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Abstract 

 In this paper, a novel approach to multi response optimization is presented. In the proposed approach, response variables in treatments 
combination occur with a certain probability. Moreover, we assume that each treatment has a network style.   Due to the probabilistic 
nature of the treatment combination, the suggested approach can compute the efficiency of each treatment under the desirable reliability. 
The approach has been constructed based on a network data envelopment analysis and the chance constraint method. Finally, a numerical 
example shows applicability of the proposed method to a multi response problem. The results indicate that the proposed approach is a 
capable method for analyzing the best treatment and compared to other existing methods, it performs better in efficient treatment 
determination.   
Keywords: Multi Response Optimization; Chance Constraint; Network Data Envelopment Analysis; Knapsack Approach.  

1. Introduction 

Multi response optimization (MRO) is a useful and well-
studied method in industrial problems.  In multiple 
response problems, response variables must be considered 
generally in complex product/process designs. In this 
regard, some previous studies were done based on the 
MADM (multi attribute decision-making) approaches 
such as data envelopment analysis (DEA) and TOPSIS. In 
most of them, the aim was to aggregate several criteria 
into a single criterion. Yet, there are some approaches 
which identify the non-dominated solution by pareto 
solution search methods. On the other hand, in multi 
response problems, there are treatments with controllable 
factors and response variables in a single stage; it means 
that we have many controllable factors as inputs and 
many responses as experimental results. In this structure, 
the desirability of each treatment is checked to find 
optimum factors levels among all of the treatments. 
Nevertheless, the experiment can be more complex than 
one stage and even with network structure for 
experiments. 
In other words, in addition to relations between input/s 
and output/s of each stage, it is possible for the output/s of 
intermediate stage to be consumed as input for the 
 
 
 
 
 

 
 
 
neighborhood stage or to play the role of final response in 
the experiment. So, in this situation the experimental style 
is more complex. This condition is illustrated in Figure 1.   

 
Fig. 1. The network structre of the multiple response problem 

The deterministic aspect of experiment design is a special 
case for the probabilistic view with 100% confidence 
level. Moreover, in some problems, we accept a 
considered risk to forecast future events and we can 
disregard the scenarios according to the risk interval. 
Therefore, we are interested in determining the most 
efficient and reliable treatment with a considered 
confidence level. In this study, to find the most efficient 
treatment an approach is proposed based on the Network 
DEA (Lewis and Sexton ,2004) and chance constraint 
method (Charnes and Cooper, 1959). The first one helps 
to solve the complexity of structure and the second one is 
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considered the desired confidence level for the MRO 
problem. 
The rest of this paper is organized as follows: the related 
literature on multi response optimization is reviewed in 
the next section. Section 3 involves the statement of 
problem and its application. Section 4 focuses on the 
proposed approach for determining the most efficient 
treatment/s with a specific reliability level. In Section 5, a 
numerical example is given and the comparison results 
between the proposed method and other existing 
approaches are reported. Finally, some concluding 
remarks are presented in the last section. 

2. Literature Review 

As an interesting subject, multiple response problems 
have attracted the attention of many researchers. Existing 
methods in this area include  both simple weighted-sum 
approaches (Gauri and Pal, 2010) and more complex 
regression and mathematical programming approaches 
(Al-Refaei et al., 2009), Principal Components 
Analysis(Fung and Kang, 2005), Fuzzy Logic (Tarng, 
2000), Grey Rational Analysis (Manivannan et al.,2011) 
and multi criteria decision making (MCDM) approaches 
(Refaie, 2010; Lan, 2009). 
Caporaletti et al. (1999) proposed an input DEA model 

for NTB characteristics using  2iij yy  and 2
ijS as inputs. 

