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Abstract 

As related to the center location problem, transfer point location problems (TPLP) are gaining attention as a reliable prediction model. For 

this, one normally assumes no transformation directly from a demand point to the service facility location, which leads to the transfer point 

being constantly engaged. We propose a method for finding the best location for the transfer point so that the maximum expected weighted 

distance to all demand points through the transfer point is minimized. A mathematical solution is employed for demand points follow 

normal distribution, with some points of demands being in regions. Then, this model was validated using real data under real conditions. 

We used the Maple software to solve the optimization problem, as well as MATLAB software to solve this model numerically.   

Keywords: Transfer point location problem; Distribution ; Normal distribution. 

1. Introduction 

Locations are highlighted in order to determine the 

location of a device for achieving the desired objectives. 

It is done to identify important criteria, such as proximity 

to main roads, consumption market, supplies of raw 

materials, availability of essential human requirements, 

conditions environment, developmental possibilities, 

regulations and state laws, and so on. The problem of 

locating and deploying facilities is one of the research 

issues that should be considered in the early stages of 

designing industrial systems.  

Facility design defines how the constants of activity 

would provide the best support for its purposes. Issues 

around facility planning are divided into four major 

categories: location, routing, allocation, and design. By 

combining these components, location-routing, and 

location-allocation issues are achieved. Also, there are 

two attitudes to classifying location problems, traditional 

attitude and a new attitude.  

In the realm of the transfer point location problem 

(TPLP), the main objective is to establish a new facility 

which serves n demand points. This allows the applicants 

to be conveyed to the transfer point at regular speed and 

then from there they can be taken to the facility at a 

greater speed. Transfer incur a cost that nevertheless may 

be compensated by savings both in costs of the 

installation and distribution (Corberána et al., 2020). Its 

purpose is to find the best location for the transfer point in 

order to minimize the sum of distance to all the demand 

points through the transfer point. TPLP is typically used 

in hospitals, which involve the transference of patients 

through a helicopter pad. Patients are transferred by 

ambulance to the transfer point (the 'helicopter pad') at 

regular speed. Then they are flown to the hospital at a 

greater speed from there. These problems include some 

variants: in the multiple locations of transfer points 

(MLTP), the location of the facility is known, and we 

need to cluster the points into subsets, each served via a 

single transfer point. 

In this work, the location of the facility is assumed to be 

known and the objective is to make it accessible with a 

minimum time and cost. Demand points are locations 

which are taken for granted as some nodes. These points 

are also assumed to be known here. Hubs or transfer 

points are the nodes which combine the service with the 

demand points. Campbell et al (2002) defined them as 

"the facilities that are servicing many origin-destination 

pairs as transformation and trade off nodes, and are used 

in traffic systems and telecommunications". Unit traveling 

cost from the transfer point to the facility is reduced by a 

factor of 0<?<1 (Cambell et al., 2002). 

In this paper, we consider a case study, where in demand 

points are weighted and their coordinates assumed to have 

a normal distribution. This scheme is employed to make 

the model more applicable in real world situations. The 

problem is to find the best location for the transfer points 

so that the maximum expected weighted distance to all 

demand points through the transfer point is minimized.  

The main contribution is the consideration made on the 

location of the facility and the set of demand points, 

namely demand points being weighted based on a normal 

distribution.  

As probabilistic parameters of model may have different 

type of probability distribution functions, but for 

simplicity (Yousefi et al., 2018), normal distribution is 

employed for all demand points in this work. Here, two 
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models are discussed; the one in which all the points are 

considered in one area and the second one which includes 

several areas. The research is to find the best location for 

the transfer point so that the maximum expected weighted 

distance to all demand points through the transfer point is 

minimized. 

2. Literature Review 

The hub location problem is employed for many real 

applications, including delivery, airline and 

telecommunication systems and so on (Avakh and Rajabi, 

2018). Different kinds of location problems related to 

centre location problem. They can be categorized as 

follows:  Hub and Spoke Location Model (HSLM), 

Location-Routing Problem (LRP) and TPLP. 

