitch adjusted or not. The value of 
the decision variable is changed by equation (29) with 
probability of PAR , and this value is kept without any 
change with probability 1 PAR− . In equation (29), 
BW stands for band width and denotes the amount of 
change for pitch adjustment, and rand is a uniform 
random number between 0 and 1. In this equation, for 
each component of the vector the selection for 
increasing or decreasing are carried out with the same 
probability.  

[ ]( )( ) ; ~ 0,1rand BW rand U= ±' 'X X      
(29) 

1
1X  1

2X  . . . 1
NX  1( )f x  

2
1X  2

2X  . . . 2
NX  2( )f x  

       
.                      . .   
.         . . 
.             .                     . 

 
1

1
HMSX −

 

1
2
HMSX −  . . . 1HMS

NX −  1( )HMSf x −

 

1
HMSX
 

2
HMSX  . . . HMS

NX  ( )HMSf x
 

H
M

S
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5.2.5. Harmony memory update 

The constraint handling part of the algorithm is 
performed before the HM update and checks whether 
the constraints of model (28) are satisfied or not. If 
they are satisfied, then the HM update action occurs. In 
this stage, by the objective function evaluation, if the 
new fitness value is better than the worst case in the 
HM, the worst harmony vector is replaced by the new 
solution vector. The remaining steps of the HM 
algorithm are performed after the HM update. 

5.2.6. Stopping criterion 

The last step in a HS method is to check if the 
algorithm has found a solution that is good enough to 
meet the user’s expectations. Stopping criteria is a set 
of conditions such that when satisfied a good solution 
is obtained. Different criteria used in literature are: 1) 
stopping the algorithm after a specific number of 
iterations, 2) no improvement in the objective function, 
and 3) reaching a specific value of the objective 
function. In this research, we stop when a 
predetermined number of consecutive iteration is 
reached. The number of sequential iterations depends 
on the specified problem and the expectations of the 
user.  

5.3. Fuzzy simulation 

In order to estimate the uncertain costs of the fuzzy 
model, we employ a simulation technique. Denoting 

îjh  by îjh  = ( 1îh , 2îh , . . . , îTh ), µ  as the 

membership function of ĥ , and ijµ  are the 

membership functions of îjh , we randomly generate 

ijkh  from the α-level sets of fuzzy variables îjh , 

1, 2,..., , 1, 2, ,  and 1, 2,...,i n j T k K= = =L  as 

1 2( , , , )k i k i k iTkh h h h= L  and 

1 1 2 2( ) ( ) ( ) , , ( )ijk i k i k t iTkh h h hµ µ µ µ= ∧ ∧ ∧L , 
where α is a sufficiently small positive number. 
Based on the definition the expected value of the fuzzy 
variable is:  

{ }
{ }

0

0

ˆ ˆˆ ˆ( , , ) ( , , )

ˆ ˆ( , , )

E Z h Q Cr Z h Q r dr

Cr Z h Q r dr

π π

π

+∞

−∞

  = ≥ 

− ≤

∫
∫

    

   (30) 
Then, provided FSN  is sufficiently large, for any 

number 0≥r , { }( , )Cr Z Q rξ ≥% can be estimated 

by: 

{ }

{ }
{ }

1,2,...,

1,2,...,

ˆ ˆ( , , )

ˆ ˆ( , , )
1
2 ˆ ˆ1 ( , , )

kk N

kk N

Cr Z h Q r

Max Z h Q r

Max Z h Q r

π

µ π

µ π

=

=

≥ =

 ≥ 
 
 + − < 
 

                    

(31) 

And for any number 0r < , { }ˆ ˆ( , , )Cr Z h Q rπ ≤  can 

be estimated by: 

{ }

{ }
{ }

1,2,...,

1,2,...,

ˆ ˆ( , , )

ˆ ˆ( , , )
1
2 ˆ ˆ1 ( , , )

kk N

kk N

Cr Z h Q r

Max Z h Q r

Max Z h Q r

π

µ π

µ π

=

=

≤ =

 ≤ + 
 
 − > 
 

                          

(32) 

5.4. The solution procedure  

In summary, the hybrid procedure of HS, GP and FS 
involves the following steps: 
  
Step0. Initialize both the HM of the HS algorithm and 
FS parameters. 
Step1. Set 0, 0ij jE G= =  

Step2. Randomly generate ijkh  and jkπ from α-level 

sets of fuzzy variables ˆ ˆ,ij jh π , and set                            

1 2 1 2( , , , ), ( , , , )k i k i k iTk k k k Tkh h h h π π π π= =L L  

Step3. Set    

1
1 2

2
1 2

,ij j j jk

j j j jk

a h h h

a π π π

= ∧ ∧ ∧

= ∧ ∧ ∧

L

L
. 

1 2
1 2 1 2,ij j j jk j j j jkb h h h b π π π= ∨ ∨ ∨ = ∨ ∨ ∨L L

 
Step4. Randomly generate 1 2,j jr r from Uniform 

1 1 2 2[ , ],[ , ]j j j ja b a b respectively. 

