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Abstract 
 

The aim of lot sizing problems is to determine the periods where production takes place and the quantities to be produced in order to satisfy 
the customer demand while minimizing the total cost. Due to its importance on the efficiency of the production and inventory systems, Lot 
sizing problems are one of the most challenging production planning problems and have been studied for many years with different 
modeling features. In this paper, we propose a fuzzy mathematical model for the single-item capacitated lot-sizing problem in closed-loop 
supply chain. The possibility approach is chosen to convert the fuzzy mathematical model to crisp mathematical model. The obtained crisp 
model is in the form of mixed integer linear programming (MILP), which can be solved by existing solver in crisp environment to find 
optimal solution. Due to the complexity of the problems harmony search (HS) algorithm and genetic algorithm (GA) have been used to 
solve the model for fifteen problem. To verify the performance of the algorithm, we computationally compared the results obtained by the 
algorithms with the results of the branch-and-bound method. Additionally, Taguchi method was used to calibrate the parameters of the 
meta-heuristic algorithms. The computational results show that, the objective values obtained by HS are better from GA results for large 
dimensions test problems, also CPU time obtained by HS are better than GA for Large dimensions. 

Keywords:  Lot-sizing, Harmony search, Returned products 

 

1. Introduction 
 

The lot-sizing problem is to find the right balance between 
these costs so as to minimize the total costs (Hoesel and 
Wagelmans, (1991). Wagner and Whitin presented a 
dynamic programming solution algorithm for single 
product, multi-period inventory lot-sizing problem. The 
Wagner-Whitin (1958) proposed algorithm for dynamic 
lot-sizing has often been misunderstood as requiring 
inordinate computational time and storage requirements. 
Montgomery et al. (1973) Presented several single-echelon, 
single-item, static demand inventory models for situations 
in which, during the stock out period, a fraction b of the 
demand is backordered and the remaining fraction 1 - b is 
lost forever. Akbalik and Penz (2009) studied a special 
case of the single-item capacitated lot-sizing problem, 
where alternative machines are used for the production of a 
single-item. They proposed an exact pseudo-polynomial 
dynamic programming algorithm which makes it NP-hard 
in the ordinary sense. Akbalik and Pochet (2009) presented 
a new class of valid inequalities for the single-item 
capacitated  lot-sizing  problem  with  step-wise production 
costs. They    proposed    a    cutting      plane       algorithm   for 

different classes of valid inequalities introduced. Akbalik 
and Rapine (2012) considered the single-item 
uncapacitated lot-sizing problem with batch delivery, 
focusing on the general case of time-dependent batch sizes. 
They showed that the problem is polynomial solvable in 
time O (T3), where T denotes the number of periods of the 
horizon. Abad (2001) considered the problem of 
determining the optimal price and lot-size for a reseller. He 
assumed that demand can be backlogged and that the 
selling price is constant within the inventory cycle. Aksen 
et al. (2003) addressed a profit maximization version of the 
well-known Wagner–Whitin model for the deterministic 
single-item uncapacitated lot-sizing problem with lost 
sales. The authors proposed an O (T2) forward dynamic 
programming algorithm to solve the problem.Brahimi et al. 
(2006) presented four different mathematical programming 
formulations of the Single-item lot sizing problems. Chu et 
al. (2013) addressed a real-life production planning 
problem arising in a manufacturer of luxury goods. This 
problem can be modeled as a single-item dynamic lot-
sizing model with backlogging, outsourcing and inventory 
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capacity. They showed that this problem can be solved in 
O (T4logT) time where T is the number of periods in the 
planning horizon. Tang (2004) provides a brief 
presentation of simulated annealing techniques and their 
application in lot-sizing problems. Sadjadi et al. (2009) 
proposed an improved algorithm of the Wagner and Whitin 
method. In so doing, they first assumed that shortage is not 
permitted and inventory holding and setup costs are fixed, 
and then assumed the possibility of shortage and variability 
of setup and holding costs. Golany et al. (2001) studied a 
production planning problem with remanufacturing. They 
proved the problem is NP-complete and obtain an O (T3)
algorithm for solve the problem. Li et al. (2007) analyzed a 
version of the capacitated dynamic lot-sizing problem with 
substitutions and return products. They first applied a 
genetic algorithm to determine all periods requiring setups 
for batch manufacturing and batch remanufacturing, and 
then developed a dynamic programming approach to 
provide the optimal solution to determine how many new 
products are manufactured or return products are 
remanufactured in each of these periods. Pan et al. (2009) 
addressed the capacitated dynamic lot- sizing problem 
arising in closed-loop supply chain where returned 
products are collected from customers. They assumed that 
the capacities of production, disposal and remanufacturing 
are limited, and backlogging is not allowed. Moreover, 
they proposed a pseudo-polynomial algorithm for solving 
the problem with both capacitated disposal and 
remanufacturing. Zhang et al. (2012) investigated the 
capacitated lot-sizing problem in closed-loop supply chain 
considering setup costs, product returns, and 
remanufacturing. They formulated the problem as a mixed 
integer program and propose a Lagrangian relaxation-
based solution approach. 

