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Abstract 

This paper addresses a bi-objective two-stage stochastic mixed-integer linear programming model for a stochastic reliable capacitated 

facility location in which the optimum numbers, locations and as well as shipment quantity of the product between the network nodes for 

all scenarios should be determined. Unlike most of previous relevant works, multiple levels of capacities available to the manufacturers in 

different scenarios are permitted in this study. The proposed objectives of the model include: the minimization of expected sum of 

installation, production, transportation under uncertainty of parameters, such as transportation and production and disruption of facilities, 

as well as minimizing expected standard deviation of network costs for whole scenarios.  Since one of the most important reasons for 

researchers' reluctance to apply Benders-decomposition algorithm in facility-location concept is the time-consuming nature of its 

feasibility-cut stage, one of the most outstanding innovation in this paper is to add a strengthening redundant constraint to the proposed 

model in order to eliminate the mechanism related to feasibility cuts in master problem. to the best of our knowledge, it is the first time that 

this technique, not being involved in keeping master-problem feasibility, is used to solve a reliable capacitated facility location problem. In 

this approach, in terms of time-consuming the Benders algorithm is able to powerfully compete with metaheuristic 

algorithms, but with an exact solution. To prove advantage of this algorithm satisfying both ultimate solution optimality and 

appropriate running time compared to metaheuristic algorithms at the same time, one metaheuristic algorithm, namely Imperialist 

Competitive Algorithm (ICA), is presented. Usefulness and practicality of the proposed model and solution method demonstrated through a 

case example in different class with variable size. 

Keywords: Capacitated facility location; Reliability; Stochastic Programming; Benders Decomposition  

1. Introduction 

To design an efficient supply chain network the most 

challenging and crucial decision is related to facility 

location issues. Once the decision on facility location has 

been made, changing the locations incurs a huge cost to 

the whole network and thus reverting especially in a 

short-term period is impossible. As an example, the 

location of wheat distribution centers cannot be changed 

as a result of fluctuations in customer demands, 

government taxes, and natural disasters. Companies have 

to bear financial troubles in the case of inefficient facility 

locations even though inventory management, production 

planning and information systems are enough flexible in 

response to inconsistent situations.  

In classical facility location problem (FLP), it is assumed 

that the facilities are always available to serve customers; 

however, unexpected natural or man-made events such as 

earthquake and terrorist attacks bring about serious issues 

for companies since these miserable incidents make a full 

blockage in the flow of their supply chain network for a 

considerable amount of time. As stated by Shari et al. 

(2003), Motorola suffered significant supply chain delay 

after SARS outbreak. This example indicates that keeping 

supply chain networks away from disruptions is of great 

importance. 

Usually, in traditional distribution network design 

primarily once a facility is incapable to serve customers, 

two approaches can be considered. The first is finding an 

alternative source of supply while the other imposes a 

penalty for unsatisfied demands. One should note these 

approaches may result in customer losing and big costs.  

Triggered by these driving forces, this paper addresses the 

possibility of random facility disruption in the traditional 
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capacitated facility location problem (CFLP). The 

remainder of this paper is organized as follow. The next 

section presents a brief overview of the key related 

research. Section 3 proposes a scenario-based formulation 

for the CFLP with random facility failure. Section 4 

elaborates a Benders decomposition-based solution 

approach to solve the proposed model. The computational 

performance of the solution approach us analyzed in 

Section 5. Section 6 discusses concluding remarks and 

possible future guideline. 

2. Literature Review 

Based on considering capacity constraints, a wide variety 

of studies in the CFLP models have been addressed in 

literature. A Lagrangean relaxation method is proposed in 

the work of (Geoffrion and Bride, 1978) for CFLP. 

(Wentges, 1996) proposed a modified Benders 

decomposition algorithm with a fast convergence 

behavior to solve the CFLP. (Chen and Ting, 2008) 

applied Lagrangean heuristics to solve the single source 

capacitated facility location problem and evaluated the 

performance of their proposed solution method through 

two sets of benchmark problems. Moreover, a 

comprehensive and recent review on facility location 

models is presented by (Melo, Nickel and Saldanha-Da-

Gama, 2009) to address a variety of future research 

directions. In past decades, the studies has conducted 

researches on developed version of CFLP such as 

competitive CFLP(Harks and von Falkenhausen, 2014; 

Rodrigues and Xavier, 2017; Beresnev and Melnikov, 

2018) and multi-period CFLP (Correia and Melo, 2016).  

