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Abstract 

Critical path method (CPM) is categorized as a popular tool for scheduling mega projects. In this paper, to enjoy the advantages of interval 

type-2 fuzzy sets (IT2FSs) and better address uncertainty for the activities’ attributes, a new analysis model is presented to determine the 

critical path under an IT2F-environment. Also, new efficient factors on specifying critical paths, such as time, cost, risk, safety, and quality 

(TCRSQ), are presented to achieve a more robust plan assisting in megaproject success. Moreover, an IT2F weighting approach is 

suggested for specifying the weights of TCRSQ factors. Furthermore, a new IT2F-approach employing the relative preference relation is 

expressed for identifying the importance of each expert. Consequently, a new model for critical path determination procedure by 

considering efficient factors is developed under the IT2FSs environment. Finally, to demonstrate the suggested model's capability and the 

calculation process, an application from the previous research is solved. sm.mousavi@shahed.ac.ir 
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1. Introduction 

The critical path method (CPM) has been applied to 

manifold management problems for mega projects’ 

planning as a useful tool (Chen and Hsueh, 2008). The 

longest path of projects from the point of time view is 

called the critical path. Each activity has some 

predecessor activities, and it cannot be started unless the 

predecessor activities are done. One-day delay on each 

activity of the critical path of megaprojects delays the 

entire project. CPM helps the managers in finding the 

crucial activities of megaprojects. To reduce the 

completion time of mega projects, it is necessary to 

centralized resources on the critical path's activities. 

Notably, CPM is assumed that the time of activities is 

deterministic and exact (Mehlawat and Gupta, 2016); in 

real-world situations, obtaining exact time and estimating 

resource consumptions for each activity is difficult. 

Further, in the planning phase of mega projects, 

considering the precise time of activities is challenging. 

For solving this problem, the program evaluation and 

review technique (PERT) was extended to solve the 

critical path determination problems with incomplete and 

ambiguous data (Chen, 2007). The PERT that is proposed 

by Hillier and Liebermann (2001) and Krajewski and 

Ritzman (2005) and Monte Carlo simulation by Kurihara 

and Nishiuchi (2002) can be applied for critical path 

determination. The PERT employs various distributions 

to approximate the duration of activities (Mon et al., 

1995). These various distributions are obtained based on 

the observation of the past performance of activities.  

In PERT, three-time is estimated for each activity: a 

most possible (or most probable) time, a pessimistic time, 

and an optimistic time. These estimated three times are 

gathered from experts (Cristobal, 2012). While there are 

activities without past performance observation, then 

PERT is not helpful. For estimating the distributions of 

activities, the activities and their relationships should be 

recognized according to the work breakdown structure 

(WBS). Afterward, the distributions of times for the 

activities are estimated based on historical data. However, 

in many real situations, historical data are unavailable 

(Amiri et al., 2010; Foroozesh et al., 2017,2018,2019; 

Gitinavard et al., 2017a,b). Moreover, experts' subjective 

opinions are different from each other, which causes such 

probabilistic distributions fairly invalid (Ock and Han, 

2010). Besides, some researchers have criticized PERT's 
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method for optimistic results because of underestimating 

the pessimistic time (Nasir et al., 2003). In such 

situations, fuzzy sets theory is introduced by Zadeh 

(1965) because it can tackle ambiguous input data, 

including feelings employing subjective opinions of 

experts, and does not need subsequent frequency 

distributions. Numerous studies have applied fuzzy sets 

theory for engineering and management cases (e.g., 

Vahdani et al., 2010,2011,2012,2014; Mohagheghi et al., 

2015,2017; Mousavi et al., 2013,2014,2019; Mousavi & 

Vahdani, 2016).  

 For finding fuzzy critical paths, many methods were 

proposed over the past years. Kaur and Kumar (2014) 

have expressed a linear programming approach to 

determine the critical path with JMD representation of LR 

flat fuzzy numbers. Madhuri et al. (2012) introduced a 

method to specify the critical path utilizing L-L fuzzy 

numbers. Liang et al. (2004) expressed the fuzzy multi-

objective model to obtain a critical project management 

path. Zareei et al. (2011) presented a fuzzy critical path 

selection method by assessing events. Chanas and 

Zielinski (2001) introduced a critical path method with 

considering activity times as fuzzy numbers. Zammori et 

al. (2009) expressed a new fuzzy MCDM approach for 

evaluating the critical path by considering various factors. 

