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Abstract 

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes 
such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain 
degree of correlation and can be treated by autoregressive models among which the autoregressive model of order one (AR (1)) is the most 
commonly used one. In this paper, we discuss the effect of autocorrelation on the process capability analysis when a set of observations are 
produced by an autoregressive model of order one. We employ the multivariate regression model to modify the process capability 
estimated from the classical method where AR (1) parameters are utilized as regression explanatory variables. Finally, the performance of 
the method developed in this paper is investigated using a Monte Carlo simulation. 
Keywords: Process capability analysis; Statistical process control; Autocorrelation; AR (1).

1. Introduction 

Process Capability Indices (PCIs) are introduced to 
give a clear indication of the capability of a 
manufacturing process. They are formulated to quantify 
the relation between the desired engineering 
specifications and the actual performance of the process. 
In fact, PCIs are organized to determine whether the 
process is capable of visiting specification limits on the 
quality features of interest or not. The quantitative 
measure of PCI indicates the amount of customer 
requirements that are obtained from quality 
characteristics. Generally, a larger amount of PCI shows a 
better process performance and a smaller amount of PCI 
demonstrates a worse process performance. PCIs have 
been applied extensively in different production systems 
and can be regarded as effective and superior means of 
determining product quality.  

Basic assumptions of PCIs are: 1) The observations 
collected are assumed to be identically distributed 2) the 
observations are always assumed independent 3) the 
observations are normally distributed with mean μ and 
variance σ2. According to the definitions and assumptions 
mentioned, we can use the following well-known 
capability indices: 
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Eq (1) determines the capability of a central process. 

According to Eq (2), we can also calculate the capability 
of a process when its specification interval mean is not 
equal to the process mean. The USL and LSL indicate the 
upper specification limit and the lower specification limit, 
respectively. Furthermore, μ is the process mean and σ is 
the standard deviation. In general, products with multiple 
features could usually contain huge non-central 
specifications and central specifications. In fact, whenever 
all process capabilities of each characteristic satisfy preset 
specifications, consumers will not reject products. It is 
clear that a single PCI is not able to visit the consumer 
requirements stated above, and it seems that many crucial 
problems relate to central quality characteristics. 

Despite the fact that PCIs are predominantly defined 
under the independence assumption, most of the processes 
in the real world produce auto correlated data. For 
instance, data exhibit some degree of autocorrelation for 
chemical processes such as the production of pig iron. In 
addition, some biological processes are auto correlated 
and violate the independency assumption. For these 
processes it is proved that autocorrelation dramatically 
affects the amount of PCIs defined under the 
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independency assumption (Mingoti and Oliveira, 2011). 
Nevertheless, the impacts of autocorrelation on the 
amount of PCIs have not been studied extensively. 
Therefore, the present study is an attempt to address this 
issue. Moreover, a robust estimation method for process 
capability will be developed. 

2. Literature Review 

There are quite a few studies which have dealt with 
process capability analysis when one of its three basic 
assumptions is not met. For a comprehensive discussion 
of these studies, see the review paper with discussion by 
Kotz and Johnson (2002). Furthermore, a comprehensive 
literature review of classified studies on process 
capability indices in the time span of 2000–2009 can be 
found in Yum and Kim (2010). However, the non-
normality assumption is more investigated (for example 
see  Clement 1989; Somerville and Montgomery 1996; 
Tang and Than 1999; Hosseinifard et al. 2008).  In this 
paper, we present a new way of calculating PCI when 
data display an inner dependent behavior. More 
specifically, we explore the process capability estimation 
in AR (1) processes.  

There are a few studies dealing with PCI estimation 
for auto correlated processes. Shore (1997) described 
some of the undesirable effects that autocorrelations may 
have on the sampling distribution of estimates of the 
mean and the standard deviation, and thus on the 
calculated PCIs via the Monte Carlo simulation. He stated 
that both Cp and Cpk are biased upwards when 
autocorrelation is present and therefore critical values and 
confidence intervals extracted under the assumption of 
independent data should not be used as the rate of type I 
and type II errors may be high. Besides, he carefully 
studied differences between the two approaches suggested 
in the presence of autocorrelation and also demonstrated 
them numerically for an AR(1) model when 
autocorrelation existed. The first approach was model-free 
and estimated μ and σ, by Xഥ and MR/d2, where MR was 
the average range observed in subsamples of size n while 
the process was in control. This procedure appraised the 
instantaneous capability but customers wished to be 
aware of the long-term capability of the process which 
also produced changes in the mean while the process was 
engaged producing. The second procedure estimated 
long-term capability. It was a model-dependent approach 
and estimated μ and σ, by തܺ and S2 of all data. As a result, 
Shore believed that the model-free approach is better than 
the model-dependent approach when both performance 
and convenience in applications are considered, and thus 
the process capability analysis should be used along the 
lines of the model-free approach. Still it seemed that more 
research was needed. Therefore, in other studies, 
Noorossana (2002); Scagliarini (2002); Chen et al. (2003) 
and Vannman and Kulahci (2008) evaluated the effect of 
autocorrelation on the process capability. Noorossana 

