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Abstract 

In recent years, sub-band speech recognition has been found useful in addressing the need for robustness in speech recognition, especially 

for the speech contaminated by band-limited noise. In sub-band speech recognition, the full band speech is divided into several frequency 

sub-bands, with the result of the recognition task given by the combination of the sub-band feature vectors or their likelihoods as generated 

by the corresponding sub-band recognizers. In this paper, we draw on the notion of discrete wavelet transform to divide the speech signal 

into sub-bands. We also make use of the robust features in sub-bands in order to obtain a higher sub-band speech recognition rate. In 

addition, we propose a likelihood weighting and fusion method based on the wavelet thresholding technique. The experimental results 

indicate that the proposed weighting methods for likelihood combination and classifiers fusion improve the sub-band speech recognition 

rate in noisy conditions. 

Keywords: Recognition, Wavelet, Sub-band, Likelihood Combination. 

 

1. Introduction 

The issue of robustness against contamination with noise 

is considered as a mismatch between the training and 

testing conditions in automatic speech recognition (ASR) 

systems. The most common approaches for alleviating this 

mismatch can be divided into three main categories: data-

driven methods, model-based techniques and the sub-

banding approach. While data-driven methods try to 

compensate for the noise effects on speech or its features, 

the model-based approaches modify, instead, the acoustic 

models of the environment. The sub-band technique, on the 

other hand, is deemed as a new architecture for ASR 

systems, and can usually be applied to noises underlying 

the partial corruption of the frequency spectrum of the 

signal. 

Data-driven methods are, in turn, usually divided into 

two main categories: speech signal enhancement 

approaches and feature compensation techniques. The 

enhancement methods reduce the mismatch by processing 

the noisy speech signal directly and trying to estimate clean 

speech from a noisy signal. Spectral subtraction [2] and 

wavelet thresholding [4, 20] are two instances of the speech 

enhancement schemes. Feature compensation techniques, 

on the other hand, usually decrease the mismatch in two 

ways; the first by applying a transformation to features for 

removing the noise effects such as: cepstral mean and 

variance normalization (CMVN) [8] and RASTA PLP [7], 

the second by extracting the new features to become more 

robust against the noise effects (e.g., the phase 

autocorrelation features (PAC) [9]).  

The model-based methods modify the environment’s 

statistical model so that it adapts to the changing 

conditions, for example, to noisy situations. This adaptation 

has the advantage that no decision or hypothesis about the 

speech is necessary to be made. Two known examples of 

such approaches are: parallel model combination (PMC) 

[5] and maximum likelihood linear regression (MLLR)[11]. 

The sub-band approach is theoretically based on the 

Fletcher’s work [1, 22]. Fletcher et al. [1] suggested that in 

human auditory perception, the linguistic message gets 

decoded independently in different frequency sub-bands 

and the final decoding decision is derived from merging the 

decisions associated with the sub-bands. With this 

understanding, in the sub-band approach, the speech signal 
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is initially split into several frequency bands. Next, a 

feature vector is extracted from each sub-band. The sub-

band feature vectors can be used in two ways. In feature 

combination schemes [6, 15, 17], the resultant features are 

concatenated to be used instead of the original full-band 

features. The second approach, known as model 

combination or sometimes likelihood combination, is 

effectively a variant of classifier fusion [6, 17]. In 

particular, each sub-band feature vector is processed by a 

sub-band recognizer to obtain a probability estimate 

corresponding to this sub-band. Then, a statistical 

formalism is used to fuse the classifiers and to recombine 

the probability estimates of all the sub-bands in order to get 

the final recognition results. Figure1 shows the overall 

process of classifier fusion and the model combination 

system. 

 

 

Fig 1. General schematic diagram for model combination and classifier 

fusion. 

 

 

 In this paper, we draw on the notion of discrete wavelet 

transform as a filter bank for decomposing the speech into 

sub-bands. Next, in the front-end section, we extract the 

phase autocorrelation-based as well as the modified-group-

delay-based features from each sub-band so as to achieve 

more robustness against noise. We also propose a new 

weighting method based on wavelet thresholding for linear 

likelihood combination (as well as for classifier fusion) in 

sub-band speech recognition. 

