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Abstract 
This paper addresses a new mixed integer nonlinear and linear mathematical programming economic lot sizing and scheduling problem in 
distributed permutation flow shop problem with number of identical factories and machines. Different products must be distributed 
between the factories and then assignment of products to factories and sequencing of the products assigned to each factory has to be 
derived. The objective is to minimize the sum of setup costs, work-in-process inventory costs and finished products inventory costs per unit 
of time. Since the proposed model is NP-hard, an efficient Water Cycle Algorithm is proposed to solve the model. To justify proposed 
WCA, Monarch Butterfly Optimization (MBO), Genetic Algorithm (GA) and combination of GA and simplex are utilized. In order to 
determine the best value of algorithms parameters that result in a better solution, a fine-tuning procedure according to Response Surface 
Methodology is executed. 
 
Keywords: Lot sizing; Distributed permutation flow shops; Linearization; Water Cycle Algorithm; Monarch butterfly optimization. 

1. Introduction  
Economic Lot Sizing Problems (or ELSP) is one of the well-
recognized production planning problems belonging to the 
medium-term decision making. It attracts many attentions in 
the literature after the pioneer papers of Rogers (1958) and 
Elion (1959). In classic ELSP, there are a set of ݊ products 
need to be processed on a single machine. The machine can 
process at most one product at a time. Both demand and 
production of each product follow constant rates and are 
known in advance. All the demands must be satisfied; that is, 
no shortage is allowed. Some setup is carried out before the 
production can commence. This setup could be influential 
regarding both its magnitude of time and its cost. Moreover, 
the production horizon is assumed to be continuous and 
infinite. The objective is to specify a production schedule so 
as to minimize long-run average total cost, i.e. sum of setup 
and inventory holding costs. The cyclic schedule is 
frequently assumed to be common cycle; that is, the 
production cycle times of all the products are the same. The 
production schedule includes two decision dimensions, 
sequence and quantity in which products are processed 
(Maxwell, 1964). Karimi et al. (2003) provide a review of 
models and algorithms for different lot sizing problems. 
   In practice, there are shops in which a series of operations 
have to be carried out to turn raw materials into finished 
products. One of the commonly-happening environments is 
to have the same route for all the products to pass through 
machines. In this case, the shop is called a flow shop. If it is 
assumed that sequences of products on all machines are the 
same, the shop is called a permutation flow shop. To 

approach realistic industrial settings, the classic problem is 
further developed to consider Economic Lot Sizing Problems 
in Permutation Flow shops (or ELSP in PFS). It seems that 
multi-stage ELSP was initiated by El-Najdawi (1989) 
through considering a two-stage problem. Later, the problem 
is developed to the case of arbitrary number of stages by Hsu 
and El-Najdawi (1990). Looking into the literature of this 
problem, is noticed that it experiences a new era after the late 
90s. Before 1999, researches are centered on this idea that 
production sequence is negligible due to its trifling influence 
on the total cost. Therefore, the little heed was paid to the 
sequence decision. It was common place to tackle the 
problem by minimizing the total cost for a given sequence 
usually obtained by a simple heuristic. As a case for this 
point, the reader refers to a paper by El-Najdawi and 
Kleindorfer (1993). They make use of Shortest Processing 
Time (or SPT) to obtain a sequence. Their core contribution 
is on lot-sizing decision rather than sequencing decision. 
Dobson and Yano (1994) and El-Najdawi (1992, 1994) are 
among the other papers considering ELSP in PFS. But, they 
still more concentrate on lot-sizing decision. Ouenniche et al. 
(1999) studied ELSP in PFS, and explored the effect of 
sequencing decision on the final total cost. They concluded 
that sequencing decision should be taken into account as well 
as lot-sizing one. They present a MINLP model and some 
heuristics in two groups: constructive heuristics (CH) and 
improvement heuristics, commonly known as metaheuristics. 
Contrary to existing CHs in the literature of PFS usually 
minimizing completion time related objectives, they propose 
CHs that minimize the work-in-process holding cost. 
Afterwards, they present some local search procedures 
improving the solutions obtained by CHs as a metaheuristic. *Corresponding  author Email  address: bahman.naderi@ aut.ac.ir*Corresponding  author Email  address: bahman.naderi@ aut.ac.ir
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Later, Torabi et al. (2005) develop the problem considering 
presence of multiple identical machines at each stage; and 
they solve the problem by adaptation of the solution method 
previously presented by Ouenniche et al. (1999). Akrami et 
al (2006) addressed the common cycle multi-product lot 
sizing and scheduling problem in deterministic flexible flow 
shops where the planning horizon is finite and fixed by 
management and the production stages are in series, while 
separated by finite intermediate buffers. They used both 
genetic algorithm and tabu search methods to find an optimal 
or near-optimal solution for the problem. A differential 
evolution (DE) based memetic algorithm, named ODDE, is 
proposed by Li and Yin (2013) for permutation flow shop 
problem with minimizing makespan and maximum lateness 
objectives. Rahman et al (2015) considered a make -to stock 
production system, where three  related  issues must be 
considered: the  length of a production cycle, the batch size 
of each product,  and the order of the products in each cycle. 
To deal with these tasks, they proposed a Genetic Algorithm 
based lot scheduling approach with an objective of 
minimizing the sum of the setup and holding costs. Bargaoui 
et al (2017) addressed the Distributed Permutation Flow 
shop Scheduling Problem with an artificial chemical 
reaction metaheuristic which objective is to minimize the 
maximum completion time. In the proposed CRO, the 
effective NEH heuristic is adapted to generate the initial 
population of molecules. Viagas et al (2018) addressed 
the distributed permutation flow shop scheduling problem 
to minimize the total flow time. They first analyzed it and 
discussed several properties, theorems, assignment rules, 
representation of the solutions and speed-up procedures. 
They proposed an iterative improvement algorithm to 
further refine the so-obtained solutions. 
Rifai et al (2016) propose a novel model of the developed 
distributed scheduling by supplementing the reentrant 
characteristic into the model of distributed reentrant 
permutation flow shop scheduling. This Problem is described 
as a given set of jobs with a number of reentrant layers are 
processed in the factories, which comprises a set of 
machines, with the same properties. The aim of the study is 
to minimize makespan, total cost and average tardiness.    
Recently, Naderi and Ruiz (2009) have introduced a new 
generalization of the permutation flow shop originated from 
today companies’ structure in which factories are merged to 
build a common enterprise. The purpose is to obtain higher 
productive, less production cost and so on. More details 
could be found in Wang (1997). In these enterprises, 
production planners are to handle more complicated decision 
making processes. In single-factory problems, there are still 
two above-mentioned decisions, whereas in the distributed 
problem another decision appears: the assignment of the 
products to suitable factories. Consequently, three decisions 
have to be taken; product allocation to factories, product 
scheduling at each factory as well as lot sizing decision. 
   Based on the best reviewed, this paper is the first study on 
the Economic Lot Sizing Problem in Distributed Permutation 
Flow Shop (or ELSP in DPFS). This problem  is a   well- 
known scheduling problem in  many  industries,  such as 
steel, pharmaceutical, automobile, and food processing 

