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Abstract 

This paper considers a multi-objective portfolio selection problem imposed by gaining portfolio, divided yield, and risk control in an 
ambiguous investment environment, in which return and risk are characterized by probabilistic numbers. Based on the theory of possibility, 
a new multi-objective portfolio optimization model with portfolio, divided yield, and risk control is proposed, and then the proposed model 
is solved as a fuzzy goal programming model to fulfill aspiration level of each objective. Furthermore, numerical example of an efficient 
portfolio selection is provided to illustrate that the proposed model is versatile enough to be applicable to various unexpected conditions.  

Keywords: Multi-objective portfolio selection, Theory of possibility, Fuzzy goal programming model, Issues in finance. 

1. Introduction 

Optimal portfolio selection is one of the most important issues in 
finance. It is concerned with managing the portfolio of assets 
that minimizes the risk objectives subjected to the constraint for 
guaranteeing a given level of returns. The traditional mean 
variance model developed by Markowitz (Markowitz 1952) was 
the first model that established relationship between the mean 
and variance of investment in the framework of risk-return 
trade-off. It takes into accounts the uncertainty involved in the 
performance of financial markets and combines it with 
optimization techniques to represent the behavior of investments 
under uncertainty. After Markowitz’s model, most of the 
existing portfolio selection models are based on the probability 
distributions, in which uncertainty is equated with randomness 
(Perlod 1984; Sharp 1970; Merton 1972; Voros 1986). A model 
of creating efficient portfolio was developed by Markowitz. In 
this model, the return of portfolio is the mean return, and the risk 
is the standard deviation of the returns; recent research studies 
have investigated fuzzy portfolio selection; some studies have 
used fuzzy decision theory in portfolio selection process (Len et 
al. 2002; Watada 1997). Inuiguchi and Tanino (2000) proposed 
a possibilistic programming approach to the portfolio selection 
problem based on the Minimax Regret criterion. Zhang and Xiao 
(2012) proposed the portfolio selection models based on the 
lower and upper possibilistic means and possibilistic variances 
of fuzzy numbers. Mohiuddin Rather (2012) developed portfolio 
selection model using mean-risk model and mean-risk 
diversification. Dastakhan et al. (2013) presented a fuzzy 
portfolio management in order to obtain a series of satisfying 
portfolios. During the last few years, the lack of consideration 
for investor preference has led the basic model getting criticized 
due to its disregard for individual investor’s preferences. 
Hallerbach et al (2004) found that there is a gap between 
objectives in Markowitz model and investor preferences. After 
introducing ‘Goal programming’ (Charnes and Cooper 1961), 

decision makers used more indices in the process of decision-
making and could approximately fill this gap. Though 
probability is one of the most important techniques used for the 
portfolio selection, the financial market is also affected by 
several non-probabilistic factors such as vagueness and 
ambiguity. The concept of the fuzzy set theory, first introduced 
by Zadeh (1965), enables one to consider the concept of 
vagueness and ambiguity in decision-making problems. 
Sharpe (1967; 1971) and Stone (1973) used linear programming 
(LP) approach to solve portfolio selection problems, and 
demonstrated that LP models for portfolio selection could 
provide acceptable results while avoiding limitations of mean-
variance models. Portfolio selection problems typically involve 
multiple and often conflicting objectives such as the 
maximization of returns and minimization of risk. As a result of 
multiple and conflicting objectives, the conventional LP model 
becomes less adequate to handle mutual fund portfolio selection 
problems, as it was developed to handle a single objective 
function. However, the complexity of problems resulting from 
multiple and conflicting objectives can be handled efficiently 
and effectively with a multi-objective decision making 
(MODM) technique such as a lexicographic goal programming 
(LGP). Modiri et al. (2010) presented a goal programming 
model for optimizing production. Lee and Lerro (1973) 
developed LGP portfolio selection model for mutual funds. 
Kumar et al. (1978) developed a conceptual LGP model for 
portfolio selection of dual-purpose funds. Lee and Chesser 
(1980) demonstrated how linear beta coefficient from finance 
theory reflecting risk in alternative investments could be 
incorporated into a LGP model. Levary and Avery (1984) also 
introduced a LGP model, representing the investor’s priorities 
and also compared the use of linear programming to GP for the 
selection of optimal portfolio. Schniederjans et al. (1992) 
illustrated the use of LGP as an aid to investors, planning 
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investment portfolios for themselves. Sharma et al. (2002) 
presented LGP as an aid to investors or financial planners, 
planning investment portfolios for individuals and/or companies 
using beta coefficients and other important parameters. 
Recently, Pendaraki et al. (2004) applied LGP to a sample of 
Greek mutual funds. Watada (1997) developed a model for 
portfolio selection, using fuzzy numbers. Having used LP 
models, Dash and Kajiji (2002) modeled the complex portfolio 
problem by the NLGP method. The mentioned models tried to 
solve the portfolio selection with multi-objective approach 
through considering the ambiguity that all portfolio selections 
included it. Alinezhad et al. (2011) presented a fuzzy goal 
programming model for fuzzy allocated portfolio under an 
uncertain condition. Gupta et al. (2012) presented a multi-
objective credibilistic portfolio selection with fuzzy chance-
constraints. Fang and Qu (2014) developed a two-stage 
stochastic mixed-integer program modeling and hybrid solution 
approach to portfolio selection problems. Wu et al. (2013) 
considered a multi-period portfolio selection problem with 
uncertain time-horizon, where the conditional distribution of the 
time-horizon is assumed to be stochastic and dependent on 
market statements as the returns of risky assets do.    
In the last research studies, the major concentrations have been 
placed on maximizing mean of return and minimizing variances 
of return which are Markowitz objectives. In this paper, we 
added the objective of divided yield to the constraints of the 
presented model aimed at covering more financial indices. Also, 
the majority of the last studies have considered the two concepts 
of fuzziness and probability separately. In this research, it has 
been attempted to consider these two concepts simultaneously in 
order to gain more flexibility in the face of the vagueness of 
modern financial environments.  
The goal of this paper is to present a model to help decision-
makers in portfolio selection problems to make better decisions; 
by using the concept of fuzzy sets and probability theorem, this 
study presents a Goal programming model in order to select the 
best portfolio with three objectives of return, risk, and divided 
yield; decision-makers will specify the levels of objectives and 
maximum or minimum probabilities preferably attainable, and 
we will use fuzzy set concept and probability to specify the ideal 
level of objectives. 
 To measure risk, we will use sharp coefficient. A fuzzy goal 
programming model for selecting optimal portfolio with three 
objectives of risk, return, and divided yield has been presented 
in this model; decision-makers can use the concept of 
probability as the risk of approaching the value which is desired 
to attain; we will also use the model to select optimal portfolio 
in New York Stock Exchange Market NYSE. 
The scientific contributions of this paper are: 1) presenting a 
scenario-based model to be applied to portfolio selection 
problem; 2) using Vagueness and ambiguity along with 
probability in portfolio selection process; 3) considering two 
aspects of risk together, first, the level of probability that DM 
wants to attain, second, the sharp ratio for computing the risk of 
the portfolio. 
The remainder of the paper was organized as follows: In Section 
2, the materials and methods for the problem definition and 
mathematical formulation are presented. Section 3 presents the 
experimental results in NYSE. And, finally, discussions and 
conclusions appear in Section 4. 
 