(Ball and Lin, 1993) proposed an integer programming 

optimization model with valid inequalities for a reliable 

emergency service vehicle location problem and applied a 

branch and bound procedure to solve the problem. (Lim et 

al., 2010) studied a reliable facility location problem in 

the presence of random facility disruptions incorporating 

two kinds of reliable and unreliable facilities. As a 

detailed study, (Snyder and Daskin, 2007) classified 

literature reviewing the unreliability of facilities in 

making location choices using a wide range of risk criteria 

to construct reliable facility location systems. The sample 

average approximation method is applied by (Gade and 

Pohl, 2009) to solve a capacitated facility location model 

with unreliable facilities. (Li and Ouyang, 2010) proposed 

a continuum approximation approach for the incapacitated 

facility location problem considering spatially correlated 

disruptions. For a review of designing supply chain 

models under facility disruption the reader can consult 

(Snyder, 2006) in which they presented an exhaustive 

review and categorize these models by the existing 

network status.  

The review of stochastic facility location models can be 

found in works (Laporte, Louveaux and van Hamme, 

1994; Snyder, 2006; Revelle, Eiselt and Daskin, 2008). 

(Razmi, Zahedi-Anaraki and Zakerinia, 2013) do a 

research on a reliable redesign model under uncertainty of 

parameters of demand and variable costs. Demand-side 

uncertainty has been discussed in the most of 

aforementioned papers, while this paper considers supply-

side uncertainty and transportation cost uncertainty. 

Notably, it is addressed an additional objective function, 

minimization of the standard deviation of operational 

costs, in addition to the traditional sum of first stage 

investment cost and the expected second-stage 

transportation and non-utilize capacity penalty costs. 

Research works involving multi-objective optimization 

under uncertainty are considerably smaller in number in 

comparison with those under deterministic situations. In 

(Cardona-Valdés, Álvarez and Ozdemir, 2011), lead time 

as a responsiveness measure as well as traditional total 

costs was addressed as a bi-objective two-stage stochastic 

programming formulation to cope with uncertainty in 

customer demands. A solution approach based on an 

extension of Benders decomposition method was 

developed to solve the proposed model. (Azaron et al., 

2008) addressed a robust multi-objective stochastic 

programming model for logistics network problem and 

applied goal attainment procedure to handle the 

conflicting objective functions. (Snyder and Daskin, 

2005) proposed an integer programming model in which 

they studied a classical location problem taking into 

account failure of facilities with a known probability. The 

model had two objectives, the first one was classical 

objective that overlooks disruptions and the second was 

expected costs after realizing disruptions. Also, they 

minimized these objectives using a weighted sum method.  

The main drawbacks of traditional stochastic CFLPs come 

in the following manners: 

 Taking account into reliability, stochastic and 

multi-objective issue simultaneously have been 

rarely addressed. Motivated by above discussion, 

this paper addresses these disadvantages by 

developing a bi-objective reliable capacitated 

facility location problem for designing a 

distribution network under uncertainty.  

 In the approach, not only demands but also 

transportation, non-utilize capacity costs and 

facility capacities are all addressed as the 

uncertain parameters. To represent facility 

failure, potential scenarios are utilized, in order 

that these scenarios have been formerly 

identified by managers.  
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 Since the CFL has been known as strategic 

problem, achieving an optimal solution play an 

essential key in decreasing network costs while 

in the past decades, the most studies have 

focused on approximate method. 

 To the best our knowledge, it is the first time that 

a Benders Decomposition algorithm, not being 

involved in keeping master-problem feasibility, is 

used to solve a scholastic reliable capacitated 

facility problem.  

 Until now, most of researched Benders 

decomposition algorithm has to add feasibility 

cut to master problem iteratively, thereby not 

preventing to involving infeasibility space, which 

significantly boosts elapsed time. Therefore, in 

this paper, by adding sets of strengthening 

innovative redundant constraints to master 

problem, this algorithm is capable not to deal 

with these cuts. Additionally, efficiency of such 

constraints is confirmed via proving a 

mathematical theorem.  

3. Problem description 

Typically, in classical stochastic programming, there are 

two sets of decision variables available to decision makers 

the expected value of which constitutes objective 

function. The first-stage variables include decisions that 

are unaffected by uncertainty and required to made here-

and-now. On the other hand, the second-stage variables 

are so-called wait-and-see ones and indicate decisions that 

should be made after realization of the random events. 

The second-stage decisions are confined by limitations 

that imposed by the second-stage problem.  