Cristobal (2012) suggested an MCDM method (i.e., 

PROMETHEE) to determine the critical path under 

efficient factors. Amiri and Golozari (2011) chose the 

fuzzy critical path in networks employing time, cost, 

quality, and risk factors by the TOPSIS method. 

Mehlawat and Gupta (2015) introduced a fuzzy group 

MCDM method to specify the critical path. In the recent 

essential research of path area, conventional fuzzy sets 

have been used (Dorfeshan et al., 2019), whereas type-2 

fuzzy set (T2FS) is a more powerful tool than classic 

fuzzy sets on reflecting uncertainty of real-world mega 

projects. 

     The meaning of T2FS was first introduced by (Zadeh 

1975). The membership functions are two-dimensional in 

type-1 fuzzy sets, whereas in type- 2 fuzzy sets, the 

membership functions are three-dimensional. By 

providing extra freedom degrees, this new third-

dimension of T2FSs enables it to directly model 

uncertainties. (Zhang and Zhang, 2013). In fact, compared 

to memberships of type-1 fuzzy sets which are crisp 

numbers in a type-2 fuzzy set, the memberships are type 1 

fuzzy sets. Nevertheless, there are more uncertainty 

values in T2FSs than in type-1 fuzzy sets. In the general 

T2FSs, calculation complexity is very high; that is why 

interval T2FSs were presented by Mendel et al. (2006), 

which are the most broadly used type- 2 fuzzy sets 

applied to many other practical and real-world fields. 

(e.g., Liang and Mendel, 2000; Mendel and Wu, 2006; 

Castro et al., 2009; Jammeh et al., 2009). 

     Regarding the IT2FSs, Shukla and Muhuri (2019) 

utilized the IT2FSs for uncertainty considerations to 

select the travel time. Dorfeshan and Mousavi (2020) 

explained the relative preference relation on the IT2F-

conditions for aircraft maintenance planning problems. 

Kiracı and Akan (2020) used the TOPSIS and AHP 

benefits simultaneously based on the IT2FSs for aircraft 

evaluation problems. Yılmaz and Kabak (2020) 

prioritized the distribution centers according to the 

IT2FSs for humanitarian logistics. Liu and Gao (2020) 

selected the best supplier based on the green paradigm on 

the IT2F-conditions using the Choquet Bonferroni means. 

Dorfeshan et al. (2021) enhanced the ARAS method for 

engineering project problems with IT2F situations. 

     To conclude from the above, given the advantages of 

T2FSs, applying them in a mega project environment is a 

practical model. Also, efficient factors like time, cost, 

risk, quality, and safety (TCRSQ) will be assumed as 

IT2FSs to specify the critical path in a network of 

projects. However, a new analysis model is presented for 

the critical paths regarding a relative preference relation 

(RPR) to determine each decision maker's weight and a 

new approach for calculating each efficient factor's 

importance. Finally, the critical path is obtained under 

TCRSQ criteria for planning and scheduling the mega 

projects through IT2F-environment. The following is 

presented to demonstrate the innovations of this research: 

 IT2FSs are used in critical path analysis of mega 

projects to better address the uncertainty. 

 A new method to determine each decision maker's 

weight is introduced by using RPR developed by 

IT2FSs. 

 A new extension of the analysis model under an 

IT2F-environment is presented for the critical path 

analysis.  

 A new development of the entropy method under 

the IT2F-environment is expressed to specify the 

weight of several important factors, such as 

TCRSQ. 

     The article continues as follows. Section 2 presents the 

fundamental knowledge and definitions of IT2FSs. 

Section 3 introduces the proposed model for critical path 

analysis. In Section 4, the application of the introduced 

model is presented. Lastly, Section 5 concludes the paper.  

2. Type-2 Fuzzy Sets 

The theory of type-1 fuzzy sets was proposed by Zadeh 

(1965). In type-1 fuzzy sets, the membership value is a 

crisp number in the range of 0 to 1. But, T2FSs are the 

extension of type-1, in which membership values are 



Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 145-160 

 

147 

 

type-1 fuzzy sets. In the general T2FSs, calculation 

complexity is very high; that is why interval T2FSs 

are presented by Mendel et al. (2006). Recently, the 

T2FSs have been applied to the area of project 

management with interesting results (e.g., Moradi et al., 

2018; Mohagheghi & Mousavi, 2019; Haghighi et al., 

2019;  Eshghi et al., 2019).  The required fundamental 

knowledge of interval T2FSs is presented below. 