2. Material and Method 

2.1. Fuzzy set 

The classical logic focuses on duality of yes or no, and 
most discrete events are solvable through traditional 
means. Therefore, the value of outcome can only be 
measured as zero and one. Obviously, when in an event 
the value of outcome stands between zero and one, the 
duality cannot be applied. Event of this kind is called 
continuous event and can be solved by fuzzy theory, 
which measures the relationship between elements and set 
using membership function, and the result is the degree of 
membership (Chen 2000; Chen 2001). A fuzzy set can be 
defined as in Eq. (1): 
ܣ = ,ݔ)}  (1)     {ܺ߳ݔ|((ݔ)஺ߤ

Where X is a fuzzy set, and ߤ஺(ݔ)	is the degree of 
membership of element x to the fuzzy set A. 

2.2. Fuzzy number 

A fuzzy number is a fuzzy subset of the real number, and 
it is actually the extension of the concept of confidence 
interval. The characteristics of fuzzy number can be stated 
by a triangle membership function as below (Chen 2000; 
Chen 2001; Fan and Zhang 2002; Wang 2002). 

1. Let A be a fuzzy number, then the following features 
can be applied: 

(1) A is convex, and the inequality of Eq. (2) holds, 
 ஺[ఒ௫భା(ଵିఒ)௫మ]ஹ௠௜௡[ఓಲ(௫భ),ఓಲ(௫మ)]                 (2)ߤ

,ଵݔ ଶݔ ∈ ܺ	,  (3)      [0,1]߳ߣ

(2). If A is a Trapezoid Fuzzy Number with four elements 
such as:  
A = (T, L, M, U), then its membership function can be 
expressed as in Eq. (3) and Fig. 1. 

(ݔ)஺ߤ =

⎩
⎪
⎨

⎪
⎧
ݔ ≤ ܶ																	 0
ܶ ≤ ݔ ≤ 				ܮ ௅ି௫

௅ି்
ܮ ≤ ݔ ≤ 											ܯ 1
ܯ ≤ ݔ ≤ ܷ		 ௫ିெ

௎ିெ
ݔ ≥ ܷ																			 0

  (4) 

Fig.1. Trapezoid membership function 

0 T L M 
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2.3. Objectives description 

The objectives for this model are defined as follows: 

2.3.1. Capital gain/loss 

An increase/decrease in capital asset in a defined period 
of time. The decision-makers will try to maximize 
probability of the expected gaining of portfolio. It is 
assumed that ଵ݂  is the expected return of portfolio, so: 

ଵ݂ = ∑ ܽ௜ݔ௜௡
௜ୀଵ 						݅ = 1,… , ݊                  (5) 

ܽ௜      Expected return of i th stock of portfolio. 
 .௜      Capital percentage that is allocated to the i th stockݔ
n        the number of stocks in portfolio.  
ܾଵ is the minimum value that DM desired to attribute to 
ଵ݂ , while tolerance of ߠଵ and ߙଵ is minimum probability 

risked for this value  
If we want to consider the probability that DM prefers to 
attain, we can formulate the objective as: 

∑)݌ ܽ௜ݔ௜௡
௜ୀଵ ≥ ܾଵ) ≥  ଵ    (6)ߙ

ଵ݂ = ∑ ܽ௜ݔ௜௡
௜ୀଵ      (7) 