The authors only considered their experiment to judge 
about controllable factors status efficiency. Liao and Chen 
(2002) proposed an input-oriented model (CCR DEA 
model) that uses the normalized mean of responses as 
inputs (if STB or NTB) or outputs (if LTB). Like the 
aforementioned study, only the data of the actual 
experiments were used. Liao (2004) also used a Neural 
Network to estimate the mean responses of all factor level 
combinations and then used a CCR DEA model to select 
the best level based on Normalized S/N ratios (as outputs) 
(Charnes et al, 1978). 
In another study, Gutiérrez and Lozano (2010) used an 
Artificial Neural Network to train the relation between the 
responses and all factor level combinations. Since then, 
Data Envelopment Analysis (DEA) is used to determine 
the efficient factor level combinations, and then to select 
among factors levels, mean square deviations of the 
quality characteristics are used as DEA inputs. Tsai et al. 
(2008) presented an optimization procedure, which uses 
DEA to analyze multiple inputs/outputs and costs for 
experiments with mixtures. The authors assessed the 
method in a real case.  
The survey on DEA extensions shows that Lewis and 
Sexton (2004) suggested a novel model that applies to 
DMUs and consists of a network of Sub-DMUs. They 
considered a method which yields the efficiency scores of 
both DMU and sub-DMU.  
Camanho and Dyson (2005) presented an application of 
stochastic DEA with chance programming. Also, Bruni et 

al. (2009) proposed a stochastic model for data 
envelopment analysis (DEA) based on the theory of joint 
probabilistic constraints. The authors evaluated their 
proposed method in a supplier selection case study.   
Some studies have also been done on MRO. For example, 
Chiao and Hamada (2001) considered experiments with 
correlated multiple responses. The means, variances, and 
correlations depend on experimental factors. Diaz Garcia 
et al. (2005) studied the application of some stochastic 
programming approaches to response surface 
optimization. They assumed a normal distribution for 
response surface coefficients (response surface 
methodology, RSM) and compared their approach with 
the results of some methods such as E- Model, V- Model, 
and Lexicography. The RSM is used to find a suitable 
approximation of the true relationship between response 
variables and controllable factors.  
In another study, Hejazi et al. (2011) proposed goal 
programming for multi response problems with stochastic 
parameters ( 2, ). In the study, the mean and variance 
were considered as goals and goal programming led to 
tend the characteristics to the desirable values.  
 Sometimes the main problem which occurs in multi 
response optimization problems is that when the mean 
square error (MSE) of the regression model is high, the 
ability of the model to describe the relationship of the 
response variable and the controllable factors is poor 
(Kim et al. , 2001). To overcome this problem, the ANN 
can be used as a proper substitute method for response 
estimation.  Some authors compared the response surface 
and regression models with ANN in model building and 
the preciseness of ANN was verified in their results 
(Namvar-Asl et al. , 2008; Tsao, 2008).  
Table 1 shows a summary of existing approaches 
classified according to the DEA technique and its 
applications. In addition, deterministic and uncertainty 
aspects of MRO are another important aspect considered 
to survey the characteristics of published works and the 
novelty of proposed methods. It is obvious that because of 
the stochastic nature of experimentation, the probabilistic 
view of treatment is an essential and attractive issue. 
Therefore, the stochastic view of the MRO problem leads 
to the identification of more reliable levels of controllable 
factors. Moreover, the network structure of some 
experiments and its complexity structure have not been 
studied in previous studies. 
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Table 1 
The summary of related published works in the literature based on DEA 