1.1. Fuzzy lot-sizing problem 

Fuzzy set theory was first proposed by Zadeh(1965). It is a 
mathematical tool to describe imprecision in the fuzzy 
environment. Imprecision refers to the sense of vagueness 
rather than the lack of knowledge about the value of 
parameters. The vagueness is due to the unique 
experiences and judgments of decision makers. Fuzzy 
mathematical programming or fuzzy optimization, which 
was proposed by Zimmermann (1996), is one application 
of fuzzy set theory. There has been a lot of research which 
deals with vagueness in lot-sizing models as one of the 
fuzzy mathematical programming models. For example, 
Yao and Lee (1999) investigated a group of computing 
schemas for the economic order quantity as fuzzy values of 
the inventory with/without backorder. Yao and Chiang 
(2003) fuzzified the total demand and the cost of storing 
one unit per day to the triangular fuzzy numbers. They 

defuzzified by the centroid and the signed distance 
methods. Finally, they compared the results obtained by 
centroid and signed distance methods in the case of the 
total cost of inventory without backorders. They expressed 
the fuzzy order quantity as the normal trapezoid fuzzy 
number and then solved the aforementioned optimization 
problem. Pai (2003) applied the fuzzy set theory to solve 
the capacitated lot-size problem and by using numerical 
examples. Wong et al. (2012) proposed a stochastic 
dynamic lot-sizing problem with asymmetric deteriorating 
commodity, in which the optimal unit cost of material and 
unit holding cost would be determined. They used artificial 
neural network (ANN) and modified ant colony 
optimization (ACO) to solve this stochastic dynamic lot-
sizing problem. Guillaume et al. (2003) investigated lot-
sizing problem with fuzzy demands. Mandala et al. (2005) 
investigated multi-item multi-objective inventory model 
with shortages and demand dependent unit cost has been 
formulated along with storage space, number of orders and 
production cost restrictions. They imposed the cost 
parameters, the objective functions and constraints are in 
fuzzy environment. They used geometric programming 
method to solve the model. Chang et al. (2006) presented a 
fuzzy extension of the economic lot-size scheduling 
problem (ELSP) for fuzzy demands. They used a genetic 
algorithm to solve the problem.  Chen and Chang (2008) 
studied fuzzy economic production quantity (FEPQ) model 
with defective productions which cannot be repaired, fuzzy 
opportunity cost. They used function principle as 
arithmetical operations of fuzzy total production inventory 
cost, and used the graded mean integration representation 
method to defuzzify the fuzzy total production and 
inventory cost. Halim et al. (2011) consider a single-unit 
unreliable production system which produces a single-
item. They developed two production planning models on 
the basis of fuzzy and stochastic demand patterns and 
defuzzified by using the graded mean integration 
representation method. Ketsarapong et al. (2011) proposed 
a single-item lot-sizing problem with fuzzy parameters, 
which is called the fuzzy single-item lot-sizing problem. 
They used the possibility approach to convert the fuzzy 
model to the equivalent crisp single-item lot- sizing 
problem (EC-SILSP). Sahebjamnia and Torabi (2011) 
developed a fuzzy stochastic multi-objective linear 
programming model for a multi-level, multi-item 
capacitated lot-sizing problem. 
In this paper, the single-item capacitated lot-sizing problem 
is discussed. An integrated model with backlogging, 
safety stocks and outsourcing with different production 
methods and limited warehouse space is presented anda 
fuzzy mathematical model is proposed. Four metaheuristic 
algorithms named simulated annealing (SA), harmony 
search (HS), vibration damping optimization (VDO) and 
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genetic algorithm (GA) have been used to solve the 
proposed model.  
The remaining of this paper is organized as follows: 
Section 2 describes the single-item capacitated lot-sizing 
problem with fuzzy parameters and equivalent crisp of the 
single-item capacitated lot-sizing problem. The solution 
approaches for solving the proposed model introduced in 
Section 3. The Taguchi method for tuning the parameters 
and computational experiments is presented in Section 4. 
The conclusions and suggestions for future studies are 
included in Section 5. 