Without loss of generality, suppose a system with a set of 

potential facilities exposed to failure, and fixed customer 

zones. There is a set of scenarios with given probability of 

occurrence with respect to demands, capacity, 

transportation and non-utilized penalty costs, and facilities 

failure. Moreover, customers demand is satisfied by the 

facilities that are not disrupted. Under these situations, the 

problem is to determine the location of each facility in the 

first stage and then the allocation of customers demand to 

be served by an open available facility after the realization 

of one scenario. Particularly, a penalty cost for a given 

scenario is also considered to avoid non-utilization of the 

capacity of each facility.  The proposed model considers 

two objectives encompassing minimization of the 

expected total cost as well as standard deviation of 

operational costs under the following assumptions: 

 The demand occurs for a single commodity and 

it can be served from multiple facilities  

 Transportation and non-utilized capacity costs 

are linear 

 There is no shortage at the whole system 

 Multiple facilities can disrupt independently at 

the same time 

 When facility failure occurs, it provides no 

service 

 The capacity of each facility may change in 

every scenario  

Moreover, the notations used to formulate the problem 

mathematically are as follows: 

Sets 

I: set of potential facility points 

J: fixed locations of customer zones 

S: set of potential scenarios 

Parameters 

djs: demand of customer j in scenario s  

bi: maximum throughput production capacity at facility i  

wis: maximum expected warehousing capacity of facility i 

in scenario s  

fi: fixed cost of opening facility i 

cijs: unit shipping cost from facility i to customer j in 

scenario s 

πis: unit penalty cost of non-utilize capacity at facility i in 

scenario s  

ps: occurrence probability of scenario s 

ais: 1 if facility i is failed in scenario s and 0 otherwise 

N: upper limit on number of facilities which can be opened 

ρ: Weight coefficient in objective function  

Decision Variables 

xijs: quantity of demand shipment from facility i to 

customer j in scenario s  

zis: non-utilized capacity at facility i in scenario s  

yi: 1 if facility i is opened; otherwise 0 

Accordingly, the concerned objectives are as follows: 
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Objective g1 computes the summation of fixed opening 

costs and expected transportation and penalty costs. 

Objective g2 considers the standard deviation of total 

operational costs. The model minimizes a weighted sum 

of the two objectives              , where      . 

The reliable capacitated facility location problem is 

formulated as follows: 

                     (3) 

∑        

   
 

         
 

(4) 

∑                       

   

    
         

 
(5) 

∑    

   
 

 (6) 

    ,          {   }  (7) 

Constraint (4) ensures that total quantity of delivered 

shipment meets demand in each scenario. Constraint (5) is 

related to facilities reliability and prevents a customer 

from being allocated to a facility which is failed in a given 

scenario. Constraint (6) limits the number of facilities that 

can be opened. Finally, constraint (7) enforces non-

negativity and binary restrictions on the corresponding 

decision variables.  

 

3.3. Linearization of the proposed model  

The proposed mathematical model (3)-(7) is a mixed-

integer nonlinear programming model (MINLP) because 

of the nonlinear term, the second objective function, in 

equation (3).  Transformation into a linear equivalent 

formulation requires manipulation and substitution which 

will result in an accurate transformation of the problem. 

To do so, the new non-negative variables   
  and   

 are 

introduced and thus the second objective function in 

equation (3) is rewritten as follows: 

 

      ∑  

   

  
      (8) 

With respect to such rewritten terms, the following 

constraint must be added to the original formulation:  

 

  
    

  ∑∑         

      

 ∑∑       

      

     ∑∑∑        

         

     ∑∑∑            

         

 

     (9) 

 

In this manner, the optimal solution obtained from the 

equivalent mixed-integer linear model, consisting of 

constraints (3)-(7) and constraint (9) with the linearized 

form of the second term in the weighted objective 

function, i.e. equation (8), is equivalent to the optimal 

solution of the original mixed-integer nonlinear model 

(3)-(7). 

4. Benders-Decomposition Algorithm 

Benders decomposition algorithm involves decomposing 

the overall formulation into a master problem and a dual 

sub-problem, and then solving them iteratively by 

utilizing the solution of one in the other (Benders, 1962). 

The master problem involves integer variables and the 

dual sub-problem, on the other hand, is a linear program 

incorporating the integer variables as parameters whose 

values are determined solving the master problem. One 

should note that the solutions of the dual sub-problem 

generate feasibility or optimality cut for the corresponding 

integer solution that might be added to the master 

problem. In an iteration of the overall solution procedure, 

the current master problem is solved to determine a lower 

bound for the overall problem along with the 

corresponding values of the integer variables. Then the 

dual sub-problem is solved and an upper bound obtained 

utilizing its objective value along with the cost 

components implied by the master problem solution 

(Üster and Agrahari, 2011) . According to relevant 

literature, Benders decomposition algorithm usually is 

successful for problem with complicated variables. 

Benders decomposition technique has been applied for 

solving location problems in the works of (Wentges, 

1996) for the capacitated facility location problem,(Balas, 

1965) for the incapacitated facility location problem, in 

(Magnanti and Wong, 1981) for P-Median problems and 

(Sodagari and Sadeghi, 2015) for integrated logistics 
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Network designing problem with multiple capacities. In 

order to find a holistic review of Benders decomposition 

application on location problems interested readers is 

referred to (Costa, 2005). 

