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Abstract

This paper addresses a new mixed integer nonlinear and linear mathematical programming economic lot sizing and scheduling problem in
distributed permutation flow shop problem with number of identical factories and machines. Different products must be distributed
between the factories and then assignment of products to factories and sequencing of the products assigned to each factory has to be
derived. The objective is to minimize the sum of setup costs, work-in-process inventory costs and finished products inventory costs per unit
of time. Since the proposed model is NP-hard, an efficient Water Cycle Algorithm is proposed to solve the model. To justify proposed
WCA, Monarch Butterfly Optimization (MBO), Genetic Algorithm (GA) and combination of GA and simplex are utilized. In order to
determine the best value of algorithms parameters that result in a better solution, a fine-tuning procedure according to Response Surface

Methodology is executed.

Keywords: Lot sizing; Distributed permutation flow shops; Linearization; Water Cycle Algorithm; Monarch butterfly optimization.

1. Introduction

Economic Lot Sizing Problems (or ELSP) is one of the well-
recognized production planning problems belonging to the
medium-term decision making. It attracts many attentions in
the literature after the pioneer papers of Rogers (1958) and
Elion (1959). In classic ELSP, there are a set of n products
need to be processed on a single machine. The machine can
process at most one product at a time. Both demand and
production of each product follow constant rates and are
known in advance. All the demands must be satisfied; that is,
no shortage is allowed. Some setup is carried out before the
production can commence. This setup could be influential
regarding both its magnitude of time and its cost. Moreover,
the production horizon is assumed to be continuous and
infinite. The objective is to specify a production schedule so
as to minimize long-run average total cost, i.e. sum of setup
and inventory holding costs. The cyclic schedule is
frequently assumed to be common cycle; that is, the
production cycle times of all the products are the same. The
production schedule includes two decision dimensions,
sequence and quantity in which products are processed
(Maxwell, 1964). Karimi et al. (2003) provide a review of
models and algorithms for different lot sizing problems.

In practice, there are shops in which a series of operations
have to be carried out to turn raw materials into finished
products. One of the commonly-happening environments is
to have the same route for all the products to pass through
machines. In this case, the shop is called a flow shop. If it is
assumed that sequences of products on all machines are the
same, the shop is called a permutation flow shop. To

*Corresponding author Email address: bahman.naderi@ aut.ac.ir

103

approach realistic industrial settings, the classic problem is
further developed to consider Economic Lot Sizing Problems
in Permutation Flow shops (or ELSP in PFS). It seems that
multi-stage ELSP was initiated by El-Najdawi (1989)
through considering a two-stage problem. Later, the problem
is developed to the case of arbitrary number of stages by Hsu
and El-Najdawi (1990). Looking into the literature of this
problem, is noticed that it experiences a new era after the late
90s. Before 1999, researches are centered on this idea that
production sequence is negligible due to its trifling influence
on the total cost. Therefore, the little heed was paid to the
sequence decision. It was common place to tackle the
problem by minimizing the total cost for a given sequence
usually obtained by a simple heuristic. As a case for this
point, the reader refers to a paper by El-Najdawi and
Kleindorfer (1993). They make use of Shortest Processing
Time (or SPT) to obtain a sequence. Their core contribution
is on lot-sizing decision rather than sequencing decision.
Dobson and Yano (1994) and El-Najdawi (1992, 1994) are
among the other papers considering ELSP in PFS. But, they
still more concentrate on lot-sizing decision. Ouenniche et al.
(1999) studied ELSP in PFS, and explored the effect of
sequencing decision on the final total cost. They concluded
that sequencing decision should be taken into account as well
as lot-sizing one. They present a MINLP model and some
heuristics in two groups: constructive heuristics (CH) and
improvement heuristics, commonly known as metaheuristics.
Contrary to existing CHs in the literature of PFS usually
minimizing completion time related objectives, they propose
CHs that minimize the work-in-process holding cost.
Afterwards, they present some local search procedures
improving the solutions obtained by CHs as a metaheuristic.



Mohammad Alaghebandha et al. /Economic Lot Sizing and Scheduling...

Later, Torabi et al. (2005) develop the problem considering
presence of multiple identical machines at each stage; and
they solve the problem by adaptation of the solution method
previously presented by Ouenniche et al. (1999). Akrami et
al (2006) addressed the common cycle multi-product lot
sizing and scheduling problem in deterministic flexible flow
shops where the planning horizon is finite and fixed by
management and the production stages are in series, while
separated by finite intermediate buffers. They used both
genetic algorithm and tabu search methods to find an optimal
or near-optimal solution for the problem. A differential
evolution (DE) based memetic algorithm, named ODDE, is
proposed by Li and Yin (2013) for permutation flow shop
problem with minimizing makespan and maximum lateness
objectives. Rahman et al (2015) considered a make -to stock
production system, where three related issues must be
considered: the length of a production cycle, the batch size
of each product, and the order of the products in each cycle.
To deal with these tasks, they proposed a Genetic Algorithm
based lot scheduling approach with an objective of
minimizing the sum of the setup and holding costs. Bargaoui
et al (2017) addressed the Distributed Permutation Flow
shop Scheduling Problem with an artificial chemical
reaction metaheuristic which objective is to minimize the
maximum completion time. In the proposed CRO, the
effective NEH heuristic is adapted to generate the initial
population of molecules. Viagas et al (2018) addressed
the distributed permutation flow shop scheduling problem
to minimize the total flow time. They first analyzed it and
discussed several properties, theorems, assignment rules,
representation of the solutions and speed-up procedures.
They proposed an iterative improvement algorithm to
further refine the so-obtained solutions.
Rifai et al (2016) propose a novel model of the developed
distributed scheduling by supplementing the reentrant
characteristic into the model of distributed reentrant
permutation flow shop scheduling. This Problem is described
as a given set of jobs with a number of reentrant layers are
processed in the factories, which comprises a set of
machines, with the same properties. The aim of the study is
to minimize makespan, total cost and average tardiness.
Recently, Naderi and Ruiz (2009) have introduced a new
generalization of the permutation flow shop originated from
today companies’ structure in which factories are merged to
build a common enterprise. The purpose is to obtain higher
productive, less production cost and so on. More details
could be found in Wang (1997). In these enterprises,
production planners are to handle more complicated decision
making processes. In single-factory problems, there are still
two above-mentioned decisions, whereas in the distributed
problem another decision appears: the assignment of the
products to suitable factories. Consequently, three decisions
have to be taken; product allocation to factories, product
scheduling at each factory as well as lot sizing decision.
Based on the best reviewed, this paper is the first study on
the Economic Lot Sizing Problem in Distributed Permutation
Flow Shop (or ELSP in DPFS). This problem is a well-
known scheduling problem in many industries, such as
steel, pharmaceutical, automobile, and food processing
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(Naderi and Ruiz, 2010). The paper contributes by
developing two different alternative Mixed Integer Non-
Linear Programming (or MINLP) models according to
previous paper Ouenniche et al. (1999) in Distributed
manner. This allows for a precise characterization of the
ELSP in DPFS. The models’ specifications are precisely
compared. Apart from the MIP models, four metaheuristics
based on Monarch Butterfly Optimization, Water Cycle
Algorithm, Genetic Algorithm and Genetic Algorithm with
Simplex are presented. The metaheuristic’s performance is
evaluated by comparing against the optimal solutions
obtained by the linear models in small, medium and large
sized problems.