Based on the central limit theorem, if N is sizable enough, 
then ଵ݂ has normal distribution, and we attain (7): 

݌ ൬ ௙భିா(௙భ)
ඥ௏௔௥(௛భ)

≥ ௕భିா(௙భ)

ඥ௏௔௥(௙భ)
൰~ܰ(0,1)     (8) 

݌ ൬ ௙భିா(௙భ)
ඥ௏௔௥(௛భ)

≥ ௕భିா(௙భ)

ඥ௏௔௥(௙భ)
൰ ≥ ଵߙ ⟷

௕భିா(௙భ)

ඥ௏௔௥(௙భ)
≤  ఈభ   (9)ܭ

௕భିா(௙భ)

ඥ௏௔௥(௙భ)
≤ ఈభܭ )ܧ⟷ ଵ݂) + )ݎఈభඥܸܽܭ ଵ݂) ≥ ܾଵ    (10) 

  

If we consider the minimum value that DM desires to 
attain, we can add fuzziness concept to our objective 
and rewrite (9).  

)ܧ ଵ݂) + )ݎఈభඥܸܽܭ ଵ݂) ≥෩ ܾଵ                (11) 

The fuzzy number of this objective is depicted in Fig 2. 

2.3.2. Risk 

 one of the objectives for which DM wants to attain the 
desired value is risk. So, we will describe ଶ݂ as a risk:  

ଶ݂ = ∑ ௜௡ݔ௜ߚ
௜ୀଵ ௜ߚ														 = ௜ݎ)ݒ݋ܥ , (௠ݎ ⁄(௠ݎ)ݎܸܽ  (12) 

௜ߚ       Sharp risk coefficient.    
 .௜      Capital percentage that is allocated to the stock iݔ
n        The number of stocks in portfolio.  
  .௜       The rate of return of stock iݎ
  .௠      The rate of return of marketݎ

ܾଶ	
is the minimum value that DM desired to attribute to ଶ݂  
while the tolerance of ߠଶ and ߙଶ is minimum probability 
risked for this value, so we attain (13):  

)ܧ ଶ݂) + )ݎଵିఈమඥܸܽܭ ଶ݂) ≤෩ ܾଶ                (13) 

The fuzzy number of these objectives is depicted in Fig.3. 

2.3.3. divided yield 

another objective that we will use is divided yields, a 
financial ratio that shows how much a company pays out 
in dividends each year, depending on its share price in the 
absence of any capital gains, while the divided yield is the 
return on investment for a stock, and here we show it with 
ଷ݂  .  

ଷ݂ = ∑ ܿ௜ݔ௜௡
௜ୀଵ                                (14) 

ܿ௜   Divided yields of stock i  
 .௜   Capital percentage that is allocated to the stock iݔ
 

Desirable level for objective ଷ݂  is ܾଷ, so: 

Fig. 4. fuzzy number of constraints (14) 

ܾଷ 
0 x 

 (ݔ)஺ߤ

1 

ܾଷିߠଷ 

Fig. 3. fuzzy number of constraints (13) 

0 ܾଶ 
x 

 (ݔ)஺ߤ

1 

ܾଶାߠଶ 

Fig. 2. fuzzy number of constraints (10) 
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x 

 (ݔ)஺ߤ
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∑ ܿ௜ݔ௜௡
௜ୀଵ ≥෩ ܾଷ                                (15) 

The fuzzy number of this objective is depicted in Fig 4 

2.4. FGP Formulation 

The multiple-objective optimization problems are often 
described as follows: 

		ݐ݌ܱ ௜݂(ݔ)		݅ = 1,… , ݇                               (16) 

.ݏ ݔ		.ݐ ∈ (ݔ)ܩ ⊂ ܴ௡                               (17) 

Where ''opt' 'means finding the optimal solution x which 
satisfies all the objectives; ܺ(ݔଵ, ,ଶݔ … ,   is decision	௡)ݔ
vector, ௜݂(ݔ) is the ith objective, and (ݔ)ܩ includes the 
constraints. In a fuzzy environment, goal programming 
problems can, in general, be represented by a FGP model 
and contain three kinds of fuzzy goals as follows: 

 ݔ	݀݊݅ܨ

s.t.					 ௜݂(ݔ) ≤෩ ܽ௜ 				݅ = 1,… ,݉   (18) 

          ௜݂(ݔ) ≥෩ ܽ௜ 			݅ = ݉ + 1,… , ݊.     (19) 

          ௜݂(ݔ) =෥ ܽ௜ 			݅ = ݊ + 1,… , ݈    (20) 

ݔ            ∈ (ݔ)ܩ ⊂ ܴ௡    (21) 

Where ܽ௜ is the aspiration level of the ith objective; 
௜݂(ݔ) ≤෩ ܽ௜(≥෩ ݎ݋ =෥)	ܽ௜ means that the ith objective is 

approximately less than or equal to (approximately 
greater than or equal to, Or approximately equal to) the 
aspiration level ܽ௜. The fuzzy objectives can be identified 
as fuzzy sets defined over the feasible set with the 
membership functions. For the above three types of fuzzy 
objectives, linear membership functions, according to 
Zimmermann (1978-1983), are defined as follows: 

௙೔ߤ = ൞

1									 ௜݂(ݔ) ≤ ܽ௜
௨೔ି௙೔(௫)
௨೔ି௔೔

	 ܽ௜ ≤ ௜݂(ݔ) ≤ ௜ݑ
0												 ௜݂(ݔ) > ௜ݑ

					݅ = 1, … ,݉ (22) 