2. Problem Formulation 

 
In this section, we present an MIP formulation of the 
problem. The single-item capacitated lot-sizing problem 
with backlogging, safety stocks and limited outsourcing in 
closed-loop supply chain, is a production planning problem 
in which there is a time-varying demand for an item over 
Tperiods. In this section, we present a formulation of the 
problem. First, the problem assumptions, parameters, and 
decision variables have thoroughly been introduced and 
then the proposed model has been defined. 

 2.1. Assumptions 

Before the formulation is considered, the other following 
assumptions are made on the problem. 

I. The shortage, inventory, safety stock deficit 
costs, variable cost, setup cost, out-sourcing 
cost and demand are non-deterministic. 

II. The amount of the returned products is 
regarded deterministic over the planning 
horizon. 

III. Shortage is backlogged. 
IV. Shortage and inventory costs must be taken 

into consideration at the end. 
V. The quantity of inventory and shortage at the 

beginning of the planning horizon is zero. 
VI. The quantity of inventory and shortage at the 

end of the planning horizon is zero. 

2.2. Parameters 

T: Number of periods in the planning horizon, t=1, …, T 
J: Number of production manner, j=1, …, J 

:jtC


 The production cost of each unit in the period t 
through the manner j 

:jtA


The setup cost of the production in the period t through 
the manner  j 

:th



 The unit holding cost in the period t 

:th



 Unitary safety stock deficit cost in period t 

:td


 The demand in the period t 

:tL


 The quantity of the safety stock of product i in the 
period t 

:t


 Unitary shortage cost in period t 

:t


 Unit out-sourcing cost at period t
M: A large number 

:t


The unit holding cost of returned products in period t 

:d
tC


The maximum number of returned products that 
could be disposed in period t 

:r
tC


The maximum number of returned products that 
could be remanufactured in period t 

:tR


the number of returned products in period t 

2.3. Decision Variables 

:jtP  Production quantity in the period t through the manner  j 

:f
tP The number of returned products that remanufactured 

in period t 
:s

tP The number of returned products that disposed in 

period t 

:jty  Binary variable, 1 if the produced in the period t

through the manner j, otherwise jty = 0 

:tU  Out-sourcing level at period t 

:tI
  The quantity of shortage in the period t 

:tS  The quantity of overstock deficit in the period t 

:tS The quantity of safety stock deficit in the period t 
 

2.4. The proposed model 

1 1
( ( ) )

T J
f s r

jt jt jt jt t t t t t t t t it it t t t t
t j

MinZ C P A y I h S h S U F P g P I     

 

         
       

 (1) 

Subject to:  
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1 1 1 1
1

1,2,....,
J

t t t t jt t t t t t t
j

S S I I P U S d L TS L t     
   



          
  

 (2) 

0TS    (3) 

0TI    (4) 

1
r r f s
t t t t tI I P P R   


 (5) 

jt jtP My  1,2,....,j J ,  1,2,....,t T  (6) 

1, 2,...., 1t tI d t T    


 (7) 

t tS L 


  1,2,....,t T  (8) 

1 10 t t t t tU I S d L 
     

 
 1, 2,....,t T  (9) 

f d
t tP C



 1, 2,....,t T  (10) 

s r
t tP C



 1, 2,....,t T  (11) 

{0,1} 1,2,...., 1,2,....,jty j J t T     (12) 

, , , , , , 0 1,2,...., 1,2,.....f s r
jt t t t t t tP P P I I S S j J t T      

 
(13) 

  

The objective function (1) shows total cost. Constraints (2) 
are the inventory flow conservation equations through the 
planning horizon. Constraints (3) and (4) define 
respectively, the demand shortage and the safety stock 
deficit for item at end period is zero. Constraints (5) are the 
inventory flow conservation equations for returned 
products. constraints (6) impose that the quantity produced 
must not exceed a maximum production level Mt. Mt is the 
total demand requirement for product on section [t, T] of 
the horizon, Mt is then equal Eq. (14) to: 
 

1

T

t t
t

M d


 
  
 
  ( 14)

 

 

 
Constraints (7) and (8) define upper bounds on, 
respectively, the demand shortage and the safety stock 
deficit in period t. Constraints (9) ensure that outsourcing 
level Ut at period t is nonnegative and cannot exceed the 
sum of the demand, safety stock of period t and the 
quantity backlogged, safety stock deficit from previous 
periods. Constraints (10) and (11) are the capacity 
constraints of disposal, remanufacturing.Constraints (12) 
and (13) characterize yjtis a binary variable and the 
variable's domains: , , , , , ,f s r

jt t t t t t tP P P I I S S   are 

non-negative for j ∈ J and t ∈ T.  