One should note that the underlying problem belongs to 

NP-Hard class of problems as is the combination of large 

number of potential scenarios with capacitated version of 

incapacitated facility location problem, a well-known NP-

Hard problem (Cornuejols et al. 1990). Thus, the 

proposed reliable capacitated facility location problem 

with large numbers of scenarios and such a structure with 

complicated variable, shown in Figure 1, seems a suitable 

candidate for Benders decomposition approach as it 

inhabits an exploitable primal configuration. 

 

Fig. 1.  Model variable structure  

 

4.1. Master problem and the dual sub-problem 

By fixing the binary location variable
iy y  to yield a 

feasible solution for the linearized mixed-integer 

programming model, the following problem called sub-

problem will be obtained: 

 

 

         ∑    ̅  ∑∑∑        

            

     ∑∑∑       

         

          ∑     
  

   
 

  

(10) 

  
    

  ∑∑         

      

 ∑∑       

      

     ∑∑∑        

         

     ∑∑∑           

         

      (11) 

∑        

   
 

         
 

(12) 

∑                       

   

  ̅  
         

 
(13) 

    ,        (14) 

 

The dual sub-problem by associating the dual  
variables  ,     and      to the constraint (11) - (13), 

respectively can be written as follow: 
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         ∑         
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           ∑ ∑                   ∑              that it  is the redundant constraint for proposed model, we obtain 

the master problem as follows: 
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                      {   }  (25) 

 

Up till now, most of researched Benders decomposition 

algorithm has to add feasibility cut to master problem 

iteratively, thereby not preventing to involving 

infeasibility space, which significantly boosts elapsed 

time. Therefore, in this paper, by adding sets of 

strengthening innovative redundant constraints to master 

problem, this algorithm is capable not to deal with these 

cuts. Additionally, efficiency of such constraints is 

confirmed via proving the below mathematical theorem.   

Theorem. The DBSP (15)-(20) is always bounded.  

Proof.  It is a well-known property in operation research 

that if a dual problem is unbounded, then the 

corresponding primal problem is infeasible. As an 

equivalent predicate if one primal problem is feasible, 

then its dual problem will be bounded.  

Let ∆ be the set of all BMP feasible solutions in one 

iteration, i.e. {y}∆, after introducing the redundant 

constraint (I) to the BMP and taking the fact into account 

that adding such surrogate constraint, although not needed 

for the correct formulation of the original mixed-integer 

formulation, ensures customer satisfaction in all 

scenarios, thus the BSP is always feasible in ∆ and 

consequently, the DBSP is bounded. 

Corollary. A Benders feasibility cut is no longer required 

to add to the BMP. 

4.2. Benders decomposition algorithm 

The Benders decomposition approach is formally 

described below, in which UB and LB are the upper and 

lower bounds consecutively. Notably, 

Step 1: Initialization 

Set UB=+∞, LB=-∞, ɛ =0.001, Iter=0, and Max.Itr = 500. 

Solve the current master problem using the surrogate 

constraint (21) to obtain values for iy and ZMNP. Set LB= 

ZMNP.  

Step 2:  

Iter = Iter+1 

Solve the dual sub-problem and let the optimal value by 

ZDSP. 

If ZDSP+∑     ̅    < UB then UB =ZDSP+∑     ̅    .Store(

, ,   ). 

Step 3: Add the optimality cut (22) into the current master 

problem. 

Solve the master problem and let the optimal value by 

ZMNP. Set LB= ZMNP and store y. 

Step 4:  If ((UB-LB)/UB≤ ɛ  or Iter ≥ Max.Iter), terminate 

and return the corresponding optimal solution of the 

original problem. Otherwise, go to Step 2. 

A lower bound on the original problem objective function 

is the master problem solution. The lower bound can be 

improved at each iteration by adding a strong cut, like the 

Benders cut. Finally, the optimal solution of the original 

problem has been obtained by converging lower bound 

and upper bound.   

5. Proposed Meta-heuristic Algorithm 

In this section, the meta-heuristic algorithm of Imperialist 

Competitive (Atashpaz-Gargari and Lucas, 2007) is 

introduced and applied to this problem. The pseudo-codes 

of the proposed algorithm are shown in Figure 2. Given 

this fact that the purpose of this article is to emphasize the 

effective role of decomposition-Benders especially 
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without infeasible cuts in comparison with other related 

method, either exact or approximate, in this paper 

metaheuristic algorithm generally is described and 

defining the detailed comment related to ICA is prevented

.  