The rest of the paper is organized as follows. Section 2
develops two mathematical models and linearization of the
proposed models through discussion. Section 3 introduces
four presented metaheuristics. Section 4 evaluates the
performance of the models and the algorithms. Section 5
concludes the paper and clarifies some directions for future
studies.

2. Mathematical Models

Mathematical models are known to be the best way to
precisely define all the characteristics of a problem. Actually,
by mathematical models, it is possible to turn the implicit
explanations of a novel problem into the explicit and detailed
ones. Moreover, mathematical models could be a starting
point for many solution methods such as problem-specific
branch-and-bound methods, approximation algorithms or
even metaheuristics. Apart from being a starting point in
many different algorithms, recently they could also be treated
as solution methods because of available specialized
software and high capacity computers. Considering all these
together encourage researchers to develop effective
mathematical models for their corresponding problems.

More formally, the problem of ELSP in DPFS could be
described as follows: a set of n different customer demands
with different quantities are received. To fulfill them, raw
materials of each demand could be operated in each of g
available different factories each of which has the same set of
m machines deposed in series. There is no restriction on
allocation of customer demands to the factories; however, all
of a demand must be manufactured in one factory. When a
demand is assigned to a factory, it could not be transferred to
another factory. It is also considered that the production rate
of each demand is not changed from factory to factory.
Before the production of a product can begin on a machine,
some anticipatory setup must be performed, meaning that,
the setup of a product j on a machine i can start when the
machine finishes the process of the previous product (even if
product j is processed on machine i-1). A product cannot be
processed by more than one machine at a time; and a
machine cannot process more than one product at a time.
There is no maintenance or breakdown, i.e. machines are
always available. Customer demands are only for finished
products which continuously delivered. Demand and
production rates, setup times and costs, and inventory
holding costs are deterministic and constant over an infinite
planning horizon. Each product has a unique production rates
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on different machines. Inventory levels and holding time
directly determine the inventory holding costs. Shortages are
not allowed. When the operation of a product starts, it cannot
be interrupted, i.e. products are not preemptive. There is
unlimited buffer between machines, i.e. products can wait
unlimitedly for the next machine. It is additionally assumed
that the production cycle times of all the factories are equal.
In this section, the problem by two different MIP models are
formulated, since it is not clear which model has best
performance. Notice that the objective function of the models
includes three parts: setup cost, inventory holding cost of
finished and semi-finished products. A continuous variable T
denoting the common cycle time is employed in two models.
Before presenting the models, the parameters and indices,
shown in Table 1, are defined.

Table 1
The parameters and indices used in the models

Notation Description

n Number of products

m Number of machines

g Number of factories

j. k Index for products, j, k €{1, 2, ... ,n}

i Index for machines, i {1,2, ... ,m}

f Index for factories, f €{1,2, ... ,g}

Dji Production rate of product j on machine i
d; Demand rate of end product j

stj; Setup time of product j on machine i

s¢; Total setup cost of product j over all machines

h;,; Inventory holding cost per unit of product j per time unit
between machines i and i+1

h; Inventory holding cost per unit of finished product j per time

M Big positive number

2.a. Model 1

In this model, Binary Variables (or BV) just represent the
position of products in sequence. Contrary to the next model,
the two decisions of product allocation to factories and
product sequence in each factory are together determined by
one BV type. Notice that notation k is an index to denote
positions and ss; ; is start time of product j on machine i that
works in a similar S;; in model 2. The following variables
are defined in this model:

Xjxs - Binary variable that takes value 1 if product j
occupies position k in factory f, and 0 otherwise. (1)

Skir : Continuous variable for the starting time of the
product in position k on machine i in factory f. 2)

Model 1 characterizes the ELSP in DPES as follow:

Minimize Z = ¥, (SC' + 2L ([h <1 - —) +

Pj,m
2y S (- )] )
Zizzhi-i‘lz Pji  Dbji-1 T ®
+ 21 Zher Z2([Efkr X (hjia - dy)][Swis = Si-ve])
Subject to:
T i Xk =1y @

Yt Xjre <1 Vi (5)
4T
SS;i = SSji_q + ]1 - Vii>1 (6)
]’
S5y, 2 S8y, + 1+ st Vigeunor (7
M(l - Xjkf) M(l - le,kl,f) K<k
SS]] = St vj,i (8)
d:-T
4T ot _gg . _
T2 S8+ [+ sty — S5y, Vigeunor (o
M(1 = Xjp) = M(1 = Xj o, f) ek
4T
T2 3 Tk X (st +55) v (10)
SSji = Xhe1 X6 Xikf Skif Vii (11)
T,Skie =0 Vit (12)
Xk € {0,1} Ykt (13)

The objective function (3) is to minimize the sum of setup
costs, work-in-process inventory costs and finished products
inventory costs per unit of time. Constraint set (4) assures
that every product must be assigned once. Constraint set (5)
ensures that every position must be occupied once.
Constraint set (6) states that the process of a product j on
machine i cannot begin before its process on machine i-1
completes. Constraint sets (7) is the dichotomous pairs of
constraints relating each possible production. Constraint set
(8) ensures that the first product in each factory starts after its
setup. Constraint set (9) and (10) ensure the minimum
possible cycle time is satisfied. This minimum is obtained
through capacity-constrained of each factory. Constraint set
(11) ensures that each product in every position must be
occupied in one factory. Constraint sets (12) and (13) define
the decision variables.

