
Stochastic Vehicle Routing Problems with Real Simultaneous Pickup 
and Delivery Services  

Eshetie Berhan* 
Assistant Professor, Industrial Engineering, Ethiopia, Addis Ababa 

Received 28 March, 2015; Revised 07 September, 2015; Accepted 01 October, 2015 

Abstract 

The problem of designing a set of routes with minimum cost to serve a collection of customers with a fleet of vehicles is a 
fundamental challenge when the number of customers to be dropped or picked up is not known during the planning horizon. The 
purpose of this paper is to develop a vehicle routing Problem (VRP) model that addresses stochastic simultaneous pickup and 
delivery in the urban public transport systems of Addis Ababa city Bus Enterprise, in Ethiopia. To this effect, a mathematical model 
is developed and fitted with real data collected from Anbessa City Bus Service Enterprise (ACBSE) and solved using Clark-Wright 
saving algorithm. The form-to-distance is computed from the data collected from Google Earth and the passenger data from the 
ACBSE. The findings of the study show that the model is feasible and showed an improvement as compared to the current 
performances of the enterprise. It showed an improvement on the current number of routes (number of buses used) and the total 
kilometer covered. The average performances of the model show that on average 6.48 routes are required to serve passenger 
demands of 271 and on average the simulation run was performed with 0.40 seconds of CPU time. During this instance, the average 
distance traveled by the vehicles in a single trip is 552.92kms. 
Keywords: Stochastic VRP, Simultaneous Pickup and Delivery, VRP. 

1. Introduction 

VRP has been a well-studied combinatorial 
optimization problem for the last half of century. 
Many extensions have been evolved from it in order to 
support decision making under different real-world 
conditions. Due to this reason, various variants of 
VRP have been developed from it. Moreover, since 
the introductions of VRP, there have been many new 
insights and algorithms developed to study the 
classical or deterministic VRP (Kallehauge, 2006) as 
well as for the stochastic and dynamic variations of it 
(Bertsimas and David, 1996; Golden and Stewart, 
1978; Ismail and Irhamah, 2008). 
The variants of VRP models are differed by the 
inclusion or exclusions of different side constraints. 
The most common side constraints are restrictions on 
capacity of vehicle (Chenghua & Xiaofeng, 2011), 
total time or time windows (Madsen et al., 1995), 
precedence relations between pairs of cities and the 
number of depots (Paolo & Daniele, 2002; Laporte, 
1992). The variant of VRP most commonly studied is 
VRP with Time Windows (VRPTW) (Cordeau et al., 
2001; Madsen et al., 1995; Cordeau et al., 2007;  
 

 
 
 
 
Kenyon & P. David, 2003). Other variants of VRP are 
VRP with Pickup and Deliveries and Time Windows 
(CVRPPDTW), Multiple Depot VRP with Time 
Windows (MDVRPTW), Split Delivery VRP with 
Time Windows (SDVRPTW) and Periodic VRP with 
Time Windows (PVRPTW) (Dror & Trudeau, 1989; 
Dror et al., 1994; Dror & P, 1990); and VRP with 
Pickup and Delivery (VRPPD), where the delivery and 
pickup are treated separately as VRP with divisible 
Delivery and Pickup (Anbuudayasankar & Ganesh, 
2008; Parragh et al., 2008). 
In the area of stochastic environment, some of the 
variants are Stochastic VRP (SVRP) and/or VRP with 
stochastic Customer Demand (VRPSD), SVRP with 
pure pickup or a pure delivery problems (Bertsimas, 
1992). This type of VRP has been attempted in the 
literature with areas of application such as model 
public bus transport (Eshetie et al., 2014b), waste 
collection (Milić & Jovanović, 2011), plant to 
customer distribution (Chepuri &Tito, 2005), 
collection and delivery of goods (Bertsimas, 1992), 
etc.. In the stochastic VRP environment, VRP with 
stochastic customer demand is the most studied 
variant in the literature (Eshetie et al., 2014a). * Corresponding author Email address: berhan.eshetie@gmail.com 
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Further, VRP model with Simultaneous Pickup and 
Delivery was also studied by Kanthavel et al. (2012) 
with consideration of first delivery and then followed 
by pickup service but named as VRP with 
simultaneous delivery and pickup. This assumption is 
more clearly illustrated by Parragh et al. (2008) and 
Kanthavel et al. (2012) with a symbol representation 
and mathematical model. The model of Kanthavel et 
al. (2012) illustrates first with symbols ▾ as delivery 
and second with symbols ▴ as pickup along each route. 
Similarly, as in the work of Parragh et al. (2008) 
VRPSPD was studied as a set of backhauls or pickup 
vertices, ܲ = {1,… , ݊} and a set of linehauls or 
delivery vertices,	ܦ = {݊ + 1,… , ݊ + ñ}. As it can be 
seen from this consideration, first the pickup is 
performed from 1	݋ݐ	݊ then followed by the delivery 
after the end node from	݊ + ݊	݋ݐ	1 + ñ.  
The idea of simultaneous delivery and pickup with 
deterministic demand on the same node (for each 
client or vertices) was noted on the work of Fermin 
and Roberto (2002) as one alternative in their 
literature but not modeled and solved. Similar research 
by the same authors Fermin and Roberto (2006), 
studied simultaneous pickup and delivery service but 
deliveries are supplied from a single depot at the 
beginning of the service followed by pickup loads to 
be taken to the same depot at the conclusion of the 
service. Most of the models considered a deterministic 
demand on both delivery and pickup services except 
the work of Wang (2011) which considered stochastic 
demand but on alternative pickup and delivery 
services using synthesized data.  
However, although there are various variants of VRPs 
evolved from the classical VRP models, to date there 