(Naderi and Ruiz, 2010). The paper contributes by 
developing two different alternative Mixed Integer Non-
Linear Programming (or MINLP) models according to 
previous paper Ouenniche et al. (1999) in Distributed 
manner. This allows for a precise characterization of the 
ELSP in DPFS. The models’ specifications are precisely 
compared. Apart from the MIP models, four metaheuristics 
based on Monarch Butterfly Optimization, Water Cycle 
Algorithm, Genetic Algorithm and Genetic Algorithm with 
Simplex are presented. The metaheuristic’s performance is 
evaluated by comparing against the optimal solutions 
obtained by the linear models in small, medium and large 
sized problems.  
   The rest of the paper is organized as follows. Section 2 
develops two mathematical models and linearization of the 
proposed models through discussion. Section 3 introduces 
four presented metaheuristics. Section 4 evaluates the 
performance of the models and the algorithms. Section 5 
concludes the paper and clarifies some directions for future 
studies.  
 

2. Mathematical Models 
 
Mathematical models are known to be the best way to 
precisely define all the characteristics of a problem. Actually, 
by mathematical models, it is possible to turn the implicit 
explanations of a novel problem into the explicit and detailed 
ones. Moreover, mathematical models could be a starting 
point for many solution methods such as problem-specific 
branch-and-bound methods, approximation algorithms or 
even metaheuristics. Apart from being a starting point in 
many different algorithms, recently they could also be treated 
as solution methods because of available specialized 
software and high capacity computers. Considering all these 
together encourage researchers to develop effective 
mathematical models for their corresponding problems. 
   More formally, the problem of ELSP in DPFS could be 
described as follows: a set of ݊ different customer demands 
with different quantities are received. To fulfill them, raw 
materials of each demand could be operated in each of ݃ 
available different factories each of which has the same set of 
݉ machines deposed in series. There is no restriction on 
allocation of customer demands to the factories; however, all 
of a demand must be manufactured in one factory. When a 
demand is assigned to a factory, it could not be transferred to 
another factory. It is also considered that the production rate 
of each demand is not changed from factory to factory. 
Before the production of a product can begin on a machine, 
some anticipatory setup must be performed, meaning that, 
the setup of a product ݆ on a machine ݅ can start when the 
machine finishes the process of the previous product (even if 
product ݆ is processed on machine i-1). A product cannot be 
processed by more than one machine at a time; and a 
machine cannot process more than one product at a time. 
There is no maintenance or breakdown, i.e. machines are 
always available. Customer demands are only for finished 
products which continuously delivered. Demand and 
production rates, setup times and costs, and inventory 
holding costs are deterministic and constant over an infinite 
planning horizon. Each product has a unique production rates 
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on different machines. Inventory levels and holding time 
directly determine the inventory holding costs. Shortages are 
not allowed. When the operation of a product starts, it cannot 
be interrupted, i.e. products are not preemptive. There is 
unlimited buffer between machines, i.e. products can wait 
unlimitedly for the next machine. It is additionally assumed 
that the production cycle times of all the factories are equal. 
In this section, the problem by two different MIP models are 
formulated, since it is not clear which model has best 
performance. Notice that the objective function of the models 
includes three parts: setup cost, inventory holding cost of 
finished and semi-finished products. A continuous variable ܶ 
denoting the common cycle time is employed in two models. 
Before presenting the models, the parameters and indices, 
shown in Table 1, are defined. 
 Table 1  
The parameters and indices used in the models 

Notation Description 

݊
 

Number of products 
݉

 
Number of machines 

݃
 

Number of factories 
݆, ݇

 
Index for products, ݆, ݇ Ԗሼ1, 2, … , ݊ሽ

 ݅
 

Index for machines, ݅ Ԗሼ1, 2, … , ݉ሽ
 ݂

 
Index for factories, ݂ Ԗሼ1, 2, … , ݃ሽ

௝,௜݌ 
 

Production rate of product ݆ on machine ݅ 
 

௝݀
 

Demand rate of end product ݆
௝,௜ݐݏ 

 
Setup time of product ݆ on machine ݅ 

ݏ  ௝ܿ
 

Total setup cost of product ݆ over all machines 

௝݄,௜
 

Inventory holding cost per unit of product ݆ per time unit 
between machines ݅ and ݅+1 