The remainder of the paper is organized as follows. 

Section 2 elaborates on the robust feature extraction 

methods used in sub-bands. The classifier fusion method is 

explained in Section 3. In Section 4, we introduce our 

proposed weighting method for combining likelihoods. 

Section 5 reports on the conducted experiments and the 

evaluation results. The paper concludes in Section 6. 

2. Front-end and  Feature Extraction 

Traditional speech features are typically extracted from 

the power or the amplitude spectrum of the speech signal. 

Therefore, the changes of the speech spectrum due to 

additive noise can have a negative impact on the spectrum-

based features, i.e. it deteriorates the performance of the 

speech recognition system in proportion to the noise power.  

Conventional sub-band approaches overcome the band-

limited noise effects through dividing the speech signal into 

sub-bands. However, the specifics of the extraction of 

features from the sub-bands do not get changed. In this 

paper, we propose to extract from the sub-bands those 

features which are robust to noise. This way, we can also 

use the sub-band approach as a robust method against full-

band noises. 

As pointed out earlier, several techniques have been 

proposed to reduce the sensitivity of the features to external 

noise. There are schemes which work at the spectral level, 

and try to reduce the effect of the additive noise on the 

speech spectrum for subsequent feature extraction. Spectral 

subtraction [2] and different spectral filtering techniques 

are amongst the well-known examples. In spectral 

subtraction, an estimation of the noise spectrum is 

subtracted from the speech power spectrum to remove the 

noise effects. Phase autocorrelation (PAC) is a comparable 

technique that is recently introduced [9]. It tries to make the 

autocorrelation coefficient less sensitive to additive noise 

[9, 15]. The group delay function (GDF), the negative 

derivative of the speech phase spectrum, is another 

technique used for speech spectrum estimation [23] and 

robust feature extraction [24]. With GDF, features are 

derived from the modified speech phase spectrum and not 

from the speech power or amplitude spectrum [13, 24]. In 

this paper, we make use of PAC and GDF-based features in 

the sub-bands, as discussed in the following two sub-

sections.  

2.1. Phase Autocorrelation-Based Features 

The traditional autocorrelation function is computed as 

the dot product of the time-delayed speech vectors. 

Recently, an alternative measure of autocorrelation, namely 

phase autocorrelation (PAC), has been introduced, which is 

based on the angle between the vectors in the signal vector 

space [9]. The rationale behind the use of the angle is that, 

compared to the dot product, it typically gets less affected 

by the noise [12]. 

Here, we give a brief overview of the specifics of Phase 

AutoCorrelation (PAC), first presented in [9]. Consider a 

speech frame s as: 

 [0], [1],... [ 1]}s s s s N   (1) 

where N is the frame length. Suppose two vectors x0 and xk 

as: 

 0
[0], [1],... [ 1]}

{ [ ],..., [ 1], [0],..., [ 1]}
k

x s s s N

x s k s N s s k

 

  

  

(2) 

Using dot product, the autocorrelation coefficients of the 

speech frame are computed by: 

0
[ ] T

k
R k x x  (3) 

R[k] can also be shown by: 

2[ ] | | cos( )
k

R k x   (4) 
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where |x|2 denotes the energy of the frame and Өk 

represents the angle between vectors x0 and xk in the N 

dimensional space. The PAC coefficients are derived from 

the autocorrelation coefficients using the equation below: 

2

[ ]
[ ] cos ( )

| |k

R k
P k Arc

x
   (5) 

Given that compared to the dot product, the angle is less 

affected by noise, PAC coefficients are more robust than 

the regular autocorrelation coefficients [12]. The Fourier 

equivalent of the PAC coefficients in frequency domain is 

referred to as the PAC spectrum. The computation of the 

PAC coefficients from the autocorrelation coefficients 

using (5) involves two operations: energy normalization 

and inverse cosine. As has been explained in [9], the 

inverse cosine transformation has the effect of enhancing 

the spectral peaks out of spectral valleys. PAC enhances the 

spectral peaks, on the one hand, and gives less weight to 

some high frequency information of the spectrum, on the 

other.  