2.b. Model 2

In this model there are two types of Binary Variables. The
first one is to show relative sequence of every pair of
products, meaning that, whether a product precedes/succeeds
another product or not. The other BV is to represent product
allocation to factories. The variables employed in this model
are:

Xj : Binary variable that takes value 1 if product j

follows product k, and 0 otherwise. (14)
Y; r: Binary variable that takes value 1 if product j is
processed in factory f, and 0 otherwise. (15)
§; i Continuous variable for the starting time of product j
on machinei. (16)

Model 2 formulates the ELSP in DPFES as follow:

Minimize Z = YL, (“‘ + ¥, ([h <1 - —) +

Pjm

+ XM, by 1(12"2(1 - )]T) (17)

bj,i Pji-1

+ Yk=1 2i= 2([h11 1 d][ i j,i—l])
Subject to:

£ Yie=1 v (18)
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i T

Sii = Sji- 1+ ]1 . Vimr (19)
S > S;+ + stj; —M(1 —

j,i 1 2 ( vj,kij,i,f (20)

Xjk) = M(l ]f) M(1 ~ Yir)
S . >S +39T Lt —M-Xip —

ki = 91 T T Stk b Vikzjif (21)
M(1 - Yj) — M(1 — Yys)
T > S +—+Stk1_Sk1
(1~ X) - M(1 -4 - et 22
M(1 — Yys)

i T
T 2> Sy; + ==+ stj; — Sj; — (M -
ki P M 2 ( Vikejif (23)
Xja) = M(1 = Yje) = M(1 = Yiee)
n dj-T
TS5y (Stj’i + F) Vi (24)
ji

5j; 2 sty Vii (25)
Xjk + Xgj =1 Vikiesj (26)
T, Sivi > 0 vi'i (27)
X;\ € (0,1} ik (29
Y €01} Vie (29

The objective function (17) is to minimize the sum of setup
costs, work-in-process inventory costs and finished products
inventory costs per unit of time. Constraint set (18) ensures
that every product is allocated exactly to one factory.
Constraint set (19) states that the process of a product j on
machine i cannot begin before its process on machine i-1
completes. Constraint sets (20) and (21) are the dichotomous
pairs of constraints relating each possible production pair. In
other words, they assure that a machine processes at most
one product at a time. Constraint sets (22) and (23) calculate
the common cycle time, whereas Constraint set (24) specifies
the capacity-constraints of each factory to manufacture
assigned products. Constraint set (25) ensures that the first
product in each factory starts after its setup. Constraint set
(26) avoids the occurrence of cross-precedence, meaning that
a product cannot be at the same time both a predecessor and
a successor of another product. Constraint sets (27), (28) and
(29) define the decision variables.

2.1 Linearization of the proposed model

The proposed models are MINLP because of the nonlinear
term in the objective function and also constraints. In order to
decrease the number of nonlinear terms, linearization in a
similar way as in Rodriguez et al (2014), You and
Grossmann (2008) and Pakzad-Moghaddam et al. (2014) is
used. In the model 1, the bilinear terms between the
continuous variable T and the binary variables Xjyr in
objective function, also constraints (10 and 11), are
linearized as follows. Notice that constraint set (11) have
been replaced with constraint sets (30) — (33), and constraint
(34) of the first derivative of the objective function is
obtained.
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Minimize Z = }7_, )
| 2j=15¢)
d d: dz.
e
hi =2 4 (1 - L) +
n n 2 Pjm
+ | Xjog 56 {2 a2 }
ym opo 4 (L _ 1 )
=270 2 \pji pjiea
+Z ([E} 1(G1ka ]l 1kf)]>
o1 df)
Subject to:
Eq. (4) — Eq. (10) and Eq. (12) — Eq. (13)
Giiky < Xjrr-M Vikif (30)
Giiky = Skiy— 1 —Xjp)M Vikif 3D
Giiks <Skiy+ A —Xjpp)M Vikif (32)
Giikr =0 Vjkif (33)
Minimize Z =
SC]' +
1
= Eje15

d dj dz
JE?a([%f(%ﬂ% i i ”J_>]>
n m
d d. d? /1 1
E h._1(1——1)+ E hy - ]< - )
: ([ 72 pim) L 72 \pji pjiea

=2
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j=1i=2
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.T>

n
Z' 15Cj
d dj
J 4
hlz( P )+
1,‘1 jm

=1 2
\smon, 1d_1<i_ 1 )
\ =2 2 g P

(34)

In a similar way in the model 2, one term in objective
function is divided by continuous variable (T) and constraint
(24), the bilinear terms consisting of a continuous variable
(T) product a binary variable Y;¢ are must be linearized as

follows.

3. Complexity and Test Problems

The performance of the models and method is studied
through its solutions for a total of 180 problems in small,
medium and large sized. Different problem sets with 3, 5
or 10 products and 3, 4, 5, 8, 10 or 15 machines and 2, 4,
5, 6 and 10 factories in three sized are considered. Each
problem set is composed of 20 randomly generated
problems as follows in Table 2 and 3. There are 9
combinations of N, m and g. Twenty instances for each
combination for a total of 180 instances are generated.
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Table 2

Generate of the test problems

Parameter Description

n Small sized (3 and 5) , Medium sized (5) and Large sized (10)

m Small sized (3, 4 and 5) , Medium sized (8, 10 and 15) and Large sized (5, 10 and 15)
g Small sized (2 and 4) , Medium sized (4, 5 and 6) and Large sized (5 and 10)
Py, uniform distribution (300,9000)

qj uniform distribution (50,500)

sti,i uniform distribution (0.01,0.5)

SCj s¢j = (15000 x ¥, st;;) + 1000 X uniform distribution (0,1)

hj; hj; = h;;i_;+uniform distribution (1,7) and h;, = uniform distribution (1,10)
h; uniform distribution (10,170)x10%

M 10000

Table 3

Models comparison on the size complexity

number of variables number of constraints
Problem size
model 1 model 2 | model 1 model 2
3x3%2 99 24 490 103
3Ix4x2 164 27 1045 135
5x5x%4 725 70 10216 891
5x8x%5 3300 100 100751 2171
5x10%6 3950 105 120871 2581
5x15%4 6021 120 271247 2631
10%x5x5 1675 200 50326 4716
10x10x10 12436 300 851502 18391
10x15%10 26886 350 2928002 27541

To verify efficiency of the proposed algorithms, all of the
experimental tests have been implemented on a personal
computer with a core i7 processor (2.5 GHz) and four GB
RAM. The models and algorithms were coded by LINGO
16 and MATLAB (Version R2016a) language.

