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Abstract 

This study aims to deal with a more realistic combined problem of project scheduling and material ordering. The goal is to minimize the 
total material holding and ordering costs by determining the starting time of activities along with material ordering schedules subject to 
some constraints. The problem is first mathematically modelled. Then a hybrid simulated annealing and genetic algorithm is proposed to 
solve it. In addition, some experiments are designed and the Taguchi method is employed to both tune the parameters of the proposed 
algorithm and to evaluate its performance. The results of the performance analysis show the efficiency of the proposed methodology. 

 
Keywords: Project scheduling; Material ordering; Hybrid simulated annealing;Taguchi design. 

1. Introduction and Literature Review  

As project management has become an important field in 
numerous modern industries, a careful management of projects 
is an absolute necessity to preserve the competitiveness of 
companies. A big challenge for the project manager is to 
achieve the project goals that have been outlined in the project 
plan. The project scheduling is the core of the project plan and 
involves finding a schedule for activities of the project subject 
to some limitations such as precedent constraints. 

Material planning is another important element in a project 
plan. The material required for the project must be available at 
the right time. It is the responsibility of a project manager to 
make sure the employees have the material required to perform 
their activities.In fact, a big challenge for a project manager is 
to coordinate the project scheduling and the material ordering 
in a project plan. Traditionally, these two issues have been 
treated independently. In other words, the project is first 
scheduled and then the demand profiles of all the materials are 
generated from the obtained schedule. This approach usually 
results in a non-optimal solution for the material planning 
where projects are frequently delayed and as a result, resources 
are wasted due to material shortages. Thus, the best solution is 
obtained when the project scheduling and the material ordering 
are performed simultaneously. 

In this paper, the evolution of the integrated problem is 
reviewed and the impact of activities starting time as a decision  

 
 
 
 

variable on the materials plan is investigated. Based on this 
strategy, project scheduling is first carried out and then, by 
taking the activity schedule (activities starting times) as a 
known parameter, a material ordering plan is determined. 
These strategies provide scheduling flexibility that can lead to 
further reduction in the project’s total cost or make-span. 
Taking this approach also helps project managers to make 
trade-offs between the cost elements such as material ordering 
and holding costs. 

Aquilano and Smith (1980) introduced the integrated 
problem of project scheduling and material ordering (PSMO). 
They developed a model consisting of material and inventory 
levels scheduling that integrates the critical path method and 
the material requirement planning. They presented a set of 
formal CPM/MRP algorithms that may be used to compute the 
early and late start schedules as well as the critical sequence. In 
their techniques, the CPM is initially designed to schedule 
projects only subject to precedence constraints. Later, 
additional techniques were introduced to consider the 
constraints upon various aspects of resource availability.  

In a subsequent research, Smith-Daniels and Aquilano 
(1984) presented an improvement over their original treatment 
and proposed a heuristic scheduling based on the least slack 
rule and extended this model for scheduling large projects 
where requirements for both renewable and non-renewable 
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resources are incorporated. In order to investigate the effects of 
capital and materials costs in an integrated form, Smith-
Daniels and Smith-Daniels (1987a) presented a project-
scheduling problem where the net present value of a project is 
maximized subject to capital and material constraints. Through 
a series of examples, they showed the necessity of considering 
materials costs and constraints that lead to lower total project 
costs and recommended developing heuristic approaches due 
to the computational complexities involved.  

In another study, Smith-Daniels et al. (1987b) proposed a 
mixed integer 0-1 programming to formulate an integrated 
problem of project scheduling and materials ordering with a 
fixed activity duration that provides an optimal schedule of 
project activities and materials orders. They showed that an 
optimal solution might be found by decomposing the problem 
into the derivation of the project schedule and the subsequent 
derivation of materials lot sizes and that the latest starting time 
schedule provides an optimal solution to the problem.  

Dodin and Elimam(2001)extended Smith-Daniels and 
Smith-Daniels (1987b)’s work to include the two factors of 
reward and penalty policy for the project and variable activity 
duration. Sajadiehetal. (2009)proposed a genetic algorithm to 
solve a PSMO problem where the ordering times of materials 
for each activity were determined independently. 

In the present study, the PSMO problem is extended in a 
way that the ordering times of materials are corporately 
determined by considering all activity requirements. This 
approach makes the total cost reduce significantly. In addition, 
an efficient hybrid algorithm is proposed to find the solution, 
especially for large-scale problems. The rest of the paper is 
organized as follows: In Section 2, the problem is precisely 
defined, the assumptions and notations are introduced, and the 
mathematical model of the PSMO problem is presented. The 
details of a hybrid meta-heuristics algorithm are provided in 
Section 3. Parameters calibration of the algorithm is carried out 
in Section 4. In Section 5, comparisons and computational 
results of the proposed algorithm are investigated. Finally, the 
conclusion comes in Section 6. 