(2002) showed through an example that auto correlated 
data could lead to biased estimates of PCI, and eventually 
to wrong decisions about performance. He employed a 
two-step procedure based on multivariate regression and 
time series modeling to remove autocorrelation that may 
exist in the data and also to estimate model parameters 
correctly. Scagliarini (2002) described properties of the 
estimator of Cp for auto correlated observations in the 
presence of measurement errors. He assessed the 
performances of the estimator of Cp in the case of 
measurement errors for an autoregressive model of order 
one (AR (1)) and compared them with those results 
achieved in the error free case. Vannman and Kulahci 
(2008) devised a new way called the "iterative skipping" 
strategy to perform process capability analysis when 
observations are auto correlated. In this method, the data 
set was separated into subsamples by skipping a pre-
determined number of observations. Clearly, as the 
independence assumption may be valid for the obtained 
sets, Eq(1) and (2) could be used to estimate PCI for each 
subsample of data.  

Jing et al. (2009)  also used the Taguchi method in 
order to estimate the PCI of auto correlated observations. 
They evaluated the impacts of autocorrelation on μ, σ, and 
probability density function (pdf) for models of order one. 
Moreover, Jing et al. (2010) developed a comparison 
method for five different estimation strategies of process 
capability when the observations were not independent. 
Eventually, they succeeded in finding an estimation 
method for process capability analysis when observations 
were auto correlated. 

Considering the aforementioned studies, it is clear that 
existing studies on process capability analysis mostly do 
not check the autocorrelation of observations although it 
is common in industries and should not be overlooked. To 
fill in this gap, in the present paper the researchers 
propose a robust estimation method for the process 
capability analysis when a set of observations are auto 
correlated and produced by an autoregressive model of 
order one. In this regard, the rest of the paper is organized 
as follows: section 3 includes the suggested model and 
then Monte Carlo simulation studies. In section 4, the 
performance of the proposed method is investigated by 
applying statistical analyses, and finally conclusions and 
final remarks are provided in section 5.    

3. Description of the Proposed Model 

Hereinafter the estimated PCI for auto correlated 
processes is called Cp-au. Since AR (1) parameters impact 
on the bias in Cp-au in comparison to the PCI which is 
known for independent observations, we propose to use 
these parameters to diminish autocorrelation effects on 
the PCI estimation. To this end, AR (1) parameters should 
be incorporated in the PCI formula. Here, we use the 
multivariate regression analysis and nominate PCI as 
follows: 
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௣ି௔௨ܥ ൌ ௣௨ܥ ൅   (3)                                                       ݏܾܽ݅
      We apply a multivariate regression model as shown in 
Eq(4) to calculate Cp-au. It has been known that Cp-au is a 
linear combination of Cpu, φ and ε, where Cpu denotes the 
PCI in Eq(2) based on the independence assumption. φ 
and ε give us the correlation coefficient and model 
parameter, respectively: 
௣ି௔௨ܥ ൌ ௣௨ܥ ൅ ଵ߮ߚ ൅  (4)                                             ߝଶߚ
      The model coefficients β1 and β2 are estimated from 
the observations of the process by the multivariate 
regression. In fact, the effects that φ and ε may have on 
the PCIs are the main motivation for using the proposed 
model in the presence of autocorrelation. We follow a 
two-step procedure in order to calculate β1 and β2. The 
first step is generating sets of data which are auto 
correlated and calculating Cpu for each set of data. Then, 
β1 and β2 for each set of data are estimated by the 
multivariate regression in the second step. To check the 
performance of the model, a Monte Carlo simulation is 
also performed.  
      First, we consider an AR(1) process in Eq(5) to 
generate sets of auto correlated data where et is a random 
variable that represents the amount by which the tth 
measurement will differ from the mean due to the effect 
of common causes. Typically, e1,e2,e3,…,en are regarded 
as a sequence of independent and identically distributed 
random variables with mean zero and standard deviation 
σ, and parameters μ and σ are estimated from the data of 
the process.  
௧ݔ ൌ ߝ ൅ ௧ିଵݔ߮ ൅ ݁௧                                                       (5) 
      Consider a situation where Cp-au=1 in this simulation, 
and then make simulation for certain φ, ε and a pre-
determined sample size (N=10000). Afterwards, this 
procedure must be repeated for twenty iterations with 
different φ and ε in each iteration. Eq(5) can be used to 
obtain the upper specification limit of each set of 10000 
observations. 