௝݄
 

Inventory holding cost per unit of finished product ݆  per time 
ܯ

 
Big positive number 

 2.a. Model 1 

In this model, Binary Variables (or BV) just represent the 
position of products in sequence. Contrary to the next model, 
the two decisions of product allocation to factories and 
product sequence in each factory are together determined by 
one BV type. Notice that notation ݇ is an index to denote 
positions and ݏݏ௝,௜ is start time of product ݆ on machine ݅ that 
works in a similar ௝ܵ,௜ in model 2. The following variables 
are defined in this model: 

௝ܺ,௞,௙ : Binary variable that takes value 1 if product ݆ 
occupies position ݇ in factory ݂, and 0 otherwise.         (1) 

ܵ௞,௜,௙ : Continuous variable for the starting time of the 
product in position ݇ on machine ݅ in factory ݂.            (2) 

 
Model 1 characterizes the ELSP in DPFS as follow: 
 
Minimize Z ൌ ∑ ቀ

ୱୡౠ

T
ቁ୬

୨ୀଵ ൅ ∑ ൬൤h୨
ୢౠ

ଶ
൬1 െ

ୢౠ

୮ౠ,ౣ
൰ ൅୬

୨ୀଵ

∑ h୨,୧ିଵ
ୢౠ

మ

ଶ
൬

ଵ

୮ౠ,౟
െ

ଵ

୮ౠ,౟షభ
൰୫

୧ୀଶ ൨ · T൰                                         (3)  

൅ ∑ ∑ ∑ ൫ൣ∑ X୨,୩,୤
୬
୨ୀଵ ൫h୨,୧ିଵ · d୨൯൧ൣS୩,୧,୤ െ S୩,୧ିଵ,୤൧൯୫

୧ୀଶ
୬
୩ୀଵ

୥
୤ୀଵ  

 

 

Subject to: 

∑ ∑ X୨,୩,୤ ൌ 1୥
୤ୀଵ

୬
୩ୀଵ ୨׊     (4) 

∑ X୨,୩,୤ ൑ 1୬
୨ୀଵ  ୩,୤ (5)׊  

SS୨,୧ ൒ SS୨,୧ିଵ ൅
ୢౠ·T

୮ౠ,౟షభ
 ୨,୧வଵ (6)׊  

SS୨,୧ ൒ SS୨ᇱ,୧ ൅
ୢౠᇲ·T

୮ౠᇲ,౟
൅ st୨,୧ െ

M൫1 െ X୨,୩,୤൯ െ M൫1 െ X୨ᇱ,୩ᇱ,୤൯  

୨,୨ᇲஷ୨,୧,୤,୩வଵ׊
,୩ᇲழ௞

 (7) 

SS୨,୧ ൒ st୨,୧ ׊୨,୧ (8) 

T ൒ SS୨,୧ ൅
ୢౠ·T

୮ౠ,౟
൅ st୨ᇱ,୧ െ SS୨ᇱ,୧ െ

M൫1 െ X୨,୩,୤൯ െ M൫1 െ X୨ᇱ,୩ᇱ,୤൯  

୨,୨ᇲஷ୨,୧,୤,୩வଵ׊
,୩ᇲழ௞

 (9) 

T ൒ ∑ ∑ X୨,୩,୤ · ൬st୨,୧ ൅
ୢౠ·T

୮ౠ,౟
൰୬

୩ୀଵ
୬
୨ୀଵ  ୤,୧ (10)׊  

SS୨,୧ ൌ ∑ ∑ X୨,୩,୤. S୩,୧,୤
୥
୤ୀଵ

୬
୩ୀଵ  ୨,୧ (11)׊  

T, S୩,୧,୤ ൒  ୩,୧,୤ (12)׊  0
X୨,୩,୤ א ሼ0, 1ሽ ׊୨,୩,୤ (13) 
 
The objective function (3) is to minimize the sum of setup 
costs, work-in-process inventory costs and finished products 
inventory costs per unit of time. Constraint set (4) assures 
that every product must be assigned once. Constraint set (5) 
ensures that every position must be occupied once. 
Constraint set (6) states that the process of a product ݆ on 
machine ݅ cannot begin before its process on machine i-1 
completes. Constraint sets (7) is the dichotomous pairs of 
constraints relating each possible production. Constraint set 
(8) ensures that the first product in each factory starts after its 
setup. Constraint set (9) and (10) ensure the minimum 
possible cycle time is satisfied. This minimum is obtained 
through capacity-constrained of each factory. Constraint set 
(11) ensures that each product in every position must be 
occupied in one factory. Constraint sets (12) and (13) define 
the decision variables. 

 2.b. Model 2 

In this model there are two types of Binary Variables. The 
first one is to show relative sequence of every pair of 
products, meaning that, whether a product precedes/succeeds 
another product or not. The other BV is to represent product 
allocation to factories. The variables employed in this model 
are: 

௝ܺ,௞: Binary variable that takes value 1 if product ݆  
follows product ݇, and 0 otherwise.                              (14) 

௝ܻ,௙: Binary variable that takes value 1 if product ݆ is 

processed in factory ݂, and 0 otherwise.                       (15) 

௝ܵ,௜: Continuous variable for the starting time of product ݆ 

on machine݅.                                                                  (16) 
 

Model 2 formulates the ELSP in DPFS as follow: 
 