is no model addressing the Stochastic VRP with real 
simultaneous pickup and delivery services at each bus 
stop in the urban public bus transport system except 
for the attempt made by Eshetie et al. (2013a, 2014b). 
This paper tries to develop a Stochastic Vehicle 
Routing Problem with Simultaneous Pickup and 
Delivery (SVRPSPD) model for ACBSE, urban public 
bus transport, so as to determine a route for each 
vehicle that minimizes the total distance travel. 
The remainder of this paper is organized as follow. 
Section 2 deals with model formulation of SVRPSPD. 
Section 3 presents model validation and solving the 
model. Section 4 provides conclusion of the paper 
along with future directions.  

2. Model Formulation  

Suppose a vehicle with capacity Q starts from the 
depot ݒ଴	and travels from ݒଵ,ݒଶ, . . . ,  ௡ and providesݒ
passengers’ services of pick and/or drop up to the last 
node ݒ௡ along the path as shown in Figure 1. Let the 
cumulative number of passengers picked up by a 
vehicle ݇ be represented by ܥ௣ and the cumulative 
number of passengers dropped be ܥௗ along the path 
until node	ݒ௡; then ܥ௣ and ܥௗ are computed as 
)௣ܥ ௡ܸ) = ∑ ௜௜∈௩(଴,௩೙)݌  and	ܥௗ( ௡ܸ) = ∑ ݀௜௜∈௩(଴,௩೙) . 
Where ݌௜  and ݀௜ are the expected number of 
passengers to be picked up and dropped at node ݅ 
respectively. At the depot, ܥ௣ = ௗܥ = 0 and the path 
will not become feasible if the expected cumulative 
number of passengers that remain in the bus when the 
bus is leaving node i which is	ܥ௣ − ௗܥ 	≥ ܳ.

 
Fig. 1. Illustration of the SVRPSPD 

It also checks whether the net load of the bus for any 
consecutive nodes will not exceed the bus capacity 

when the bus is visiting node	ݒ௡. Let the	ܮ௣(ݒ௡) =
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(௡ݒ)௣ܥ (௡ିଵݒ)௣ܮ	+ −  is the remaining net	(௡ݒ)ௗܥ
load in the bus between any consecutive nodes then 
the route will be feasible if	ܮ௣(ݒ௡) ≤ ܳ.   
To formulate the mathematical model, the following 
notations and representations are used.  

Let ܸ = ,ଶݒ	,ଵݒ	,଴ݒ} . . . ,  ௡}  be a set of nodes orݒ
vertices treated as bus stops, and ݒ଴,be a depot 
where buses will be dispatched. 

,݅)	is the set of arcs 	ܣ ݆) ∈  ܣ
݇ is the number of vehicles 	ܭ = {1,2,… ,  {ܭ
ܿ௜௝	 is the distance traversing the arc from node ݅ to 

node ݆ 
   is the expected number of passengers to be	௜݌

picked at node ݅,  
݀௜		 is the expected number of passengers to be 

dropped at node ݅  
ܳ	 the vehicle capacity 
݊  total number of nodes or vertices or bus stops 

included in the model. 
 ௜௞ the expected cumulative number of passengersݕ	

picked by vehicle ݇ when leaving from node ݅, 
and ݕ௜௝௞ = 1	if vehicle ݇ travels from node ݅ to 
node	݆; 0 otherwise.  