௣ି௔௨ܥ ൌ
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ଷ
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                            (6) 

where f(x) and Ψx are the probability density function and 
the cumulative density function of x, respectively. It is 
clear that Eq(6) can be rewritten as Ԅ (3Cp-au)=p. Because 
we initially set Cp-au=1 in each iteration, the value of p can 
be easily determined. Hence, it suffices to organize the 
observation of each set in the increasing order, and then 
choose the p×10000th observation as USL since we have 
Ψx(USL)=p according to Eq(6). σ must be also calculated 
in order to estimate Cp-au, but its calculation is inaccurate 
when data are auto correlated. Therefore, a new technique 
is devised to transform the auto correlated data into 
independent data. In this technique, xt-φxt-1 is used instead 
of xt ሺݐ׊ א 2,3, … ,10000ሻ, and it is proved that xt-φxt-1 
ሺݐ׊ א 2,3, … ,10000ሻ is always independent. Thus, firstly 
Eq(5) is rewritten as xt -φxt-1=ε+et. Obviously, the 
independence assumption for ε+et is valid because ε is 
N(ε,0) and et is N(0, σ2). The summation of these two 
independent parameters is independent too. Since xt-φxt-1 
is equal to ε+et , it seems reasonable to conclude that xt-
φxt-1  is N(ε, σ2) , t=2,3,…,10000, and it is subsequently an 
independent variable. 
Cpu can be obtained for each set by using the sample 
standard deviation of xt-xt-1 , t=2,3,…,N instead of σ in 
Eq(2) and p×10000th data as USL. At the end, a 
multivariate regression is applied to estimate β1 and β2 
when the generation of 10000 observations is repeated 
twenty times. It should be noted that as we use different 
Cp-au=0.5,0.6,0.7,0.8,0.85,0.9,0.95,1,1.05,1.1,1.2,1.25,1.3, 
1.35,1.4,1.45,1.5,1.6,1.7,1.8 for each time, 400 sets of 
observations are created. For instance, the generated 
observations for Cp-au=0.9, 1 are shown in Table 1 in order 
to make it easy for the readers to understand how Ĉ au-p  

can be estimated. The estimated Cp-au is shown in the 
table, and it can be used for estimating β1 and β2 when 
0<φ<0.2.

 
Table 1 
The estimated Cp-au when Cp-au=0.9, 1 and 0<φ<0.2 

Iter. C au-p
 Ĉ au-p  φ   ε   μ

 

Iter. C au-p
 Ĉ au-p  φ ε μ

1 0.9 0.76 0.03 3 3.1 1 1 0.98 0.12 10.39 11.83
2 0.9 0.97 0.16 11.27 13.4 2 1 0.88 0.004 7.36 7.67
3 0.9 0.99 0.08 17.9 19.6 3 1 1.26 0.004 21.8 21.92
4 0.9 0.78 0.18 22.3 27.1 4 1 0.71 0.038 0.38 0.37
5 0.9 0.88 0.14 6.7 8 5 1 1.11 0.11 19.2 21.77
6 0.9 0.82 0.13 6.37 7.4 6 1 0.9 0.012 24.3 24.55
7 0.9 0.87 0.06 21.65 23.2 7 1 1.08 0.07 24.7 26.7
8 0.9 0.77 0.034 5.8 6 8 1 1.38 0.12 19.7 22.5
9 0.9 0.89 0.03 20.13 20.7 9 1 0.95 0.14 10.9 12.8
10 0.9 1.11 0.04 22.7 26.3 10 1 1.06 0.13 12.4 14.4
11 0.9 0.53 0.04 5.8 6.35 11 1 1.13 0.017 5.4 5.4
12 0.9 0.79 0.17 6 7.2 12 1 0.87 0.09 16 17.7
13 0.9 0.69 0.1 1.25 1.38 13 1 1 0.08 8 8.7
14 0.9 0.46 0.16 1.9 2.31 14 1 1.06 0.07 24 25.8
15 0.9 0.89 0.09 16 17.73 15 1 0.86 0.03 18.2 18.8
16 0.9 0.77 0.092 4.8 5.27 16 1 0.83 0.13 10.3 11.9
17 0.9 0.91 0.09 21.1 23.2 17 1 0.87 0.14 18.7 21.7
18 0.9 0.67 0.08 4.35 4.7 18 1 0.94 0.145 6.7 7.9
19 0.9 0.57 0.18 4.27 5.2 19 1 1.02 0.096 11 12.2
20 0.9 0.78 0.002 24.86 24.9 20 1 1.11 0.11 23.34 26.2
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Let us recall that Cp-au=Cpu+β1φ +β1ε. Before assuming 
β1, β2 as the model coefficients, it is vital to determine 
whether Cp-au, φ and ε are related or not. In this regard, it 
is necessary to test the null hypothesis H0: β1=0 and H1: 
β1≠0 for the former, which shows whether Cp-au and φ are 
related or not. In testing this null hypothesis, the statistic 
ݐ ൌ ஻෠భି஻భ