2.5. Equivalent crispsingle-item capacitated lot-sizing 
problem  

The possibility approach in the context of fuzzy set theory 
was introduced by Zadeh (1978) to deal with non-
stochastic imprecision and vagueness.  

According to the Dubois and Prade (1988) and Dubois 
(2006), the possibility approach appropriately was used to 
model various kinds of information, such as linguistic 
information and uncertain formulate, in logical settings. In 
this section, the possibility approach will be used to 
convert the fuzzy model to the equivalent crisp model. 

 In this paper, Chance-Constrained Programming (CCP) by 
Charnes and Cooper (1959), which is normally used to 
confront stochastic linear programming  (SLP ), is adopted 
as a way to convert the fuzzy single-item capacitated lot-
sizing problem to the Equivalent crisp single-item 
capacitated lot-sizing problem. The concept of CCP 
guarantees that the probability of stochastic constraints is 
greater than or equal to a pre-specified minimum 
probability. Lertworasirikul et al. (2003) proved and 
proposed the below Lemma: 

 Let ia~  for i = 1,..., n be fuzzy variables with normal and 

convex membership functions and b be a crisp variable. 

The lower and upper bounds of the -level set of ia~  are 
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adenoted by L
αi )(~ and U

αai )(~ , respectively. Then, for any given possibility levels 1, 2 and 3 with 0 <1, 2, 3< 1, 
(Ketsarapong et al, 2011): 

 

(i) 1n1 αb)a~a~π(  iff b)a~()a~( L
αn

L
α1 11

 , 

(ii) 2n1 αb)a~a~π(  if b)a~()a~( U
αn

U
α1 22

 , 

(iii) 3n1 αb)a~a~π(  if b)a~()a~( L
αn

L
α1 33

 and b)a~()a~( U
αn

U
α1 33

 . 

The single-item capacitated lot-sizing problem with fuzzy 
parameters is transformed into the equivalent crispsingle-

item capacitated lot-sizing problem by the above Lemma, as 
follows:  

1 0 1 0
1

1 0 1 0 1 0

1 0

( (( ( ) (1 )( ) ) ( ( ) (1 )( ) ) ) ( )

( ( ) (1 )( ) ) ( ( ) (1 )( ) ) ( ( ) (1 )( ) )

( ( ) (1 )( ) ) ( (

J
L L L L L

jt jt jt jt jt jt t t
j

L L L L L L
t t t t t t t t t

L L f
it it it

C C P A A y I

MinZ
h h S h h S U

F F P g

   

       

  





     

       


        

  


    

     

 

1

1 0 1 0) (1 )( ) ) ( ( ) (1 )( ) ) )

T

t

L L s L L r
t t t t t tg P I    



    


   

 

(15) 

Subject to: 
 

 

1 1 1 1
1

1,2,..( ) ( ) ( ..,)
J

U U U
t t t t jt t t t t t t

j
S S I I P U S S td TL L  
     
   



          
  

 
(16) 

1 1 1 1
1

1, 2,..( ) ( ) ( ..,)
J

L L L
t t t t jt t t t t t t

j
S S I I P U S S td TL L  
     
   



          
  

 
(17) 

0TS    (18) 

0TI    (19) 

1
r r f s
t t t t tI I P P R   


 

(20) 

jt jtP My  1,2,....,j J ,  1,2,....,t T  (21) 

( ) 1, 2,...., 1U
t tI d t T
    



 
 

(22) 

( )U
t tS L 
 


  1,2,....,t T

 

(23) 

1 10 ( ) ( )U U
t t t t tU I S d L 

 
     

 
 1, 2,....,t T  

(24) 

( )f d U
t tP C 



 1, 2,....,t T  

(25) 

( )s r U
t tP C 



 1, 2,....,t T  

(26) 

{0,1} 1,2,...., 1,2,....,jty j J t T     
(27) 
 
 
 
 