Minimize Z ൌ ∑ ቀ
ୱୡౠ

T
ቁ୬

୨ୀଵ ൅ ∑ ൬൤h୨
ୢౠ

ଶ
൬1 െ

ୢౠ

୮ౠ,ౣ
൰ ൅୬

୨ୀଵ

൅ ∑ h୨,୧ିଵ
ୢౠ

మ

ଶ
൬

ଵ

୮ౠ,౟
െ

ଵ

୮ౠ,౟షభ
൰୫

୧ୀଶ ൨ · T൰                           (17) 

൅ ∑ ∑ ൫ൣh୨,୧ିଵ · d୨൧ൣS୨,୧ െ S୨,୧ିଵ൧൯୫
୧ୀଶ

୬
୩ୀଵ   

 

Subject to: 

∑ Y୨,୤
୥
୤ୀଵ ൌ 1 ୨׊  

 

(18) 



Mohammad Alaghebandha et al. /Economic Lot Sizing and Scheduling… 

106

S୨,୧ ൒ S୨,୧ିଵ ൅
ୢౠ·T

୮ౠ,౟షభ
୨,୧வଵ׊   (19) 

S୨,୧ ൒ S୩,୧ ൅
ୢౡ·T

୮ౡ,౟
൅ st୨,୧ െ M൫1 െ

X୨,୩൯ െ M൫1 െ Y୨,୤൯ െ M൫1 െ Y୩,୤൯  
୨,୩ஷ୨,୧,୤׊ (20) 

S୩,୧ ൒ S୨,୧ ൅
ୢౠ·T

୮ౠ,౟
൅ st୩,୧ െ M · X୨,୩ െ

M൫1 െ Y୨,୤൯ െ M൫1 െ Y୩,୤൯  
୨,୩ஷ୨,୧,୤׊ (21) 

T ൒ S୨,୧ ൅
ୢౠ·T

୮ౠ,౟
൅ st୩,୧ െ S୩,୧ െ

M൫1 െ X୨,୩൯ െ M൫1 െ Y୨,୤൯ െ
M൫1 െ Y୩,୤൯  

୨,୩ஷ୨,୧,୤׊ (22) 

T ൒ S୩,୧ ൅
ୢౡ·T

୮ౡ,౟
൅ st୨,୧ െ S୨,୧ െ ሺM ·

X୨,୩ሻ െ M൫1 െ Y୨,୤൯ െ M൫1 െ Y୩,୤൯  
୨,୩ஷ୨,୧,୤׊ (23) 

T ൒ ∑ Y୨,୤ · ൬st୨,୧ ൅
ୢౠ·T

୮ౠ,౟
൰୬

୨ୀଵ ୤,୧׊    (24) 

S୨,୧ ൒ st୨,୧ ୨,୧׊ (25) 
X୨,୩ ൅ X୩,୨ ൌ 1 ୨,୩,୩ஷ୨׊ (26) 

T, S୨,୧ ൒ 0 ୨,୧׊ (27) 

X୨,୩ א ሼ0, 1ሽ ୨,୩׊ (28) 

Y୨,୤ א ሼ0, 1ሽ ୨,୤׊ (29) 

The objective function (17) is to minimize the sum of setup 
costs, work-in-process inventory costs and finished products 
inventory costs per unit of time. Constraint set (18) ensures 
that every product is allocated exactly to one factory. 
Constraint set (19) states that the process of a product ݆ on 
machine ݅ cannot begin before its process on machine i-1 
completes. Constraint sets (20) and (21) are the dichotomous 
pairs of constraints relating each possible production pair. In 
other words, they assure that a machine processes at most 
one product at a time. Constraint sets (22) and (23) calculate 
the common cycle time, whereas Constraint set (24) specifies 
the capacity-constraints of each factory to manufacture 
assigned products. Constraint set (25) ensures that the first 
product in each factory starts after its setup. Constraint set 
(26) avoids the occurrence of cross-precedence, meaning that 
a product cannot be at the same time both a predecessor and 
a successor of another product. Constraint sets (27), (28) and 
(29) define the decision variables.  

2.1 Linearization of the proposed model 

The proposed models are MINLP because of the nonlinear 
term in the objective function and also constraints. In order to 
decrease the number of nonlinear terms, linearization in a 
similar way as in Rodriguez et al (2014), You and 
Grossmann (2008) and Pakzad-Moghaddam et al. (2014) is 
used. In the model 1, the bilinear terms between the 
continuous variable T and the binary variables X୨,୩,୤ in 
objective function, also constraints (10 and 11), are 
linearized as follows. Notice that constraint set (11) have 
been replaced with constraint sets (30) – (33), and constraint 
(34) of the first derivative of the objective function is 
obtained. 

Minimize ܼ ൌ ∑
௦௖ೕ

ඪ

∑ ೞ೎ೕ
೙
ೕసభ

∑ ቌ቎೓ೕ
೏ೕ
మ ቆభష

೏ೕ
೛ೕ,೘

ቇశ∑ ೓ೕ,೔షభ
೏ೕ

మ

మ ቆ
భ

೛ೕ,೔
ష

భ
೛ೕ,೔షభ

ቇ೘
೔సమ ቏ቍ೙

ೕసభ

௡
௝ୀଵ

൅ඪ∑ ݏ ௝ܿ
௡
௝ୀଵ . ሼ∑ ൮൦

௝݄
ௗೕ

ଶ
൬1 െ

ௗೕ

௣ೕ,೘
൰ ൅

∑ ௝݄,௜ିଵ
ௗೕ

మ

ଶ
൬

ଵ

௣ೕ,೔
െ

ଵ

௣ೕ,೔షభ
൰௠

௜ୀଶ

൪൲௡
௝ୀଵ ሽ  

൅ ∑ ∑ ∑ ቆቈ
∑ ሺܩ௝,௜,௞,௙ െ ௝,௜ିଵ,௞,௙ሻ.௡ܩ

௝ୀଵ

൫ ௝݄,௜ିଵ · ௝݀൯
቉ቇ௠

௜ୀଶ
௡
௞ୀଵ

௚
௙ୀଵ         

Subject to: 