௙೔ߤ = ൞

1											 ௜݂(ݔ) ≥ ܽ௜
௙೔(௫)ି௟೔
௔೔ି௟೔

		 ݈௜ ≤ ௜݂(ݔ) ≤ ܽ௜
0																		 ௜݂(ݔ) < ݈௜

				݅ = ݉ + 1,… , ݊     (23) 

௙೔ߤ =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

0												 ௜݂(ݔ) ≤ ݈௜
௜݂(ݔ) − ݈௜
ܽ௜ − ݈௜

													 ݈௜ ≤ ௜݂(ݔ) ≤ ܽ௜
௜ݑ − ௜݂(ݔ)
௜ݑ − ܽ௜

						 ܽ௜ ≤ ௜݂(ݔ) ≤ ௜ݑ
0																									 ௜݂(ݔ) ≥ ௜ݑ

			݅ = ݊,… , ݈ 

                                                                                      (24) 

Where ݈௜(or ݑ௜ ) is the lower (or upper) tolerance limit for 
the i th fuzzy objective. The membership functions can be 
regarded as the achievement degrees of the fuzzy 

objectives. According to the fuzzy decision proposed by 
Bellman and Zadeh (1970), all the fuzzy objectives are 
combined to form a fuzzy decision H which is a fuzzy set, 
resulting from the intersection of all the fuzzy objectives, 
characterized by its membership function as follows: 

ுߤ = ௙೗ߤ	⋀…⋀௙మߤ	⋀௙భߤ = ݉݅݊൫ߤ௙భ , ௙మߤ , . . ,  ௙೗൯         (25)ߤ

Then, the resulting linear programming formulation of 
Eq. (20) is 

ுߤ		ݔܽܯ  
.ݏ ௙೔ߤ		ݏ݊݋݅ݐܿ݊ݑ݂	݁݌ℎ݅ݏݎܾ݁݉݁݉		.ݐ 				݅ = 1, … , ݈ 
ுߤ	 ≤ ௙೔ߤ , ݅ = 1,… , ݈                                                    (26) 
ݔ ∈ (ݔ)ܩ ⊂ ܴ௡                                                             (27) 
 
The above model uses the min-operator to aggregate all 
the fuzzy objectives to determine a decision set, and then 
maximizes the min-operator to simultaneously optimize 
all the fuzzy objectives for obtaining a higher overall 
satisfaction grade. However, if some particular objectives 
are difficult to achieve, then achievement degrees of the 
other objectives may decrease by this approach. Chen and 
Tsai (2001) illustrated this situation by an example given 
by Narasimhan (1980).  

Considering the explanation above, we can formulate our 
model as below: 

	  (28)  ܺ	݀݊݅ܨ 
  s.t  ܧ( ଵ݂) + )ݎఈభඥܸܽܭ ଵ݂) ≥෩ ܾଵ																																						(29) 
)ܧ              ଶ݂) + )ݎଵିఈమඥܸܽܭ ଶ݂) ≤෩ ܾଶ                        (30) 
             ∑ ܿ௜ݔ௜௡

௜ୀଵ ≥෩ ܾଷ                                                  (31) 
               ∑ ௜ݔ = 1௡

௜ୀ                                                                (32) 
ܺܣ														 ≥ 0																																																																					(33)	
															ܺ ≥ 0																																																																							(34) 
We	 denote	 that	 	 ݃ଵ = )ܧ ଵ݂) + )ݎఈభඥܸܽܭ ଵ݂)  , ݃ଶ =
)ܧ ଶ݂) + )ݎఈమඥܸܽܭ ଶ݂),  ݃ଷ = ∑ ܿ௜ݔ௜௡

௜ୀଵ  With explanation 
on membership function of μ୤౟for f୧ (i=1... 3), we can 
solve the model as follows: 
	ߣ	ݔܽܯ 	 	 	 	 														(35) 
     s.t.			ߣ ≤ ௚భߤ) ௚మߤ	, 		(௙యߤ	, 	 										    (36)	
             ∑ ௜ݔ = 1௡

௜ୀ                                    (37) 
ܺܣ														 ≥ 0																																																																			(38)	
															ܺ ≥ 0																																																																					(39) 

3.  A Numerical Example 

In order to show the efficiency of our proposed model 
more clearly, we have considered a numerical example 
based on the data of securities on the NYSE. Four 
portfolios have been created that have eighteen stocks, the 
information of which has been summarized in Tables 
(1),(2),(3),(4). The last column of tables shows the 
average price of each stock in the last fifty days. 
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Table 1 
 Portfolio one, having been made based on Google finance information 
(www.google.com/finance)  

Num
ber Company name Symbol 50d avg price 

1 ARMOUR Residential REIT, Inc.   ARR  7.51 

2 Alcoa Inc.   AA  8.85 

3 Belo Corp.   BLC  7.57 

4 AEGON N.V. (ADR)   AEG  5.26 

5 Gerdau SA (ADR)   GGB 9.55 

6 FXCM Inc   FXCM  9.71 

7 Grupo Radio Centro SAB de CV (ADR)   RC 8.23 

8 Cryolife Inc   CRY  5.7 

9 KeyCorp   KEY  8.51 

10 Roundy's Inc   RNDY  7.72 

11 Silvercorp Metals Inc. (USA)   SVM  5.92 

12 Pengrowth Energy Corp (USA)   PGH  6.86 

13 Whiting USA Trust I   WHX  8.63 

14 Xerox Corporation   XRX  7.35 

15 Box Ships Inc   TEU  6.22 

16 Noranda Aluminum Holding 
Corporation   

NOR 6.54 

17 Safe Bulkers, Inc.   SB  6.08 

18 CSX Corporation   CSX  7.57 

Table 2 
 Portfolio two, having been made based on Google finance information 
(www.google.com/finance)  
Number Company name Symbol 50d avg price 