Step5. If { }1 1
ˆ0 ,j ij ij ij jr then E E Cr h r≥ ← + ≥ . 

Step6. If { }1 1
ˆ0 ,j ij ij ij jr then E E Cr h r< ← − ≤ . 

Step7. If 

{ }2 2ˆ0 ,j j j j jr thenG G Cr rπ≥ ← + ≥ . 

Step8. If 

{ }2 2ˆ0 , .j j j j jr thenG G Cr rπ< ← − ≤  
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Step9. Repeat the four to nine steps for FSN  times. 

Step10.
1 1

1 1ˆ 0 0 ij ij
ij ij ij ij

FS

b a
E h a b E

N
−  = ∨ + ∧ + ×  . 

Step11.
2 2

2 2ˆ 0 0 j j
j j j j

FS

b a
E a b G

N
π

−
  = ∨ + ∧ + × 

 
 
Step12. Make a new vector 'X . For each 
component ix′ : 

• With probability HMCR  pick the component 
from memory, 

• With probability 1 HMCR− pick a new 
random value in the allowed range. 
 

Step13. Pitch adjustment: For each component ix′ : 
• With probability PAR ,  a small change is 

made to ix′ . 
• With probability 1 PAR− do nothing. 

 
Step14. If ′X  is better than the worst jX  in the 
memory, then replace jX  by ′X . 
Step15. Go to step 2 until a maximum number of 
iterations has been reached. 

6. A numerical example 

 Consider a multi-product single period newsboy 
problem with fifteen products and deterministic and 
fuzzy general data given in Tables (1) and (2), 
respectively. The total available warehouse space is 
1750 square meters; the fixed cost for each shipment is 
500, 0.1j jK C=  in incremental discount. Moreover, 

1 2 1 21, 1, 10000W W p p= = = = 1, 10349,b = and 

2 1b = . Table (3) shows different values of the HS 
parameters used to obtain the solution. In this research 
all of the possible combinations of the HS parameters 
( 2C , 1C  and N ) are employed and using the 
max(max) criterion the best combination of the 
parameters has been selected. Table (4) shows the best 
results of the algorithm. The best combinations of the 
parameters of HS algorithm are 0.95,HMCR =  

10,HMS = 0.7PR = and 1000NI = . 
Furthermore, in fuzzy simulation we employed 

0.9α =  and 10.FSN =   
 
 
 

Table 1 
Deterministic general data  

 (j) 1 2 3 4 5 6 7 8 9 10 

jV  3 6 5 1 10 3 10 1 6 5 

jλ  62 89 102 66 19 91 123 52 83 95 

jf  4 5 3 1 5 6 2 4 4 3 

1 j
C 10 30 18 100 35 28 30 100 25 20 

2 j
C  8 27 15 90 30 25 25 90 21 18 

3 j
C  7 24 12 80 28 22 23 80 18 15 

4 j
C 5 21 10 75 20 20 18 60 16 13 

1 j
q  15 40 30 30 40 40 40 20 15 30 

2 j
q  30 70 90 45 70 70 70 40 35 90 

3 j
q 50 100 100 70 140 100 110 60 70 100 

 
Table 2 
 Fuzzy general data  
(j) 1 j

h  2 j
h  1 j

π  2 j
π  

1 [1,2,3] [2,3,4] [25,30,35] [30,35,40] 
2 [1,3,5] [3,4,5] [8,10,12] [13,15,17] 
3 [1,2,3] [2,3,4] [20,21,22] [24,26,28] 
4 [3,4,5] [4,5,6] [25,30,35] [30,35,40] 
5 [3,5,7] [4,6,8] [10,15,20] [15,20,25] 
6 [1,2,3] [2,3,4] [40,45,50] [50,52,54] 
7 [0.5,1,1.5] [1.5,2,2.5] [5,7,9] [10,12,14] 
8 [4,5,6] [5,6,7] [40,45,50] [45,50,55] 
9 [2,4,6] [3,5,7] [28,30,32] [40,45,50] 
10 [4,5,6] [5,6,7] [32,34,36] [35,40,45] 

 
Table 3 
The parameters of the HS algorithm 

 
 
 
 
 
 
 

Table 4 
 The best values of variables  

(j) 1 2 3 4 5 6 7 8 9 10 

jQ  93 72 85 49 60 78 80 57 54 95 

Z  3250 

SRZ  0.8726 

7. Conclusion and recommendations for future 
research 

In this paper, a multi-product single period newsboy 
problem with incremental discount policy in which the 
batch orders and warehouse space are constraints, was 
developed. Then, the meta-heuristic solution algorithm 
of FS + GP + HS has been proposed to solve the 

NI  PAR  HMCR  HMS  

100 0.30 0.93 10 

500 0.70 0.95 20 

1000 0.90 0.99 30 
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obtained non-linear integer model. At the end, a 
numerical example was given to demonstrate the 
application of the proposed method. Some of the future 
works of this research are: 

• The holding and shortage costs may be 
considered to occur during a period. 

• Emergency order can be deployed to the 
model to overcome the shortage. 
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