 ௜௞ the expected number of passenger/s which is/areݖ
remaining in vehicle ݇	when leaving from node ݅  

 ݆; 0	travels from node ݅ to node	௜௝௞= 1; if vehicle ݇ݔ
otherwise 

The objective is to determine a route for each vehicle 
that serves a set of nodes (ݒ௡) so that the total distance 
traveled ∑∑ܿ௜௝ ௜௝ݔ  is minimized. However, it is 
subjected to the following constraints. That is, each 
vehicle leaves the depot is used at most once, that is 
∑ ଴௝௞ݔ ≤ 1௡
௝ୀଵ ; each node has to be served exactly by 

one vehicle and expressed as ∑ ௜௝௞ݔ = 1௡
௜ୀ଴ ; the same 

vehicle arrives in node ݅ must leave from same node is 
represented by ∑ ௜௝௞ݔ −∑ ௝௜௞௡ݔ

௜ୀ଴ = 0௡
௜ୀ଴ . Moreover, 

௜௞ݖ + ௜௞ݕ ≤ ܳ which ensures that the expected 
cumulative net load on vehicle ݇ when leaving from 
node ݅ is always less than the vehicle capacity. 
The traversed load constraint,(ݖ௜௞ − ௝݀ − ௜௝ୀ଴௞ݔ	(௝௞ݖ  
and(ݕ௜௞ − ௝݌ − ௜௝ୀ଴௞ݔ	(௝௞ݕ , indicate that when arc (݅, ݆) 
is traversed by vehicle	݇, the number of passengers to 
be dropped by the vehicle has to be decreased by ௝݀  
while the number of passengers picked up has to be 
increased by ݌௝ , respectively. At the depot, the bus 
starts its service with full capacity; this indicates 
that	ݖ଴௞ = ଴௞ݕ = 0. The overall model is then 
summarized and given as follows: 
 

෍෍෍ܿ௜௝௞	݁ݖ݅݉݅݊݅ܯ
௡

௝ୀ଴

௜௝௞ݔ
௡

௜ୀ଴

௄

௞ୀଵ

		

଴௝௞ݔ෍	݋ݐ	ݐ݆ܾܿ݁ݑܵ	 ≤ 1
௡

௝ୀଵ

 

																					෍ݔ௜௝௞ = 1
௡

௜ୀ଴

	

														෍ݔ௜௝௞ −෍ݔ௝௜௞ = 0
௡

௝ୀ଴

௡

௜ୀ଴

 

௜௞ݖ + ௜௞ݖ ≤ ܳ 

௜௞ݖ) − ௝݀ − ௜௝ୀ଴௞ݔ(௝௞ݖ 	
௜௞ݕ) − ௝݌ − ௜௝ୀ଴௞ݔ(௝௞ݕ  

଴௞ݖ	 = ଴௞ݕ = 0 

௜௞ݖ , ௝௞ݖ ≥ 0 

௜௞ݖ , ௝௞ݖ ≥ 0 

∀௞= 1, 2, . . . , ,݅,஺∈(௜,௝)∀	݀݊ܽ	ܭ ݆ = 1, 2, . . . , ݊ 
 
During the planning horizon, the minimum number of 
vehicles ܭ can be determined using;  

ܭ = ݔܽ݉ ቊ|
∑ ݀௜௡
௜ୀଵ

ܳ |, |
∑ ௜௡݌
௜ୀଵ

ܳ |ቋ 

3. Model Validation 

To validate the model given in section 2, the real 
scenario of ACBSE operations are modified and fitted 
on ACBSE. It is the only urban public bus transport 
service enterprise in the city of Addis Ababa, Ethiopia. 
Currently, it serves more than 115 routes that connect 
different parts of the city using 690 operational 
buses (Eshetie et al., 2013b). However, for the 
purposes of this research, only one depot that has 58 
bus stops are considered. On this depot, on average, 
the company uses 11buses and covers a 752Km in a 
single trips to serve the 58 bus stops. The following 
terms and representations are used during the model 
fitting processes: 
Passengers and depot: ܸ = ,ଶݒ	,ଵݒ	,଴ݒ} . . . ,  ହ଼} is a setݒ
of nodes including the depot corresponding to the 
locations of passengers to be picked or dropped.  
Demands: Passengers have stochastic pickup and 
delivery demands. Actual passengers’ demand of each 
location ݒ௜ 	is only known when the vehicle arrives at 
passengers’ location	݅. 
Vehicles capacity: The vehicle has a limited capacity 
of	ܳ =  If the total expected .ݏݎ݁݃݊݁ݏݏܽ݌	70
passengers (i.e. the cumulative of the difference 
between dropped and picked up) exceeds the vehicle 
capacity, route failure is said to occur. But no penalty 
cost is assumed in this case. The bus terminates its 
services and gets back to the depot. 
Route: A route must start at the depot, visit a number 
of passengers’ locations or bus stops and return to the 
depot. A feasible route to the SVRPSPD is a 
permutation of the bus stops ܴ = ,଴ݒ) ,ଵݒ …,ଶݒ ,  (௡ݒ
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starting and ending at the depot	(ݐℎܽݐ	ݏ݅, ଴ݒ = ௡ݒ = 0) 
and it is called a priori tour.  
Distance to be minimized: let ܣ = (݅, ݆): ݅, ݆ ∈ ܸ, ݅ ≠
݆ is the set of arcs joining the nodes and a non-
negative matrix ܥ = {ܿ௜௝ : ݅, ݆ ∈ ܸ, ݅ ≠ ݆} denotes the 
traveling distances between nodes ݅ and	݆. The from-
to-distance of a sample of origin-destination are 
computed from the digital latitude and longitude data 
from Table1 using great circle computation and 
presented in Table2. 