Published works 
DEA Problem Status Application 

Simple Network Deterministic uncertainty 
MRO 

Other 
Simple Structure Network structure 

Ref. [1]  * *    * 
Ref.[7] *  *  *   

Ref.[10,11,12,14] *  *  *   
Ref.[13] *   *  *   

Ref[16,17] *   *   * 
Ref[18,19,20]    * *   

The proposed method  *  *  *  

3. Statement of the Problem  

In this section, more details of multi response problem 
which is discussed in this paper are explained. First, the 
network structure of experiments is evaluated.  
  Most of multiple response problems existing in the 
literature have a single stage structure so that in each 
treatment, controllable factors have the role of inputs and 
response variables are considered as outputs, while 
structure of experiments may be more complex. 
According to Figure 1 and its network structure, formal 
approaches designed for simple experiments cannot 
determine the optimum treatment accurately because of 
the structure of the experiment which involves more than 
one stage. For more explanation, suppose that we have a 
refining process. The core refining process is simple 
distillation. Because crude oil is made up of a mixture of 
hydrocarbons, this first basic refining process is aimed at 
separating the crude oil into its fractions, the broad 
categories of its component hydrocarbons. Crude oil is 
heated and put into a still (a distillation column) and 
different products boil off and can be recovered at 
different temperatures. After that, some products of the 
previous stage are added to the unfinished product and 
new inputs are used as inputs to a vacuum distillation unit. 
It is worth noting that consideration of a single stage for 
this problem is wrong because the inputs of the second 
stage do not have effect on the first stage and entering the 
second stage inputs to the first stage leads to mistakes in 
the analysis of experiment. In this real case and many  
 
 
 

 
 
 
other similar processes, some of input/s, output/s and 
intermediate products (unfinished products) exist in a 
multi stage experimental design. Therefore, it seems that 
the network structure of Figure 1 is more suitable for the 
mentioned problems.  
In this paper, in addition to the network style of 
experiments, uncertainty situation increases the problem 
complexity. Paying attention to the probabilistic aspect of 
MRO in this study lets us to consider the deterministic 
situation as a special case of probabilistic approach with 
100% confidence level. For defining the probabilistic 
situation of the problem, suppose that according to the 
collected experimental data, there are lots of different 
results during a special period of time and the analysis of 
them should be done considering the stochastic nature. 
One of the popular approaches to stochastic analysis is the 
scenario-based approach and we have used the clustered 
data according to the scenarios. Therefore, there are some  
treatments with their occurrence probability in every 
scenario. The problem in the form of probabilistic 
scenarios is presented in Table 2. This table shows the 
simple kind of experiment (one stage) in a predefined 
scenario. 
Let us define the problem parameters for each treatment j, 
j=1,…, n: 
i=1,…,m controllable factor index. 
r=1,…,q response index. 
p=1,…,P scenario index. 

p
jY = ( p

jy1 ,…, p
qjy )T responses vector in the jth Trt and the 

pth scenario. 

 
Table 2 
Characteristics of the treatments in each scenario 

Scenario 
 

Trt 
 Probability of scenario 

occurrence 
 

Factors 
 

Responses 

Pth 

 1  

Prp 

 
11x  … 1mx  

 py11  … p
qy 1  

 2 
  

12x  … 2mx  
 py12  … p

qy 2  

                
 n 

  
nx1  … mnx   p

ny1  … p
qny  
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For this problem, identification of the best treatment with 
the minimum risk and best ranking is the main objective. 

4. The Proposed Approach 

In this section, to determine the efficiency of each 
treatment, Data Envelopment Analysis and its extension 
are represented for the deterministic situation. Then by 
adding the probabilistic approach to the efficiency model, 
the proposed stochastic efficiency model for the network 
MRO problem is presented. Finally, the steps of the 
proposed method are described.  

4.1. Data Envelopment Analysis 

DEA is one of the useful MADM techniques. DEA 
measures the efficiency of organizations with multiple 
inputs and   outputs. These organizations are called 
decision-making units (DMUs). Also, by applying the 
DEA to the related problems, the rank of each DMU is 
specified based on its efficiency score. In this paper, DEA 
is used for multi response problems so that after 
experimental designs, each treatment is considered as a 
DMU. Then, the efficiency score of each treatment helps 
us in the optimization stage. 
In this study, the DMU and Sub-DMU are the equivalent 
of treatment (trt) and sub-treatment (sub-trt) respectively 
in the design of experiment, respectively. We assume that 
each trt is comprised of a set of sub-trts. Each input to a 
Sub-trt is either exogenous to the trt or is the output of 
another Sub-trt. Similarly, each output from a Sub-trt 
either leaves the trt as a final response variable or is an 
input to another Sub-trt. 
The network DEA model (output-oriented) can be 
illustrated in this way: 
Let k be the index of the trt in the experiments. For 
d=1,…, D , and s, t=1,…, S, ts  ,  

