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Abstract

The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic,
traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level
programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefore solving these
problems would be significant. The literature shows several algorithms to solve different forms of the bi-level programming problems
(BLPP).Not only there is no any algorithm for solving quad-level programming problem, but also it has not been studied by any researcher. The
most important part of this paper is presentation and studying of a new model of non-linear multi-level problems. Then we attempt to develop
an effective approach based on Taylor theorem for solving the non-linear quad-level programming problem. In this approach, by using a
proposed smoothing method the quad-level programming problem is converted to a linear single problem. Finally, the single level problem is
solved using the algorithm based on Taylor algorithm. The presented approach achieves an efficient and feasible solution in an appropriate time
which has been evaluated by solving test problems.

Keywords: Non-Linearquad-level programming problem, Smoothing method, Taylor algorithm.

1. Introduction

It has been proven that the bi-level programming problem Tiesong, Wang, 2007; G. B. Allende, 2012), in these kinds
(BLPP) is an NP-Hard problem (J.F. Bard, 1991; L. of approaches the second level of the problem has been
Vicente, 1994). Several algorithms have been proposed to transformed by smooth methods, such as KKT conditions,
solve BLPP (G. Wang, 2010; N. V. Thoai, 2002; S.R. to convert the problem into a single level problem. Then the
Hejazi, 2002; J. Yan, Xuyong.L, 2013;Wan, Z, L, 2014; obtained  problem solved utilizing  non-linear
Zheng, Y, 2014; Zhang , G, 2010; E. Hosseini, I.Nakhai methods.Metaheuristic approaches (R. Mathieu, 1994;T. X.
Kamalabadi, 2013;J.F. Bard, 1998, 1991;Xu, P, & L. Wang, Hu, Guo, 2010; B. Baran Pal, 2010; Z. G.Wan, 2012; E.
2014; P. Xu, L. Wang, 2014) These algorithms are divided Hosseini, & [.Nakhai Kamalabadi, 2013, 2014, 2015, 2017;
into the following classes: global techniques (Y. Jiang, X. Y. Zheng, 2014), these algorithms have been interested by
Li, 2014; X. He, C. Li, T. Huang, 2014; Z. Wan, L. Mao, many different researchers to solve optimization problems
2014), these algorithms obtain global optimal solution in general and BLPP particularly. Here inspired algorithm
independently from characteristics such as initial solution has been proposed which searches randomly in the feasible
and features of objective function. But the local methods are region. These methods are very fact, the challenge is that
dependent to these characteristics. These methods is very they are approximate approaches and propose a solution
complicated even for BLPP and we cannot use them for tri- near the optimal solution. Fuzzy methods (M. Sakava, I.
level and quad-level. Enumeration methods (J. Nocedal, Nishizaki, Y. Uemura, 1997; S Sinha, 2003; S. Pramanik,
2005;A.AL Khayyal, 1985), these methods calculate bounds 2009; S.R. Arora, 2007), these approaches using
of the objective function and try to meet feasible vertex membership functions for constraints and objective
points same as simplex method. In fact, the main concept is functions. In fact, the problem will be simplified using
to achieve all of the feasible vertex points for BLPP and the membership functions. Primal-dual interior methods (G. Z.
best solution among them. Complexity is a challenge in Wang, 2008). In the following, these techniques are shortly
these algorithms Transformation methods (Lv. Yibing, Hu. introduced.
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However there are many approaches to solve the BLPP and
this model of multi-level has been studied by many
researchers, but there is no any attempt for modeling and
presentation of the quad-level programming problem
(QLPP). In this paper, the authors have tried to propose a
new model of multi-level programming problem, QLPP,
and then it will be solved using the proposed method.
Finally a new heuristic approach is proposed which is based
on Taylor method.