1 1-800-FLOWERS.COM, Inc. FLWS 4.49 

2 1st Century Bancshares, Inc. FCTY 5.26 

3 1st Constitution Bancorp FCCY 8.92 

4 1st United Bancorp Inc (Florida) FUBC 6.29 

5 21Vianet Group Inc VNET 9.57 

6 8x8, Inc. EGHT 6.73 

7 A. H. Belo Corporation AHC 5.38 

8 ACADIA Pharmaceuticals Inc. ACAD 6.59 

9 ACCO Brands Corporation ACCO 7.62 

10 ADDvantage Technologies 
Group, Inc. AEY 2.24 

11 AEterna Zentaris Inc. (USA) AEZS 2.38 

12 AMREP Corporation AXR 9.65 

13 ANADIGICS, Inc. ANAD 2.24 

14 API Technologies Corp ATNY 2.65 

15 ARC Document Solutions Inc ARC 2.56 

16 AU Optronics Corp. (ADR) AUO 4.17 

17 AVEO Pharmaceuticals, Inc. AVEO 7.3 

18 AXT Inc AXTI 2.92 
 
 
 
 

Table 3 
Portfolio three, having been made based on Google finance information 
(www.google.com/finance) 
Number Company name Symbol 50d avg price 

1 Addus Homecare Corporation ADUS 9.8 

2 Adecoagro SA AGRO 8.18 

3 Adept Technology Inc ADEP 3.3 

4 Advanced Micro Devices, Inc. AMD 2.59 

5 Actuate Corporation   BIRT  6.04 

6 Anthera Pharmaceuticals Inc ANTH 0.65 

7 Anworth Mortgage Asset 
Corporation ANH 6.19 

8 Artio Global Investors Inc. ART 2.51 

9 Arts-Way Manufacturing Co. Inc. ARTW 6.66 

10 Asanko Gold Inc AKG 3.34 

11 BBVA Banco Frances S.A. 
(ADR) BFR 4.47 

12 BBX Capital Corp BBX 7.99 

13 BRT Realty Trust BRT 7.04 

14 BSD Medical Corporation BSDM 1.44 

15 BSQUARE Corporation BSQR 3.16 

16 BTU International, Inc. BTUI 2.73 

17 
Alpha and Omega Semiconductor 

Ltd AOSL 8.2 

18 Ballantyne Strong Inc BTN 3.8 

Table 4 
Portfolio four, having been made based on google finance information 
(www.google.com/finance) 
Number Company name Symbol 50d avg price 

1 Ballard Power Systems Inc. 
(USA) BLDP 0.89 

2 Baltic Trading Ltd BALT 3.62 

3 Banco Bilbao Vizcaya 
Argentaria SA (ADR) BBVA 9.67 

4 Banco Santander, S.A. (ADR) SAN 7.65 

5 Bank of Virginia BVA 5.47 

6 Bank of the James Financial 
Group, Inc. BOTJ 7.47 

7 BankFinancial Corporation BFIN 7.9 

8 Banro Corporation (USA) BAA 2.22 

9 Belo Corp BLC 9.06 

10 Beneficial Intrst of Invsc Snr 
Incm Trst VVR 5.56 

11 Beneficial Mutual Bancorp 
Inc BNCL 9.69 

12 Acquity Group Ltd AQ 6.81 

13 Berkshire Bancorp Inc BERK 8.3 

14 Brookline Bancorp, Inc. BRKL 9.1 

15 Brooks Automation, 
Inc.(USA) BRKS 9.93 

16 DWS Global High Income 
Fund LBF 9.02 

17 Daegis Inc DAEG 1.26 

18 Danaos Corporation DAC 3.74 
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The data for this section have been picked out from the 
Google finance, and they refer to the S&P 500 index, 
daily stock returns of each portfolio dating from 7 Mar 
2012 to 10 Sep 2012 which has been used. DM 
preferences for each portfolio have been presented in 
Table 5. For instance, as for DM, the best preferable 
return for portfolio one is higher than 0.02 with 
membership function of one, and the worst condition is 
zero that has membership of zero.  Preferable risk is lower 
than 0.5 with membership function of 1, and the 
unacceptable range is higher than 1.2. For divided yield, 
the range higher than 0.034 has membership function of 1 
and lower than 0.01 with membership function of zero. 