   ( , ) /( , )


  
 

  
p

Qp P L
Q p p  (1) 

where  0,1
p

L and  displays union on all 

permissible p and  . Q as a particular type of a T2FS 

that called interval T2FS is defined as follows:  

 

   1/( , )



 

  
pp P L

Q p  (2) 

where   0,1
p

L . 

In a T2FS, the upper and lower membership functions 

are type-1 membership functions (Mendel et al., 2006).  

A trapezoidal IT2FS is demonstrated as 

1 2 3 4 1 2
( , ) (( , , , ; ( ), ( )), 

U L u u u u U U

i i i i i i i i i
A A A a a a a H A H A

1 2 3 4 1 2
( , , , ; ( ), ( )))
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i i i i i i
a a a a H A H A  where 

L

iA and 

U

iA  are in fact type-1 fuzzy sets. 

1 2 3 4 1 2 3 4
, , , , , ,

u u u u L L L L

i i i i i i i i
a a a a a a a and a  are the reference 

points of the interval T2FS , ( );
i i

A H A displays the 

membership amount of the ( 1)

Ua  in the upper 

trapezoidal membership grade ,1 2, ( )


 
U L

i i
A H A  

indicates the membership amount of the ( 1)

La   in the 

lower trapezoidal membership grade

     
1 2 1

, ( ) 0, 1 , ( ) 0, 1 , ( ) 0, 1 ,  
L U U L

i i i i
A H A H A H A   

 
2
( ) 0, 1 , 1 2, 1    

L

i
H A i n  (Chen and Lee, 

2010). The membership function of a trapezoidal IT2FS is 

depicted in Fig. 1. 

 

 
Fig.  1. A trapezoidal interval T2FS membership function (Chen and 

Lee, 2010) 

     

The following are the basic algebraic operations of 

trapezoidal IT2FSs (Chen and Lee, 2010): 
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The subtraction operation: 
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The multiplication operation: 
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The multiplication with a scalar r ≥ 0 (Sari and 

Kahraman, 2015): 

1 1 1 11 12 13

14 1 1 2 1 11 12

13 14 1 1 2 1

( , ) (( , , ,

; ( ), ( )), ( , ,

, ; ( ), ( )))

 
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r q Q Q r q r q
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The division with a scalar r >0 (Sari and Kahraman, 

2015): 

1
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Inverse of a trapezoidal IT2FN (Sari and Kahraman, 

2015): 
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The division operation (Sari and Kahraman, 2015): 
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The distance among trapezoidal IT2FNs is calculated 

by using the following: 
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3. Proposed Analysis Model for Critical Paths in Mega 

Projects 

In this section, to benefit the advantages of IT2FSs, a new 

analysis model is presented to specify the critical path by 

including important factors of TCRSQ for megaprojects 

under an IT2F-environment. In fact, the DM’s opinions 

on ratings of efficient factors for each project activity are 

gathered; then, qualitative factors are transformed into 

equivalent IT2F numbers. Also, a new method to 

determine the weight of experts is developed utilizing an 

RPR on IT2F-environment and is added to a new method 

for aggregating DMs’ opinions. However, the importance 

of efficient factors on specifying the critical path is 

obtained by the IT2F-entropy method. Furthermore, the 

proposed framework for the critical path analysis problem 

is illustrated in Figure 2. 

     Step 1. Gather DMs’ opinions on grading TCRSQ 

factors and form initial decision matrixes by considering 

each project network path as alternatives. Each path is 

called CPMi ,where i= 1, 2,…,m. KD show decision K
th

 

matrix and K denote the number of DM that K=1,2,…, L. 