4. Metaheuristic Algorithms

In this section, two metaheuristic algorithms are explained
in brief. For solving the models, use of metaheuristic
algorithms have been considered for obtaining optimum
values for the model 1 and 2. In this paper, metaheuristic
algorithms including the Water Cycle Algorithm (WCA),
Monarch  Butterfly Optimization (MBO) Genetic
Algorithm (GA) and combination of GA and simplex are
used to find an approximate solution for the considered
models.

Few researchers have considered methods with
metaheuristic algorithms to support scheduling in
distribution systems. Generally, distributed scheduling
problems deal with the assignment of products to suitable
factories and determine their production scheduling
accordingly (Chan, et al. (2005)). The design of a suitable
chromosome is the first step for a successful metaheuristic
implementation because it applies probabilistic rule on
each chromosome to create a population of chromosomes,
representing a good candidate solution. In this approach,
each chromosome for model 1 represents a solution
corresponding to:

(1) The allocation of products to factories,

(i) The production priority of each product in each
machine.

A chromosome is composed of genes. Each gene
consists of three parameters (i.e. fij), representing:

Factory number (f),
Machine number (i),
Product number (j),

Fig.1 shows a sample coding of a chromosome for the
allocation and scheduling of three products to two
factories, in which each factory has three machines. The
scheduling result is shown in Fig.2.

123 | 121 | 131 | 222 | 212 | 232 | 113 | 133

fij | > | 111

Fig.1. A sample coding of chromosome A

In Fig.1, the first gene (111) shows that j1 (Product 1) is
allocated to f1°s il (Factory 1°s Machine 1).
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Factory 1
Ml ity B3
M2 S L S PO
M3 L _: _ _j3_ _ Jl
Factory 2 o
Mi L2
M2 I _j_2_ _: _____
VR :_ _j2_ . -:
1 2 3 4 5

Fig. 2. Scheduling result of sample chromosome
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The second step is to copy the first and the second
positions from the gene of the chromosome A into the
gene of the chromosome B, and change the last position
of the chromosome A into last gene’s position of the
chromosome B by generated integer random number
between one and the product number. If the new two
neighbor genes in chromosome B are similar exactly to
chromosome A, then change these two gene’s positions
and generate another integer random number. Fig.3 shows
a sample coding of a chromosome B.

113 122 121 132 | 223 | 212 | 233

111 | 131

Fig. 3. A sample coding of chromosome B

The objective is to minimize the total cost of the system.
It corresponds to the main objective function as model 1.
Two types of chromosomes for model 2 are used.
Chromosome type 1 is a linear and has the virtue of
showing that every product must be done in one factory
and in what sequence. For instance, consider the case with
2 products and 5 factories that should create 6
permutations as follows (Fig.4):

Fig. 4. A sample coding of chromosome

To determine which products should be produced in the
first factory, must started from the left side of the
chromosome and stop whenever to reach number 6, so
numbers after 6 are related to the second factory. In other
words, products 3 and 5 in the first factory and products 1,
2 and 4 must be produced in the second factory.
Generally, if the number of products is equal to n, and the
number of factories is equal to ng then the number of
permutations will be ny+ns-1. If the objective function is
makespan, to find the start time, knowing sequence is
enough, and in fact, earliest time is the same start time.
Otherwise, earliest time instead of start time could not
found. Because in this model differences between start
times in objective function is obtained, independent of the
sequence, the delay time should be calculated. For this
purpose, matrix of Chromosome type 2 with n,xny
dimension (n,. number of product, n,, number of machine)
on the interval [0, 1] must be provided. The numbers in
the matrix should be added as a delay time to the start
time on the machine, then, earliest time with respect to the
constraints must be earned.

In this paper, corrected one-point crossover for variable x
and uniform crossover for variable y are used. Also, swap,
insertion and inversion mutation for variable x and
uniform mutation for variable y are applied.

Because of the complexity of exact methods due to the
presence of discrete variables and to get closer answer via
metaheuristic algorithms, in this paper for comparison
between GA, WCA and MBO, simplex and GA (SGA)
combined method is used. In SGA method, at first, x and
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y variables are calculated with GA and chromosome type
1. So, optimum sequence is used, then with respect to
related constraints the model must be solved by simplex.
In other words, value of S variable for each optimum
sequence is obtained till the third part of the objective
function is minimized.

4.1 Water cycle algorithm
4.1.1 Basic concepts

he idea of water cycle algorithm (WCA) was firstly
originated from one of the natural phenomena by
Eskandar et al. (2012) (Khodabakhshian et al. (2016)) and
that is inspired by nature and is based on the observation
of the water cycle process and how rivers and streams
flow downhill towards the sea in the real world (sadollah
et al. (2015)). To understand this further, an explanation
on the basics of how rivers are created and water travels
down to the sea is given as follows. A river, or a stream,
is formed whenever water moves downhill from one place
to another. This means that most rivers are formed high
up in the mountains, where snow or ancient glaciers melt.
The rivers always flow downhill. On their downhill
journey and eventually ending up to a sea, water is
collected from rain and other streams (Eskandar et al.
(2012).

In the real world, as snow melts and rain falls, most of
water enters the aquifer. There are vast fields of water
reserves underground. The aquifer is sometimes called
groundwater. The water in the aquifer then flows beneath
the land the same way water would flow on the ground
surface (downward). The underground water may be
discharged into a stream (marsh or lake). Water
evaporates from the streams and rivers, in addition to
being transpired from the trees and other greenery, hence,
bringing more clouds and thus more rain as this cycle
counties (David, (1993) and Elhameed (2017).