Begin ICA 

Generating the first population randomly  

Calculating the objective function for the first population in following step: 

Decreasing the first population based on their objective function costs 

Specifying the imperialist states 

Form the empires by sharing the colonies to the imperialist states 

* While (the specified decades are not passed) do 

** While (all empires selected) do 

Choose the empire 

*** While (all colonies selected) do 

Choosing the colony 

Moving the colony toward its imperialist state (assimilation) 

Changing the direction of movement for some colonies (revolution) 

Calculating the objective function cost for the populations in new positions in following step: 

Evaluating two new costs and selecting the best one 

Substituting colony with new one 

End *** while; 

Descending all colonies of empire based on their cost functions 

Checking cost of all colonies in each empire 

If there is a colony with a lower cost than it’s imperialist 

Exchanging the position of the colony and the imperialist 

End if 

Updating the location of the empire 

End ** while; 

Computing total cost of empires 

Searching for the weakest empire 

Giving one of its colonies to the empire which is more powerful 

Checking the number of colony in each empire 

If there is an empire with no colony 

Omitting the empire and possessing its imperialist for the best empire 

End if 

End * while; 

End ICA 

 

Fig. 2. Pseudo-code of imperialist competitive algorithm proposed 

 

6. Computational results 

The proposed solution method was implemented in 

GAMS 23.20 and executed on a machine with 2.7 GHz 

Core 2 Duo CPU and 3 GB RAM. Furthermore, the 

original mixed-integer model given in Section 3 was 

tested in CPLEX 12.0, well-known optimization software. 

The purpose of the experiments is to determine the 
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efficiency of the proposed Benders method by comparing 

the results with those of CPLEX within a reasonable time 

limit. The test instances generations are described in the 

following section.  

6.1. Parameters tuning  

In an optimization problem, the performance of 

approximate algorithms utilized depends on their 

parameters significantly. Thus, tuning ones plays an 

important role in helping to gain efficient solutions. 

In this paper, the parameters of the algorithm are tuned by 

the response surface technique which is a well-known 

method in this way. Using quantitative data extracted 

from appropriate experiments, this technique can be 

considered as a statistical technique which controls and 

solves multi-variant equations. After distinguishing the 

effective parameters, two surfaces are definite, namely the 

upper surface and the lower surface. Then 2n

examinations in which n  is the numbers of critical 

parameter, should be calculated on various surfaces of the 

parameters and after that, reports are evaluated based on 

the objective function. To conclude, the parameter values 

being critical for the algorithm, are proposed to use. In 

this paper, tuned parameters is divided to three separate 

classes of instances. There are four critical parameters for 

the ICA, that is to say impN ,  , Revolutionp  and  . Table 

1 displays the values of the parameters proposed by RSM. 

In addition, these parameters, another parameter, namely 

the numbers of maximum iterations, which is equal to 

200, is defined for all the instances in order to control the 

elapsed time. 

 

Table1                                                                                                                   

 Value of parameters tuned 

                          instance dimensions 

 S M L S M L S M L S M L 

parameters 
impN    

RevolutionP    

 80 90 100 2 2 2 1 1 1 0 1 0 

 

6.2. Experimental results 

A set of test instances with realistic size is developed with 

changing the number of potential facility locations | I | 

(10, 15, 20, and 25), the number of customers | J | (100, 

200, 300, 400, and 500), and the number of scenarios | S | 

(30, 40, 50, and 60).   

Demand data was randomly generated from U [50, 200], 

unit fixed cost U [5000, 10000], unit penalty cost U [5, 

10], and maximum throughput capacity U [0.4, 1]. To 

generate unit shipping costs first Euclidian distances 

between each facility i and customer j over a uniform 

square, [0, 1] × [0, 1], is calculated, and then multiplied 

by a random number chosen from U [10, 20]. Capacity of 

each facility is generated according to U [10×avgCap, 

25× avgCap] where       
∑ ∑        

      
. Number of 

facilities, N, was derived from U [0.3× | I |, 0.9× | I |] and 

rounded to the nearest integer number. Probability of each 

scenario was originated from U [0.01, 1] in order 

that∑    . Finally, to generate facilities failure, ais , 

first the Pa =α (in this problem0.1 ) is defined which 

illustrates the probability of facility disruption in each 

scenario, then a random number was generated between U 

[0,1], if the generated number is smaller than α, ais =1, 

otherwise ais =0. 

6.3. Algorithmic performance 

Table 2 compares the performance of the proposed 

Benders decomposition method, MIP solver, CPLEX and 

ICA with each other in terms of CPU time and solution 

qualities. The first six columns illustrate test problem 

characteristics; the next columns indicate the optimal 

solution, Bender CPU time, CPLEX CPU time, and 

Benders iteration number, consecutively. The two next 

columns are related to CPLEX and Benders optimality 

gaps and finally last two column is the optimal solution, 

Bender CPU time related to ICA. Remarkably, the 

optimality gap could be calculated as follows. 

                    

        
 

 

(26) 

                                                                                                    

Where BD.Sol and CPLEX.Sol denote the optimal 

solutions obtained by Benders decomposition and 

CPLEX, consecutively. 