      Step 2. The normalized decision matrix is calculated 

by using the following: 

If criterion j denotes benefit, the normalization 

operation would be as follows (Liao, 2015): 
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If the j property belongs to cost criteria, then this 

normalization operation should be used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2.  Proposed framework to the critical path analysis 
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     Step 3. A new approach is presented according to the 

ratio of distances between the ( , )nearN N and ( , )farN N

which is adapted based on Zamri and Abdullah (2013) to 

determine the weight of TCRSQ criteria. 
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     Step 3-2. The entropy value is calculated as follows: 
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       is a constant set as 
1
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     Step 3-3. The degree of divergence is computed as 

follows: 
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     Step 3-4. The weight of several important factors, 

including TCRSQ, are calculated by using the following: 
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     Step 4. The weighted normalized decision matrix is 

computed to specify the critical path as follows: 
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     Step 5. In this step, by using the extension of RPR on 

the IT2F-environment, each DM's weight is computed. 

     Step 5-1. The IT2F average of group decision matrixes 

(S*) and IT2F negative ideal solution (S
-
) matrixes are 

constructed based on Eqs. (27) and (28). 
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     Step 5-2. Calculating 
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     Where  
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     Step 5-3. By using the following, the relative 

closeness of each DM is determined: 
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     Step 5-4. The final weight (FW) of each DM is 

specified as follows: 
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     Step 6. Aggregate DM’s opinions to determine the 

critical path by using the following: 
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     Step 7. Positive ideal and negative ideal solutions are 

determined as follows: 
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     Where  
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1,2,...,

1,2,..., cos

n benefit criteria

n t criteria





 

 
 

     Step 8. By using the relations (38) and (39), the 

distance from positive ideal solution (D
+
) and distance 

from negative ideal solution (D
-
) are computed: 
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     and,  
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     Step 9. Calculating the final ranking (F) and 

determining the critical path by using the following: 

   

,max ,max
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     Rank the values of Fi in decreasing order of Fi. 

4. Application  

 In this part, to better demonstrate the suggested analysis 

model's capability and applicability, an application 

example of the literature (Amiri and Golozari, 2011) is 

adopted and solved. To improve the planning phase of 

project and reach a reliable plan, a new model is 

presented for determining the critical path with taking the 

efficient criteria into account, e.g., TCRSQ. In Figure 3, 

the significant activity of the project is depicted. Also, to 

assess qualitative factors such as risk, quality, and safety, 

they are used as linguistic variables, and their IT2F-

equivalent are shown in Table 1. 
 

0

1 64

2 95

3 7 8

 
Fig.  3. Project network (Amiri and Golozari, 2011) 

 

Table 1 

Equivalent interval T2FSs of linguistic variables (Chen and Lee, 2010). 

Interval T2FSs Linguistic variables 

((0.9,1,1,1;1,1), (0.95,1,1,1;0.9,0.9)) Very High (VH) 

((0.7,0.9,0.9,1;1,1), (0.8,0.9,0.9,0.95;0.9,0.9)) High (H) 

((0.5,0.7,0.7,0.9;1,1), (0.6,0.7,0.7,0.8;0.9,0.9)) Medium-High (MH) 

((0.3,0.5,0.5,0.7;1,1), (0.4,0.5,0.5,0.6;0.9,0.9)) Medium (M) 

((0.1,0.3,0.3,0.5;1,1), (0.2,0.3,0.3,0.4;0.9,0.9)) Medium Low (ML) 

((0,0.1,0.1,0.3;1,1), (0.05,0.1,0.1,0.2;0.9,0.9)) Low (L) 

((0,0,0,0.1;1,1), (0,0,0,0.05;0.9,0.9)) Very Low (VL) 

    

Step 1. Here, a team of three experts is formed as DMs, 

and their views on ratings of TCRSQ criteria for each 

activity are gathered. This information is depicted in 

Tables 2-4. 

      Table 2 

      IT2F time of activities (Days) 
ACT. Experts  

 D1 D2 D3 

1-0 (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) (1,3,6,8;1,1),(2,4,5,7;0.9,0.9) (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) 

2-0 (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) 

3-0 (7,9,12,14;1,1),(8,10,11,13,0.9,0.9) (5,8,11,13;1,1),(6,9,10,12;0.9,0.9) (6,10,14,18;1,1),(7,11,13,17,0.9,0.9) 

4-1 (4,7,10,13;1,1),(5,8,9,12;0.9,0.9) (3,5,8,10;1,1),(4,6,7,9;0.9,0.9) (6,8,11,13;1,1),(7,9,10,12;0.9,0.9) 

4-2 (9,12,15,18;1,1),(10,13,14,17;0.9,0.9) (10,14,18,22;1,1),(11,15,17,21;0.9,0.9) (10,12,15,17;1,1),(11,13,14,16;.9,.9) 