dsiX = The level of input i consumed by Sub-trt s in trt d, 
for i = 1, …, I , 

dstoY = The level of intermediate product o produced by 
Sub-trt s and consumed by Sub-trt t in trt d, for o= 1,…, 
O, 

dsrZ = The value of response r produced by Sub-trt s in trt 
d for r = 1…, R, 

dsk = The weight placed on Sub-trt s in trt d by Sub-trt s 
in trt k 

sk = The inverse efficiency of Sub-trt s in trt k. 
For Sub-trt s at trt k, we let, 

skMax   (1) 

S.t.   

IiXX ksi

D

d
dsidsk ,...,1,

1




  (2) 

OoYY
S

t
ktso

D

d

S

t
dtsodsk ,...,1,

11 1






  

 
    (3) 

OoYY
S

t
kstosk

D

d

S

t
dstodsk ,...,1,

11 1






  

 
  (4) 

RrZZ ksrsk
D

d
dsrdsk ,...,1,

1



  (5) 

Dddsk ,...,1;0    

0sk   

sk  is the inverse efficiency value of sub-trt s at trt k. 
Also, Inequalities (2) and (3) ensure that the reference 
Sub-trt consumes no more of each input and each 
intermediate product as does Sub-trt s at Trt k. 
Inequalities (4) and (5) guarantee that the reference Sub-
trt produces at least as much  as each intermediate product 
and each response as does Sub-trt s at Trt k. 
For each sub-trt, by calculating the value of sk , *

dsk , we 
can compute the efficient value of output (Z*) or 
intermediate products (Y*) according to Equations (6) and 
(7).  





D

d
dsrdskksr RrZZ

1

** ,...,1,  (6) 

 
 


D

d

s

t
dstrdskksr RrYY

1 1

** ,...,1,
 

(7) 

where *
dsk is the optimal value of dsk for the reference 

sub-trt and *
ksrZ  is the level of response variable r 

produced by sub-trt s at trt k if it would be efficient. 
Suppose that we have a structure with two stages and we 
have computed all of efficiency scores in the first stage of 
first Trt. To calculate the overall efficiency score, we need 
to replace the optimal value of outputs or intermediate 
product (according to Equations (6) and (7)) in the next 
sub-trt. Hence, for the second sub-trt, the inverse 
efficiency score is computed as follows: 

21Max  (8) 

S.t.   

IiXX ksi
D

d
dsidsk ,...,1,

1



  (9) 

OoYY
S

t
ktso

D

d

S

t
dtsodsk ,...,1,

1

*

1 1






  

 
  (10) 

RrZZ ksrsk
D

d
dsrdsk ,...,1,

1



  (11) 
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D,...,1d;0dsk   (12) 

0sk   (13) 

  To obtain the overall inverse efficiency for each 
treatment, we have: 


























 S

s
ksr

S

s
ksr

Rrk
Z

Z

1

1

**

,...,1
min  (14) 

where **
ksrZ is the level of output r that Sub-trt s in trt k 

would produce under these conditions if it were efficient. 

Notice that 



D

d
dsk

1
1  because variables are returns to 

the scale. By calculating the inverse efficiency scores, the 
treatment rank can be determined (for more explanation, 
see [1]).  

4.2. The probabilistic approach 

In this section, the probabilistic aspect of the problem is 
added to the proposed model. We have some scenarios 
with certain occurrence probability and in each scenario, a 
set of treatments network structure are tested. Knapsack 
approach is used to compute (1- )% confidence level to 
determine the efficiency of each trt.  
Definition 1: (Scenario efficiency). Trt k is efficient with 
respect to scenario p if it is impossible to find a feasible 
solution for the following problem: 

RrZZ

OoYY

IiXX

p
ksr

D

d
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dsrdsk
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


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

 