2.1. The hub and spoke model  

The hub and spoke model, first suggested for airline 

travel, seeks to select a set of hubs so that travellers will 

use one or more hubs as stops on the way to their 

destination (Toh & Higgins, 1985). The hub-and-spoke 

design problem is customarily called the hub location 

problem (HLP) (Campbell and O’Kelly 2012; Roni et al., 

2017). O’Kelly (1986) presented the first recognized 

mathematical formulation for a HLP by studying airline 

passenger networks. HLP is a device that assists with 

settling on vital choices. An HLP includes a set of nodes: 

origins, destinations, and hub candidates. The HLP is 

concerned with locating hub facilities and allocating 

demand nodes to hubs in order to route the traffic between 

origin–destination pairs (O’Kelly, 1986; Osorio-Mora et 

al., 2020). Hub location modelling has many applications 

in airline travel and the transportation industry. Barid 

(2005) worked on the application of hub location 

modelling in transportation industry. Contreras et al. 

(2011) studied on stochastic uncapacitated hub location 

problems on the uncertainty in relationship between 

demand and expenses. The stochastic problem with 

unknown or dependent demands on transportation 

expenses is equal to indefinite expected value problem 

(Contreras et al., 2011). Remote facilities and fixed ones 

are the parking places, which are used to reach public 

transportations in order to get the final destination. Later 

on, Aros-Vera et al. (2013) developed a mixed linear 

formulation to determine the location of a number of fixed 

and remote facilities so that the best efficiency is 

achieved.  

2.2. Location routing problem 

Travelling to the demand point is not a traffic travelling 

but a rotator. These models are used in distribution 

systems. As an example, if in a LRP a multilayer diagram 

encountered in the distribution system, its analysis 

allocates the first layer to the factory, the second layer to 

stores, distribution centers, as well as demand points, and 

the third one to the final customers.  

In most cases, the location of primary facilities and 

demand points are known. The numbers and location of 

secondary facilities should be determined as hubs in 

distribution systems. Albareda et al. (2007) introduced 

stochastic location-routing problems in two parts. In the 

first part, locating factory machinery is discussed and in 

the second, they used active sources to regulate routes in 

real locating.  

One of the most important strategic decisions in supply is 

the dependence of supply systems on facility locations. 

Structure and management organization are other 

important decision points. Yong (2008) studied the 

composition of these two problems. He found a solution 

to minimize expenses through genetic algorithm (Yong, 

2008). Li et al. (2009) studied LRP in three level 

distribution network. They located two level’s facilities 

simultaneously and proposed related mathematical 

formulation. Yang and Zi-Xia (2009) proposed a two-step 

method based on point’s optimization for LRP problems. 

Mingang et al. (2009) split the LRP problem into two sub-

problems: locating critical facilities problem and routing 

critical source problem. They used a two-step heuristic 

algorithm to solve the problem in order to minimize total 

expenses. In 2010, Jafari and Golzari (2010) proposed a 

solution to locate store in distribution network for 

allocating customers and routing decision. Wang et al. 

(2018) provided a low-carbon and environmental 

protection point of view, based on the characteristics of 

perishable products, and combines with the overall 

optimization idea of cold chain logistics distribution 

network. Zhang et al (2018) presented an exploration of 

the sustainable multi-depot emergency facilities location-

routing problem with uncertain information. Zhang et al 

(2019) studied a novel location-routing problem in 

electric vehicle transportation with stochastic demands.  

2-3 - Transfer Point Location Problem 

Berman et al. (2004b) introduced the hub locating 

problems. Also they proposed a heuristic algorithm to 

optimize the hub locating problem in the network. In 

2008, a heuristic method was employed for solving MLTP 

but it was not an accurate technique given the problems 

with different sizes (Berman et al., 2008). Sasaki et al. 

(2008) showed that locating MLTPs problems can be 

formulated as p-median. In addition, they presented a new 

formulation of facility hub locating in the network 

problems. 

In addition, Sylvester proposed single centre problems for 

the first time in 1975 (Sylvester, 1957). Wesolowsky 

(1977) presented probable weights in single dimension 

locating problems. Berman et al. (2003) considered 

weighted minimax single center locating problems in 

which weights are unknown but independent from 

uniform distributions. Averbakh and Bereg (2005) 

considered weighted center locating problems with 

indefinite weights and customers coordinate. Foul (2006) 

considered a center locating problem with demand points 

in a rectangular distribution.  

Berman et al. (2004c) studied hub locating problem to 

solve a minimax optimization in situations, where no 

weights were devoted to demand points, and with known 

location. Shiode and Derezner (2003) considered a tree 

network with n demand points. They assumed that 



Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 109-119 

 

111 

 

demand points are weighted and these weights are 

stochastic in arrival. Furthermore, they assumed that each 

customer utilizes the nearest facility to him/her; and 

finally introduced competitive facility location problem 

with stochastic weights (Shiode & Derezner, 2003).  