ௌ஻෠భ
 and confidence interval ܣ ൌ ቂെഀݐ

మ,௡ିଷ, ഀݐ
మ,௡ିଷቃ 

are used at the significance level α. Using 400 sets of 
generated observations, statistics are equal to -9.19, -
11.81, -10.14 and -48.22 when 0 <φ<0.2, 0.2 <φ<0.4, 0.4 
<φ<0.6 and 0.6 <φ<0.8, respectively. As a consequence, it 
seems reasonable to reject the null hypothesis for 
0<φ<0.2, 0.2 <φ<0.4, 0.4 <φ<0.6 and 0.6 <φ<0.8 in that 
the confidence interval is ܣ ൌ ሾെ1.96, 1.96ሿ at 5% 
significance level. Note that β1≠0 means Cp-au relates to φ. 
Likewise, the null hypothesis H0: β2=0 and H1: β2≠0 
should be tested for the latter, which shows whether Cp-

au relates to ε or not. Here, statistics are correspondingly 
equal to 0.0014, 0.0008, 0.0009 and -0.0001, so the null 
hypothesis H0: β2=0 is not rejected for 0 <φ<0.2, 0.2 
<φ<0.4, 0.4 <φ<0.6 and 0.6 <φ<0.8. As a result, the 
importance of φ and ε are considered as ‘more important’ 
and ‘important’ in the present study, and we presume that 
both of them are the model coefficients to increase 
performance. 
      Since  Cp-au=Cpu+β1φ +β1ε , we can assume Cp-au-Cpu as 
a response variable of the multivariate regression, and β1, 
β2 can be also assumed as the model coefficients that are 
estimated from the observations of the process by the 
multivariate regression. The regression equations of Cp-au-
Cpu are estimated for different intervals of φ and displayed 
in Figure 1 below: 
 

 
Fig. 1(a). Regression equations of Cp-au-Cpu when 0<φ<0.2 

 
Fig. 1(b). Regression equations of Cp-au-Cpu when 0.2<φ<0.4 

  

Fig. 1(c). Regression equations of Cp-au-Cpu when 0.4<φ<0.6 

  

Fig. 1(d). Regression equations of Cp-au-Cpu when 0.6<φ<0.8 

The equations which are usually used to estimate Cp-au 
are obtained by using the multivariate regression and 
displayed on the classification of Figure 2. The quality of 
the output from an auto correlated process can be easily 
managed by using this classification to monitor the 
difference between customer requirements and the actual 
performance of an auto correlated process. On the other 
hand, this classification is able to create products that 
meet customer requirements, and then maintain the auto 
correlated process in a “capable” state. 
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4. Statistical Analysis and Model’s Validity 

      We should investigate whether there is a significant 
difference between the capability index and estimated 
capability index at a given significance level. To obtain a 
suitable decision rule, the hypothesis can be formulated 
as: 

H0:  0ˆ- au-pau-p =CC
               

 H1:  0ˆ- au-pau-p ≠CC
  
(7) 

t statistic where the standard deviation of pair 
differences is not known is used to test the hypothesis. It 
is defined as:  
 
ݐ ൌ ௗതି଴

ௌ೏ഥ
                                                                            (8) 

And the confidence interval is defined as:   
 
ܣ ൌ ቂെഀݐ

మ,௡ିଵ, ഀݐ
మ,௡ିଵቃ                                                      (9) 