2. Problem Definition, Assumptions and Notations 

In a typical PSMO problem, assuming that the project 
consists of݊activities, (݅ = 1,2,… , ݊), each activity is carried 
out without interruption. The model is imposed by zero-lag 
finish-to-start precedence constraints on the sequencing of 
activities and is shown by an activity-on-node network with no 
loop. Activities 1and݊are dummies and represent the project 
start and completion, respectively. An activity݅ has a fixed 
duration݀௜. Further, for an activity݅, there is a set of 
predecessor activities ௜ܲ. The execution of the ith activity 
requires	݂, (݂ = 1,2,… ,  types of materials (non-renewable),(ܨ
over its duration. The resource usage over an activity is taken 
uniform and a typical activity݅ uses ௜ܷ௙units of material݂ per 
period. In addition,ܣ௙andܪ௙denotethe ordering cost and the 
holding cost per unit of the݂௧௛materialper unit time, 
respectively. The type and the quantity of all materials must be 

determined at the beginning of each period. The activities are 
to be scheduled such that the make-span of the project does not 
exceed a given deadline	(ܦܦ). The capacity of the warehouse 
is considered unlimited and the lead-time is assumed to be 
inappreciable. The problem is to find the starting time of the 
project activities and the materials ordering schedule such that 
the precedence relation of activities are satisfied and the total 
material holding and ordering cost is minimized. 

According to the assumptions and notations introduced, the 
PSMO problem is formulated as a mixed integer programming 
model as follows: 

ܼ	݊݅ܯ =෍ ෍ ௙௧ߣ௙ܣ +෍෍ܪ௙ܫ௙௧ 																													(1)
஽஽
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ி
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subject to 

෍ ݐ ௝ܺ௧ + ௝݀ ≤ ෍ ݐ ௜ܺ௧ 					; 					∀݆ ∈ ௜ܲ 																												(2)
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෍ ௜ܺ௧ = 1					; 					݅ = 1,2,… , ݊																																												(3)
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݂ = 1,2,… , ݐ					,					ܨ = 1,2,…  (5)																																						ܦܦ,

௙଴ܫ = ܳ௙଴(6) 

ܳ௙௧ ≤ ௙௧ߣ  (7)																																																																											ܯ×

௜ܺ௧ = {0,1}		; 			݅ = 1,2,… , ݐ			,			݊ = ܧ ௜ܵ , … , ௜ݏܮ 																	(8) 

௙௧ߣ = {0,1}		; 			݂ = 1,2,… , ݐ			,			ܨ = 0,1,… , ܦܦ − 1							(9) 

ܳ௙௧ ≥ 0			; 			݂ = 1,2,… , ݐ			,			ܨ = 0,1,… , ܦܦ − 1          (10) 

௙௧ܫ ≥ 0			; 			݂ = 1,2,… , ݐ			,			ܨ = 0,1,… ,  (11)																			ܦܦ

where the decision variables are defined as: 

௜ܺ௧: A binary variable, equals one if activity݅is started in 
periodݐ and zero otherwise 

 ௙௧: A binary variable, equals one if material݂is ordered inߣ
periodݐand zero otherwise 

ܳ௙௧: The ordered quantity of material ݂in periodݐ 
 ݐ௙௧: The inventory level of material݂in periodܫ

Moreover, ܧ ௜ܵis the earliest starting time, ݏܮ௜is the latest 
start time of activity݅, and ܯrepresents a large number 
expressed asܯ = ∑ ∑ ௜ܷ௙ × ݀௜௡

௜ୀଵ
ி
௙ୀଵ .  

The proposed PSMO is a new model, which is very 
different from the one developed by Dodin and Elimam 
(2001).The objective function (1) minimizes the total costs of 
the problem. It consists of two parts: the material ordering 
costs and the material holding costs. Inequality (2) enforces the 
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precedence relations between activities. Equation (3) states that 
every activity must be started only once. Constraint (4) ensures 
that the project ends by the latest allowable completion time. 
Constraints (5) and (6) balance the levels of the materials over 
the project execution. Inequality (7) denotes the relationship 
betweenߣ௙௧andܳ௙௧ . Constraints (8)-(11) denote the domains of 
the variables. 

Since Sajadieh et al. (2009)showed the PSMO belongs to 
the class of the NP-hard problems and since the above-
mentioned model is a generalization of the PSMO problem, it 
is NP-hard as well. Therefore, an efficient meta-heuristic 
algorithm is required to solve the extended PSMO model. In 
the next section, a hybrid simulated annealing and genetic 
algorithm is developed for this purpose. 