We have 1- % reliability for selecting the best 
treatment. In the stochastic framework, for each trt, 
uncertainty parameters are represented by the random 
variables. These variables can be considered as the 

approximation of the known distribution function or the 
set of scenarios. 
Definition 2: 1- % confidence level is performed if: 

skMax                                                                     (18) 
      S.t. 
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(19) 

where input/s, output/s and intermediate product are 
represented by the random variable defined on a given 

probability space. For example,  ksrZ
~

is the rth response 
of sub-trt s at trt k under the stochastic situation. 
Definition 3: (probabilistic knapsack problem) Knapsack 
approach is characterized by the allocation of limited 
resources to competing items. The items are associated 
with resource requirements as well as rewards. In this 
paper, we have a knapsack with 1- % volume. Each 
scenario has a certain volume and an individual effect on 
the maximization of the inverse efficiency score of sub-trt 
and treatment. Therefore, this approach adds big M and 0-
1 decision variable to decide which constraints can be 
removed from the knapsack based on disregarding  % 
(as the maximum risk-value) of the overall knapsack 
volume. 

 4.3. The proposed multiple response optimization 
approach 

In this section, the multi response optimization method is 
proposed. The proposed approach is illustrated in Figure 2 
and its explanation is provided below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(15) 

(16) 
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Fig. 2. The proposed multiple response optimization approach 

Step1. Experiment information 
Determine the controllable factors, response variables and 
quality characteristics (i.e., larger-the-better (LTB), 
nominal-the-best (NTB) or smaller-the-better (STB)) of 
the response variables and collect the experiment data. 
Step2. Normalization of the gathered data Normalize all 
of the results to reduce the effects of various measuring 
units of the response variables on efficiency analysis in 
the Network DEA.  
Note that in most of MRO approaches, the analyzer does 
not attend to cost considerations of factors levels and the 
controllable factors' values are not considered. However, 
in the DEA approach we assume that the analyzer is 
interested in decreasing the input variable value.  
We can use one of the available normalization formulas 
(according to the STB, LTB and NTB).  
Step3. Efficiency calculation for each sub-trt Compute the 
inverse efficiency score for each sub-trt at each trt 
according to following model: 
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0sk  , p =0,1 (27) 

where S1 = S t1 .In this relation, S is the number 
of stages (sub-trt) in the experiment structure and S is 
the complement of the imposed reliability level (risk-
value) for each stage and t has the same concept for the 
overall inverse efficiency calculation.  
Equation (20) is the objective function for determining the 
efficiency score of the sth sub-trt at the kth treatment and 
Equation (25) defines a binary knapsack constraint, which 
guarantees the violation of the constraints for a subset of 
scenarios whose cumulative probability is less than the 
complement of the imposed confidence level. Also, p is 
a binary variable for eliminating the pth scenario in the 
complement of the imposed confidence level interval. 

Designing and performing    
the experiment 

Normalization of the 
inputs & outputs values 

Determination of the total 
Confidence level 1- T  

(Family confidence level) 

Efficiency calculation for each 
stage trt by Equations (20)-(27) 

Determination of each stage 
confidence level 1- S  

(Individual confidence level) 

Do the inverse efficiency 
of sub-trts have 

significant differences? 

Calculation of overall efficiency 
for each trt by Eq. (20) 

Selection of the best treatment with 

1- T % reliability 

No: 
 Decrease1- T   Yes 
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Other equations have the same concepts mentioned in 
section 4.1 with a scenario treatment. 
Step 4. Treatment selection based on efficiency scores  
Determine the best treatment among all based on the 
overall efficiency score of all treatments. To this end, get 
the overall efficiency in accordance with Equation (8). 
Notice that k is the inverse of efficiency in kth treatment. 

5. A Numerical Example 

In this section, a hypothetical example is presented. The 
structure of experiments at each treatment is given in 
Figure 3. 