All of pervious proposed algorithms have been applied to
solve BLPP and for multi-level, particularly quad-level,
programming problems aren’t used. In fact, quad-level is a
new model of multi-level programming problems which is
proposed at the first time in this paper and it needs a novel
algorithm too. The proposed algorithm in this paper has
three parts in general. At the first, the follower levels
(second, third and fourth levels) are smoothed utilizing
mathematical theorems and the quad-level programming
problem will be converted in this part of the algorithm
where some non-linear constraints are appeared. Then the
method uses Taylor theorem to approximate the non-liner
constraints and to convert them to linear. Finally, the linear
single-level obtained problem will be solved using
enumeration method. In fact all feasible vertices are
checked and the best one is introduced as an optimal
solution.

The remainder of the paper is structured as follows: problem
formulation and smooth method to the QLPP are introduced
in Section 2.

The algorithm based on analytic theorems and Taylor
theoremis proposed in Section 3. Computational results are
presented for our approach in the Section 4. As result, the
paper is finished in Section 5 by presenting the concluding
remarks.

2. Problem Formulation
2.1. Thelinear bi-level and tri-level programming problems

In this section models of bi-level and tri-level programming
problems are introduced. BLPP is used frequently by
problems with decentralized planning structure. It is defined
as (J.F. Bard, 1991):

min F (x,y)
X
s.tmin f(x,y)
y
s.tg(x,y) <0, (1)

x,y = 0.
Where

F: R™m N Rl f:Rnxm N Rl
g:R™™ > R4, x € R",y € R™

In general, BLPP is a non-convex optimization problem;
therefore, there is no general algorithm to solve it. This
problem can be non-convex even when all functions and
constraints are bounded and continuous. A summary of
important properties for convex problem are as follows (J.
Nocedal, S.J. Wright, 2005; A.AL Khayyal, 1985), which
F:S— R™and S is a nonempty convex set in R’
(1) The convex function f is continuous on the interior of
S.
(2) Every local optimal solution of F over a convex set
X € S is the unique global optimal solution.
(3) If VF(x) =0, then X is the unique global optimal
solution of Fover S.
Because a tri-level decision reflects the principle features of
multi-level programming problems, the algorithms
developed for tri-level decisions can be easily extended to
multi-level programming problems which the number of
levels is more than three. Hence, just tri-level programming
is studied in this paper.
In a TLPP, each decision entity at one level has its objective
and its variables in part controlled by entities at other levels.
To describe a TLPP, a basic model can be written as follows
(E. Hosseini, I.Nakhai Kamalabadi, 2015):

mxin F,(x,y,2)
s.t myin F,(x,y,2)
s.t mZin F3(x,y,2) (2)
s.t glx,y,2) <0,
X,y,Z = 0.

2.2. The non-linear quad-level programming problems
We propose the QLPP model as following formulation:

mxin Fi(x,y,71)
s.t myin F,(x,y,z,1t)
s.t mZin F;(x,y,2,t) 3)
s.t mtin F,(x,y,2,t)
s.t glx,y,2,t) <0, 4)
X,y,z,t = 0.

Where x € R,y € R,z € RP,t € RS, and the variables x, v,
z, t are called the top-level, second-level, third-level, and
bottom-level variables respectively,
FL(xy,21),F,xYy,121t),F;(xY,21),F,.(XY,zt), the top-
level, second-level, third-level, and bottom-level objective
functions, respectively. In this problem each level has

individual control variables, but also takes account of other levels’ variables in its optimization function.
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2.3. Smooth method for QLPP
2.3.1. Definition

Every point such as (x,y,z t)is a feasible solution to tri-
level problem if (x,y,z,t) €

Definition 2.3.2:S

the tri-level problem if

Every point such as (x*,y* z*t*) is an optimal solution to

F(x*.y*z*5t") <Fxyzt) ¥ (xvyzt) €S.

Using KKT conditions for the last levels in problem (3), the
following problem is constructed:

mxin Fi(X,y,2,t)

min F,(x,y,7,t)
y

min FZ (Xl Y,z t)
zZt

s.tV.L(x,y,2t,u) =0,

pg(x,y,z,t) =0, 6))
g(x,v,2,t) <0,
X,y,Z,t,u = 0.