, , , , , , 0 1,2,...., 1,2,....f s r
jt t t t t t tP P P I I S S j J t T        

(28) 

 
 
3. Solution Approaches 
3.1. Harmony search algorithm 

Harmony search (HS) is a new heuristic method that 
mimics the improvisation of music players. HS was 
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proposed by Geemet al. (2001). Inspiration was drawn 
from musical performance processes that occur when a 
musician searches for a better state of harmony, 
improvising the instrument pitches towards a better 
aesthetic outcome. The HS algorithm imposes fewer 
mathematical requirements and does not require specific 
initial value settings of the decision variables. Because the 
HS algorithm is based on stochastic random searches, the 
derivative information is also not necessary. In the HS 
algorithm, musicians search for a perfect state of the 
harmony which determined by aesthetic estimation, as the 
optimization algorithms search for a best state (i.e., global 
optimum) determined by an objective function.  
 

Harmony search 
 

Objective function f(xi), i=1 to N 
Define HS parameters: HMS, HMCR,  PAR, and BW 
Generate initial harmonics (for i=1 to HMS) 
Evaluate f (xi) 
While (until terminating condition) 
Create a new harmony: xi

new, i=1 to N 
If(U(0,1)≥HMCR), 
xi

new=xj
old, where xj

old is a random from {1,…,HMS} 
Else if (U (0, 1) ≤PAR), 
xi

new=xL(i)+ U(0, 1)×[xU(i) - xL(i)] 
Else 
xi

new=xj
old + BW[(2×U(0,1))-1], where xj

old is a random 
from {1,…,HMS} 
end if 
Evaluation f (xi

new) 
Accept the new harmonics (solutions) if better 
End while 
 
Fine the current best estimates 
 
3.2. Genetic algorithm 

The genetic algorithm (GA) has been proven to be 
powerful method for combinatorial optimization problems. 
It was first proposed by Holland (1975) to encode the 
features of a problem by chromosomes, in which each gene 
represents a feature of the problem. In general, the GA 
consists of the following steps: 

Step 1: Initialize a population of chromosomes. 

Step 2: Evaluate the fitness of each chromosome. 

Step 3: Create new chromosomes by applying genetic 
operators (e.g., crossover and mutation) to the current 
selected chromosomes. 

Step 4: Evaluate the fitness of the new population of 
chromosomes. 

Step 5: If the termination condition is satisfied, stop and 
return the best chromosome; otherwise, go to Step 3. 

3.2.1. Representation schema    

In this paper, each chromosome is a production plan and 
each chromosome formed as an integer vector with T 
genes as shown in Fig 1, where T is the number of periods. 
 

3.2.2. Selection 

The selection provides the opportunity to deliver the gene 
of a good solution to next generation. There are various 
selection operators available that can be used to select the 
parents. In this study, the tournament selection is 
employed. 

3.2.3. Crossover 

Crossover is a process, in which chromosomes exchange 
genes through the breakage and reunion of two 
chromosomes to generate a number of children. 
Crossover’s offspring should represent solutions that 
combine substructures of their parents. In this study, 
crossover generates an offspring by combining two 
selective parents as shown in Fig. 2. 

3.2.4. Mutation 

A mutation scheme that swaps the value of the (number of 
periods ×strongly mutation) random selected genes of the 
current solution with each other. Fig. 3 illustrates this 
operation on theT=8 and Sm=0.5.  

In our implemented GA, crossover and mutation operators 
are used with the given probabilities.  

3.2.5. Fitness function 

The fitness function is the same as the objective function 
defined in Section 2. 

3.2.6. Termination condition 

The search process stops if the stopping criterion (i.e., 
maximum number of improvisations) is satisfied, then 
computation is terminated. 
 

4. Experimental Results 
 

We try to test the performance of the GA and HS in 
finding good quality solutions in reasonable time for the 
problem. For this purpose, 15 problems with different sizes 
are generated for each algorithms. The production manners 
and periods has the most impact on problem hardness. The 
proposed model coded with Lingo (ver.8) software using 
for solving the instances, GA and HS is implemented to 
solve each instance in five times to obtain more reliable 
data. 
The genetic algorithm and harmony search are coded in 
MATLAB R2011a and all tests are conducted on a not 
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book at Intel Core i5 Processor 1.7 GHz and 6 GB of 
RAM. 
 In this paper, the Taguchi method applied to calibrate the 
parameters of the proposed algorithms. The Taguchi 
method was developed by Taguchi (2000). This method is 
based on maximizing the performance measures, called 
signal-to-noise (S/N) ratio, in order to find the optimized 
levels of the effective factors in the experiments. The S/N 
ratio refers to the mean-square deviation of the objective 
function that minimizes the mean and variance of quality 
characteristics to make them closer to the expected values. 
For the factors that have significant impact on the S/N 
ratio, the highest S/N ratio provides the optimum level for 
that factor. Table 1 lists different levels of the factors for 
HS and GA. In this paper, according to the levels and the 
number of the factors, respectively the Taguchi method L25 