3. A Solution Procedure 

One of the most interesting recent trends in meta-heuristic 
algorithms has been the hybridization of different techniques in 
solving optimization models. An important branch of 
hybridization is the enhancement of meta-heuristics with 
additional techniques to improve run-times, results, or both. In 
this section, an efficient hybrid meta-heuristic algorithm is 
proposed to solve the optimization model given in Section 2. 
The detailed framework of the algorithm is presented below. 

3.1. The proposed hybrid algorithm 

Simulated annealing (SA) is one of the best meta-heuristics 
that was introduced by Kirkpatrick et al.(1983).This algorithm 
has been widely employed by several researchers to solve NP-
hard problems of large sizes. It attempts to solve hard 
combinatorial optimization problems through a controlled 
randomization. The proposed hybrid algorithm to solve the 
extended PSMO model consists of two loops. In the first loop, 
SA attempts to find a schedule for activities. In the second 
loop, a genetic algorithm (GA) is applied to find the best 
materials ordering policy for the obtained schedule such that 
the minimum total holding and ordering cost of materials is 
obtained.  

While in a usual scheme, the SA starts with the generation 
of an initial solution (one point), the SA part of the proposed 
hybrid algorithm of this research starts with the generation of 
several initial solutions (multi-point). Providing a suitable 
solution for the initialization of the algorithm is an important 
task and has a significant influence on the output. In this study, 
the initial solution is generated by the critical path method 
(CPM), through which the earliest start time(ܧ ௜ܵ) and the 
latest start time (ܮ ௜ܵ)of the activities are obtained. Then the 
results of forward and backward pass computations allow for 
the calculation of float values of the network activities. 
Assuming the earliest possible and the latest allowable start 
time of the single end node of the network are equal, the total 
float denotes the time an activity can be delayed without 
causing a delay in the project. In other words, the total float 
(total slack) of activity ݅,(ܶܨ௜), is defined as: 
 

௜ܨܶ = ܮ ௜ܵ ܧ− ௜ܵ 																																																																					(12) 
Moreover, the floating time of an activity at a given schedule is 
equal to the difference between the activity's starting time at 
the schedule and its earliest starting time, that is, the floating 
time of activity ݅ at a given scheduleܨ,ܪு(݅),is obtained as 
follows: 
(݅)ுܨ = ܵ ுܶ(݅) − ܧ ௜ܵ 																																																												(13) 
whereܵ ுܶ(݅)denotes the starting time of activity ݅at 
scheduleܪ.We note that the used floating time of an activity 
should be less than or equal to its total floating time, i.e. 
0 ≤ (݅)ுܨ ≤ ௜ܨܶ 																																																																					(14) 

An initial solution is denoted by a vector of݊ −
2elementsܨ = ,(2)ܨ) ,(3)ܨ … , ݊)ܨ − 1)), where the position 
of each element corresponds to the number of a non-dummy 
activity and its value denotes the floating time of the activity. 
As a result, initial solutions (schedules) can be generated 
randomly from the feasible region of vectorܨ.In order to 
evaluate the objective function for a given feasible solution, 
both the starting times of all activities and the order quantities 
of the required materials are needed. Based on the ܨvector, the 
schedule vectorܵܶ = (ܵܶ(2), ܵܶ(3), … , ܵܶ(݊ − 1))that 
contains the start time of the activities is obtained by adding up 
the elements of the vector	ܨ and the earliest starting times of 
the activities (according to Eq. 13). Then, to evaluate a 
schedule, its near optimal material requirement planning is 
determined using a genetic algorithm (explained in Section 
3.2). 

The SA continues by generating the neighborhoods of 
initial solutions. The roulette wheel procedure is applied as a 
neighborhood search structure to generate new feasible 
solutions. Through this mechanism, each activity can move 
backward or forward to a new position based on its floating 
time. More specifically, a uniform random number is first 
generated in the interval[2, ݊ − 1]for each activity. Then, the 
activities can move to their new positions based on their 
corresponding floating times and the generated random 
numbers. To avoid infeasible solutions, the floating times of 
the activities given in equation (14) must be met. As an 
example, the neighborhood structure of the proposed SA for 
generating new feasible solutions is illustrated in Figure1, in 
which an activity can shift forward (positive numbers in the 
second row) and backward (negative numbers in the second 
row) based on the generated uniform random number. 