Where L is the Lagrange function and L(x,y,zt W) =
F.(x,y,z,t) + ng(x,y,zt).KKT conditions have been used
for both last levels in problem (5), therefore the following
problem is obtained:

min F; (X,y,7,t)

Ss.t VyN(x,y,Z; tLua, B; p11p21p31p4) = 0'
pV,K(x,y,z,t,u,a,B) =0,

qaV.L(x,y,z,t,u) =0,
vpug(x,yzt) =0, (6)
wg(x,y,2,t) =0,

g(x,y,z,t) <0,

xX,Y,Zta, B, 14,01, P2, P3,Pa = 0.

Where K and N are the Lagrange functions and

K(x,y,z,t,u,a,B) = F3(xy,z,t) + ug(x,y,z,t) +
aV,L(x,y,z, t,u) + B ug(x,y, z t)and
N(x,y,2,t, 1, @, B, D1, P2, D3, Pa)
=FRL&yzt)+ piV.Kxy 2zt uwap)
+p, a V. L(x,y,2zt, 1)
+p3Bug(xy,z,t) + pug(x,y,2,1)
Now we use the following point to convert the most
complicated constraint,p; f ug(x,v,z,t) =0, to three
simpler constraints: If ab = ac = bc = 0, then abc = 0.

93

By applying above point for problem (6), two times, and
a=pB, b=y, c=g(x,y,z)the following problem is
obtained:
min F; (X,y,7,t)

s.t VyN(x,y,z,t, 11, @, f,P1, P2, P3,P4) = 0,
plsz(x! y' Z, t' :u' a, ﬁ) = O,

pZVtL(x' y' Z, t, ,Ll) = 01

aVL(x,y,z,t,u) =0,p, @ =0,

psB =0,

ps =0,

ps 9(x,y,2,t) =0, (7
Bu=0,

Bg(xy zt)=0,
ug(x,y,z,t) =0,
Pag(x,y,2,t) =0,
glx,y,2,t) <0,

x,y;Z,tra!ﬂnu:pl’pz’p&}%- 2 0'

Because problem (7) has a complementary constraint, it is
not convex and it is not differentiable. In this paper we
propose new functions for smoothing complementary
constraints in problem (7). Using the following smooth
method, problem (7) is smoothed, and then the final
problem is solved using an algorithm based on Taylor
theorem.

If m>0, n>0, Let, $: R? > R,$p(m,n) =2m —n —
V4m? + n?, | then we have: ¢p(m,n) =0&2m—n-—
Vim2+n2=0e2m—-n=vV4m? +n2 & (2m —n)? =
4m? + n? © 4m? + n? — 4mn = 4m? + n> © — 4mn =
0< mn = 0.

Now let
¢:R® >R, ¢$(m,n, E) = 2m — n — V4m? + n2 — €, then
we have: ¢(m,n, &) =02m—n—V4m2+n2—-€=
0o©2m—n=vV4m2 +n2 — € (2m —n)? = 4m? +
n—€o4m?+n?—4mn=4m?+n? - €& —4mn =
—€omn =§,m >0,n=0.

Using the proposed function ¢(m,n, &) =2m—n—
vm? +n2 — € in problem (7), we obtain the following
problem:

min F; (X,y,7,t)
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s.t 2p —V,K(x,y,z,t,u,a, B) H,(x,y,2,t,q;)=
—4p? + VK(x,y,2,t,n,a,B)? —¢ 291 = Vel (%,y,2,t, 1)1 — /@22 + Ve L(x, y, 2,6, 1)F — €
€
= Z} ZQZ - VCL(xJYl z, t,#)z - \/QZZ + VtL(x;y,Z. t:“)% - (C_: (10)
2q —V.L(x,y,z,t,1) 2q; -V L(x,y,z,t,0); — Jqi> + VL (x,y, 2,6, )7 — €

€
~VAP +V Ly 2 tp)? e =,

2a = V,L(x,y,2,t, 1) s

— J4a? +V,L( L —e=S (X, 9,2, t, ;)=
a L\ Y, 2, LU 8_4—’ Zal—VtL(x,y,z,t,'u)l_\/alz+VtL(x’y,Z,t“u)%_€

2aZ - VtL(x,y,z, t'#)Z - \/a22 + VtL(xJ’» Z, t,,l«l)% - 8“(11)

€
2q—a—\/4q2+a2—£=z, ) :
. 2a; — VL(x,y,2,t,u), — \/alz + V.L(x,y,2,t,u)?% — €
2v—B —4v? + 2 — =7

€
2v—p— 4v2+/,12—s=1,

Also we define H;, j= 4,5, ...,11similar above for 4-th to
11-th constraints.