5-3 (7,9,12,14;1,1),(8,10,11,13,.9,.9) (8,10,13,15;1,1),(9,11,12,14;0.9,0.9) (6,9,12,15;1,1),(7,10,11,14;0.9,0.9) 

8-7 (14,17,20,23;1,1),(15,18,19,22;0.9,0.9) (12,16,20,24;1,1),(13,17,19,23;0.9,0.9) (13,15,18,20;1,1),(14,16,17,19;0.9,0.9) 

5-2 (10,13,16,19;1,1),(11,14,15,18;0.9,0.9) (11,14,17,20;1,1),(12,15,16,19;0.9,0.9) (12,14,17,20;1,1),(13,15,16,19,0.9,0.9) 

6-4 (9,14,19,24;1,1),(10,15,18,23;0.9,0.9) (11,14,17,20;1,1),(12,15,16,19;0.9,0.9) (10,14,18,22;1,1),(11,15,17,21;0.9,0.9) 

7-3 (7,9,12,14;1,1),(8,10,11,13;0.9,0.9) (5,7,10,12;1,1),(6,8,9,11,0.9,0.9) (7,9,12,14;1,1),(8,10,11,13;0.9,0.9) 

9-5 (6,11,16,21;1,1),(7,12,15,20;0.9,0.9) (8,10,13,16;1,1),(9,11,12,15;0.9,0.9) (7,10,13,16;1,1),(8,11,12,15,0.9,0.9) 

9-6 (13,17,21,25;1,1),(14,18,20,24;0.9,0.9) (15,18,21,24;1,1),(16,19,20,23;0.9,0.9) (16,18,21,23;1,1),(17,19,20,22;0.9,0.9) 

9-8 (14,17,20,23;1,1),(15,18,19,22;0.9,0.9) (15,17,20,22;1,1),(16,18,19,21;0.9,0.9) (16,18,21,23;1,1),(17,19,20,22;0.9,0.9) 
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                   Table 3 

                    IT2F cost of activities (100 $ US) 

ACT. Experts  

 D1 D2 D3 

1-0 
(12,17,22,27;1,1), 

(13,18,20,23;0.9,0.9) 

(14,19,24,29;1,1), 

(15,20,23,28;0.9,0.9) 

(14,19,24,29;1,1), 

(15,20,23,28;0.9,0.9) 

2-0 
(4,9,14,19;1,1), 

(5,10,13,18;.9,.9) 

(4.5,9.5,14.5,19.5;1,1), 

(5.5,10.5,13.518.5;0.9,0.9) 

(4,9,14,19,1), 

(5,10,13,18;0.9,0.9) 

3-0 
(2.5,7.5,12.5,17.5;1,1), 

(3.5,8.5,10.5,16.5,0.9,0.9) 

(2.5,7.5,12.5,17.5;1,1), 

(3.5,8.5,11.5,16.5;0.9,0.9) 

(3,7,11,15;1,1), 

(4,8,10,14,0.9,0.9) 

4-1 
(2,7,15,20;1,1), 

(3,7,12,18;0.9,0.9) 

(2,7,12,17;1,1), 

(3,8,11,16;0.9,0.9) 

(3,8,13,18;1,1), 

(4,9,12,17;0.9,0.9) 

4-2 
(13,20,27,34;1,1), 

(14,22,26,32;0.9,0.9) 

(14,20,26,32;1,1), 

(15,21,25,31;0.9,0.9) 

(13,19,25,31;1,1), 

(14,20,24,30;0.9,0.9) 

5-3 
(60,65,70,75;1,1), 

(62,66,68,73,0.9,0.9) 

(55,60,65,70;1,1), 

(56,61,64,69;0.9,0.9) 

(50,60,70,80;1,1), 

(51,61,69,79;0.9,0.9) 

8-7 
(16,20,24,28;1,1), 

(17,21,23,26;0.9,0.9) 
(14,20,26,32;1,1), 

(15,21,25,31;0.9,0.9) 
(12,20,28,36;1,1), 

(13,21,27,35;0.9,0.9) 

5-2 
(17,22,27,32;1,1), 

(18,23,25,30;0.9,0.9) 
(15,20,25,30;1,1), 

(16,21,24,29;0.9,0.9) 
(14,20,26,32;1,1), 

(15,21,25,31,0.9,0.9) 