Eq. (4) – Eq. (10) and Eq. (12) – Eq. (13) 

௝,௜,௞,௙ܩ ൑ ௝ܺ,௞,௙. ܯ ௝,௞,௜,௙׊   (30) 
௝,௜,௞,௙ܩ ൒ ܵ௞,௜,௙ െ ሺ1 െ ௝ܺ,௞,௙ሻ. ௝,௞,௜,௙׊   ܯ (31) 
௝,௜,௞,௙ܩ ൑ ܵ௞,௜,௙ ൅ ሺ1 െ ௝ܺ,௞,௙ሻ. ௝,௞,௜,௙׊ ܯ (32) 
௝,௜,௞,௙ܩ ൒ 0 ௝,௞,௜,௙׊ (33) 
Minimize ܼ ൌ
∑

௦௖ೕ

ඪ

∑ ೞ೎ೕ
೙
ೕసభ

∑ ቌ቎೓ೕ
೏ೕ
మ ቆభష

೏ೕ
೛ೕ,೘

ቇశ∑ ೓ೕ,೔షభ
೏ೕ

మ

మ ቆ
భ

೛ೕ,೔
ష

భ
೛ೕ,೔షభ

ቇ೘
೔సమ ቏ቍ೙

ೕసభ

௡
௝ୀଵ ൅

෍ ൭൥ ௝݄
௝݀

2
ቆ1 െ ௝݀

௝,௠݌
ቇ ൅ ෍ ௝݄,௜ିଵ

௝݀
ଶ

2
ቆ

1
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(34) 

In a similar way in the model 2, one term in objective 
function is divided by continuous variable (T) and constraint 
(24), the bilinear terms consisting of a continuous variable 
(T) product a binary variable Y୨,୤ are must be linearized as 
follows.  

3. Complexity and Test Problems 

The performance of the models and method is studied 
through its solutions for a total of 180 problems in small, 
medium and large sized. Different problem sets with 3, 5 
or 10 products and 3, 4, 5, 8, 10 or 15 machines and 2, 4, 
5, 6 and 10 factories in three sized are considered. Each 
problem set is composed of 20 randomly generated 
problems as follows in Table 2 and 3. There are 9 
combinations of n, m and g. Twenty instances for each 
combination for a total of 180 instances are generated.
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Table 2  
Generate of the test problems 

Parameter Description 

n Small sized (3 and 5) , Medium sized (5) and Large sized (10) 
m Small sized (3, 4 and 5) , Medium sized (8, 10 and 15) and Large sized (5, 10 and 15) 
g Small sized (2 and 4) , Medium sized (4, 5 and 6) and Large sized (5 and 10) 
p୨,୧ uniform distribution (300,9000)  

d୨ uniform distribution (50,500) 

st୨,୧ uniform distribution (0.01,0.5) 

sc୨ sc୨ ൌ ൫15000 ൈ ∑ st୨,୧
୫
୧ୀଵ ൯ ൅ 1000 ൈ uniform distribution ሺ0,1ሻ   

h୨,୧ h୨,୧ ൌ h୨,୧ିଵ+uniform distribution (1,7) and h୨,ଵ ൌ uniform distribution ሺ1,10ሻ 
h୨  uniform distribution (10,170)×10% 

M 10000 
 

Table 3  
                                 Models comparison on the size complexity 

Problem size 
number of variables number of constraints 

model 1 model 2 model 1 model 2 

3×3×2 99 24 490 103 

3×4×2 164 27 1045 135 

5×5×4 725 70 10216 891 

5×8×5 3300 100 100751 2171 

5×10×6 3950 105 120871 2581 

5×15×4 6021 120 271247 2631 

10×5×5 1675 200 50326 4716 

10×10×10 12436 300 851502 18391 

10×15×10 26886 350 2928002 27541 
    
To verify efficiency of the proposed algorithms, all of the 
experimental tests have been implemented on a personal 
computer with a core i7 processor (2.5 GHz) and four GB 
RAM. The models and algorithms were coded by LINGO 
16 and MATLAB (Version R2016a) language. 
 

4. Metaheuristic Algorithms 

In this section, two metaheuristic algorithms are explained 
in brief. For solving the models, use of metaheuristic 
algorithms have been considered for obtaining optimum 
values for the model 1 and 2. In this paper, metaheuristic 
algorithms including the Water Cycle Algorithm (WCA), 
Monarch Butterfly Optimization (MBO) Genetic 
Algorithm (GA) and combination of GA and simplex are 
used to find an approximate solution for the considered 
models. 
   Few researchers have considered methods with 
metaheuristic algorithms to support scheduling in 
distribution systems. Generally, distributed scheduling 
problems deal with the assignment of products to suitable 
factories and determine their production scheduling 
accordingly (Chan, et al. (2005)). The design of a suitable 
chromosome is the first step for a successful metaheuristic 
implementation because it applies probabilistic rule on 
each chromosome to create a population of chromosomes, 
representing a good candidate solution. In this approach, 
each chromosome for model 1 represents a solution 
corresponding to: 
(i) The allocation of products to factories, 

(ii) The production priority of each product in each 
machine. 
   A chromosome is composed of genes. Each gene 
consists of three parameters (i.e. fij), representing: 
Factory number (f), 
Machine number (i), 
Product number (j), 
   Fig.1 shows a sample coding of a chromosome for the 
allocation and scheduling of three products to two 
factories, in which each factory has three machines. The 
scheduling result is shown in Fig.2. 
 
fij  111 123 121 131 222 212 232 113 133 

Fig.1. A sample coding of chromosome A 
 

In Fig.1, the first gene (111) shows that j1 (Product 1) is 
allocated to f1’s i1 (Factory 1’s Machine 1). 
 