' €
Hi(x,y,z,t,0) = H(x,y,z,t,0) =7 , (12)

2B —pu—JAB*+u? —e= E, Problem (7) can be written as follows:
4 min Fl (X! Y,z t)

€
20— g(x,y,zt) — 42+ g(x,y,z,t)? —e = T

€ : ’ _ s
2 —g(x,y,2,t) —/4B% + g(x,y,2,t)? — e = T s.t - Hi(yzte)=0, j=12.,11,
i=12..,L
€ VyN(x,y,z,t,1,a,B,p,02,P3,P4) = 0, (13)
2u—g(x,y.2.t)—\/4u2+g(x.y,2.t)2—s=z, g armE
glx,v,z,t) <0,

€
2w —g(oy,zt) —Vaw? + gy zt)? —e =4, e N "

VyN(x' y’ Z, tl ,Ll, Q, ﬁ' p) er p3r p4) = 0, Where T = (X’ y’ Z, t) € Rk+l+P+S
Because problem (8) equal to (13), we use the following
g(x,y,2z,t) <0, method for solving problem (13).
x, .zt apB,upqv,w=0. 3. The proposed algorithm based onTaylor method (TA)
Which in the constraintsm = a, 8,p,q,v,w = 0,n = Definition 3.1: A metric space is pair (X,d) where X is a
V,K(x,y,z,t,u,a B),V.L(x,y, 2t 1), —g(x7v,zt). set and d is a metric on X and:
LetH,, H,, H; as follows for three first constraints: (1) d=0, '
Hl(x;y;z;t;pi): (11) d(x'y) = 0<:> xzy’
(iii) d(x,y) =d(y, x),
2p1 — 81(xy, 2 — P12 + V. K(x,y,2,t,p,a,B)F — € (v)  d(xy) <d(x,2) +d(zy).
2p, — 8,(%,2,t) — /P22 + V,K(x,y,7,t,u,a, )% — € Definition 3.2: A sequence {x,,} is said to Cauchy if for
: ©) every € > 0 there is an N such that
2p — g%y, 20 — P2 + VK0, y, 2t 1,0, B)F — € Vonsron %m — x| < &

Theorem 3.1 (Taylor Theorem)(A. Silverman. Richard,
2000):Suppose f has n +1 continuous derivatives on an open
interval containing a. Then for each

X in the interval,
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) = [£oo "2 (x — )% + Rpys (0 (14)

Where the error term R, ;(x), for some ¢ between a and x,
satisfies

f(n+1)(c)
R () = o (k=)™

(15)

This form for the error R, ;4 (X), is called the Lagrange
formula for the reminder.

The infinite Taylor series converge to f,

e @
f) = IX kb (x — a)kl
k=0

Pr oof:

The proof of this theorem was given by (A. Silverman.
Richard, 2000).Taylor Theorem is a great tool for linearize
the non-linear functions which are continuous and
differentiable. This theorem is very applicable in
engineering and practical problems to approximate
complicated functions to polynomials.

It is clear to see that functions H;, i = 1,2,...,11 in (13) are
always continuous everywhere. Therefore it is possible to
use Taylor Theorem for them. By applying the theorem 4.1
to a feasible point such as T* for functionsH;, i =
1,2,...,11, and taking only two linear parts of them in
problem (16), the following linear functions are constructed:
ForH;

If only iflim;,_,,, Rpyq () = 0. (16)
H (T8 a) + VH (TR a)(T-TX) =0, i=12,..,5, j=12,..,11L (17)
Let
[Pr (D] [H' (TS @) + VH';1 (T, @) (T — T4)]
P/(T) = lpjz:(T) _ H'p(TSa) + VH’:]-Z(T“, )(T=T ;_12 .11 (18)
P |11 (T% @) + VA (T, @) (T — V)

WhichH'j;, is i-th component inH';.The obtained problem
using Taylor theorem is a linear programming and it can be
solved using linear algorithm such as simplex method.