Masson et al. (2014) investigated the dial-a-ride problem 

with transfers (DARPT). They extended the large 

neighbourhood search technique to solve the problem. 

They also studied the quality of servicing the applicants 

through constrains on the maximum ride time. 

Hoseseinijou and Bashiri (2012) extended a model in 

which demand points are weighted and the coordinates 

have rectangular bivarient distribution. They developed a 

conceptual view and some stochastic models. Their 

models found the best location for transfer point by 

minimizing the maximum expected weighted distance to 

all demand points through the transfer points. Two models 

were considered based on uniform distribution 

assumptions (Hosseinijou & Bashiri, 2012). Berman et al. 

(2007) introduced point location problem.  

A set of demand points providing services from one 

facility (such as hospital) generates demand for 

emergency service. Their model includes the location p 

helicopter pad and one facility. The location of facility 

(hospital) is known and the location of one transfer point 

that serves a set of demand point (Yusefli et al., 2018).  

Yousefli et al (2018) studied stochastic transfer point 

location problem using a probabilistic rule-based 

approach. The procedure was employed to infer the 

optimum or near optimum values of all decision variables 

without solving nonlinear programming model directly. 

Finally, to approve the yield of the extended algorithm, a 

numerical example was dedicated and the results are 

compared with the optimum solution. Based on the 

studies conducted to date, it can be claimed that 

distribution function of demand points has not been 

covered thoroughly. Table 1 shows a brief review of this 

matter and about pertinent exploration on TPLP to date, 

utilizing normal characterizations. 

 

Table 1 

 Some studies related to the transfer point location
Problem Solution Objective Topology Modelling Authors 

The transfer point location 

problem 
Exact Minisum/minimax Plan/network Determinism Berman et al, 2007 

Heuristic and lower bound for a 

Stochastic location –routing 

problem 

Heuristic Minisum Network Stochastic Albareda et al., 2007 

Integrated location-routing 

problem modelling and GA 

Algorithm Solving 

Exact Minisum Network Determinism 
Yong, 2008; Yong & Zi-Xia, 

2009 

An improved branch and bound 

algorithm for location-routing 

problems 

Heuristic Minisum Network Determinism Li et al., 2009 

Two-phase particle swarm 

optimization for multi-depot 

location- routing problem 

Heuristic Minisum Network Determinism Yong & Zi-Xia, 2009 

Research on location-routing 

problem of relief system based on 

emergency logistic 

Heuristic Minisum Network Determinism Mingang et al., 2009 

Application of ranking function to 

solve Fuzzy Location-Routing 

Problem with L-R Fuzzy Numbers 

Exact Minisum Network Determinism Jafari & Golzari, 2010 

A competitive facility location 

problem on a tree network with 

stochastic weights 

Exact Minimax Tree 
Stochastic / 

Determinism 
Shiode & Derezner, 2010 

Stochastic uncapacitated hub 

location 
Approximation Minisum Network 

Stochastic / 

Determinism 
Contreras et al., 2011 

Stochastic models for transfer 
point location problem 

Exact Minimax Plan Stochastic Hosseinijou & Bashiri, 2012 

p-Hub approach for the optimal 

park-and-ride facility location 
problem 

Exact Maximize Network Determinism Aros-Vera et al., 2014 

Stochastic transfer point location 

problem: A probabilistic rule-
based approach 

Probabilistic 

Role Base 
Minisum Network stochastic Yousefli et al., 2018 

Optimal Transfer Point Locations 

in Two-Stage Distribution 
Systems 

Exact Minimum Plan Determinism Mcdougall & Otero., 2018 

Developing a model transfer point 

location problem considering 
normal demands distribution 

Exact Minimax Plan Stochastic This paper 
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3. Problem Definition and Gap of Research  

The issue of location is one of the oldest research issues in 

operations. The study in this field began in the early 

twentieth century by Alfred Weber.  The work is 

considered to be the basis of modern location principles 

(Rodrigue, 2020). Demand for crisis service is produced at 

a set of demand points who need the services of a central 

facility. Demand for emergency service is generated at a set 

of demand points who need the services of a central facility 

(Berman et al., 2007). Classical TPLP problems include 

some variants: in MLTP, the location of the facility is 

known. It needs to cluster the points into subsets, with each 

of them being served via a single transfer point. The 

general model is to make a facility and a set of transfer 

points that is called the Facility and Transfer Points 

Location Problem (FTPLP).  