Noteworthy, in cases that CPLEX is unable to reach the 

optimal solution in a reasonable time, i.e. 1h, the 
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optimality gap is calculated as the tightness between the 

last lower and upper bounds. 
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Table 2 

 Obtained results for the considered instance 

  

Faciliti

es 

numbe

r 

Custome

r number 

scenario 

number 

Binary  

variable 

positive 

variable 

Number 

Constraint  

Number 

Bender  

Optimal  

solution 

Bender 

CPU_Time 

CPLEX 

CPU_Time 

Benders 

iteration 

CPLELX 

Gap% 

Benders 

Optimality 

Gap% 

Meta 

Optimal-

solution 

Meta 

CPU_Time 

10I 

 

100J 

 

30S 
 

10 30360 3331 1172680 66.1 236.3 25 0 0 1172680 
59.5 

40S 
 

10 40480 4441 1182164 36.7 136.5 14 0 0 1182164 
35.6 

50S 
 

10 50600 5551 1185034 27.7 85.5 19 0 0 1185034 
25.8 

60S 
 

10 60720 6661 1204846 58.8 158 33 0 0 1204846 
56.4 

200J 

 

30S 
 

10 60360 6331 2349202 22.8 59 14 0 0 2349202 
21 

40S 
 

10 80480 8441 2353540 17.4 96 7 0 0 2494752.4 
17.4 

50S 
 

10 100600 10551 2316163 67.6 388.2 24 0 0 2478294.4 
62.9 

60S 
 

10 120720 12661 2339203 37 338.1 11 0 0 2479555.2 
35.5 

300J 

 

30S 
 

10 90360 9331 3443641 49 640.1 20 0 0 3684695.9 
47.5 

40S 
 

10 120480 12441 3460190 236.9 2362.7 36 0 0 3529393.8 
227.4 

50S 
 

10 150600 15551 3504673 356 2662.4 31 0 0 3750000.1 
327.5 

60S 
 

10 180720 18661 3512632 286.7 3461.4 31 0 0 3582884.6 
275.2 

400J 

 

30S 
 

10 120360 12331 4555983 132.7 1027.3 26 0 0 4783782.2 
128.7 

40S 
 

10 160480 16441 4554948 121.3 477.9 17 0 0 4646047 
121.3 

50S 
 

10 200600 20551 4534424 224.4 2474 25 0 0 4761145.2 
217.7 

60S 
 

10 240720 24661 4572524 195.2 1379 21 0 0 4663974.5 
183.5 

500J 

 

30S 
 

10 150360 15331 5740821 83.7 431.9 16 0 0 5855637.4 
79.5 

40S 
 

10 200480 20441 5878053 746.6 >3600 53 0.033 0 6289516.7 
701.8 

50S 
 

10 250600 25551 5810607 452.1 >3600 29 0.006 0 5926819.1 
425 

60S 
 

10 300720 30661 5599170 402.6 >3600 17 0.003 0 5823136.8 
382.5 

15I 

 

100J 

 

30S   15 45510 3481 1138965 61.3 119.9 51 0 0 1207302.9 
58.2 

40S   15 60680 4641 1138738 102.7 150.5 69 0 0 1184287.5 
101.7 

50S   15 75850 5801 1161567 173 413.5 86 0 0 1231261 
166.1 

60S   15 91020 6961 1174033 267.4 663 107 0 0 1232734.7 
243.3 

200J 

 

30S   15 90510 6481 2310301 235.7 398.1 102 0 0 2425816.1 
216.8 

40S   15 120680 8641 2315467 507.5 1393.8 149 0 0 2431240.4 
507.5 
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50S   15 150850 10801 2419469 779.1 1998.1 171 0 0 2516247.8 
701.2 

60S   15 181020 12961 2296318 321.6 1210.5 68 0 0 2365207.5 
299.1 

300J 

 

30S   15 135510 9481 3420724 116.1 779.9 35 0 0 3625967.4 
113.8 

40S   15 180680 12641 3417486 259.6 1121.6 52 0 0 3451660.9 
244 

50S   15 225850 15801 3461231 549.7 >3600 87 0.015 0 3634292.6 
544.2 

60S   15 271020 18961 3453534 785.3 >3600 114 0.028 < 0.001 3626210.7 
769.6 

400J 

 

30S   15 180510 12481 4405029 207 1175.4 43 0 0 4669330.7 
207 

40S   15 240680 16641 4579156 404.1 3146.4 61 0 0 4853905.4 
383.9 

50S   15 300850 20801 4569953 578.2 >3600 82 0.015 < 0.001 4752751.1 
560.9 

60S   15 361020 24961 46121565 645.4 >3600 111 0.028 < 0.001 49811290.2 
613.1 

500J 

 