Note that di is obtained by subtracting the ith member 

of Cp-au from the ith member of au-pĈ . Subsequently, the 

average of di can be determined as ҧ݀ ൌ ∑ ௗ೔
೙
೔సభ

௡
 for a 

population of size n. The null hypothesis will be rejected 
whenever  ݐ ൐ ഀݐ

మ,௡ିଵ or ݐ ൏ െഀݐ
మ,௡ିଵ, where the constant 

ഀݐ
మ,௡ିଵ is determined so that the significance level of the  

 

 
test is α for a sample size of n observations. If null 

hypothesis is not rejected, there is no significant 
difference between Cp-au and ܥመp-au. Table 2 shows            
Cp-au-ܥመp-au   for the given 0<φ<0.2. 
 

Table 2 
Calculating Cp-au-ܥመp-au  when 0<φ<0.2 

Iter. No d= Cp-au-ܥመp-au ܥመp-au  Cp-au  

1 -0.005 1.005 1
2 0.103 0.797 0.9
3 -0.013 0.936 0.95
4 -0.037 1.087 1.05
5 0.004 1.096 1.1
6 0.03 1.17 1.2
7 -0.01 1.26 1.25
8 -0.08 1.38 1.3
9 -0.13 1.48 1.35
10 -0.1 1.5 1.4
11 -0.08 1.53 1.45
12 0.04 1.46 1.5
13 0.14 1.46 1.6
14 0.21 1.49 1.7
15 0.2 1.6 1.8
16 0.07 0.78 0.85
17 0.03 0.77 0.8
18 0.13 0.57 0.7
19 0.1 0.5 0.6
20 0.03 0.47 0.5

 
According to Table 2, we can calculate the test statistic as 

follows: 

ݐ ൌ ௗതି଴
ௌ೏

ൌ ଴.଴ଷଵ଺

ටబ.బబవబఱ
మబ

ൌ 1.486093                                   (10) 

εϕ 006.066.0216.0ˆ +−−= CC puau-p

εϕ 001.0782.29.0ˆ −−+= CC puau-p

Fig 2. The estimated Cp-au when data are autocorrelated with 0<φ<0.2 , 0.2<φ<0.4 , 0.4<φ<0.6 , 0.6<φ<0.8 

εϕ 008.0132.1123.0ˆ +−−= CC puau-p   

Finish 

Data are autocorrelated 

0.6<φ<0.80.4<φ<0.60<φ<0.2  0.2<φ<0.4 

εϕ 011.0778.0277.0ˆ +−−= CC puau-p   

Start 

Selecting random sample of population

Independence test

φ=0  Observations are independent 
Calculate Cp with classical methods 
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The nominal significance level in this test is 0.05 for a 
sample of n=20 and 0<φ<0.2; therefore, the confidence 
interval can be defined as ܣ ൌ ൣെݐ଴.଴ଶହ,ଵଽ , ଴.଴ଶହ,ଵଽ൧ݐ ൌ
ሾെ2.093 , 2.093ሿ. It is known that the null hypothesis will be 
accepted when |ܲ െ value | ൑  ଴.଴ଶହ,ଵଽ.  Based on theseݐ
assumptions, the calculated P-value is equal to 0.15. This 
means that there is no significant difference between Cp-au 

and au-pĈ  in this situation. According to this procedure, 
the statistics are also equal to 0.8, 0.151 and 0.1 when 0.2 
<φ<0.4, 0.4 <φ<0.6 and 0.6 <φ<0.8, respectively, so it 
seems reasonable to conclude that  there is no significant 

difference between Cp-au and au-pĈ  for these values of φ. 

5. Conclusion 

It is common to come across biological and chemical 
processes which, because of their intrinsic nature, produce 
auto correlated data. If these auto correlated data are 
treated independently during capability analyses, the 
conclusions may lead to incorrect decisions. To prevent 
such incorrect decisions, we proposed a strategy to handle 
problems that occur during capability analyses if the 
observations are not independent. This strategy is based 
on subtracting consecutive observations from each other 
in order to obtain samples with independent observations, 
and then using regression analysis to calculate PCI at 
different levels of autocorrelation. Using this strategy, we 
can find powerful decision rules to determine the 
capability of a process at a given significance level. A 
Monte Carlo simulation was also employed to evaluate 
the provided results. For future research, we would 
recommend the extension of this strategy to estimate the 
process capability index of AR(P) or non-normal 
processes. 
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