In hub center problems we deal with the following three 

items: 

1- Facility center 

2- Demand points 

3- Hubs 

Service facility is the point where applicants demand to be 

there. Based on the studies reviewed above, there is no 

work demand points in TPLP models by considering 

normal distribution. In this paper, the location of the facility 

is assumed to be known and the objective is to make it 

accessible with a minimum time and cost. Demand points 

are locations that are taken for granted as some nodes. 

These points are also assumed to be known here. 

3.1. Research methodology 

 First of all, the mathematical model is developed due to the 

problem statement. Demand points follow a normal 

distribution with some points of demands being in regions. 

After that, this model is solved by replacing real number 

with a real condition. Maple software is used to solve this 

objective function as well as MATLAB software to solve 

this model numerically. 

3.1.1. Transfer point location problem with deterministic 

demand points   

In center location problem we have:  

n: Number of demand points, α: the factor by which travel 

to the transfer point is multiplied by (x0,y0): the location of 

facility, (x,y): the location of transfer point, d(x,y): the 

distance between the transfer point and the facility, Di: the 

distance between demand point i and facility, di(x,y): the 

distance between demand point i and the transfer point. 

 

Fig. 1. Geometric display of the transfer point location 

 (Yousefli et al., 2018) 

Figure 1 is a geometric display of the transfer point location 

and where demands point is in one city. 

This study considers the following situation. First, the 

location of the facility is known and each demand point has 

coordinates of Pi. Second, weights demand points are equal. 

Therefore, no weights are included in the model. Third, the 

demand points use the transfer point and distance is 

Euclidean. It is assumed that transfusion should effect the 

transfer point with no rectilinear motion between demand 

points to facility. The problem is to find the optimal 

location for the transfer point leading to a maximum 

distance between the facility so that demand points via 

transfer point is minimum. The problem formulization is as 

follows: 

min x,yF(x,y) = max 1≤i≤n{di(x,y)+αd(x,y)} (1) 

The simple model is: 

min x,yF(x,y) = max 1≤i≤n{di(x,y)}+αd(x,y) (2) 

Since the distance between d and di is convex function and 

maximum set convex function is convex, therefore a local 

optimization is the global one.  

3.1.2. Transfer point location problem with stochastic 

weights at demand points 

The following relations are considered for problem 

formulation: 

wi: Weight associated with the demand point I, Pi(Ui,Vi): 

Coordinates of demand point i 

One can assume that the location of the facility, (x,y),is 

known and all demand point i has coordinates of P=(U,V) 

so that Ui,Vi are in reliant accidental variables. Thus, we 

can find the optimal transfer point location. The problem 

formulation is as follows: 

Minx,yEF(x,y) = Max1≤i≤n{wiE[di(x,y)]+αd(x,y)}                         
(3) 

Where [d(x,y)] hinge the probability distribution of demand 

points.  

We survey the problem under situation that coordinates of 

demand points have a normal distribution. In the real world, 

it is safe to assume that occurrence demand points have a 

normal distribution. Two models are noted in this study. 

First, distribution demand points in a zone. Second, 

distribution demand points in several zones. In each case, 

distance between demand points and transfer point is 

orthogonal linear and distance between transfer point and 

facility is Euclidean. 

3.1.3. Transfer point location problem when there are 

demand points sit in quadrangular region and repartition 

of demand points is normal distribution 

Initially we consider the simple model in which there is one 

demand location with coordinates U, V that are located in 

dependent random variables with normal distribution in 

[a,b]. 

 

U, V ~ N(x;μ,σ)  

Facili

ty 

(x0,y0

) Transfer 

point 

(x,y) 

D

i 

α 

d(x,

y) 

di(x,y) 

P

i 

P

2 

P

1 
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The target is to find optimum location for the transfer point. 

di(x,y)=|U-x|+|V-y| , d(x,y)=[(x-x0)
2
+(y-y0)

2
]
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Now the weight for value of traveled distance from demand 

i to transfer point can be frame follows:   
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We have similarly: 
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If distributed demand points be normal, we have: 
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Objective function is: 
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Since the Euclidean distance is convex function and 

maximum of bundle functions are convex. Thus, objective 

function model is convex and each optimal resolvent of 

problem is a global one. 