4.1.2 Create the initial population

The WCA is a population-based algorithm; therefore, an
initial population of designs variables (i.e., streams) is
randomly generated between upper (UB) and lower (LB)
bounds. In the proposed method terminologies such array
is called ‘‘Raindrop’’ for a single solution (Eskandari et
al. (2012)). The best individual, classified in terms of
having the minimum cost function (or maximum fitness),
is chosen as the sea. Then, a number of good individuals
(i.e., cost function values close to the current best
solution) are chosen as rivers, while all other streams are
called streams which flow to rivers and sea. In an N
dimensional optimization problem, a stream is an array of
1xN. This array is defined as follows (Sadollah et al.
(2015)):

Raindrop =[xy, X3, X3, * * *, XN] (35
Where N is the number of design variables. To start the
optimization algorithm, a candidate representing a matrix
of raindrops of size Ny, Ny, is generated (i.e. population
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of raindrops). Hence, the matrix X which is generated
randomly is given as Eq. (36) (rows and column are the
number of population and the number of design variables,
respectively) (Eskandar et al. 2012).

Raindrop,
Raindrop,
Population of raindrops = | Raindrops
Raindr 36
aln(f OPNpop (36)
1 1 1
[xl X3 X3 XNyar
1 1 1 1
- M X2 X3 XNvar
N. N. N. N.
pop pop pop pop
L% 2 3 *Nyar

Then, a number of good streams are chosen as rivers and
the rest of the streams flow to the rivers and sea.
Depending on the magnitude of their flow, rivers and sea
absorb water from the streams. In fact, the amount of
water in a stream entering a river and/or sea varies from
the other streams (depends on their objective function
value). In order to designate/assign streams to the rivers
and sea depending on the intensity of the flow, the
following equation is given as follows (Sadollah et al.
(2015)):

C, = Cost, - Costy,,, , n=1,2,3, ..., N (37)
_ n
NS, = Round[ ivﬂ C X Nsm,am}, n (38)
=12,..,N

Sr

Where NS, and Ng..m are the number of streams that flow
to the specific rivers and number of sea and rivers,
respectively. Indeed, in coding WCA, the costs of sea and
each river have been deducted by the cost of an individual
(i-e., Ng+1) in stream population as can be seen in Eq.
(37). Streams tend to move toward sea and rivers based on
their magnitude of flow (intensity of flow). It means more
streams flow into the sea than rivers. Hence, one of the
best approaches to hand out the streams among sea and
rivers in proportional way is to use the cost functions
(fitness functions) of the sea and rivers. Since the solution
of the equation must be obtained in the form of integer
value, round operator is used.

4.1.3 Flow of the stream to the river or se¢

According to process for the WCA, rivers and sea are
affected by the flow of streams and are selected as better
and best solutions respectively. Therefore, sea receives
more streams than rivers do. For a minimization problem,
the lowest cost is obtained for streams which flow to the
sea. Also, the lower cost is considered for other streams
which flow to rivers. According to the nature of water
cycle process, streams are made of the raindrops and
gather to create new rivers. Some streams may flow
directly to the sea. Also, all rivers and streams will finally
arrive into the sea which is the best solution. For a set of

109

Npop streams, it is assumed that NS, ; numbers of streams
are considered as rivers and one of them is chosen as the
sea. The relation between a stream and a significant river
is depicted in Fig. 5. In this figure, circle and star are
shown as stream and river respectively. Also, parameter X
is defined as the distance between a stream and the
associated river. X is randomly calculated as follows
( sadollah et al. (2015)):

[1 (0, Cxd),

C>1 (39)

Where C is an arbitrary value between 1 and 2. The best
s :lection for the value of C is 2. This parameter is set
more than 1 because this selection lets streams flow in
different directions into rivers. Therefore, as the
exploitation phase in the WCA, the new positions for
streams and rivers can be given in the following equations
( >adollah et al. (2015)):

X Stream(t + 1) = X Stream(t) + rand x C x (X (40)
River(t) - X Stream(t))

X Stream(t + 1) = X Stream(t) + rand x C x (X (41)
Sza(t) - X Stream(t))

X River(t + 1) = X River(t) + rand X C x (X (42)

Sea(t) - X River(t))

New Position

“ig. 5. Schematic view of the stream flowing into a significant
river (Khodabakhshian et al. (2016))

Where rand is an uniformly distributed random number
([0,1]). Egs. (40)-(41) are considered as updating
equations for new positions of streams which flow to
rivers and sea, respectively, while Eq. (42) is the updated
equation for the rivers which pour to the sea. Notations
having vector signs correspond vector values, otherwise
the rest of notations and parameters considered as scalar
values. To prevent an imperfect convergence, the
e7aporation process operator is considered in the
proposed algorithm. In a real world, this process means
t at the evaporation of the water of sea occurs and the
water vapor goes to the sky for next precipitations. This
stage of the water cycle is considered for the river/stream
that is close enough to the sea (Khodabakhshian et al.
('016)). Therefore, the occurrence of the evaporation
process is verified by using a criterion as follows:

if 1XSea(t) — XRiver(t) | < dpqay orrand < 0.1
i=123,..,Ng
then evaporation and raining process is occured

(43)
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Where d,, refers to a small number of distance near zero.
Therefore, if the distance between a river and sea is less
than d,,,, it indicates that the river has reached the sea
and controls the search intensity near the optimum
s lution (the sea). After satisfying the evaporation

ocess, the raining process is applied. In the raining
process, new streams form in different locations (acting
similar to the mutation operator in the GAs). In fact, the
e raporation condition is responsible for the exploration

1ase in the WCA. For termination criteria, the WCA
proceeds until the maximum number of iterations as a
convergence criterion is satisfied. The schematic view of
the WCA is illustrated in Fig. 6 where circles, stars, and
the diamond correspond to streams, rivers, and sea,
respectively. From Fig. 6, the white (empty) shapes refer
to the new positions found by streams and rivers
(Sadollah et al. (2015)).

& "o
e ¥

BN

o ®

New Position for

v

d
New Positiz;m (@) og.\

for River X

Fig. 6. Schematic view of the WCA’s movement towards the
best optimum point (sea) (Sadollah et al. 2015)

4.2. Monarch butterfly optimization

Rzcently, by examining and simulating the migration
behavior of monarch butterflies in nature, Wang et al.
(2016) proposed a new swarm intelligence-based
metaheuristic  algorithm, called monarch butterfly
optimization (MBO), for addressing various global
o) timization tasks. The foundation of this algorithm is
based on the study of the migration characteristics of
monarch butterflies. In MBO method, the butterflies in
Land 1 and Land 2 are updated by migration operator and
butterfly adjusting operator, respectively. These
optimization processes are repeated till any pre-fixed stop
condition is satisfied.

In order to make the migration behavior of monarch
butterflies address various optimization problems, the
migration behavior of monarch butterflies can be
idealized into the following rules (Wang et al. (2015)).