Factory 1 

M1 j1 j3 

M2 j1 j3 

M3 j1 j3 

Factory 2 

M1 j2 

M2 j2 

M3 j2 

1 2 3 4 5 

Fig. 2. Scheduling result of sample chromosome  
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The second step is to copy the first and the second 
positions from the gene of the chromosome A into the 
gene of the chromosome B, and change the last position 
of the chromosome A into last gene’s position of the 
chromosome B by generated integer random number 
between one and the product number. If the new two 
neighbor genes in chromosome B are similar exactly to 
chromosome A, then change these two gene’s positions 
and generate another integer random number. Fig.3 shows 
a sample coding of a chromosome B. 

113 122 121 132 223 212 233 111 131 

Fig. 3. A sample coding of chromosome B 

The objective is to minimize the total cost of the system. 
It corresponds to the main objective function as model 1. 
Two types of chromosomes for model 2 are used. 
Chromosome type 1 is a linear and has the virtue of 
showing that every product must be done in one factory 
and in what sequence. For instance, consider the case with 
2 products and 5 factories that should create 6 
permutations as follows (Fig.4):   

5 3 6 1 2 4 

Fig. 4. A sample coding of chromosome 

To determine which products should be produced in the 
first factory, must started from the left side of the 
chromosome and stop whenever to reach number 6, so 
numbers after 6 are related to the second factory. In other 
words, products 3 and 5 in the first factory and products 1, 
2 and 4 must be produced in the second factory. 
Generally, if the number of products is equal to np and the 
number of factories is equal to nf, then the number of 
permutations will be np+nf-1. If the objective function is 
makespan, to find the start time, knowing sequence is 
enough, and in fact, earliest time is the same start time. 
Otherwise, earliest time instead of start time could not 
found. Because in this model differences between start 
times in objective function is obtained, independent of the 
sequence, the delay time should be calculated. For this 
purpose, matrix of Chromosome type 2 with np×nm

dimension (np: number of product, nm: number of machine) 
on the interval [0, 1] must be provided. The numbers in 
the matrix should be added as a delay time to the start 
time on the machine, then, earliest time with respect to the 
constraints must be earned. 
In this paper, corrected one-point crossover for variable x 
and uniform crossover for variable y are used. Also, swap, 
insertion and inversion mutation for variable x and 
uniform mutation for variable y are applied.  
   Because of the complexity of exact methods due to the 
presence of discrete variables and to get closer answer via 
metaheuristic algorithms, in this paper for comparison 
between GA, WCA and MBO, simplex and GA (SGA) 
combined method is used. In SGA method, at first, x and 

y variables are calculated with GA and chromosome type 
1. So, optimum sequence is used, then with respect to 
related constraints the model must be solved by simplex. 
In other words, value of S variable for each optimum 
sequence is obtained till the third part of the objective 
function is minimized. 

4.1 Water cycle algorithm  
4.1.1 Basic concepts 

he idea of water cycle algorithm (WCA) was firstly 
originated from one of the natural phenomena by 
Eskandar et al. (2012) (Khodabakhshian et al. (2016)) and 
that is inspired by nature and is based on the observation 
of the water cycle process and how rivers and streams 
flow downhill towards the sea in the real world (sadollah 
et al. (2015)). To understand this further, an explanation 
on the basics of how rivers are created and water travels 
down to the sea is given as follows. A river, or a stream, 
is formed whenever water moves downhill from one place 
to another. This means that most rivers are formed high 
up in the mountains, where snow or ancient glaciers melt. 
The rivers always flow downhill. On their downhill 
journey and eventually ending up to a sea, water is 
collected from rain and other streams (Eskandar et al. 
(2012). 
In the real world, as snow melts and rain falls, most of 
water enters the aquifer. There are vast fields of water 
reserves underground. The aquifer is sometimes called 
groundwater. The water in the aquifer then flows beneath 
the land the same way water would flow on the ground 
surface (downward). The underground water may be 
discharged into a stream (marsh or lake). Water 
evaporates from the streams and rivers, in addition to 
being transpired from the trees and other greenery, hence, 
bringing more clouds and thus more rain as this cycle 
counties (David, (1993) and Elhameed (2017). 

4.1.2 Create the initial population 

The WCA is a population-based algorithm; therefore, an 
initial population of designs variables (i.e., streams) is 
randomly generated between upper (UB) and lower (LB) 
bounds. In the proposed method terminologies such array 
is called ‘‘Raindrop’’ for a single solution (Eskandari et 
al. (2012)). The best individual, classified in terms of 
having the minimum cost function (or maximum fitness), 
is chosen as the sea. Then, a number of good individuals 
(i.e., cost function values close to the current best 
solution) are chosen as rivers, while all other streams are 
called streams which flow to rivers and sea. In an N 
dimensional optimization problem, a stream is an array of 
1×N. This array is defined as follows (Sadollah et al. 
(2015)):  

Raindrop = [x1, x2, x3, · · ·, xN]                                     (35)   

Where N is the number of design variables. To start the 
optimization algorithm, a candidate representing a matrix 
of raindrops of size Npop  Nvar is generated (i.e. population 
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4.2.2 Butterfly adjusting operator 

For all the elements in butterfly j, if rand ≤ p, it can be 
updated as  

ݔ ௝,௞
௧ାଵ ൌ ݔ ௕௘௦௧,௞

௧
 

(47) 

   Where ݔ௝,௞
௧ାଵ indicates the kth element of xj at generation 

t+1. Similarly, ݔ௕௘௦௧,௞
௧  indicates the kth element of the 

fittest butterfly xbest. If rand>p, it can be updated as: 
௝,௞ݔ

௧ାଵ ൌ ௥య,௞ݔ
௧ (48) 

   where ݔ௥య,௞
௧  indicates the kth element of ݔ௥య. Here, r3 � 

{1, 2, . . ., NP2}.  
Under this condition, if rand>BAR, it can be further 
updated as follows: 

௝,௞ݔ
௧ାଵ ൌ ௝,௞ݔ

௧ାଵ ൅ ൈ ߙ  ሺ݀ݔ௞ െ 0.5ሻ (49) 

Where BAR indicates butterfly adjusting rate. dx is the 
walk step of butterfly j and which can be calculated by 
Levy flight. 