The optimal resolvent is a function of α/w and if this factor 

tends to zero, the second objective function will have 

senseless. 
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Condition of optimality is: 
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By differentiation of function, we have: 

 











































































 














 
















 














 




bx,        4/

2σ

)(2
2

2σ

)(2
2

ax,        4/

2σ

)(2
2

2σ

)(2
2

xf

















b
erf

a
erf

b
erf

a
erf

 

Now it allocates the optimal location transfer point as for 

location of facility. While region disport to four zones, we 

have: 
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Similarly, we could account optimal transfer point in 

condition the facility located in other area (A2, A3, A4) and 

demand points located in S regions. Break down region 

solution problem is shown in Figure 2. 

 
Fig. 2. Break down region solution problem 

3.1.4. The transfer point location problem when the 

demand points in several rectangles and demand 

distributed is normal distribution 

The demand points’ coordinates are assumed to be between 

[ai,bi] and [ci,di] by normal distribution.  

All cities have demand area. Demands of each city have 

normal distribution. The objective is to find transfer point 

when distance between demand points and transfer point is 

Euclidean and distance between transfer point and facility 

is Euclidean. Figure 3 represents this case. 

 
Fig. 3. The transfer point location in multiple cities  

 

fi(x), fi(y) can be formulated as follows: 
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Objective function is formulated as follows: 
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 is convex 

function and there for maximum of a convex function is 

convex function. Thus, a local optimum is the global one. 

4. Computational Experiences 

In this work, a numerical example is used to demonstrate 

the credibility and efficiency of the proposed algorithm, 

and the results are compared with the optimal solution. 

4.1. Transfer point location determine in terms of demand 

points occur in the city. 

Parameters for emplacement transfer point consist of the 

following: facility location (x0, y0), weights transfer 

demand points to transfer point (w), weight relocation from 

transfer point to facility (α), demand points mean (μ), 

demand points standard deviation (σ). Three states are 

considered for demand points in the city.  

In first state, mean of demand points weights, demand 

points standard deviation and facility coordinate are 

specified (Table 2). In second case, demand points mean 

and demand points standard deviation are changed and 

other parameter are fixed (Table 3). In the third case, 

facility location is changed and other parameters are the as 

in the second case (Table 4).  

Table 2 

 Initial value in the city (first case) 

μ σ b a y0 x0 

15 5 40 10 70 65 

 

In Table 3 we assume mean and standard deviation equal 

10, 20. 

Table 3 

Initial value in the city with variation mean and variation 

 standard deviation (second case) 

μ σ b a y0 x0 

20 10 40 10 70 65 

In third case coordinate facility is equal (50, 45). 

Table 4 

Initial value in the city with variation coordinate facility  

(third case) 

μ σ b a y0 x0 

20 10 40 10 45 50 

 

4.2. Transfer point location determine in terms of demand 

points occur in multiple cities. 

In this case value parameters consider according to Table 5. 

Table 5 

Value of parameters in multiple cities 

Row w μ σ (x0,y0) d c b a 

1 3.3 6 .66 70,65)) 8 4 13 4 

2 3.2 24 2 70,65)) 33 18 12 6 

3 3.5 33 3.7 70,65)) 44 22 26 16 

6 3.6 11 1.66 70,65)) 16 6 18 12 

5 3.2 29 1.66 70,65)) 34 24 36 33 

6 3.3 6 1.33 70,65)) 13 2 28 23 

 

4.3. Result of solution  

Transfer point location problem when demands are in the 

city 

Result of solution transfer point location problem when 

demands are in the city with value parameters are given in 

Table 6.  

Table 6 

 Result of solution in the city 

EF*(x,y) y* x* α w Row 

2.2406 8.36.83 13 3.1 0.9 1 

15.7368 13 9.6397 3.2 3.8 2 
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25.2274 18.1857 17.9644 3.3 3.7 3 