 

 
Fig. 1. An example of the neighborhood structure of the proposed SA 

Cooling scheme is one of the important parameters of the 
SA algorithm with the basic aim of controlling its behavior. 
When the SA proceeds, the temperature is gradually lowered 
under a certain mechanism called the cooling schedule. In this 
paper, a linear cooling scheme is applied to decrease the 
temperature.  
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With regard to this issue, consider the following project 
with seven activities: 

 
Ai D Succ. EST EFT LST LFT TF FH 

1 0 2,3,4 0 0 0 2 0 0 
2 3 5 0 3 4 7 4 2 
3 5 5,6,7 0 5 2 7 2 0 
4 4 5,6 0 4 3 7 3 1 
5 6 7 5 11 7 13 2 0 
6 2 7 5 7 11 13 6 4 
7 0 0 11 11 13 13 2 0 

 
One initial solution of the HSA is: 

Activities 2 3 4 5 6 

FH 2 0 1 0 4 

A random number is generated at the interval [2,6] to select the 
position that requires a change. Another random number is 
generated between [0,1] to shift the activities based on Figure 
1. If this random number is 0.4, then activity 4 must be shifted 
to one time earlier as follows: 

Activities 2 3 4 5 6 

FH 2 0 1-1=0 0 4 

Note that according to Eq. (14),activity 4 is allowed a shifting 
in the interval0 ≤ 1 ≤ 3. 

The details of the proposed GA in finding the order 
quantities of materials and determining the minimum total 
ordering and holding costs are described in the next subsection. 
If the new vector results in a better value of the objective 
function, the new solution vector replaces the current solution. 
This procedure iterates until the algorithm is not able to find 
better solutions. 

3.2. The interior GA algorithm  

The development of the interior GA for finding the best 
material ordering policy of a given activity schedule is 
described in this subsection. The GA starts with the generation 
of an initial population, i.e., the first generation. The initial 
population is randomly generated according to the demand 
profiles of the materials in the activity schedule. In order to 
create the next generation, after computing the fitness values of 
the individuals, two operations are performed: crossover and 
mutation. Then, the population is randomly partitioned into 
pairs of individuals. To each resulting pair of 
individuals(parents), the crossover operator is applied with 
probability ௖ܲ௥ to produce two new (children) individuals. After 
the crossover operation, each individual is considered for the 
mutation operation with probability ௠ܲ௨. Finally, the algorithm 
stops if the specified number of generations, denoted by Gen, 
is created. The best individual of the last generation is the best 
ordering policy of the GA for the given activity schedule. 

3.2.1. Chromosome representation 

In this research, a real mode is used to code the search 
points of the solution based on the ordered quantities of the 
materials in each period. Each individual chromosome, ܳ, is a 
matrix ofܨ rows (for ܨtypes of materials) and(ܦܦ − 1) 

columns (for periods 0 toܦܦ − 1), where an element 
(gene)ܳ௙௧represents the ordered quantity of material݂ in period 
 Figure2 presents the general form of a chromosome. To .ݐ
create the initial population, the ordered quantities in each 
period for a given activity schedule are randomly generated 
according to the demand profile of the materials. In order to 
evaluate the chromosome, the fitness value obtained from the 
objective function of the problem is evaluated. 

቎
ܳଵ଴ ⋯ ܳଵ,஽஽ିଵ
⋮ ⋮ ⋮
ܳி଴ ⋯ ܳி,஽஽ିଵ

቏ 

 

Fig. 2. A chromosome of the interior GA 

3.2.2. Crossover  

In the crossover operation, two parents are selected by the 
roulette wheel strategy to create two children. The Uniform 
continuous crossover operator is employed in this research.  
specifically, consider two individualsܲ ଵandܲଶ selected for a 
crossover operation.First, a vectorߙ =  ଵ∗஽஽is drawn[௧ߙ]
randomly based on the uniform distribution in the interval 
[0,1], whereߙ௧is used as the crossing point. Then, each gene of 
the two childrenܪܥଵand ܪܥଶare obtained using ܪܥ௙௧ଵ =
௙ܲ௧
ଵ (௧ߙ) + ௙ܲ௧

ଶ (1 − ௙௧ଶܪܥ௧)andߙ = ௙ܲ௧
ଵ (1 − (௧ߙ + ௙ܲ௧

ଶ  .(௧ߙ)
Note that this crossover operation generates feasible solutions. 

3.2.3. Mutation  

To describe this operation, letܳ be the chromosome that is 
selected for mutation. First, an integer random number,ܴ , is 
generated in the interval[1,  .to select one type of material[ܨ
Then, two random numbers,ݎଵ  and ݎଶsuch thatݎଵ < ଶݎ  , are 
generated in the interval[0,ܦܦ − 1]. Hence, 
൫ܳோ,௥భ , … ,ܳோ,௥మ൯are the genes of the child considered for 
mutation. Next, the amount of each gene in the new 
chromosome(ܳெ) is obtained as follows: 

ܳோ,௥భ
ெ = ෍ ܳோ,௝

௥మ

௝ୀ௥భ

 

ܳோ,௧ெ = 0					; ݐ					 = ଵݎ + 1,… , ଶݎ 																																										(15) 
ܳ௙௧ெ = ܳ௙௧ 					;  ݁ݏ݅ݓݎℎ݁ݐ݋					

This mutation can reduce the material ordering costs of the 
schedules.Figure3 shows an example of the mutation operation 
in a specific row of a chromosome. 