 
Fig. 3. The network structre of the example 

As it is shown in the figure, each treatment consists of 
two stages. The first stage has two controllable factors, 
each at three levels, and two outputs. Other controllable 
factors are an input for the second stage.  
The detailed information about the numerical example is 
given in Table 3. In this regard, suppose that we 
experiment with 9 treatments. The aggregated data show 
that we have 4 scenarios with the probabilities of 0.1, 
0.35, 0.5 and 0.05, respectively.  
In this example, 80% overall confidence level (1- T ) is 
defined by the decision maker. Thus, giving attention to 

the individual confidence level for each sub-trt shows that 
90% confidence level is suitable for running the proposed 
MILP model and computing each efficiency score. 
We used a classic optimization software (Lingo 8) for 
calculating the efficiency of each treatment. The results, 
summarized in Table 4, show that the 4th treatment has the 
highest efficiency score among the others ( 14  ). 
To further clarify the proposed approach, the computed 
variables for the 7th treatment are reported in Table 5. 

Table 3 
Information about the numerical example 

Scenario 
(occurrence probability Pr) 

 
Trt 

Controllable Factors Intermediate product Response variables 
Factor 1 Factor 2 Factor 3 Response1 Response2 

1 
(Pr=0.1) 

1 0.45 0.1 0.15 0.5 0.4 0.3 
2 0.45 0.5 0.12 0.6 0.2 0.2 
3 0.45 0.9 0.15 0.4 0.3 0.3 
4 0.5 0.1 0.19 0.7 0.8 0.8 
5 0.5 0.5 0.15 0.6 0.4 0.4 
6 0.5 0.9 0.18 0.5 0.6 0.6 
7 0.55 0.1 0.15 0.5 0.2 0.2 
8 0.55 0.5 0.12 0.4 0.3 0.3 
9 0.55 0.9 0.16 0.4 0.4 0.4 

2 
(Pr=0.35) 

1 0.45 0.1 0.19 0.55 0.42 0.3 
2 0.45 0.5 0.16 0.6 0.22 0.54 
3 0.45 0.9 0.19 0.3 0.3 0.3 
4 0.5 0.1 0.1 0.65 0.78 0.7 
5 0.5 0.5 0.2 0.58 0.35 0.32 
6 0.5 0.9 0.11 0.3 0.62 0.65 
7 0.55 0.1 0.2 0.5 0.2 0.2 
8 0.55 0.5 0.15 0.3 0.35 0.3 
9 0.55 0.9 0.13 0.3 0.4 0.6 

3 
(Pr=0.5) 

1 0.45 0.1 0.2 0.55 0.3 0.35 
2 0.45 0.5 0.17 0.53 0.15 0.4 
3 0.45 0.9 0.2 0.4 0.2 0.4 
4 0.5 0.1 0.11 0.65 0.8 0.8 
5 0.5 0.5 0.21 0.5 0.38 0.33 
6 0.5 0.9 0.12 0.38 0.6 0.7 
7 0.55 0.1 0.21 0.5 0.2 0.15 
8 0.55 0.5 0.15 0.4 0.3 0.5 
9 0.55 0.9 0.14 0.4 0.6 0.52 

4 
(Pr=0.05) 

1 0.45 0.1 0.21 0.4 0.4 0.45 
2 0.45 0.5 0.18 0.5 0.17 0.47 
3 0.45 0.9 0.21 0.4 0.5 0.2 
4 0.5 0.1 0.12 0.57 0.7 0.68 
5 0.5 0.5 0.22 0.5 0.38 0.3 
6 0.5 0.9 0.13 0.35 0.6 0.7 
7 0.55 0.1 0.22 0.55 0.25 0.25 
8 0.55 0.5 0.16 0.35 0.55 0.3 
9 0.55 0.9 0.15 0.5 0.5 0.6 

Intermediate 
 Product 

 

Controllable Factor  2 

Response 1 Controllable Factor  1 

Response 2 

Controllable Factor  3 

 
Stage 

 1 

 
Stage 

2 
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Table 4 
Efficiency results of the problem for each treatment 

Treatments 
 1 2 3 4 5 6 7 8 9 

efficiency 
score 

0.73 0.857 0.68 1 0.54 0.97 0.37 0.79 0.89 

Rank 6 4 7 1 8 2 9 5 3 
 

Table 5. 
 Efficiency calculation for the 7th treatment considering 81% confidence level 

Treatment 17  
*
417


 

Inverse Efficiency score Efficiency Score 

7 1.3 1 2.7 0.37 
Table 5 reveals that the 7th treatment has got 0.37 
efficiency score with 0.81% confidence level (two stages, 
each with 90% confidence level).   