is used for the adjustment of the parameters for the HS and 
GA. Figs 4  and 5 shown S/N ratios. Best Level of the 
factor for each algorithm is shown in table 2. 
Computational experiments are conducted to validate and 
verify the behavior and the performance of the meta-
heuristic algorithms employed to solve the considered 
single-item capacitated lot-sizing problem. We try to test 
the performance of the proposed GA and HS finding good 
quality solutions in a reasonable time for the problem. For 
this purpose, 15 problems with different sizes and 

0.4   are generated. For these problems, we used the 
trapezoidal fuzzy setup cost and unit price which would be 
classified as three levels cheap, normal and expensive. It is 
respectively denoted by: 

(17000,18000,19000,20000)CA 


, (19000,20000, 21000, 22000)NA 


, (21000,22000,23000,24000)EA 


, 

(60,65,70,75)CC 


, (70,75,80,85)NC 


 and  (70,75,80,85)EC 


 The trapezoidal fuzzy demand and safety stock are 

classified as three levels, low, medium and high. It is respectively denoted by: (8,9,10,11)Ld 


, (10,11,12,13)Md 


, 

(13,14,15,16)Hd 


, (1, 2,3,4)LL 


, (3,4,5,6)ML 


 and (5,6,7,8)HL 


.  

 

The triangular fuzzy inventory holding cost, shortage cost, 
safety stock deficit cost, out-sourcing cost, repair cost, 

dispose cost and inventory holding cost for return products 
are classified as three levels cheap, normal and expensive.  

(6,7,8)Ch  


, (7,8,9)Nh  


, (8,9,10)Eh  


, (16,17,18)C 


, (17,18,19)N 


, (18,19,20)E 


, (11,12,13)Ch  


, 

(12,13,14)Nh  


, (13,14,15)Eh  


, (30000,35000,40000)Cu 


, (35000,40000,45000)Nu 


,

(40000, 45000,50000)Eu 


, (55,60,65)Lowg 


, (60,65,70)Mediumg 


, (65,70,75)Highg 


, (15, 20,25)LF 


,

(20,25,30)MediumF 


, (25,30,35)HighF 


, (4,5,6)Low 


, (5,6,7)Medium 


, (6,7,8)High 


.  

The number of manners and periods has the most impact 
on the problem hardness. The proposed model coded 
with Lingo (Ver.8) software using for solving the 
instances. The best results are recorded as a measure for 
the related problem. Table 3 shows details of 
computational results obtained by solution methods for 
all test problems. The results of running the proposed GA 
and HS are compared with the optimal solution of the 
instances, obtained from Lingo software, Fig 6 depict 
comparison between solution quality of the Lingo, GA 
and HS of the instances, and Fig 7 depict comparison 
between solution quality of GA and HS. 

 The GA and HS algorithms can solve all the test 
problems for both models. 

 The GA and HS can find good quality solutions 
for small dimensions problems.  

 The objective values obtained by HS are better 
from GA results for Large dimensions test 
problems. 

 Fig 8 shows the CPU time of the HS is less than 
GA. 

 
 

 

5. Conclusion 

In this paper, we propose a mathematical formulation of 
a new single-item capacitated lot-sizing problem with 
backlogging, safety stocks and limited outsourcing in 
closed-loop supply chain. This formulation takes into 
account several industrial constraints such as shortage 
costs, safety stock deficit costs and limited outsourcing. 
Due to the complexity of the problem, GA and HS 
algorithms is used to solve problem instances. Several 
problems with different sizes generated and solved by HS 
and Lingo software. The results show that the HS 
algorithm able to find good quality solutions in 
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reasonable time. One straightforward opportunity for 
future research is extending the assumption of the 
proposed model for including real conditions of 
production systems such as limited inventory and etc. 
Also, developing a new heuristic or meta-heuristic to 
construct better feasible solutions.  
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