1r 2r

 
 

Fig. 3. An example of the mutation operation 
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4. Tuning the Parameters  

It is well known that the choice of parameters and 
operators has a major influence on the efficiency of meta-
heuristic algorithms. While the proper design of parameters 
and operators highly depend on the type of problems, most 
researchers often set the parameters and operators manually 
based on the reference values of the previous similar research 
works. However, in this study, the behavior of different 
operators and parameters of the proposed hybrid algorithm, 
HSA thereafter, is studied, and hence the algorithm is tuned to 
give better near optimum solutions.  

There are several statistical ways of designing experiments 
to calibrate the algorithm, with the most frequent approach 
being the full factorial experiments (Montgomery (2000)). 
However, in this paper, the Taguchi approach is employed to 
reduce the number of required experiments (Ross (1989)). In 
the Taguchi method, orthogonal arrays are used to study a 
large number of decision variables with a small number of 
experiments. Taguchi created a transformation of the repetition 
data to another value called the measure of variation. The 
transformation is the signal-to-noise(ܵ ܰ⁄ ) ratio, which 
explains why this type of parameter design is called robust 
design. In the Taguchi approach, the objective functions are 
categorized into three groups of "the smaller-the-better," "the 
larger-the-better," and "the-nominal-value-is-expected," each 
having a particular formula for the (ܵ ܰ⁄ )ratio.  

The most common performance measure, including the 
mean flow time, used in the literature to compare all the 
algorithms is the average of the relative deviation 
index(ܴܫܦതതതതത)defined as 

തതതതതܫܦܴ =
௦௢௟݈݃ܣ ௦௢௟݊݅ܯ−
௦௢௟ݔܽܯ ௦௢௟݊݅ܯ−

× 100																																										(16) 

where݈݃ܣ௦௢௟ is the average of the solutions obtained from a 
given algorithm, ݊݅ܯ௦௢௟is the average of the best solutions 
obtained among all algorithms (or the best known solution, 
possibly optimal), and ݔܽܯ௦௢௟is the average of the worst 
solutions obtained in each iteration. For each configuration of 
the algorithm, the responseܴܫܦതതതതതis considered in the Taguchi 
orthogonal design. Since the aim of this paper is to 
minimizeܴܫܦതതതതത, "the smaller-the better" type is considered for 
ܵ ܰ⁄ as (Phadke(1989)) 
 

 
Table 1 
Factors and their levels 

ܵ ܰ⁄ = −10 ∗ ݃݋݈ ൥൬
1
݊
൰෍ݕ௜ଶ

௡

௜ୀଵ

൩																																										(17) 

whereݕ௜ refers to the value of a response.In what follows, the 
parameters along with their levels are first introduced. Then the 
proper scheme of the Taguchi method is selected. Next, the 
results are analyzed through the analysis of variance 
(ANOVA). Finally, the best combination of the parameters is 
selected for the tuned HSA. 

There are seven parameters (factors) that may affect the 
performances of the proposed hybrid algorithm. The factors 
and their levels are presented in Table 1.The number of 
degrees of freedom is required to select the suitable orthogonal 
array. One degree of freedom for the overall mean, five 
degrees of freedom for Max-It with six levels, and two degrees 
of freedom for each of the other six three-levels factors make 
the total degrees of freedom 1+1×5+6×2=18(Shokrollahpour et 
al., 2009). Thus, the selected orthogonal array should have a 
minimum of 18 rows and 7 columns to accommodate the 
seven factors. From the standard table of orthogonal arrays, 
theܮଵ଼is selected as the fittest orthogonal array design that 
fulfills all the minimum requirements. The selected orthogonal 
array ܮଵ଼(6ଵ, 3଺)is shown in Table 2, where the control factors 
are assigned to the columns of this matrix and the 
corresponding integers indicate the levels of the factors. The 
experiments are carried out for a set of problems, each with 18 
activities. Each trial is experimented with five instances to 
yield more reliable information (each instance is tackled five 
times.) Hence, there are 25 results for each trial to perform the 
statistical analyses. The results are analyzed by the 
responseܴܫܦതതതതത, for which theܵ ܰ⁄ is obtained.To explore the 
relative significance of individual factors in terms of their main 
effects on the response, the analysis of variance (ANOVA) is 
conducted. The results of the analysis on the sum of squares of 
the factors are presented in Table 3. Since the SSX of the 
factor SA-Points, Pop-Size, and ଴ܶis lower than the sum of 
squared error (SSE), they all can be pooled in the error term 
(Karimi et al. (2010)), resulting in the pooled ANOVA that is 
shown in Table 4. 
 