ݔ݀ ൌ ௝ݔሺݕݒ݁ܮ
௧ሻ (50) 

Lévy flights, named after the French mathematician Paul 
Lévy, are a class of random walks in which the step 
lengths are drawn from a probability distribution with a 
power law tail. These probability distributions are known 
as Lévy distributions or stable distributions (Brown, C. et 
al. (2007)). 
In Eq. (49), α is the weighting factor as shown in Eq. (51).  

ߙ ൌ ܵ௠௔௫
ଶൗݐ (51) 

where Smax is max walk step.  
   The main steps of the butterfly adjusting operator can be 
given in Algorithm 2 (Wang et al. (2016)). 

Algorithm 2 Butterfly adjusting operator 
Begin 
         for j= 1 to NP2 (for all butterflies in Subpopulation 2) do 
                Calculate the walk step dx by Eq. (50); 
                Calculate the weighting factor by Eq. (51); 
                for k=1 to D (all the elements in jth butterfly) do 
                        Randomly generate rand; 
                        if rand ≤ p then 
                           Generate ݔ௝,௞

௧ାଵ by Eq. (47). 
                        else 
                           Randomly select a butterfly in Subpopulation 2 (say r3); 
                                Generate ݔ௝,௞

௧ାଵ by Eq. (48). 

                                if rand>BAR then 
௝,௞ݔ                                        

௧ାଵ ൌ ௝,௞ݔ
௧ାଵ ൅  α ൈ ሺ݀ݔ௞ െ 0.5ሻ; 

                                end if 
                        end if 
                end for k 
          end for j 
End 

4.2.3 Schematic presentation of MBO algorithm 

By idealizing the migration behavior of the monarch 
butterfly individuals, MBO method can be formed, and its 
schematic description can be given as shown in Algorithm 
3. A brief presentation of the MBO algorithm is shown in 
Fig. 7. 

  According to Algorithm 3, firstly, all the parameters are 
initialized followed by the generation of initial population 
and evaluation of the same by means of its fitness 
function. Subsequently, the positions of all monarch 
butterflies are updated step by step until certain conditions 
are satisfied. It should be mentioned that, in order to make 
the population fixed and reduce fitness evaluations, the 
number of monarch butterflies, generated by migration 
operator and butterfly adjusting operator, are NP1 and 
NP2, respectively (Wang et al. 2015). 

Algorithm 3 Monarch Butterfly Optimization algorithm 
Begin 
        Step 1: Initialization. Set the generation counter  

t = 1; initialize the population P of NP monarch butterfly 
individuals randomly; set the maximum generation 
MaxGen, monarch butterfly number NP1 in Land 1 and 
monarch butterfly number NP2 in Land 2, max step SMax, 
butterfly adjusting rate BAR, migration period peri, and the 
migration ratio p. 

        Step 2: Fitness evaluation. Evaluate each monarch butterfly 
according to its position. 

        Step 3: While the best solution is not found or t < MaxGen do 
                         Sort all the monarch butterfly individuals according to 

their fitness. 
                         Divide monarch butterfly individuals into two 

subpopulations (Land 1 and Land 2); 
                         for i= 1 to NP1 (for all monarch butterflies in 

Subpopulation 1) do 
                                Generate new Subpopulation 1 according to 

Algorithm 1. 
                         end for i 
                         for j= 1 to NP2 (for all monarch butterflies in 

Subpopulation 2) do 
                                Generate new Subpopulation 2 according to 

Algorithm 2. 
                         end for j 
                         Combine the two newly-generated subpopulations into 

one whole population; 
                         Evaluate the population according to the newly updated 

positions;  t = t+1. 
        Step 4: end while 
        Step 5: Output the best solution. 

End.

4.3 Parameter tuning 

In this section, tuning the input parameters of four 
algorithms is focused. Since all meta-heuristic algorithms 
are severely depends on their parameters. So, response 
surface methodology (RSM) is applied to tune the 
algorithms parameters. RSM is a collection of statistical 
and mathematical techniques useful for optimization 
particularly in situations where several input variables 
potentially influence some performance measure or 
quality characteristic called response [28]. Here the aim is 
to find the levels of the algorithms' parameters (as input 
variables) so that response variable (objective function) is 
optimized. For instance, Population size, number of 
iteration, crossover probability and mutation probability 
are considered in GA that each given the values of -1, 0, 
and 1 for their low, medium and high levels, respectively 
in MINITAB software.  
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Fig. 7. Schematic flowchart of MBO method (Wang et al. 
(2015)) 

In this method, central composite design with 4 factors 
for 3 sizes of problems as an example with 3×3×2, 3×4×2 
and 5×5×4 for small size, 5×8×5, 5×10×6 and 5×15×4 for 
medium size and 10×5×5, 10×10×10 and 10×15×10 for 
large size is used, that these numbers indicate n×m×g. 
According to RSM, values of lack of fit for all sizes are 
larger than 0.05 (i.e 0.081, 0.067 and 0.958, respectively), 
so indicates that the fitted regression functions with 95% 
confidence level are true. Based on the solution obtained 
using regression functions by LINGO, the optimum 
values of the parameters are finally obtained that are 
presented in Table 4. 