Similar to the features extracted from the regular 

spectrum, a class of features can also be extracted from the 

PAC spectrum. The Mel frequency cepstral coefficients 

(MFCC), extracted from the PAC spectrum, are called 

PAC-MFCC. Experimental results in [9] and [15] show that 

PAC-MFCC, though highly robust to noise, does not work 

well in clean speech conditions. In this paper, PAC-MFCC 

is extracted from each sub-band as the robust features to 

noise. 

 

2.2. Group Delay Function-based Features 

 

It is widely perceived that the magnitude spectrum 

represents the speech spectral information much better 

visually than the phase spectrum. Interestingly enough, its 

negative derivative, i.e. GDF [18, 23, 24], unlike the case 

with the phase spectrum, can be effectively used to extract 

the various parameters of a minimum phase speech signal. 

This is due to the fact that the magnitude spectrum of a 

minimum phase signal and its GDF are similar to each 

other. GDF is defined as: 

( ( ))
( )p

d
d
  


  (6) 

where θ (ω) is the unwrapped phase function. GDF can also 

be calculated from the speech signal by: 

2

( ) ( ) ( ) ( )
( )

| ( ) |
R R I I

p

X Y X Y

X

   
 




  

(7) 

where the subscripts R and I indicate the real and the 

imaginary parts, respectively and X(ω) and Y(ω) represent 

the Fourier transforms of x(n) and nx(n), respectively. GDF 

requires that the signal be of minimum phase or that the 

poles of the transfer function be within the unit circle. GDF 

becomes spiky in nature due to the pitch peaks, noise and 

window effects. This has been illustrated in [13] and [18]. 

It is also noticeable that the denominator in equation (7) 

vanishes at zeros that are located close to the unit circle, 

making it necessary to somehow suppress the zeros. The 

spiky nature of the group delay spectrum can be overcome 

by replacing the denominator of GDF with its cepstrally 

smoothed version S(ω). This gives the modified GDF 

(MGDF) as follows [13, 18]: 

~

2

( ) ( ) ( ) ( )
( )

( ( ))
R R I Ip

X Y X Y

S

   
 






 
(8) 

In [24], Zhu and Paliwal have defined the product 

spectrum as the product of the power spectrum and GDF as 

follows: 

2( ) | ( ) | ( ) ( ) ( ) ( ) ( )p R R I I
Q X X Y X Y           (9) 

The product spectrum, referred to in this work as PG, is 

affected both by the magnitude spectrum and the phase 

spectrum. It enhances the region at the formants over the 

MGDF and has an envelope comparable to that of the 

power spectrum. The product spectrum represents well the 

details of clean speech power spectrum, but it is not 

capable of enhancing spectral peaks as well as PAC.  

It is shown in [13] and [24] that by using the MFCCs 

extracted from the product spectrum, (hereinafter referred 

to as PG-MFCC), a higher recognition rate can be obtained 

compared to when using MFCCs extracted from MGDF. 

Hence, in this work, we make use of PG-MFCC as the 

robust features in the sub-bands.  

3. Classifier Fusion: Likelihood Combination 

 As pointed out earlier, in the model-combination 

approach, each sub-band region is treated as a distinct 

source of information. A given sub-band recognizer 

generates probability estimates which must be combined at 

some level of the time segmentation such as the phoneme, 

the syllable or the word level. The specifics of combining 

the probability estimates from the different sub-band 

recognizers essentially influence the performance of the 

combined system.  Depending on the nature of the sub-

band recognizer, i.e. whether it is likelihood-based such as 

HMM or posterior-based like HMM/ANN hybrid classifier, 

the statistical formalism changes [3, 6]. This statistical 

formalism can take on a linear or nonlinear form. The 

Dempster–Shafer (DS) combination rule [21, 22] has been 

recently proposed for neural network classifiers. 