6-4 
(7.5,12.5,17.5,22.5;1,1), 

(8.5,13.5,15.5,20;0.9,0.9) 

(7.5,12.5,17.5,22.5;1,1), 

(8.5,13.5,16.5,21.5;0.9,0.9) 

(7,10,13,16;1,1), 

(8,11,12,15;0.9,0.9) 

7-3 
(9,15,21,27;1,1), 

(10,17,20,25;0.9,0.9) 

(10,15,20,25;1,1), 

(12,16,19,24,0.9,0.9) 

(11,14,17,20;1,1), 

(12,15,16,19;0.9,0.9) 

9-5 
(14,20,26,32;1,1), 

(15,21,25,31;0.9,0.9) 

(15.5,20.5,25.5,30.5;1,1), 

(16.5,21.5,24.5,29.5;0.9,0.9) 

(15,20,25,30;1,1), 

(16,21,24,29,0.9,0.9) 

9-6 
(35,40,45,50;1,1), 

(36,41,44,49;0.9,0.9) 

(35,40,45,50;1,1), 

(36,42,44,49;0.9,0.9) 

(30,40,50,60;1,1), 

(31,41,49,59;0.9,0.9) 

9-8 
(24,30,36,42;1,1), 

(25,32,35,40;0.9,0.9) 

(24,30,36,42;1,1), 

(26,32,35,40;0.9,0.9) 

(24,30,36,42;1,1), 

(25,31,35,41;.9,.9) 

 

                       Table 4 

                       Linguistic variable for ratings of activities based on the risk, quality, and safety factors 

Risk Safety Quality ACT. 

Dm1 Dm2 Dm3 Dm1 Dm2 Dm3 Dm1 Dm2 Dm3  

L ML L M ML M ML ML L 1-0 

ML ML M ML M M ML M M 2-0 

MH M H L L M MH M MH 3-0 

M M ML L MH MH ML M ML 4-1 

MH M MH M MH M MH H MH 4-2 

M ML M VH M ML M MH M 5-3 

ML ML ML MH M MH ML MH MH 8-7 

M ML M ML M MH M ML M 5-2 

M MH MH ML M ML M ML MH 6-4 

M M MH ML MH M M MH MH 7-3 

MH MH H M MH M MH H H 9-5 

H MH H H ML M H MH H 9-6 

MH MH MH H M M H MH MH 9-8 
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Step 2. Normalizing decision matrixes by using Eqs. (12) 

and (13). 

Step 3. Calculating IT2F entropy method based on the 

ratio of distances between the ( , )nearN N and ( , )farN N  

by using these substeps: 

Step 3-1. Computing the value of 
k

jT employing Eqs. 

(14) and (15). 

Step 3-2. Calculating the entropy value by using Eq. (16). 

Step 3-3. Computing the degree of divergence utilizing 

Eq. (17). 

Step 3-4. Obtaining weights of TCRSQ by using Eq. (18) 

for each decision matrix is shown in Table 5. 

 

Table 5 

Weight of important factors  

Weight 
1D  2D  3D  

Time 0.177 0.28 0.175 

Cost 0.198 0.146 0.204 

Risk 0.195 0.208 0.186 

Quality 0.214 0.163 0.178 

safety 0.214 0.203 0.257 

 

Step 4. Computing normalized decision matrix multiplied 

by weight via of Eq. (19). 

Step 5. Calculating each DM’s weight through the 

extension of RPR under IT2F-environment. 

Step 5-1. Constructing the IT2F average of group 

decision matrixes (S
*
) and negative ideal solution (S) 

matrixes under IT2F through Eqs. (20-22). 

Step 5-2. Calculating *

*( , )k

ij ijp
s v and * ( , )k

ij ijp
v s 

 

using Eqs. (23-32). 

Step 5-3. Determining the relative closeness for DMs by 

using Eq. (33) that is demonstrated in Table 6. 

 

Table 6 

Relative closeness 

*

*

1 1

( , )
m n

p p

ij ijP
i j

s v
 

  *

1 1

( , )
m n

p p

ij ijP
i j

v s 

 

  
p  

12.26 13.63 0.526 

13.22 12.66 0.489 

12.37 13.47 0.521 

 

     

Step 5-4. Obtaining the final weight (FW) for DMs 

employing Eq. (34), the results are shown in Table 7. 