The steps of the proposed algorithm are as follows:
Step 1: Initialization

The feasible point T¥ is created randomly, error, is given
and we suppose that k =1,F(T) = F,(x,y,z,t), € is a
small and appropriate given error and finishing the
algorithm depends on €; such that it is finished whenever
the difference between produced solutions by the algorithm
in two consecutive iterations is less than €.

Step 2: Finding solution

Using Taylor theorem for H;,j = 1,2, ...,11at T* and (17),
in problem (13) we obtain the following problem:

min F; (x,y,7,t)

s.t P;(T) =0, ji=1.2,..,11,

VyN(x;y,Z; tll’ll a;ﬁ;p;pz;p3'p4) = 0, (19)

glx,v,z,t) <0,
xyztapB,upqv,w=0.

Step 3: Making the present best solution
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Because (19) is an approximation for (13) by Taylor
theorem, therefore, the optimal solution for (19) is an
approximation of the optimal solution for (13). Thus T**?
can be a good approximation of optimal solution problem
(13). Therefore, we let T* = T**1 and go to the next step.

Step 4: Termination

If d(F(T*"),F(T*)) < &; then the algorithm is finished
andT* is the best solution by the proposed algorithm.
Otherwise, let k=k+1 and go to the step 2. Which d is metric
and,

4 (F(T), F(TY)) = (P F (1) - FT)2-.

Following theorems show that the proposed algorithm is
convergent.

Theorem 3.2: Every Cauchy sequence in real line and
complex plan is convergent.

Proof:

Proof of this theorem is given in [34].

Theorem 3.3; Sequence {F, } which was proposed in above
algorithm is convergent to the optimal solution, so that the
algorithm is convergent.

Proof:

Let

(F) = (F@) =

(F(ED), F(ED), o, F(thaam))= (B E”, o B o).
According to step 4
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n+p+s+l

d(Fir, F) = d (FT),E(T)) = (D0 (F(TE) = FAinoi < e (20)

i=1

2
therefore (¥/-P+5*! (F (TF**)-F (Ti")) ) < &2

. There is large number such as N which k+1>k>N and j=1,2,...

n+p+s+1 wehave:

(Fj(kﬂ) — Fj(k))2 < &2, therefore |Fj(k+1) - P}(k)| <g
Now letm =k + 1,r = k then we have
vm>r>N|Fj(m) - F}(r)| < é&.

This shows that for each fixed j(1<j<n+p+s+1),
FO g@
i

the sequence ( , ... ) 18 Cauchy of real numbers, then

it converges by theorem 4.5.

Say, P}(m) - F; asm — o. Using these n+p+s+1
limits, we define F = (Fl,FZ, ...,Fn+p+s+l).From (17) and

m=k+1, r=k,
d(F F) < £
Now if r = oo, byF, = Fwe have d(F,, F) < &.
This shows that F is the limit of (F,,) and the sequence is

convergent by definition 3.3 therefore proof of theorem is
finished.

Theorem 3.4: If sequence {f(ty)} is converge to f(t) and f
be linear function then {t; } is converge to t.
Pr oof:
Proof of this theorem is given in [30].
Theorem 3.5. Problems (13) and (16) are equal therefore
they have same optimal solutions.
Proof:
It is sufficient to prove that,|Hj’(T) — P](T)| <egji=12,...,11
for every arbitrary €>0. According to the theorem 4.4 and
(19), (20) we have:
P,(T) =H] (T¥) + VH; (T¥)(T — T¥)
Hj ] (T)
= H(TX) + VH(T)(T = T) + v (1) 2

j J J 2
R, (T).