31.4832 19.6921 19.2716 3.4 3.6 4 

9.9272 16.9723 16.8798 3.1 3.5 5 

17.3183 18.3253 17.8223 3.2 3.5 6 

23.9596 19.2327 18.8789 3.3 3.5 7 

33.7239 23.7535 23.1533 3.4 3.5 8 

37.2538 23.1135 21.9426 3.5 3.5 9 

42.9637 73 65 3.6 3.5 10 

42.9637 73 65 3.7 3.5 11 

42.9637 73 65 3.8 3.5 12 

42.9637 73 65 3.9 3.5 13 

8.5921 73 65 3.5 3.1 14 

17.1843 73 65 3.5 3.2 15 

25.7764 73 65 3.5 3.3 16 

34.3686 73 65 3.5 3.4 17 

38.1969 21.3613 23.4313 3.5 3.6 18 

38.9889 23.3455 19.5697 3.5 3.7 19 

39.7353 19.4337 19.3232 3.5 3.8 20 

43.3761 18.9452 18.6331 3.5 3.9 21 

34.3686 73 65 3.6 3.4 22 

125.7764 73 65 3.7 3.3 23 

17.1843 73 65 3.8 3.2 24 

8.5921 73 65 3.9 3.1 25 

 

Figure 4 represents outcome diagram of objective function 

EF
*
 for row 4 of Table 6 when α=0.4 and w=0.6. 

Coordinates of facility is equal (65, 70). 

Under conditions where the displacement of a point from 

the point of demand to a transfer point (w) and the 

displacement weight from the transfer point to a facilitator 

(α) is 0.6 and 0.4. The optimal target function is 31.4832 

and the point x = 19.2716 and y = 19.6921. It would be the 

best point for considering the location of the transfer point. 

Also, the surface under the curve of its target function is as 

shown in Figure. 4. 

 

Fig. 4. Surface of objective function when α=0.4 and w=0.6 

Figure 5 presented as for contour lines for regions had 

equal objective function. Also, it represents the defensive 

line of the target function in areas where the objective 

function has similar values. The best place can be chosen to 

move the point in that range. 

 

 
Fig. 5. Contour lines for regions when α=0.5 and w=0.8 

Result of solution transfer point location problem when 

demands are in the city with variation mean and standard 

deviation of Table 3 (Table 7). 

Table 7 

 Solution result of the city with variation mean and standard 

deviation. 
EF*(x,y) y* x* α w Row 

5.3395 13 9.7312 3.1 0.9 1 

13.8183 9.9998 9.5891 3.2 3.8 2 

25.4718 26.3513 25.5649 3.3 3.7 3 

33.3334 28.9923 28.3965 3.4 3.6 4 

6.5932 9.9959 9.6254 3.1 3.5 5 

14.9196 8.8827 13 3.2 3.5 6 

23.1417 28.1312 27.3394 3.3 3.5 7 

28.5933 31.3199 29.7854 3.4 3.5 8 

33.5972 35.2593 33.1531 3.5 3.5 9 

37.3335 69.9999 64.9999 3.6 3.5 13 

37.3334 73 65 3.7 3.5 11 

37.3334 73 65 3.8 3.5 12 

37.3331 73 65 3.9 3.5 13 

7.4337 73 65 3.5 3.1 14 

14.8314 73 65 3.5 3.2 15 

22.2321 73 65 3.5 3.3 16 

29.6328 73 65 3.5 3.4 17 

35.3548 31.5979 33.2575 3.5 3.6 18 

36.8248 29.6726 28.6692 3.5 3.7 19 

38.1492 28.4278 27.6178 3.5 3.8 23 

39.3868 27.5437 26.8581 3.5 3.9 21 

29.6328 73 65 3.6 3.4 22 

22.2321 73 65 3.7 3.3 23 

14.8314 73 65 3.8 3.2 24 

7.4337 73 65 3.9 3.1 25 
 

Also, outcome diagram based on the objective function EF
*
 

for row 7 in Table 7 when α=0.3 and w=0.5 are presented 

in Figure 6. Figure 7 depicts contour lines for regions had 

equal objective function. 
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Fig. 6. Surface of objective function when α=0.3 and w=0.5 

 
Fig. 7. Contour lines for regions when α=0.3 and w=0.5 

Result on the solution transfer point location problem, 

when demands are in the city with variation coordinate 

facility of Table 4, in Table 8. 