Step 6. Aggregating DM’s views via Eq. (35).  

Step 7. Determining the positive ideal and negative ideal 

solutions via Eq. (36) and (37). 

    

Table 7 

 DM’s final weights 

Decision-makers Final weights 

DM1 0.3425 

DM2 0.3182 

DM3 0.3392 

 

 

Step 8. Computing distance from positive and negative 

ideal solutions through Eqs. (38) and (39) as indicated in 

Table 8. 

Step 9. Calculating the final ranking (F) using Eq. (40), 

which is depicted in Table 8. 

 

Table 8 

Final ranking 

Path D+ D- Final 

results 

Final 

ranking 

0-1-4-6-9 0.4702 0.6636 1.5719 2 

0-2-5-9 0.7339 0.3892 1.5462 5 

0-2-4-6-9 0.4319 0.7126 1.5887 1 

0-3-5-9 0.4747 0.6509 1.5603 4 

0-3-7-8-9 0.5694 0.5625 1.5653 3 

 

 

Sensitivity analysis: In this part, the evaluation is done 

based on efficient factors; that is why the critical path is 

calculated utilizing time factor; then it is computed based 

on time and cost factors and so on. The results of 

sensitivity analysis have been presented in Tables 9-1 and 

9-2. Also, the graphical results have been illustrated in 

Figure 4. As given in Tables 9-1 and 9-2 and Figure 4, all 

experiments have been changed. The critical path depends 

on each factor; in other words, each path's criticality is 

altered in all experiments by changing efficient factors. 

When time factor is considered to determine the critical 

path except for the critical path (path 3), all of other path 

is altered as presented in Table 9.  

 

Other factors that have been considered in this paper are 

essential as much as time or more important time. 
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               Table 9 

               Sensitivity analysis  

Paths Time 
Time, 

cost 

Time, 

risk 

Time, 

quality 

Time, 

safety 

Time, cost, 

risk 

Time, cost, 

quality 

Time, cost, 

safety 

0-1-4-6-9 4 3 3 2 4 3 3 3 

0-2-5-9 3 5 5 4 3 5 4 5 

0-2-4-6-9 1 1 1 1 1 1 1 1 

0-3-5-9 5 4 4 5 5 4 5 4 

0-3-7-8-9 2 2 2 3 2 2 2 2 

Paths 

Time, 

risk, 

quality 

Time, risk, 

safety 

Time, 

quality, 

safety 

Time, 

cost, risk, 

quality 

Time, 

cost, 

risk, 

safety 

Time, cost, 

quality, safety 

Time, risk, 

quality, safety 
 

0-1-4-6-9 5 3 2 2 3 4 3  

0-2-5-9 2 4 1 5 5 3 4  

0-2-4-6-9 4 1 3 1 1 1 1  

0-3-5-9 1 5 4 4 4 5 5  

0-3-7-8-9 3 2 5 3 2 2 2  

 

 
Fig. 4. Sensitivity analysis 
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5. Conclusion 

 In this paper, a new analysis model under an IT2F-

environment has been developed in order to better deal 

with the uncertainty of practical mega projects. As a 

matter of fact, IT2FSs are more beneficial than type-1 

fuzzy sets. This is because the membership grade of type-

1 fuzzy sets belongs to [0,1], whereas the membership 

grade of T2FS is a type-1 fuzzy set. Time and cost factors 

have been presented as quantitative criteria, whereas risk, 

quality, and safety are introduced as qualitative criteria 

expressed by linguistic variables and their IT2F 

equivalents. A new method has also been developed to 

determine each DM’s weight by an extension of RPR 

under an IT2F-environment and used for aggregating 

DMs’ judgments. Moreover, a new IT2F-entropy method 

for assessing the importance of efficient factors such as 

TCRSQ has been introduced using the concept of ratio 

F,Ffar, and F,Fnear. A practical example adopted from the 

literature has been resolved to demonstrate better the 

proposed model's implementation process and its 

applicability. This proposed analysis model has provided 

experts and planners with a useful way to properly 

determine the critical path in real-world mega projects. 

For future study, the introduced method can be applied to 

other MCDM fields. Besides, other weighting methods, 

such as eigenvector and cross-entropy, can be used in the 

model.  
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