1. All the monarch butterflies are only located in Land 1
or Land 2. That is to say, monarch butterflies in Land 1
ad Land 2 make up the whole monarch butterfly
population.

2. Each child monarch butterfly individual is generated by
migration operator from monarch butterfly in Land 1 or in
Land 2.
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3. In order to keep the population unchanged, an old
monarch butterfly will pass away once a child is
generated. In the MBO method, this can be performed by
r placing its parent with newly generated one if it has
better fitness as compared to its parent. On the other hand,
the newly generated one is liable to be discarded if it does
not exhibit better fitness with respect to its parent. Under
this scenario, he parent is kept intact and undestroyed.

4. The monarch butterfly individuals with the best fitness
move automatically to the next generation, and they
cannot be changed by any operators. This can guarantee
t at the quality or the effectiveness of the monarch
butterfly population will never deteriorate with the
increment of generations

4.2.1 Migration operator

According to the time when monarch butterflies stay at
Land 1 and Land 2, their numbers in Land 1 and Land 2
can be considered as ceil(p*NP) (NP1, Subpopulation 1)
and NP-NP1 (NP2, Subpopulation 2), respectively. Here,
ceil(x) rounds x to the nearest integer greater than or
eual to x; NP is the population size; p is the ratio of

onarch butterflies in Land 1. This migration process can
be formulated below (Wang et al. (2015)):

t+1

Xt =t (44)

Where x{#" indicates the kth element of x; at generation
t+1. Similarly, xﬁl_k indicates the kth element of x,. . t is
the current generation number. Butterfly rl is randomly
selected from Subpopulation 1. When r<p , xf;l is

generated by Eq. (44). Here, r can be calculated as
r =rand * peri (45)

pari indicates migration period and is set to 1.2 in the
basic MBO method. rand is a random number. If r>p,

x{3! is generated by
(+1 _ ot
Xik™ = Xrk (46)

Where xfzyk indicates the kth element of x., , and

atterfly 12 is randomly selected from Subpopulation 2.

ccordingly, the migration operator can be represented in
Algorithm 1.

Algorithm 1 Migration operator (Wang et al. (2015))
Begin
for i= 1 to NP, (for all monarch butterflies in Subpopulation 1) do
for k=1 to D (all the elements in ith monarch butterfly) do
Randomly generate a number rand by uniform
distribution;
r=rand*peri;
if r <p then
Randomly select a monarch butterfly in Subpopulation 1
(say r);
Generate x{ ;"
else
Randomly select a monarch butterfly in Subpopulation 2
(say ry);
Generate x{;" by Eq. (46).
end if
end for k
end for i

End.

by Eq. (44).
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4.2.2 Butterfly adjusting operator

For all the elements in butterfly j, if rand < p, it can be
updated as

t+1

t
X jk = X bpestk 47

Where x4 indicates the k™ element of x; at generation

t+1. Similarly, xf. , indicates the kth element of the

fittest butterfly Xpe. If rand>p, it can be updated as:
t+1

x]"k = xf&k (48)
where x,§3,k indicates the kth element of x,.,. Here, 13 [
{1,2,...,NP,}.

Under this condition, if rand>BAR, it can be further
updated as follows:

Sl =+ a x (dx —0.5) (49)

xl'k

Where BAR indicates butterfly adjusting rate. dx is the
walk step of butterfly j and which can be calculated by
Levy flight.

dx = Levy(xf) (50)

Lévy flights, named after the French mathematician Paul
Lévy, are a class of random walks in which the step
lengths are drawn from a probability distribution with a
power law tail. These probability distributions are known
as Lévy distributions or stable distributions (Brown, C. et
al. (2007)).

In Eq. (49), a is the weighting factor as shown in Eq. (51).

a :Smax/tz (51)

where S, is max walk step.
The main steps of the butterfly adjusting operator can be
given in Algorithm 2 (Wang et al. (2016)).

Algorithm 2 Butterfly adjusting operator
Begin
for j=1 to NP, (for all butterflies in Subpopulation 2) do
Calculate the walk step dx by Eq. (50);
Calculate the weighting factor by Eq. (51);
for k=1 to D (all the elements in jth butterfly) do
Randomly generate rand;
if rand < p then
Generate x{5" by Eq. (47).
else
Randomly select a butterfly in Subpopulation 2 (say rs);
Generate xf3" by Eq. (48).

if rand>BAR then
xfet =xft" 4+ a x (dx, —0.5);
end if
end if
end for k
end for j

End

4.2.3 Schematic presentation of MBO algorithm

By idealizing the migration behavior of the monarch
butterfly individuals, MBO method can be formed, and its
schematic description can be given as shown in Algorithm
3. A brief presentation of the MBO algorithm is shown in
Fig. 7.
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According to Algorithm 3, firstly, all the parameters are
initialized followed by the generation of initial population
and evaluation of the same by means of its fitness
function. Subsequently, the positions of all monarch
butterflies are updated step by step until certain conditions
are satisfied. It should be mentioned that, in order to make
the population fixed and reduce fitness evaluations, the
number of monarch butterflies, generated by migration
operator and butterfly adjusting operator, are NP1 and
NP2, respectively (Wang et al. 2015).

Algorithm 3 Monarch Butterfly Optimization algorithm
Begin
Step 1: Initialization. Set the generation counter

t = 1; initialize the population P of NP monarch butterfly
individuals randomly; set the maximum generation
MaxGen, monarch butterfly number NP1 in Land 1 and
monarch butterfly number NP2 in Land 2, max step SMax,
butterfly adjusting rate BAR, migration period peri, and the
migration ratio p.

Step 2: Fitness evaluation. Evaluate each monarch butterfly
according to its position.

Step 3: While the best solution is not found or t < MaxGen do
Sort all the monarch butterfly individuals according to
their fitness.

Divide monarch butterfly individuals into two
subpopulations (Land 1 and Land 2);
for i= 1 to NP1 (for all monarch butterflies in
Subpopulation 1) do

Generate new Subpopulation 1 according to
Algorithm 1.
end for i
for j= 1 to NP2 (for all monarch butterflies in
Subpopulation 2) do

Generate new Subpopulation 2 according to
Algorithm 2.
end for j
Combine the two newly-generated subpopulations into
one whole population;
Evaluate the population according to the newly updated
positions; t=t+1.