 
 
 
 
 

Factors 
Levels 

1 2 3 4 5 6 

Max-It Maximum iteration of the SA  50 60 70 80 90 100 

SA-Points Number of points (solutions) to be searched in 
the solution space by the HSA 5 10 15 ─ ─ ─ 

଴ܶ Initial temperature of the SA 3000 4000 5000 ─ ─ ─ 
Pop-size Population size of the GA  15 25 35 ─ ─ ─ 
Gen Maximum number of GA generation 100 200 300 ─ ─ ─ 

௖ܲ௥  Crossover probability of the GA 0.75 0.85 0.95 ─ ─ ─ 
௠ܲ௨ Mutation probability of  the GA 0.05 0.15 0.25 ─ ─ ─ 
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Table 2 
'The orthogonal arrayܮଵ଼(6ଵ, 3଺) forthe parameters of the hybrid SA 

Trial Max-It SA-Points 0T  Pop-Size Gen crP  muP  
1 1 1 1 1 1 1 1 
2 1 2 2 2 2 2 2 
3 1 3 3 3 3 3 3 
4 2 1 1 2 2 3 3 
5 2 2 2 3 3 1 1 
6 2 3 3 1 1 2 2 
7 3 1 2 1 3 2 3 
8 3 2 3 2 1 3 1 
9 3 3 1 3 2 1 2 
10 4 1 3 3 2 2 1 
11 4 2 1 1 3 3 2 
12 4 3 2 2 1 1 3 
13 5 1 2 3 1 3 2 
14 5 2 3 1 2 1 3 
15 5 3 1 2 3 2 1 
16 6 1 3 2 3 1 2 
17 6 2 1 3 1 2 3 
18 6 3 2 1 2 3 1 

 
Table 3 
The sum of squares 

Factor Max-It SA-
Points 0T  Pop-Size Gen crP  muP  

SSX 204.145 204.139 204.137 204.1392 204.827 204.1399 204.636 
SSE 623.4 
SST 2053.53 

 

Table 4 
The pooled ANOVA for the S/N ratio 

Factors DF SS MS F PX(%) P-Value 
Gen 2 204.8273 102.41365 0.986 0.14 0.02 

muP  2 204.6366 102.31828 0.985 0.15 0.01 

Max-It 5 204.1453 40.82906 0.393 15.36 0.005 

crP  2 204.1400 102.06999 0.982 0.18 0.03 

Error 6 1235.8 205.964    
Total 23 2053.53     

 
Fig. 4. The effect chart of the S/N ratios of the HSA factors 

 

The results in Table 4 indicate that the factors Gen, Max-It, 
௠ܲ௨, and ௖ܲ௥all are significant at 0.95 confidence level. In 

other words, they have significant impacts on the robustness of 
the proposed HSA algorithm. In order to find the optimal 
levels of the significant factors, the ܵ ܰ⁄ ratios obtained at 
different combinations of the factor levels are depicted in 
Figure 4. 

As Figure 4 shows, a better robustness of the algorithm is 
achieved when the significant parameters are set as Gen=100, 
௠ܲ௨ = 0.05, Max-It = 80, and ௖ܲ௥ = 0.75. However, finding 

the optimal levels of the other factors including SA-Points, 
Pop-Size, and ଴ܶ  requires further investigation. In order to 
investigate the effects of the parameters on the relative 
deviation index,ܴ  തതതതതfor the make-span atܫܦതതതതത, the averages ofܴܫܦ
each factor level are obtained and are plotted in Figure 5. 
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Fig. 5. The mean  plot for each level of the HSA factors 

 

Since the goal is to minimize the average of ܴܫܦതതതതത, based on 
Figure5, the optimal level of the factors Max-It, SA-
Point, ଴ܶ,Pop-Size, Gen, ௖ܲ௥, and ௠ܲ௨may be obtained. Besides, 
the statistical significance of the factors on theܴܫܦതതതതതis employed 
and the results are summarized in Table 5. 

Based on the results in Table 5, all factors have significant 
effects on theܴܫܦതതതതതat 95% confidence level. Besides, the SA-
Point has the largest effect on the quality of the algorithm with 
the relative importance of 42%. Since we already showed that 
Gen, ௠ܲ௨, Max-It, and ௖ܲ௥have significant impacts on theܵ ܰ⁄  

ratio, only SA-Points, Pop-Size and ଴ܶare considered as the 
adjustment factors of the ܴܫܦതതതതതanalysis. Then, based on Figure5, 
the highest level of SA-Points (15), the lowest level of Pop-
Size (15), and the lowest level of ଴ܶ(3000) result in the best 
performances in terms ofܴܫܦതതതതത.  