Table 5 
DM preferences about parameters of the model  

Portfolio 1 

objectives Minimum Maximum 

Return 0 Upper than 0.02 

Risk Lower than 0.5 1.2 

Divided yield  0.01 Upper than 0.034 

Portfolio 2 

Objectives Minimum Maximum 

Return -0.003 Upper than 0.01 

Risk Lower than 0.3 0.8 

Divided yield  0.01 Upper than 0.02 

Portfolio 3 

Objectives Minimum Maximum 

Return 0 Upper than 0.02 

Risk Lower than 0 0.5 

Divided yield  0.01 Upper than 0.03 

Portfolio 4 

Objectives Minimum Maximum 

Return -0.01 Upper than 0.03 

Risk Lower than 0 0.5 

Divided yield  0.01 Upper than 0.04 

 

Five scenarios were defined for goals of risk and return; 
each scenario explains the probability that DM prefers to 
attain for each portfolio which is presented in table 6. For 
instance, in scenario one, DM prefers to attain a defined 
level with probability of fifty percent.  

Table 6 
Scenarios for risk and return defined by DM 
Number  1 2 3 4 5 

Risk 50% 40% 60% 50% 40% 

Return 50% 50% 70% 40% 80% 

 

The model is solved as a non-linear goal programming by 
Lingo11 software and the results of which are 
summarized in Table 7. Table 7 shows percentage of the 
investment in each stock in defined portfolio considering 
the related scenarios, defined as well. Table 8 shows the 
objective and membership functions values of the defined 
objective. After solving model with each scenario, we can 
use this information in the decision process.  
With regard to the results, it is assumed that DM has 
decided to invest in portfolio one considering the scenario 
two, in portfolio two considering the scenario one, in 
portfolio three considering the scenario one, in portfolio 
four considering the scenario one, during a period of one 
month from 10 Sep 2012 to 19 Oct. Using the real data 
from google finance database, we calculated the real 
value of objectives represented in Table 9.  

We compared the presented model with Markowitz basic 
model; as we know, Markowitz’s mean variance approach 
requires minimizing the risk of the selected asset portfolio 
while guaranteeing a pre-established return rate as well as 
the total use of the available capital. If we add the 
objective of divided yield to the Markowitz model, we 
have: (Markowitz 1952): 

	ݔܽܯ ଵ݂ = ∑)ܧ ܽ௜ݔ௜௡
௜ୀଵ )		 	 	 	 (40)	

	݊݅ܯ ଶ݂ = ∑)ݎܸܽ ܽ௜ݔ௜௡
௜ୀଵ )	 	 	 	 (41) 

	ݔܽܯ ଷ݂ = ∑ ܿ௜ݔ௜௡
௜ୀଵ 	 	 	 	 (42) 

.ݏ ݐ ∶ ܺܣ ≤ ܾ	 	 	 	 	 (43)	
ܽ௜      Expected return of i th stock of portfolio. 
ܿ௜      Divided yields of stock i  
 ௜      Capital percentage having been allocated to the i thݔ
stock. 
n        the number of stocks in portfolio.  
ଵ݂        Expected return for portfolio  
ଶ݂        The risk of portfolio 
ଷ݂         Divided yield  

A         Constraint matrix   
b           maximum level of constraints  
 

	ݔܽܯ ଵ݂ = ௜ݔ෍ܽ௜)ܧ

௡

௜ୀଵ

)		

	݊݅ܯ ଶ݂ = ௜ݔ෍ܽ௜)ݎܸܽ

௡

௜ୀଵ

) 

	ݔܽܯ ଷ݂ =෍ܿ௜ݔ௜

௡

௜ୀଵ

 

.ݏ ݐ ∶ ܺܣ ≤ ܾ	
ܽ௜ 
ܿ௜ 
 ௜ݔ
ଵ݂  
ଶ݂  
ଷ݂
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Table 7 
 Results of solving model for each portfolio considering defined scenarios  

scenarios 
Number 1 2 3 4 5 
Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

1 ARR FLWS ADUS BLDP ARR FLWS ADUS BLDP ARR FLWS ADUS BLDP ARR FLWS ADUS BLDP ARR FLWS ADUS BLDP 
0.2 0 0 0 0.32 0.033 0.023 0.091 0.2 0 0.09 0 0.2 0 0.85 0.85 0.34 0 0.09 0 

2 AA FCTY AGRO BALT AA FCTY AGRO BALT AA FCTY AGRO BALT AA FCTY AGRO BALT AA FCTY AGRO BALT 
0 0 0.09 0 0 0.040 0.1 0.027 0.099 0 0 0 0 0.83 0 0 0 0.49 0 0 

3 BLC FCCY ADEP BBVA BLC FCCY ADEP BBVA BLC FCCY ADEP BBVA BLC FCCY ADEP BBVA BLC FCCY ADEP BBVA 
0 0 0.07 0 0 0.028 0.048 0.036 0 0 0 0 0 0 0 0.019 0 0.20 0 0 

4 AEG FUBC AMD SAN AEG FUBC AMD SAN AEG FUBC AMD SAN AEG FUBC AMD SAN AEG FUBC AMD SAN 
0.087 0 0 0.090 0.087 0.032 0.053 0.021 0.0002 0 0.0002 0 0 0 0.005 0.07 0.081 0 0.013 0 

5 GGR VNET BIRT BVA GGR VNET BIRT BVA GGR VNET BIRT BVA GGR VNET BIRT BVA GGR VNET BIRT BVA 
0 0.48 0 0 0 0.043 0.075 0.045 0.5 0 0.08 0 0.6 0 0.08 0 0 0 0.08 0 

6 FXCM EGHT ANTH BOTJ FXCM EGHT ANTH BOTJ FXCM EGHT ANTH BOTJ FXCM EGHT ANTH BOTJ FXCM EGHT ANTH BOTJ 
0 0 0 0 0 0.033 0.049 0.069 0 0 0 0 0 0 0.006 0.001 0 0 0.001 0 