5.1. Method analysis 

The proposed approach emphasizes cost consideration. 
Most of multi response optimization approaches overlook 
controllable factors values but in some cases the amount 
of controllable factors (with different costs) are not equal 
in different treatments. In such cases, using the proposed 
approach is, therefore, more appropriate. Suppose two 
treatments with two factors, each at two levels, according 
to Table 6. Most of existing approaches select the first 

treatment; however, it seems that the second one is 
appropriate too. 

Table 6 
Regarding or disregarding of costs in MRO 
 Factors Responses 
Trial 
No. 

A B Response 1 Response 2 

1 10 20 11 21 
2 1 2 10 20 

 
To check the good performance of the proposed approach, 
we generated random data for all of the treatments. By 
increasing the LTB responses in a certain trt and 
scenarios, the reasonable behavior existed for its 
efficiency value. This concept is presented in Table 7.

Table 7 
The effect of response changes on the inverse efficiency score (the first response of the 7th treatment) 

Scenario number 
Current value of 
the first response 

Changed values of the first response 

 0.2 0.3 0.22 0.1 0.18 0.2 
1 0.2 0.3 0.22 0.1 0.18 0.22 
2 0.2 0.3 0.22 0.1 0.18 0.24 
3 0.25 0.35 0.275 0.15 0.225 0.31 
4       

Current value of the inverse efficiency score 2.73 - - - - - 
Modified value of the inverse efficiency score - 2 2.54 2.8 2.77 2.25 

To evaluate the efficiency of the proposed method, we 
implement two existing approaches and compare the 
results. We solve the mentioned multi response problem 
by means of the deterministic DEA and Network DEA. 
The results are reported in Table 8. All of the surveyed 
approaches can be used for determining the efficient trt 
but the main problem is which method works with more 
accuracy and capability. As it clear in Table 8, the mean 
of inverse efficiency score for Network DEA (1.197) is 
greater than DEA (1.079); therefore the Network DEA is 
more capable of identifying sources of inefficiency in 
complex models, thereby potentially yielding greater 
analysis insights into experimental design improvements. 
Moreover, the comparison of DEA and Network DEA 
shows that the number of efficient trt is less for Network 
DEA and ranges and standard deviations of inverse 
efficiencies for Network DEA are more spread. The 
defined criteria show that the Network DEA can propose 
better solutions for analyzer so that the analyzer can 
specify the source of inefficiency by considering the sub-
trt efficiencies in the network structure. By decreasing the 
confidence level from 100%, the model can determine the 
resources of inefficiencies better. For example, 
considering 81% reliability level for the numerical 

example leads to a greater mean for the probabilistic kind 
of Network DEA compared with the deterministic DEA 
and Network DEA. Table 8 shows that  the probabilistic 
Network DEA works better than the others so that it has a 
high mean of inverse efficiency scores (1.445) and rang of 
differences (1.73). Moreover, the proposed method 
suggests only one trt as the optimal solution whereas the 
others have more than one solution. In other words, the 
proposed approach helps analyzer to identify the pareto 
optimal solution by accepting the risk value in a network 
structure of experiments.   

 

 
Fig. 4. The simplified structre of the numerical example for using in the 

simple DEA 

 
 

 
Stage 

 1 

Controllable Factor  3 

Response 2 
Controllable Factor  1 

Response 3 

Controllable Factor  2 
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In this section, behavior of inefficiencies with respect to 
the risk value is evaluated. It is worth noting that the 
invers efficiency score increases or (in the worst case) 
remains stable with growing the risk values. This 
illustrates the importance of choosing appropriate 
threshold probability levels to avoid incorrect 

classifications of treatments. Table 9 presents the risk 
value and its effect on the inverse efficiency scores. This 
table is related to the inverse efficiency score of the first 
stage in the numerical example. 
 