Finally, the optimum values of the HSA parameters are 
obtained by considering both the ܵ ܰ⁄ ratio andܴܫܦതതതതത. The 
results are reported in Table 6. 

 
 

 

Table 5 
Results of the ANOVA test for the average of the relative deviation index 

Factors Df SS MS F PX(%) P-Value 
SA-Point 2 125156.2 62578.115 802.021 42.00 0.005 
Gen 2 47053.2 23526.610 301.524 15.76 0.004 
Max-It 5 44958.2 8991.635 115.240 14.97 0.003 
Pmu 2 37652.4 18826.223 241.283 12.60 0.01 
Pop-Size 2 22423.2 11211.605 143.691 1.842 0.02 
Pcr 2 14471.5 7235.772 92.736 1.189 0.03 
T0 2 5849.9 2924.951 37.487 0.480 0.05 
Error 0.295 2 0.1475    
Total 608.281 17     
 
Table 6  
The optimum levels and values for the parameters of the HSA algorithm 

Levels Max-It SA-Points T0 Pop-Size Gen Pେ୰ P୑୳୲ 
1        
2        
3         
4   ― ― ― ― ― ― 
5  ― ― ― ― ― ― 
6  ― ― ― ― ― ― 

Values 80 15 3000 15 100 0.75 0.05 

 

5. Experiments and Comparisons 

In this section, the results of examining the proposed HSA 
in some test problems are reported. Since there is no exact or 
heuristic algorithm to get the optimal or near-optimal solution 
for this model, we solve the mathematical modeling of the test 
instances by the LINGO solver software. Although due to the 
nature of the problem LINGO is unable to obtain a global 
optimal solution for all of the test instances, we inevitably 

assume that the solution obtained by LINGO is a good one to 
compare (Najafi and Niaki, 2006). 

To get a PSMO with a simple precedence relation, i.e. 
finish-to-start with zero time lag and no loop, the first three 
collections of instances with 10, 20, and 30 non-dummy 
activities with 1, 2, and 3 resources are generated by PROGEN 
for the experiments. For each combination set of the non-
dummy activities and resources, 10 problems are examined. 
Thus, in total there are 90 test problems. To convert these 
problems into PSMO instances, the ordering and holding costs 
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of the materials are generated randomly using a uniform 
distribution in the interval [1,25]. In order to evaluate the 
performance of the proposed HSA, a MATLAB computer 
program of the proposed HSA is first coded and then 
employed for the 90 created test problems. To compare the 
results of the HSA and LINGO, the problems are classified 
into small (containing 10 activities), medium (containing 20 
activities), and large-scale sets (containing 30 activities) 
described in the following sections. 

Table 7 shows the computational results of the proposed 
algorithm, in which columns A and B denote the number of 
instances LINGO and the HSA were able to find a local 
optimal solution within the given CPU time of 3600 seconds, 
respectively. The next column displays the average of the 
relative percentage deviation of instances,ܴܲܦതതതതതത, whereܴܲܦ is 
obtained through Eq. (18). 
ܦܴܲ =

(ܱܩܰܫܮ)	݊݋݅ݐܿ݊ݑ݂	݁ݒ݅ݐ݆ܾܱܿ݁ − (ܣܵܪ)	݊݋݅ݐܿ݊ݑ݂	݁ݒ݅ݐ݆ܾܱܿ݁
(ܣܵܪ)	݊݋݅ݐܿ݊ݑ݂	݁ݒ݅ݐ݆ܾܱܿ݁

 

(18) 
Further, columns D and E demonstrate the average CPU time 
required to obtain the solutions by the proposed HSA and 
LINGO in seconds, respectively. To evaluate the performance 
of the proposed HSA in small- sized problems, 30 problems 
with 10 non-dummy activities are considered. The results in 
Table 7 show that the proposed HSA has reached good 
solutions in shorter amounts of CPU time than LINGO, except 
for the problems with one resource. In addition, a test of 
hypothesis on the means of the quality of the solutions by 
LINGO and the HSA was employed. The results of the 
statistical test showed that at 95% confidence level there is no 
significant difference between the mean solutions of the two 
methods. 

For the medium-sized problems, the results reveal that 
while there are many instances the LINGO solver is unable to 
solve, there is a solution found by the proposed method. 
Furthermore, the average relative-deviation-percentages of the 
instances solved by LINGO are not high. In addition, the 
results of a statistical test show that at 95% confidence level 
there is no significant statistical difference between the mean 
solutions obtained by LINGO and the one obtained by the 
proposed method. However, the amounts of CPU time for the 
proposed method are significantly less than those obtained by 
LINGO. 