Step 4: end while

Step 5: Output the best solution.

End.

4.3 Parameter tuning

In this section, tuning the input parameters of four
algorithms is focused. Since all meta-heuristic algorithms
are severely depends on their parameters. So, response
surface methodology (RSM) is applied to tune the
algorithms parameters. RSM is a collection of statistical
and mathematical techniques useful for optimization
particularly in situations where several input variables
potentially influence some performance measure or
quality characteristic called response [28]. Here the aim is
to find the levels of the algorithms' parameters (as input
variables) so that response variable (objective function) is
optimized. For instance, Population size, number of
iteration, crossover probability and mutation probability
are considered in GA that each given the values of -1, 0,
and 1 for their low, medium and high levels, respectively
in MINITAB software.
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Fig. 7. Schematic flowchart of MBO method (Wang et al.
(2015))

In this method, central composite design with 4 factors
for 3 sizes of problems as an example with 3x3x2, 3x4x2
and 5x5x4 for small size, 5x8x5, 5x10x6 and 5x15x4 for
medium size and 10x5x5, 10x10x10 and 10x15x10 for
large size is used, that these numbers indicate nxmxg.
According to RSM, values of lack of fit for all sizes are
larger than 0.05 (i.e 0.081, 0.067 and 0.958, respectively),
so indicates that the fitted regression functions with 95%
confidence level are true. Based on the solution obtained
using regression functions by LINGO, the optimum
values of the parameters are finally obtained that are
presented in Table 4.
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Table 4
Optimum value of input parameters in GA
problem Npop Niteration Pc Pm
Small 20 420 0.95 0.5
Medium 30 1200 0.8 0.5
Large 62 12000 0.7 0.3

For other metaheuristic this method is duplicated. Then,
the following Tables 5-7 are obtained for these problems.
Also, Fig 8 shows convergence plot as an example just for
large size. SGA could not find optimum objective in 3600
second for large size (see Table5 for large problem).

Table 5
Optimum value of input parameters in SGA

problem Npop Niteration Pc Pm
Small 3 4 0.7 0.3
Medium 4 7 0.7 0.3
Large ? ? ? ?
Table 6
Optimum value of input parameters in WCA
problem Npop Niteration Nsr dmax
Small 30 100 2 0.01
Medium 50 150 3 0.01
Large 100 500 4 0.05
Table 7
Optimum value of input parameters in MBO
problem Npop Niteration NP1 P
Small 30 100 28 7/12
Medium 30 200 38 5/12
Large 50 400 48 712

5. Computational Results and Models Evaluation

In this section, nine different problems with three size
numerical examples are applied (i.e. small, medium and
large); for each problem size, 20 problem instances have
been randomly generated then, to demonstrate
performance of the proposed algorithms, the results are
analyzed statistically and graphically. For each numerical
example, 10 independent runs have been performed by the
LINGO, GA, SGA, WCA and MBO to decrease
uncertainty of generated runs. Then, the reported value is
the algorithms outputs in these 10 runs which are shown
in Table 8-10 for CPU TIME, MIN, and RPD (Relative
percentage deviation) criteria, respectively.

The algorithms outputs are compared with each other in
following terms:

) RPD: This criterion is one of the well-developed
approaches for measuring the efficiency in
mathematical programming models. RPD is
obtained as Eq. (52):

RPD:[(MINstage'MINtotal)/ MINtotal] 100% (5 2)
where MINje and MINy,, are the best cost of algorithm
in each stage and best cost that earned up to now,
respectively. Obviously, the algorithms with lowest RPD
are the best one.

) Best cost (Minimum): The algorithms with better
objective function are the best one.
11D CPU TIME: The computational time of running

the algorithms to reach best solutions.
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Fig. 8. Convergence plot for GA, MBO and WCA in large size

In general based on the outputs of Table 8-10 and Fig 9-
11, it is clear that model 2 shows better performances in
terms of all criteria rather than model 1, so model 2 is
chosen and results of this model are analyzed. From Table
8 and Fig 9 it becomes clear that the model 2 is the better
model for solving the proposed problem in compare to
this criteria for model 1. This is due to low average CPU
T me for small, medium and large sizes. In addition, the
WCA was able to find solution for small and medium size
and MBO for large size in better time between other
algorithms except LINGO for model 2. Based on the
results provided by Table 9 and Fig 10 the WCA performs

ell in minimum criteria for small and large sizes but the

srformance of the GA is better than other algorithms in
medium size, except LINGO for all instances in model 2.
The GA and WCA are able to provide lower RPD in each
t st problem but WCA 1is the best between all
metaheuristic algorithms and SGA is the worst according
to Table 10 and Fig 11.
For all size problem instances, the solutions of algorithms
have been compared with the LINGO’s solution. In
summary, the following observations can be made from
t e numerical experiments for average of all sizes in
model 2 (Table 11).