Table 8 

 Solution in the city with variation coordinate facility  
EF*(x,y) y* x* α w Row 

2.5357 9.6231 9.9998 3.1 0.9 1 
8.2396 9.4193 9.9987 3.2 3.8 2 

17.3383 25.3736 26.2253 3.3 3.7 3 
18.7138 27.7657 29.3399 3.4 3.6 4 

3.7847 9.4765 13 3.1 3.5 5 

11.7353 25.1379 25.8942 3.2 3.5 6 
14.6773 27.3489 28.3731 3.3 3.5 7 

17.3337 29.3717 31.4487 3.4 3.5 8 

19.4754 32.6627 35.9374 3.5 3.5 9 

23.6316 45 53 3.6 3.5 13 

23.6316 45 53 3.7 3.5 11 
23.6316 45 53 3.8 3.5 12 

23.6316 45 53 3.9 3.5 13 
4.1263 45 53 3.5 3.1 14 

8.2526 45 53 3.5 3.2 15 

12.3789 45 53 3.5 3.3 16 
16.5352 45 53 3.5 3.4 17 

21.2421 29.8241 32.3588 3.5 3.6 18 
22.7155 28.3386 33.3273 3.5 3.7 19 

24.3416 27.3124 28.7162 3.5 3.8 23 

25.2833 26.5938 27.7846 3.5 3.9 21 
16.5352 45 53 3.6 3.4 22 

12.3789 45 53 3.7 3.3 23 
8.2526 45 53 3.8 3.2 24 

4.1263 45 53 3.9 3.1 25 

 

4.4. Result of solution when demands be in multiple cities 

Result of solution transfer point location problem when 

demands are in multiple cities are given in Table 5 and 

Table 9. 

Figure 8 shows equal objective function for row 8 of Table 

9 when α=0.5. Also, it illustrates the line between the target 

function and several areas where the objective function has 

the same values and the best location for the transmission 

point in that range may select.  

Table 9 

Result of solution in multiple cities 

EF(x*,y*) y* x* α Row 

2.2634 3.3263 13.2575 3.331 1 

3.3398 3.9993 13.2412 3.31 2 

4.6763 4 13.2666 3.33 3 

13.4967 6 13.1964 3.1 4 

18.6926 6 13.2334 3.2 5 

26.7678 7.3679 12.3313 3.3 6 

34.9239 7.3637 12.3349 3.4 7 

39.1337 43.7747 58.6644 3.5 8 

43.2556 45.3673 62.1714 3.55 9 

41.2687 46.3549 64.3473 3.6 13 

41.6553 46.7386 65.1921 3.62 11 

41.6643 65 73 3.64 12 

41.6643 65 73 3.65 13 

41.6643 65 73 3.7 14 

41.6643 65 73 3.8 15 

41.6643 65 73 3.9 16 
 

 

Fig. 8. Contour lies for regions with equal objective function 

when α=0.5 

4.5. checking time solution with grow-up condition  

For checking time solution with grow up conditions, we 

test the model when number of cities are 10 and over. Then 

exploit results with 1.61 GHz processor and one GB of 

RAM. The results are presented in Table10.  

Table 10 

 time solution of model 
Duplication Number CPU time (s) Number of Cities 

13 3.8125 13 

14 1.4219 23 

18 3.2656 43 

24 6.3781 83 

26 7.6253 133 

13 15.6436 233 

33 29.5469 433 

29 39.1563 833 
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5. Conclusion 

Network transmission and distribution systems are able to 

deliver high quality and reliable services in such a way that 

under normal conditions they would meet various operating 

restrictions in the network. In development planning, one 

should consider new lines to meet the needs of consumers 

at the lowest cost. Applicants are transferred to the transfer 

point at the usual speed and then transferred to the service 

center at dual speeds. The goal is to find the best point for 

the transfer locations. Using a transfer point can increase 

the transfer speed from the transfer centers to the service 

centers in proportion to the transfer rates.  One of the 

application domains is to determine the transfer points in 

cities to reach service centers. Considering the large 

population in the city center, the accumulation of 

individuals can reduce, by taking into account the normal 

distribution of popular locations.  Accordingly, in the event 

of an increase in the number of people in the city center, the 

probability of occurrence of accidents also increases and 

this is very important for determining the centers for the 

transfer to service centers. Moreover, in the real world, this 

hypothesis leads to a more appropriate model than the 

theory 

In the real world, in some applications, the demand 

distribution is in a normal condition. Solving TPLP can be 

used as a decision support system for decision makers. 

Tools assisting to establish transfer points ensure the best 

exploitation of resources and decrease costs incurred to the 

company as they set up distribution networks. 

One limitation or challenge for future research is the lack of 

modeling the disaster distribution, which can be probably 

dealt with by investigating the distribution of demand and 

then solve the problem by distributing demand points. 
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