Table 8 
Comparison results obtained for the DEA, Network DEA and the proposed approach 

Trt No. 
 Inverse Efficiency Score 
 DEA    Network DEA  (the proposed approach) 

1  1    1.138  1.362 
2  1    1.077  1.167 
3  1    1.186  1.464 
4  1    1  1 
5  1.21    1.286  1.84 
6  1    1  1.03 
7  1.5    2.09  2.73 
8  1    1  1.27 
9  1    1  1.14 
         

No. 1  7    4  1 
Mean  1.079    1.197  1.445 
SD  0.163    0.33  0.515 

Rang  0.5    1.09  1.73 
 

Table 9 
Effects of confidence level changes on the inverse efficiency score in the example 

 
Trt 

Confidence level % or 100-(percent of risk-value) 
50  70  90  100 

1 1.037  1  1  1 
2 1  1  1  1 
3 1.375  1.375  1.354  1.25 
4 1  1  1  1 
5 1.3  1.12  1.12  1.12 
6 1.4  1.3  1.3  1.3 
7 1.3  1.3  1.3  1.036 
8 1.628  1.625  1.625  1.625 
9 1.625  1.625  1.625  1.14 

 
 
We can analyze the stability of efficiency scores and 
ranks according to risk intervals. For example, a risk 
value is suggested by the analyzer, but the results would 
be stable for a higher confidence level. So, we can check 
the neighborhood interval of the threshold probability 
level to report the most reliable level. 
In Figure 5, the behavior of the inverse efficiency score 
with respect to the risk-values is evaluated. In this figure 
the first stage of numerical example is used to interpret 
the results of Table 8. The figure demonstrates that 
increasing the risk leads to cutting the overlap scenarios 
or constraints in the proposed model. 
To evaluate the validity of the proposed approach, we 
generated five random samples according to the 
mentioned structure. The results show the capability of 
the proposed method through appropriate scores in 
comparison to the other approaches related to DEA. All of 
the scores are reported in Table 10. 
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 Fig. 5. Behavior of the inverse efficiency score for the first stage with 
respect to the confidence level 

6. Conclusion 

In this paper, an attempt was made to propose an efficient 
approach to find the best controllable factors levels in a 
joint probabilistic situation and network form of 
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experiments. First, an MILP model based on the network 
DEA and knapsack approach was presented. Then the 
efficiency score of each sub-trt was obtained by the 
proposed model according to the individual desirable 
confidence level. After that, the overall efficiency score 
for each treatment was calculated. Finally, the mentioned 
approach was discussed in numerical examples. The 
results show that the suggested approach not only 
proposes a unique treatment to opt, but it also can rank the 
treatments according to a wide range of efficiency scores. 

As a future research, correlated scenarios for response 
variables can be studied so that each response variable 
influences the others. Moreover, during designing the 
experiments, the designer needs to evaluate the treatments 
considering a structure that flaws can be refined for 
Reprocessing; therefore, other network structures (with a 
recursive loop) can be considered in future research. 

 

Table. 10 
Defined criteria for comparing the methods’ capability based on inverse efficiency scores in five samples 

Samples No.1 Mean SD Rang 

1* 2** 3*** 1 2 3 1 2 3 1 2 3 
1 6 3 1 1.12 1.29 1.77 0.22 0.41 0.52 0.23 1.11 1.69 
2 6 2 1 1.09 1.38 1.46 0.26 0.34 0.61 0.39 1.16 1.71 
3 4 1 1 1.19 1.43 1.47 0.21 0.39 0.43 0.41 1.24 1.67 
4 5 3 1 1.06 1.31 1.64 0.19 0.29 0.48 0.51 1.08 1.53 
5 3 2 1 1.11 1.39 1.57 0.18 0.33 0.52 0.57 1.18 1.64 

*DEA , **Network DEA, *** The proposed approach 
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