T — Tk)?
|Hj(T) — P,(T)| = |V2H[(T¥) % + R,(T)

_ TK)?
< vij’(Tk)w + |R,(T)|

Now if n- oo, from (18) |R,(T)|< g and let
|V2Hj’ (Tk)| < m that m is an arbitrary large number, this is
possible because V2H; (T¥) is a number.

If k — oo because F is linear then by theorems 4.6 and 4.7

Tk - Ttherefore |Tk -T | < &y, 52y € = \/%

T — TK)?
= |[Hj (1) - P;(D)| < VZH;(T“)% + Ry (D)
T — TK)?
< e (] L 5 Lt irn
< & & _
_m.ﬁ‘l'z—g.

4. Computational Results

There are several practical problems which can be modeled
as a quad-level programming problems. One of these
problems is supply — chain which has been mentioned
here.The supply-chain has four levels in decision: the first
level is customs, the second level is products importer, the
third level is products wholesaler and the last level is
products badger. The decision maker at all four levels try to
maximize their own benefits as their objective functions,
and each has its own constraints and variables. The importer
considers the decision making process of the customs, the
wholesaler considers the decision-making process of the
importer, and the badger considers the decision-making
process of the wholesaler. At the same time, the customs
decisions take into account the reaction of the importer, the
importer’s decisions take into account the reaction of the
wholesaler, and the wholesaler likewise takes the reaction of
the badger into account. The importer wants to maximize
own profits and the wholesaler likes to maximize his (her)
benefits and the badger wants to maximize own objective
function. This problem can be established by a linear quad-
level programming model to obtain the optimal solution to
determine the cost and price.

To illustrate the algorithm, three examples will be solved
using the algorithm.

Example 1:
The following QLPP will be solved by the proposed
algorithm.
minx? + 4y — 2z +t

X
s.t
min7x — y? + 21z — 2t

y

S.t

min —x + 7y + z2 — t?

Z

s.t
min —x + 3y + 2xz — 3t?
s.t

x—3y+z2+t<32,
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—3x+5yz—z—-t<101,
3x% 4+ 5y —z + 2t < 168,
X,y,2,t > 0.

Table 2. Behavior of the variables has been shown in figure

1.

The problem has been solved using the proposed algorithm
and the best solutions have been shown in the Table 1 and

Vanables

T T T T

T™T

T —r—r
E 2 1011 121314151617 18 19

Fig. 1.Behavior of the variables for ¢ = 0.001 - Example 1

Table 1

Objective functions in the best solution by the proposed algorithm — Example 1

Optimal Best solution by our method Iterations Time
(x*,y* 25, t%) (7.01,4.00,5.22,2.53)

Fy(x",y",z%t7) 57.23

Fy(x*,y*, 2", t*) 137.63 4000 2.58s

F3(x",y", 2", t") H.82

Fy(x,y", 2", t") 58.97

Table 2
Different solutions in different iterations — Example 1
Optimal Best solution by our method Iterations Time
Solution

(x*,y* 25, t%) (7.01,4.00,5.22,2.53) 400 2.58s

(x*,y*, 2", t9) (4.03,5.87,0.00,2.01) 4000 3.41s

(x*,y*, 2", t9) (4.39,6.00,0.03,2.83) 19000 5.17s
Example 2: s.t
Consider the following problem: —-x—-y< -3

3xy?—2y+z+t<10,
m;lxx+4y2+2xz+t —2x+y—2z—t<-1,
Th X,y,2,t = 0.
s.t e problem has been solved using the proposed algorithm
m}z}ax xz+y+z+itx and we present the best solutions in the Table 3 and Table
s.t 4. Behavior of the variables has been shown in figure 2.
maxxy? — 2y +2z2 — ty
z
s.t

maxxy —y + 3z +tz
z
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Vanables