30S   15 225510 15481 5609283 534.3 3329.4 53 0 0 6058025.6 
529 

40S   15 300680 20641 5465110 372.9 >3600 35 0.011 0 5465110 
358 

50S   15 375850 25801 5598789 789.1 >3600 73 0.028 < 0.001 5766752.7 
749.6 

60S   15 451020 30961 5721458 867.8 >3600 69 0.041 < 0.001 6179174.6 
815.7 

20I 

 

100J 

 

30S   20 60660 3631 1131332 130.7 347.8 86 0 0 1233151.9 
126.8 

40S   20 80880 4841 1162654 339.9 712.6 154 0 0 1255666.3 
319.5 

50S   20 101100 6051 1154110 491.4 1285.1 173 0 0 1292603.2 
486.5 

60S   20 121320 7261 1175741 798.1 2214.8 196 0 0 1281557.7 
734.3 

200J 

 

30S   20 120660 6631 2200882 611.9 1100.8 35 0 0 2376952.6 
550.7 

40S   20 160880 8841 2226211 347.5 2647.1 84 0 0 2292997.3 
347.5 

50S   20 201100 11051 2261965 860 3424 184 0 0 2533400.8 
860 

60S   20 241320 13261 2219610 429.2 3029.3 73 0 0 2286198.3 
429.2 

300J 

 

30S 
 

20 180660 9631 3321573 408.6 >3600 101 0.018 < 0.001 3321573 
380 

40S 
 

20 240880 12841 3314394 391.5 >3600 73 0.003 < 0.001 3579545.5 
387.6 

50S 
 

20 301100 16051 3348629 707.5 >3600 101 0.068 < 0.001 3750464.5 
658 

60S 
 

20 361320 19261 3390731 851.8 >3600 98 0.089 < 0.001 3797618.7 
809.2 

400J 

 

30S 
 

20 240660 12631 4385055 439.1 >3600 79 0.022 < 0.001 4735859.4 
408.4 

40S 
 

20 320880 16841 4506314 810.2 >3600 110 0.043 < 0.001 4596440.3 
810.2 

50S 
 

20 401100 21051 4456887 621.5 >3600 65 0.031 < 0.001 4858006.8 
578 
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60S 
 

20 481320 25261 4565214 796.9 >3600 86 0.084 < 0.001 5067387.5 
773 

500J 

 

30S 
 

20 300660 15631 5450242 690.8 >3600 93 0.042 < 0.001 5886261.4 
649.4 

40S 
 

20 400880 20841 5507908 1151.9 >3600 123 0.082 < 0.001 5673145.2 
1059.7 

50S 
 

20 501100 26051 5421456 1998.1 Out of 

memory 

175 - < 0.001 5855172.5 

1798.3 

60S 
 

20 601320 31261 5612458 2629.2 Out of 
memory 

211 - < 0.001 6005330.1 
2418.9 

25I 

 

100J 

 

30S 
 

25 75810 3781 11083743 67.1 213 37 0 0 12192117.3 
61.7 

40S 
 

25 101080 5041 1142387 213 1201.6 84 0 0 1279473.4 
193.8 

50S 
 

25 126350 6301 1153695 530.3 >3600 168 0.002 < 0.001 1257527.6 
525 

60S 
 

25 151620 7561 1153483 937.5 >3600 225 0.008 < 0.001 1199622.3 
862.5 

200J 

 

30S 
 

25 150810 6781 2198970 456.2 2348.6 70 0 0 2462846.4 
428.8 

40S 
 

25 201080 9041 2198548 1096.0 >3600 226 0.004 < 0.001 2308475.4 
1019.3 

50S 
 

25 251350 11301 2238548 708.5 >3600 117 0.003 < 0.001 2440017.3 
687.2 

60S 
 

25 30620 13561 2298758 892.1 >3600 136 0.002 < 0.001 2459671.1 
838.6 

300J 

 

30S 
 

25 225810 9781 3399151 750 >3600 145 0.019 < 0.001 3433142.5 
682.5 

40S 
 

25 301080 13041 3317075 799.7 >3600 115 0.039 < 0.001 3715124 
743.7 

50S 
 

25 376350 16301 3409764 1019.1 >3600 129 0.079 < 0.001 3648447.5 
988.5 

60S 
 

25 451621 19561 3421458 1498.6 Out of 
memory 

178 - < 0.001 3695174.6 
1468.6 

400J 

 

30S 
 

25 300810 12781 4418898 1397.3 Out of 

memory 

165 - < 0.001 4639842.9 

1383.3 

40S 
 

25 401080 17041 4514569 1984.6 Out of 

memory 

211 - < 0.001 4920880.2 

1984.6 

50S 
 

25 501350 21301 4498985 2011.1 Out of 
memory 

159 - < 0.001 5173832.8 
1830.1 

60S 
 

25 601620 25561 4598547 2145.5 Out of 

memory 

182 - < 0.001 4966430.8 

1952.4 

500J 

 