For the large-sized problems, once again, we observe that 
while there are many instances that the LINGO solver is 
unable to solve in 3600 seconds, there is a solution found by 
the HSA in a short amount of CPU time. For example, in 
problems with 3 resources, only one out of 10 test problems 
were solved by LINGO. In addition, regarding the problems 
that LINGO was able to find a solution for, the results of a 
statistical test show that there is no significant difference 
between the solutions obtained by LINGO and the ones 
obtained by the HSA at 95% confidence level. 

We also compared the solutions obtained by HSA with the 
best randomly generated solutions after a time limit. Moreover, 
to test the efficiency of HSA, the best solution of the initial 
population (BI) is compared with the best solution found by the 
algorithm (BA) after a time limit. We generated 120 instances 
with 30, 60, 90 and 120 activities and 1 to 3 materials. The 
following measure is used to obtain improvement percentages: 

݁ݒ݋ݎ݌݉ܫ	% = 100 ൬
ܫܤ − ܣܤ
ܫܤ

൰																																										(19) 
 

 
Table 7 
The computational results and a comparison between the proposed SA and LINGO. 

No. of 
activities 

No. of 
resources 

No. of 
problems A B ܴܲܦതതതതതത(%) D E 

10 1 10 10 10 -0.7 23.6 1.4 
 2 10 10 10 -0.8 25.8 279 
 3 10 10 10 -0.8 27.4 347.3 
        

20 1 10 8 10 -0.8 51.8 357.1 
 2 10 6 10 -0.8 55.4 512.2 
 3 10 4 10 -0.8 56.8 1070 
        

30 1 10 5 10 -0.8 71.3 1094 
 2 10 3 10 -0.8 73.6 1899 
 3 10 1 10 -1.2 77.4 2941 

 
 

Table 8 shows that the algorithm improves the best 
unfitness value obtained from the initial population. The results 
in Table 8 for very large-sized problem show that the HSA is 
efficient to solve the problem with a logical improvement 
percentage. As the table indicates, when the problem size 
increases, the percentage improvement of the algorithm 
increases as well. In summary, the results of experiments on 

the 90 test problems of different sizes show that for 10, 20, and 
30-activity problems, the mean solution obtained through the 
proposed HSA is almost the same as the average solution 
obtained by LINGO in significantly shorter amounts of CPU 
time. Moreover, for both 20 and 30activity problems, while 
there are many instances the LINGO solver is unable to find a 
solution, there is a solution obtained by the proposed method.  
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Table 8 
The computational results of the large-sized problems. 

No. of 
activities 

No. of 
resources 

No. of 
Problems 

Time Limit 
(S) 

Ave. Improve 
% 

Min. Improve 
% 

30 
1 10 30 14.00 8.67 
2 10 30 14.65 4.99 
3 10 30 17.21 9.48 

60 
1 10 50 17.99 11.20 
2 10 50 18.34 11.48 
3 10 50 19.88 11.28 

90 
1 10 80 18.14 12.84 
2 10 80 19.23 12.41 
3 10 80 20.15 15.76 

120 
1 10 100 20.50 15.49 
2 10 100 21.74 16.98 
3 10 100 24.18 17.62 

 
However, the results of the experiments on the 120 test 

problems of different sizes indicate that for 30, 60, 90 and 120-
activity problems the proposed HSA is able to solve the 
problem with a rational improvement percentage under a time 
constraint. This shows that the proposed methodology is 
satisfactory. 

6. Conclusions and Directions for Future Research 

In this research, a class of project-scheduling problems 
called project scheduling with material ordering was 
investigated. The problem was formulated  into a mixed-
integer programming model. Since the problem was NP-hard, 
a hybrid simulated annealing and genetic algorithm approach 
was developed to solve it. The developed model in this paper is 
an extension of the PSMO problem investigated by Dodin and 
Elimam (2001),and develops a solution approach for small, 
medium, and large-scale problems. Because of the variety of 
the algorithm parameters, it was not economical to compare 
the performances regarding all parameter values. Therefore, 
we first made use of the Taguchi approach to calibrate them. 
Then, the proposed algorithm was tested on many problem 
instances whose mathematical models were solved by LINGO. 
The results of the comparison study showed the proposed 
methodology provides solutions as good as those obtained 
through LINGO and yet it takes shorter CPU times than 
LINGO. Further, while there were many instances for which 
LINGO was not able to reach the optimal solution in 3600 
seconds, the proposed hybrid algorithm was able to solve 
them. 

As a direction for future research, it may be interesting to 
apply some other meta-heuristics and compare them with the 
HSA developed in this research. Another clue for future 
research is the consideration of some other realistic 
assumptions such as supply lead-times for quantity order and 
renewable resource constraints. Another opportunity for 
research is the consideration of the problem with other 
optimization objectives such as minimization of total 
completion time, early and tardy penalties, or even multi-
objective cases. 
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