3.1 Input Parameters to the Model 

To run and test the model, the input parameters that 
have to be fitted to the model are required. These 
inputs are either collected or generated/computed. 
These data are the from-to-distance, the passengers 
demand and the demand distributions which are 
computed or generated at each location point. Each of 
them are briefly explained and presented in 
section 3.1.1 and 3.1.2.  

3.1.1  Stochastic Passengers Demand 
The passengers’ demand collected in 58 location 
points of ACBSE from 2004 to 2014 are used to fit the 
demand behavior of passengers. The snapshot of 
passengers picked up (݌௜) and passengers dropped (݀௜) 
and the digital location point ݒ௜ are reported in Table1. 
3.1.2 From-to-Distance 
The from-to-distance for each location ݅ is computed 
by taking the longitude and latitude locations of each 
point using Great Circle distance formula that 
considers the circular nature of earth. Due to the 
symmetrical nature of the data, the upper triangular 
matrix of the from-to-distance is reported in Table2.  
Each ܿ௜௝  is defined as the distance from ݅ to	݆, which 
can be directly considered as the cost associated to 
transport passenger including depot 0. Further, it 
assumes the distance is symmetric, that is ܿ௜௝ୀ ௝ܿ௜ 
and	ܿ௜௜ୀ	 ௝ܿ௝ = 0, and satisfies the triangular inequality. 

 
Table 1 
Sample demand distribution at each location  

 ௜ Location (decimal) Expectedݒ
Passengers 

 Longitude Latitude ݌௜		 ݀௜		 
0 
1 

38.8 9.16 - - 

2 38.9 9.1 18.42 12.12 
3 38.9 8.94 8.35 11.40 
4 38.8 9.16 16.83 11.55 
5 38.9 9.13 8.50 4.29 
6 38.8 9.04 5.58 8.98 
7 38.8 9.18 17.17 8.91 
8 38.8 9.14 17.93 12.94 
. . . . . 
. . . . . 
. . . . . 

57 38.6 9.11 14.72 14.93 
58 39.0 9.13 12.42 12.00 
59 38.8 9.04 11.56 4.99 

 
Table 2 
From-to-distance matrix (ܿ௜௝) 
 ௜௝ 0 1 2 3 4 5 6 7 . . . 56 57 58ݒ
0 -  17 7 7 8 1 1 . . . 17 20 19 
1   - 11 7 2 8 9 7 . . . 22 14 23 
2    - 11 13 10 18 15 . . . 33 20 21 
3     - 8 1 8 6 . . . 24 21 15 
4      - 9 8 7 . . . 20 14 24 
5       - 10 7 . . . 26 22 15 
6        - 3 . . . 16 21 20 
7         - . . . 19 20 18 
. . . . . . . . . - . . . . . 
. . . . . . . . . . - . . . . 
. . . . . . . . . . . - . . . 
56             - 27 34 
57              - 37 
58                           - 
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3.2 Solving the Model 

A heuristic procedure developed for the classical 
VRPs has been extended to solve SVRPSPD model 
developed above. The heuristics adopted is Clarke-
Wright algorithm. The Clarke-Wright algorithm is 
iteratively repeated for each node as a starting node 
with the objective of improving the quality of the 
solution. The following assumptions are considered 
during solving of the model. 
 All routes start and end at the depot.  
 Each node in ݒ௜ is visited exactly once by a 

vehicle.  
 The cumulative demand along the route or 

demand at any node shall never exceed the 
vehicle capacity	ܳ.  