30S 
 

25 375810 15781 5579433 2065.6 Out of 

memory 

147 - < 0.001 6472142.3 

1859 

40S 
 

25 501080 21041 5785698 2454.5 Out of 
memory 

169 - < 0.001 6132839.9 
2233.6 

50S 
 

25 626350 26301 5798786 2758.3 Out of 

memory 

211 - < 0.001 6436652.5 

2537.6 

60S 
 

25 751620 31561 5632154 3121.2 Out of 

memory 

256 - < 0.001 5632154 

2996.4 
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By comparing the results, it is evident that Benders 

decomposition algorithm is much more efficient than the 

commercial optimization software in both terms of CPU 

time and solution qualities. As table 1 reveals, Benders 

decomposition approach is able to find the optimal solution 

of each test problem in a far shorter time than those of 

CPLEX. Furthermore, there is no significant difference 

between the obtained solutions by both methods (the 

optimality gap is zero). the Benders algorithm is able to 

reach to the solution in a reasonable time while CPLEX 

faces with the lack of memory, and is not even able to 

obtain an optimal solution in some cases, consequently. As 

obvious in Table 1, Benders’s CP-time is acceptably more 

than ICA’s, in interval 0% to 13%, while Benders’s optimal 

solution is significantly less than ICA’s, in interval 0% to 

19%. 

6.4. Tradeoff Curves 

The tradeoff curve is constructed for the proposed CFLP 

using the class of 10-200-30 where they imply the number 

of facilities, number of customers, and number of scenarios, 

respectively. According Figure 3, the vertical axis plots the 

standard deviation of the operational costs, and the 

horizontal axis shows the total costs. Each point on the 

curves represent a different solution; the optimal solution of 

the problem considering only the first objective (α=1) is the 

right-most point on the curve, while the left-most point 

illustrates the optimal solution of the second objective 

function (α=0). All six different points (solutions) are 

obtained along varying α in 0, 0.2, 0.4, 0.6, 0.8, and 1. The 

conflict behavior of such objective functions demonstrates 

that the represented results are clearly Pareto ones.  

 

Fig. 3.  Comparing pareto solution 

 

 

Furthermore, three scenarios for occurrence of each 

scenario are considered along varying probability of these 

(p) in 0, 01, and 0.2, which 0 is the lack of any disruption. 

Three curves come from each relevant probability illustrated 

in green, red, and blue color, consecutively. As obvious, 

with gradually increasing probability, a significantly upward 

curve-shifting reaction is evident, which means that with 

boosting possibility of disruption, there are an exponential 

increase in both terms of bi-objectives, expected network 

cost and expected standard deviation. 

  

7. Conclusion and Future Works 

 

Facility location decisions are critical to the efficient and 

effective supply chain network. The classical facility does 

not take the facility into account; however, such events 

result in disruption or complete blockage in the supply 

chain. This paper presents a scenario-based stochastic 

programming model for incorporating reliability of facilities 

under an uncertain environment into classical CFLPs based 

on reliable supply chain network designing models. The 

objective is to determine a good set of locations while 

minimizing expected strategic and operational costs, as well 

as standard operating cost deviation in a bi-objective 

scheme. Taking into account features such as accessibility 

of facilities, penalty for nonoperational capacities, variable 

scenario-based capacity, and parameter uncertainty are 

properties of the proposed model. Therefore, this approach 

seems to be a good way of capturing the high complexity of 

the problem. The proposed formulation is solved using 
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Benders decomposition, with promising results. Adding a 

supporting innovative redundant constraint to the master's 

infeasibility in a master problem plays a significant and 

promising role in reducing the time-consuming process of 

the Benders algorithm. In this approach, in terms of time-

consuming the Benders algorithm is able powerfully to 

compete with metaheuristic algorithms, but with an exact 

solution. To demonstrate the effectiveness of the Benders 

algorithm, a metaheuristic algorithm, namely ICA, is 

presented. The computational results of the samples 

illustrate that Benders algorithm run time is much less than 

the run time of the CPLEX algorithm in GAMS software, 

while in a large-sized instance, GAMS is not able to obtain 

optimal solutions also Benders algorithm can obtain a 

solution exact in contrast to ICA obtaining an approximate 

solution spending not much more time. The conflict 

behavior of such objective functions is demonstrated. With 

the boosting possibility of disruption, results indicate that 

there is an exponential increase in both terms of two goals, 

expected network cost and expected standard deviation. As 

a possible future research direction, one should note that the 

proposed model can be extended to multi-period case 

addressing inventory management decisions at different 

time intervals. 
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