Table 8
CPU time of all problems for LINGO, GA, SGA, WCA and MBC
size problem CPU Time for model 1 CPU Time for model 2
nxmxg LINGO GA SGA WCA MBO LINGO GA SGA WCA MBO
- 3x3x2 0.2 4.29 1.09 1 1.31 0.07 1.5 0.38 025 0.46
B 3o | 028 [ edr |- 1a2 | mi2 | uss 008 | 183 | 032 ] 022 | 045
” 5x5x4 1.35 21.71 164.93 5.4 12.26 0.12 1.93 14.66 0.43 1.09
Average 0.61 10.80 55.71 2.51 5.05 0.09 1.75 5.12 0.3 0.66
§ |85 _ | 7852 | 174885 | 222777 | 3926 | 87443 || 022 | 49 | 6239 [ 1 145 | 245
S [ Csxaoe | 11249 | 17136 | 330194 | 44996 | 92617 || 03| 457 | " 8804 | 139 | 247
£ 5x15x4 53.25 1122.17 1244.32 213 394.61 0.95 20.02 221.94 5.15 7.04
Average 81.42 1528.21 2258.01 351.85 731.73 0.49 9.83 124.12 2.66 3.98
. | 1055 | 8371 [ 71214 | 345232 | 41855 | 56292 | 069 | 587 | 366968 | 39 | 464
2 [ oo |77 > T T2798.66 |~ 3600 | 3600_ | 253097 || 147 "| 2802 | " 3600 | ase1 | 2534
B 10x15x10 * 3600 3600 3600 787.33 1.61 49.1 3600 71.44 34.57
Average ? 2370.27 3550.77 2539.52 2231.29 1.25 27.66 3623.22 40.31 21.51
T ble 9
Minimum of all problems for LINGO, GA, SGA, WCA and MBO
size proble MIN for model 1 MIN for model 2
nxmxg LINGO GA SGA WCA MBO LINGO GA SGA WCA MBO
_ [ 332 [ 919858 | 919858 | 919858 | 919858 | 919858 | 919858 | 9198.58 | 919858 | 9198.58 | 01985 |
£ | 3«42 | 1186758 | 11867.84 | 11867.58 | 11867.58 | 11867.58 || 11867.58 | 11867.84 | 1186758 | 1186758 | 11867.58
” 5x5x4 20311.47 | 20311.47 | 20311.47 | 20311.47 | 20311.47 || 20311.47 | 20311.47 | 20311.47 | 20311.47 | 20311.47
Average 13792.54 | 13792.63 | 13792.54 | 13792.54 | 13792.54 |[ 13792.54 | 13792.63 | 13792.54 | 13792.54 | 13792.54
§ | 585 | 4723851 | 4723851 | 47238.51 | 4723851 | 4723851 || 47238.51 | 4723851 | 47238.51 | 4723851 | 4723851 |
g [._5x10x6_ | 50535.19 | 50535.19 | 50535.19 | 50535.19 | 50535.19 || 50535.19 | 50535.19 ] 50535.19 | 50535.19 [ 50535.19 |
= S5x15%4 67174.25 | 68778.83 | 69469.34 | 67700.31 | 67441.33 || 67174.25 | 67778.83 | 68251.81 67785.5 68441.33
Average 54982.6 55517.51 | 55747.68 | 55158.00 | 55071.68 || 54982.65 | 55184.18 | 55341.84 | 55186.4 55405.1
o [ 10x5x5_ | 5372285 | 5372285 | 53945.06_| 5372285 [ 53722.85 || 53722.85 | 53722.85 | 5374506 | 53722.9 | 53826.63 |
g |doxtoxio | x| 163971.8 | * | 163971.8 [ 163971.8 || 1639718 | 163971.8 | 168241.9 | 1639718 | 1639718 |
B 10x15%10 * 245155.1 * 245155.1 | 245706.8 || 245155.1 | 245926.6 | 260112.3 | 245155.1 | 245706.8
Average ? 154283.3 ? 154283.3 | 154467.1 || 154283.3 | 1545404 | 160699.8 | 154283.3 | 154501.7
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Table 10
RPD of all problems for LINGO, GA, SGA, WCA and MBO
size problem RPD for model 1 RPD for model 2
nxmxg LINGO | GA SGA | WCA | MBO || LINGO | GA SGA | WCA | MBO
= o332 L 0 _ | 0_1_0_ | _. 0_ | _| 0l _.( 0__1. .90 0 0_[_0_|
gl 32 | o0 | o | o | _ 0_]_. 0 _.( 0__1.90 0 0_1_0_ |
- 5x5%4 0 0 0 0 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 0 0
El >5[ 0 | 0 ] 0 | . 0 _ | _| 0l _.( 0__1.90 0 0_[_0_|
g oLox10x6 | 0 |« 0_f_ 90 | _. 0 _]._. 0 _IL._.¢ o__1.0 0 0 ]
g 5x15%x4 0 0.020 | 0.030 | 0.008 | 0.003 0 0.009 | 0.010 | 0.009 | 0.018
Average 0 0.007 | 0.010 | 0.003 | 0.001 0 0.003 | 0.003 | 0.003 | 0.006
o | 105x5 [ 0 | 0 [0004] O | 0_II .« 0__1.0 0 0 0.001_|
gldoxaoao | 2 | o |2 | 0 _]._. 0 _IL._.¢ 0_ 1.0 [0026] 0 [ 0 |
- 10x15%10 ? 0 ? 0 0.002 0 0.003 | 0.061 0 0.002
Average ? 0 ? 0 0.001 0 0.001 | 0.029 0 0.001
Table 11
Comparison of all algorithms for Model 2
Model 2 LINGO GA SGA WCA MBO
CPU Time reference Less than SGA, WCA | More than all Less than SGA Less than GA, SGA, WCA
MIN reference Less than SGA, MBO More than all Less than GA, SGA, MBO Less than SGA
RPD reference Less than SGA, MBO More than all Less than GA, SGA, MBO Less than SGA
4000 CPU Time for model 1 4000 CPU Time for model 2
3000 f
2000 / /
2000 /
1000
0 .
1 2 3 4 5 6 7 8 9 o | , .|
—o—GA —8— SGA WCA ‘
MBO —%— LINGO 1 2 3 4 5 6 7 8 9
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3000 250 T
2500
2000
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E 1500 E
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o 0 - 1
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Fig. 9. CPU Time’s box plot and graphical comparison of all methods for nine problems in model 1 and 2
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Fig. 10. MIN’s box plot and graphical comparison of all methods for nine problems in model 1 and 2
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Fig. 11. RPD’s box plot and graphical comparison of all methods for nine problems in model 1 and 2

6. Conclusion and Future Research Directions

This paper presented mathematical models to design
economic nonlinear distributed permutation flow shop lot

sizing and scheduling problem. In these problems two
interconnected decisions are to be taken: assignment of
products to factories and sequencing of the products
assigned to each factory in sequence base and position
base aspect. Linearizations for the models have been
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proposed and MINLP and MILP performance analyzed.
Since the proposed models are NP-hard, GA, SGA, WCA
and MBO were applied and compared with test problems
via three metrics based on RPD, MIN and CPU Time.
Among the proposed models, a sequence-based model
(Model 2) has produced the best results, as shown by the
careful statistical analysis and Table 3. According to
parameter tuning procedure and outputs, the results show
that the proposed linearization significantly works better
than other meta-heuristic algorithms in terms of RPD,
MIN and CPU Time criteria for small and medium sizes
of Model 1 and better than other algorithms for all criteria
and sizes of Model 2, while the WCA shows better
performance in RPD and MIN criteria and the MBO in
CPU Time.

As a direction for future studies, since this paper
considers identical factories and machines, it could be
interesting to develop distinct factories with different
machine capacities and limited buffers. So, in order to
solve the mathematical model, other algorithms and exact
methods can be proposed.
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