 All vehicles have the same capacity and are 
stationed at the node of origin.  

 Split delivery is not permitted.  
 Each vehicle makes exactly one trip during the 

simulation run.  
The task is to determine a route for each vehicle so 

as to serve a set of nodes so that the total distance 
traversed is minimal. The solution using a 
Clarke-Wright algorithm is obtained using the 
following steps: 

 Step 1. Select any node from the central 
depot	ݒ଴.  

 Step 2. Compute savings using ݏ௜௝ = ܿଵ௜ + ܿଵ௜ −
ܿ௜௝  or	݅, ݆	2, 3	,… , ݊.  

 Step 3. Order the savings from largest to 
smallest.  

 Step 4. Start at the top of the savings list and 
move downward, form larger sub-tours by 
linking appropriate nodes ݅ and ݆ and determine 
the net passengers’ demand,	ܮ௣(ݒ௡), until the 
vehicle attains its maximum load ܳ. If	ܮ௣(ݒ௡) ≤
ܳ, the tour is feasible. That is the total 
cumulative demand,	ܮ௣(ݒ௡) should be less than 
or equals to the vehicle capacity	ܳ. Otherwise the 
model needs to define a new tour in which 
node,	ݒ௡ାଵ will be the starting node and 
passenger’s demand,	ܮ௣(ݒ௡ାଵ) takes the first 
position.  

 Step 5. Insert the depot between the first and the 
last nodes of the tour.  

 Step 6. Repeat from step 2 until all nodes are 
visited or all passengers are serviced.  

Since the developed model is new, most of the time, 
the worst behavior in such an algorithm is not known. 
However, according to Golden and Stewart (1978), for 
a sequential version of such an algorithm where at 
each step selecting the best savings from the last node 
added to the sub-tour the worst case ratio is bounded 
by a linear function in ݈݃(݊) that is a running time of 
5.88. Thus, Clarke and Wright savings procedure for 

this model requires the order of ݊ଶ݈݃(௡) computation, 
which is about 6164.336 computational time. 
Using Clarke-Wright savings algorithm, the route is 
constructed by incrementally selecting passengers 
along the nodes until the cumulative number of 
passengers reaches the vehicle capacity or all 
customers are visited. Initially, each vehicle starts at 
the depot ݒ଴ empty and set passengers included in the 
tour. The algorithm selects the next customer to visit 
from the list of feasible locations and the capacity of 
the vehicle is updated before the next location is 
selected and included in the tour. The vehicle returns 
to the depot when the capacity constraint of the 
vehicle is met or when all the passengers at each 
location are visited. Finally, the total minimum 
distance ∑ܿ௜௝ ௜௝ݔ   is computed as the objective 
function value for the complete route of the vehicle. 
For each route, the total demand ܮ௣(ݒ௡) and the CPU 
computation time are also computed. 
The findings of the simulation result are summarized 
and shown in Table 3. The findings show that the 
minimum and maximum distance covered is 432 and 
646. The maximum CPU time recorded is 2.27 
seconds which is the worst case, whereas the 
minimum CPU time is 0.13 seconds. The average 
performances of the model show that on average 6.48 
routes are required to serve passenger demands of 271 
and on average the simulation run was performed with 
0.40 seconds of CPU time. During this instance, the 
average distance traveled by the vehicles in a single 
trip is	552.92݉ܭ. As compared to the current 
performances of the ACBSE stated on section3, the 
findings of the simulation run show that there is an 
improvement of 26.47% on the kilometer coverage 
and 41.09% on the number of trips (buses) involved 
during the service of the 58 bus stops. 
 
Table 3 
Summary output of the 25 Run 
Run Total  

Demand 
Total  

Distance (Km) 
Number of  

Routes 
CPU  
Time 

Min 179 432 5 0.13 
Max 427 646 8 2.27 
Mean 271.20 552.92 6.48 0.40 
Stdv. 49.49 61.09 0.77 0.42 

4. Conclusions 

The developed model is the first of its kind due to the 
fact that it considers VRP with real simultaneous 
pickup and delivery at each bus stop and treats them as 
stochastic and random. The findings of the solution 
show that the model developed and the solution 
achieved at this level are feasible to be considered as 
outputs to the solution space. As compared to the 
current bus scheduling performances of ACBSE, the 
findings of the study show an improvement on the 
number of trips made (buses involved for each trip) 
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and total kilometer covered during a single scheduling 
horizon. 
Moreover, the connected routes in the solution space 
may not be the practical routes that existed in the city. 
Thus, this should be considered as a limitation of the 
model, which is to be addressed as further research 
directions in the in future.  
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