7 RC AHC ANH BFIN RC AHC ANH BFIN RC AHC ANH BFIN RC AHC ANH BFIN RC AHC ANH BFIN 
0.081 0.29 0.20 0 0.081 0.16 0.044 0.052 0 0 0 0.34 0 0 0 0 0.079 0 0 0.17 

8 CRY ACAD ART BAA CRY ACAD ART BAA CRY ACAD ART BAA CRY ACAD ART BAA CRY ACAD ART BAA 
0.22 0 0 0.65 0.22 0.032 0.049 0.091 0 0 0 0 0 0 0 0 0.22 0 0 0 

9 KEY ACCO ARTW BLC KEY ACCO ARTW BLC KEY ACCO ARTW BLC KEY ACCO ARTW BLC KEY ACCO ARTW BLC 
0.042 0.095 0 0 0.042 0.091 0.12 0.022 0 0.050 0 0 0 0.050 0.008 0 0.042 0.084 0 0 

10 RNDY AEY AKG VVR RNDY AEY AKG VVR RNDY AEY AKG VVR RNDY AEY AKG VVR RNDY AEY AKG VVR 
0.006 0.020 0.41 0 0.006 0.064 0.049 0.020 0 0.020 0.0001 0 0 0.020 0 0 0.0066 0.020 0.006 0 

11 SVM AEZS BFR BNCL SVM AEZS BFR BNCL SVM AEZS BFR BNCL SVM AEZS BFR BNCL SVM AEZS BFR BNCL 
0.069 0 0 0.030 0.069 0.046 0.052 0.12 0.099 0 0 0.03 0 0 0.004 0.03 0.065 0 0 0.03 

12 PGH AXR BBX AQ PGH AXR BBX AQ PGH AXR BBX AQ PGH AXR BBX AQ PGH AXR BBX AQ 
0 0 0 0.020 0 0.034 0.009 0.1 0 0 0.001 0.23  0 0 0.02 0 0 0.084 0.2 

13 WHX ANAD BRT BERK WHX ANAD BRT BERK WHX ANAD BRT BERK WHX ANAD BRT BERK WHX ANAD BRT BERK 
0.020 0 0.21 0 0.020 0.041 0.05 0.036 0 0 0 0 0 0 0 0.0003 0.019 0.030 0 0 

14 XRX ATNY BSDM BRKL XRX ATNY BSDM BRKL XRX ATNY BSDM BRKL XRX ATNY BSDM BRKL XRX ATNY BSDM BRKL 
0.004 0 0 0.19 0.0004 0.043 0.05 0.026 0 0 0 0 0 0 0 0 0.0034 0 0 0 

15 TEU ARC BSQR BRKS TEU ARC BSQR BRKS TEU ARC BSQR BRKS TEU ARC BSQR BRKS TEU ARC BSQR BRKS 
0.035 0 0 0 0.035 0.041 0.05 0.025 0 0 0 0 0 0 0 0 0.034 0.035 0 0 

16 NOR AUO BTUI LBF NOR AUO BTUI LBF NOR AUO BTUI LBF NOR AUO BTUI LBF NOR AUO BTUI LBF 
0 0 0 0 0 0.043 0.057 0.022 0 0 0.0002 0 0.1 0 0.036 0 0 0 0.026 0 

17 SB AVEO AOSL DAEG SB AVEO AOSL DAEG SB AVEO AOSL DAEG SB AVEO AOSL DAEG SB AVEO AOSL DAEG 
0 0 0 0.004 0 0.043 0 0.087 0 0 0 0 0 0 0 0 0 0 0 0 

18 CSX AXTI BTN DAC CSX AXTI BTN DAC CSX AXTI BTN DAC CSX AXTI BTN DAC CSX AXTI BTN DAC 
0.1 0.1 0 0 0.1 0.14 0.1 0.091 0.1 0.93 0.82 0.28 0.1 0.1 0 0 0.1 0.13 0.69 0.77 

 

 

 

 



 
 

Table 8 
Value of objective function following the solving model considering the defined scenarios 

1 
 P1 P2 P3 P4 

Objectives V M V M V M V M 
Return 0 0.01 0 0.34 0 0 0 0.35 

Risk 1.19 0.02 0.68 0.34 0.5 0 1.27 0 
Divided yield 0.01 0.02 0.012 0.34 0.02 0 0.017 0.35 

2 
 P1 P2 P3 P4 

Objectives V M V M V M V M 
Return 0.016 0.81 0 0.34 0 0 0 0.35 

Risk 0.63 0.81 0.91 0 0.7 0 1.15 0.35 
Divided yield 0.017 0.33 0.0067 0 0.0077 0 0.012 0.08 

3 
 P1 P2 P3 P4 

Objectives V M V M V M V M 
Return 0 0 0 0.34 0 0 0 0.35 

Risk 1.2 0 0.68 0.34 0.5 0 1.15 0 
Divided yield 0.01 1 0 0 0 0 0.017 0.15 

4 
 P1 P2 P3 P4 

Objectives V M V M V M V M 
Return 0.0012 0.07 0 0.34 0 0 0 0.35 

Risk 1.15 0.07 0.68 0.34 0.5 0 0.87 0.35 
Divided yield 0.01 0.02 0 0 0.00012 0 0.0091 0 