-
-t
1

10 . N

-
.
-4

P —— T T |
0O 1 2 3 4 S 6 7 8 91011121

T T T
314151617 18 19

Fig. 2.Behavior of the variables for ¢ = 0.001 - Example 2

gi?tlaectgi,ve functions in the best solution by the proposed algorithm — Example 2
Optimal Best solution by our method Iterations Time
Solution
(x*,y",z",t") (0.0,5.51,5.02,4.38)
Fi(x*,y%, 2% t%) 125.82
F,(x*,y*,z",t") 10.53 500 2.24s
F3(x,y",z",t") 15.24
Fu(x",y", 2", t") 31.53
Table 4
Different solutions in different iterations — Example 2
Optimal Best solution by our method Iterations Time
Solution
(x*y%,z"t") (12.09,28.12,10.23,8.37) 1000 2.56s
(x*,y*,z"t") (11.21,28.57,10.09,8.55) 10000 3.35s
(x*y*,z"t") (10.83,28.92,10.01,9.02) 19000 4.53s
Example 3: mZinx +y—z
Consider the following non-linear quad-level programming s.t
problem: —2x+y—-2z< -1,

2x+y+4z—t< 14,
mXinx2+y2—3zz+t mtinx—Zy—Zz—t

minx — 4y + 2z + 4t st
y 2x—y—z+t<2,
s.t x,y,Z = 0.
—x—y—2t< -3,

—-3x+2y—z+ 2t > -10,
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Using KKT conditions, the following problem is obtained:
minx? +y2 —3z2+¢
X

s.t
—X—-y—2t< -3,
3x—2y+z+2t<10,
—2x+y—2z< -1,
2x+y+4z—-t <14,
Bi(—2x+y—2z+1) =0,
B(2x+y+4z—t—14) =0,
Br+ B2=1,

2x—y—z+t<2,
n(2x—y—z+t—2) =0,
n(-1)=-2

X,y,Z,t, Bl) BZ!“ZO

minx? +y% —3z2+¢
X

—X—y—2t< -3,
3x—-2y+z+2t<10,

By the proposed smooth method, the above problem will be
converted to:

2[31—(—2x+y—22+1)—\/612+(—2X+y—22+1)2+€:0,

282—(2x+y+4—z—t—14)—\/822+(2x+y+42—t—14)2+€=0,

Zu—(2x—y—z+t—2)—\/u2+(2x—y—z+t—2)2+€=0,

Bi+ B.=1,

Now using Taylor theorem, non-linear constraints in the
above single — level problem are approximated to the
simpler constraints. Finally, this problem is infeasible after
solving the problem by the proposed method.

5. Conclusion and Future Work

In this paper, a new model of non-linear multi-level
programming problem which has four levels was been
proposed. This model has not been studied already by any
researcher. Also a new heuristic approach has been
presented to convert the non-linear quad-level problem into
a single level problem. Then, using an algorithm based on
Taylor theorem linear approximation single problem was
been obtained. Utilizing the proposed mathematics analyze
theorems the optimal solution was proposed. Our algorithm
has acceptable numerical results and present good solutions.
In the future works, the following should be researched:
(1) Examples in larger sizes can be supplied to
illustrate the efficiency of the proposed algorithm.
(2) Showing the efficiency of the proposed algorithms for
solving other kinds of QLPP such as quadratic and
non-linear QLPP.

n(=1)=-2
X;y;Z;t; Bl; BZ ;u 2 0.
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Nomanclature
Fi(x,y,2,t)
F,(x,y,2,t)
F3(x,y,2,t)
F(x,y,2,t)

u

v
w

F(x,y)
fxy)

gxy)

(X*,y*, Z*, t*)
(X*,y*, Z*)
&5y

Objective function of the first level in the
QLPP

Objective function of the second level in the
QLPP

Objective function of the third level in the
QLPP

Objective function of the fourth level in the
QLPP

Slack variable

Slack variable

Slack variable

Objective function of the first level in the
BLPP

Objective function of the first level in the
BLPP

Constraints in the BLPP

Feasible region of the QLPP

Inducible region of the QLPP

The last feasible values of u

The last feasible values of v

The last feasible values of w

An arbitrary very small positive number
Optimal solution for the QLPP

Optimal solution for the TLPP

Optimal solution for the BLPP
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