0.5 0.8 1200 30 Medium 
0.3 0.7 12000 62 Large 

For other metaheuristic this method is duplicated. Then, 
the following Tables 5-7 are obtained for these problems. 
Also, Fig 8 shows convergence plot as an example just for 
large size. SGA could not find optimum objective in 3600 
second for large size (see Table5 for large problem). 

Table 5  
Optimum value of input parameters in SGA 

Pm Pc Niteration Npop problem
0.3 0.7 4 3 Small 
0.3 0.7 7 4 Medium 
? ? ? ? Large 

Table 6  
Optimum value of input parameters in WCA 

dmax Nsr Niteration Npop problem
0.01 2 100 30 Small 
0.01 3 150 50 Medium 
0.05 4 500 100 Large 

Table 7  
Optimum value of input parameters in MBO 

P NP1 Niteration Npop problem
7/12 28 100 30 Small 
5/12 38 200 30 Medium 
7/12 48 400 50 Large 

5. Computational Results and Models Evaluation 

In this section, nine different problems with three size 
numerical examples are applied (i.e. small, medium and 
large); for each problem size, 20 problem instances have 
been randomly generated then, to demonstrate 
performance of the proposed algorithms, the results are 
analyzed statistically and graphically. For each numerical 
example, 10 independent runs have been performed by the 
LINGO, GA, SGA, WCA and MBO to decrease 
uncertainty of generated runs. Then, the reported value is 
the algorithms outputs in these 10 runs which are shown 
in Table 8-10 for CPU TIME, MIN, and RPD (Relative 
percentage deviation) criteria, respectively.  
The algorithms outputs are compared with each other in 
following terms:  

(I) RPD: This criterion is one of the well-developed 
approaches for measuring the efficiency in 
mathematical programming models. RPD is 
obtained as Eq. (52): 
RPD=[(MINstage-MINtotal)/MINtotal]100%       (52)

                  

where MINstage and MINtotal are the best cost of algorithm 
in each stage and best cost that earned up to now, 
respectively. Obviously, the algorithms with lowest RPD 
are the best one.  

(II) Best cost (Minimum): The algorithms with better 
objective function are the best one. 

(III) CPU TIME: The computational time of running 
the algorithms to reach best solutions. 
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Table 4  
Optimum value of input parameters in GA 

Pm Pc Niteration Npop problem
0.5 0.95 420 20 Small 
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Table 10 
 RPD of all problems for LINGO, GA, SGA, WCA and MBO 

size 
problem RPD for model 1 RPD for model 2 

n×m×g LINGO GA SGA  WCA MBO  LINGO GA SGA  WCA MBO 

sm
al

l 3×3×2 0 0 0 0 0 0 0 0 0 0 
3×4×2 0 0 0 0 0 0 0 0 0 0 
5×5×4 0 0 0 0 0 0 0 0 0 0 

Average 0 0 0 0 0 0 0 0 0 0 

m
ed

iu
m

 

5×8×5 0 0 0 0 0 0 0 0 0 0 
5×10×6 0 0 0 0 0 0 0 0 0 0 
5×15×4 0 0.020 0.030 0.008 0.003 0 0.009 0.010 0.009 0.018 

Average 0 0.007 0.010 0.003 0.001 0 0.003 0.003 0.003 0.006 

la
rg

e 10×5×5 0 0 0.004 0 0 0 0 0 0 0.001 
10×10×10 ? 0 ? 0 0 0 0 0.026 0 0 
10×15×10 ? 0 ? 0 0.002 0 0.003 0.061 0 0.002 

Average ? 0 ? 0 0.001 0 0.001 0.029 0 0.001 

Table 11  
Comparison of all algorithms for Model 2 

Model 2 LINGO GA SGA WCA MBO 
CPU Time reference Less than SGA, WCA More than all Less than SGA Less than GA, SGA, WCA 

MIN reference Less than SGA, MBO More than all Less than GA, SGA, MBO Less than SGA 
RPD reference Less than SGA, MBO More than all Less than GA, SGA, MBO Less than SGA 

Fig. 9. CPU Time’s box plot and graphical comparison of all methods for nine problems in model 1 and 2 
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Fig. 10. MIN’s box plot and graphical comparison of all methods for nine problems in model 1 and 2 

 

 

 

 
Fig. 11. RPD’s box plot and graphical comparison of all methods for nine problems in model 1 and 2 
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proposed and MINLP and MILP performance analyzed. 
Since the proposed models are NP-hard, GA, SGA, WCA 
and MBO were applied and compared with test problems 
via three metrics based on RPD, MIN and CPU Time. 
Among the proposed models, a sequence-based model 
(Model 2) has produced the best results, as shown by the 
careful statistical analysis and Table 3. According to 
parameter tuning procedure and outputs, the results show 
that the proposed linearization significantly works better 
than other meta-heuristic algorithms in terms of RPD, 
MIN and CPU Time criteria for small and medium sizes 
of Model 1 and better than other algorithms for all criteria 
and sizes of Model 2, while the WCA shows better 
performance in RPD and MIN criteria and the MBO in 
CPU Time.  

As a direction for future studies, since this paper 
considers identical factories and machines, it could be 
interesting to develop distinct factories with different 
machine capacities and limited buffers. So, in order to 
solve the mathematical model, other algorithms and exact 
methods can be proposed.  
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