5 
 P1 P2 P3 P4 

Objectives V M V M V M V M 
Return 0 0 0 0.34 0 0 0 0.35 

Risk 1.2 0 0.68 0.34 0.5 0 0.87 0.35 
Divided yield 0.01 0 0 0 0 0 0.0089 0 

P1: Portfolio 1 P2: Portfolio 2 P3: Portfolio 3 P4: Portfolio 4 V: Value M: Membership functions  
Table 9 
Real value of objectives after one month  

P1 P2 P3 P4 

Return Risk Divided yield Return Risk Divided yield Return Risk Divided yield Return Risk Divided yield 

0.012 0.60 0.015 0.11 0.63 0.012 0.0063 1.35 0.019 0.007 1.08 0.014 

 

The objectives of the model are calculated, considering 
the real data extracted from google finance that the values 
of objectives are presented in Table 10 for each portfolio.  
The basic difference between the first model (presented 
model) and the last one is the risk. In the first model, risk 

has been calculated based on sharp coefficient; in the 
second one, we have variance of return. We used the 
result of the presented model and Markowitz constraints, 
calculated the risk and compared it with each other based 
on the model. The results are in Table11. 

 
Table 10 
Value of objectives after one month  

P1 P2 P3 P4 

Return Risk Divided yield Return Risk Divided yield Return Risk Divided yield Return Risk Divided yield 

-0.025 0.0057 0.032 0.00019 0.00020 0.026 0.00056 0.000066 0.088 0.00038 0.00073 0.11 
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Table 11 
Comparing risk measure in the presented model and Markowitz basic one 

P1	

               Risk 

Model 

Base	on	Variance	of	return	 Base	on	sharp	coefficient	

1 0.000074 0.60 

2 0.0001 0.13 

P2 

               Risk 

Model 

Base	on	Variance	of	return	 Base	on	sharp	coefficient	

1 0.00015 0.63 

2 0.00020 0.66 

P3 

               Risk 

Model 

Base	on	Variance	of	return	 Base	on	sharp	coefficient	

1 0.00026 1.35 

2 0.000091 1.68 

P4 

               Risk 

Model 

Base	on	Variance	of	return	 Base	on	sharp	coefficient	

1 0.0015 1.08 

2 0.00047 1.33 

Model 1: Presented model  Model 2: Markowitz basic model 

4. Discussion and Conclusion 

Briefly, in this paper, firstly, the survey about past 
research studies in portfolio selection using goal 
programming model were discussed. Following that, the 
methodology used in the model was explained. Four 
experimental portfolios by the experts' opinion were 
selected in NYSE, and then DMs were asked about the 
scenarios and preferences of objectives for each portfolio. 
For testing the efficiency of the model, we invested using 
the output of the model. Finally, the presented model was 
compared with Markowitz basic one, and the risk 
measures in Markowitz basic model as well as the 
presented model were compared accordingly 
In this study, after presenting the goal programming 
model, four portfolios have been constructed using the 
experts' views in NYESE market; the presented model has 
been tested in one month, following which it has been 

compared with Markowitz basic model. Comparing 
between Tables 8 and 9, we found that the results after a 
period of one month indicate to be close to or even better 
than what DM preferred; so, we can use this model as a 
reliable model. Comparing between Tables 9 and 10, we 
found that return has better value in model 1 (the 
presented model), and divided yield has better value in 
Markowitz basic model, but the results have values that 
are close together. The presented model measures the risk 
with sharp coefficient and Markowitz basic model with 
variance of return. These two models have been compared 
considering the risk in Table 11.  
In this paper, we discussed the fuzzy goal programming 
model with probabilistic constraints. It was assumed that 
the returns of risky assets were random variables and the 
level of objectives’ attainability had fuzzy concept. Also, 
three objectives of risk, return, and divided yields were 
defined considering the definition of objectives. We 
assumed that the two objectives of risk and return had 
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normal distributions, and that divided yield was discrete. 
We solved the model with different probabilities 
considering DM preference. DM accepted one of these 
patterns for investment. Here, probability can be 
described as the risk of attaining the objectives. We used 
the objectives of Markowitz (risk and return) and added 
the objective of divided yield to it, then we tried to 
maximize return and divided yield and minimize the risk. 
After one month, we measured our objectives in 
represented model and Markowitz’s constraint -based 
model, in which the basic difference between these two 
models was risk measure. In our model, risk measure is 
based on sharp coefficient; in Markowitz’s, risk is based 
on variance of return. We calculated the risk with two 
patterns of sharp coefficient and variance of return using 
the result of the presented model and Markowitz’s 
constraint-based one. The results are presented in Table 
10. Obviously, the results of  the presented model are 
better when we calculate the risk based on variance of 
return and coefficient measure of sharp. Also, we can see 
that the result of divided yield in our model is better than 
Markowitz’s constraint-based model; mean of return in 
Markowitz’s basic model is a little better than that of our 
model. In the presented model, we also used two 
definitions of risk: one is related to sharp coefficient and 
another to the probability of attaining the objectives of 
risk and return. 
For future studies, we recommend using stochastic 
programming with fuzzy concept, recognizing more 
objectives and presenting one decision support system 
(DSS) for selecting portfolio, recognizing the indices that 
have effect on the risk and return of portfolio, and using 
fuzzy logic for selecting portfolio.  
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