In case of HMM recognizers, the likelihoods, as 

returned by HMMs, can linearly be recombined using sub-

band weighting based on the following equation [3, 11, 14]: 





B

b

Mb bMxPMxS
1

, ),|(),(   (10) 

where S represents the score of the utterance x with model 

M, P(x | M, b) is the likelihood returned by the HMM   

corresponding to the model M in sub-band b and finally, B 

is the number of sub-bands. 
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The difficulty within the sub-band weighting approach is 

the estimation of weighting factors αb,M such that the 

recognizers associated with the cleaner and  more reliable 

sub-bands be given a higher weight. The most common 

weighting factors are: SNR estimation in each sub-band as 

reported in [3, 19] and inverse HMM entropy in each sub-

band as discussed in [11, 14].  In this paper, we propose a 

new weighting factor based on wavelet thresholding. 

4. Sub-band Weighting Based on Wavelet Thresholding 

The removal of noisy components by thresholding the 

wavelet coefficients is based on the observation that in 

many signals, speech no different, energy is mostly 

concentrated within a small number of coefficients. These 

coefficients are relatively large compared to the other 

coefficients or to any other signal (especially noise) that 

has its energy spread over a large number of coefficients. 

Hence, by setting the smaller coefficients to zero, one can 

eliminate noise while preserving the important information 

of the original signal [4]. Accordingly, the wavelet 

coefficients are compared to a threshold and their values 

are changed based on a threshold function such as hard, 

soft or semi-soft thresholding functions [20]. The threshold 

value can be estimated in many ways. For instance, 

Donoho [4, 20] has suggested a well-known estimation 

method with the following relation: 

^

2log( )nT N  (11) 

where T is the threshold value, N denotes the length of the 

noisy signal and 
^

n is a robust estimate of the noise level 

based on the median absolute deviation of the wavelet 

coefficients at the finest resolution level with index n. The 

reason for considering only the finest level is that its 

corresponding wavelet coefficients constitute most of the 

noise [20].  

Alternatively, we have also used the minimax principle 

as the other threshold estimation technique. Since the de-

noised signal can be assimilated into the estimator of the 

unknown regression function, the minimax estimator is 

defined to be the one that produces the minimum value for 

the maximum mean square error corresponding to the worst 

function in a given set [18]. 

Based on the wavelet thresholding idea, we can safely 

assume that the coefficients below the threshold contain 

noise information and those above the threshold encompass 

the information of the speech signal. Therefore, we can 

determine the amount of noise contamination in wavelet 

sub-bands via comparing the energy or the number of the 

aforementioned coefficients with each other.  In particular, 

we propose the following measure for determining the sub-

band contamination and reliability:  






 






otherwise

Twallfor
TwG

N

TwG

TWTR

ji

ji

N

i
ji

j

0

||1
),(

),(

)( 1  

(12) 

where N is the number of wavelet coefficients in the j-th 

wavelet sub-band, wi is the i-th wavelet coefficient in the j-

th wavelet sub-band and Tj  is the threshold value in the j-th 

sub-band. We substitute αb,M in equation (10) with this 

measure for the corresponding sub-band. The WTR value 

in equation (12) relies on accurate noise and threshold 

estimations. It is of note that by this thresholding, the 

wavelet coefficients are not changed in the sub-bands; 

instead, we basically compute WTR and plug it as αb,M  into 

equation (12).  

5. Experiments and Results 

 We evaluate the proposed method on TIMIT database 

used as a benchmark dataset for isolated word recognition. 

Two sentences from the speakers in two dialect regions 

have been selected and segmented into words; in particular, 

we have 21 words spoken by 151 speakers including 49 

females and 102 males. These speakers have been divided 

into train and test speakers according to the TIMIT 

speakers division. Our training set contains 2349 utterances 

spoken by 114 speakers. The testing set includes 777 

utterances spoken by 37 speakers. Our recognizer is 

CDHMM with 6 states and 8 Gaussian mixtures per state 

and trained on clean speech. Three types of additive noises 

have been used: pink, white and factory noises, selected 

from NOISEX92 database. We have added these three 

noises to both training and testing sets. We have chosen 

four sub-bands and used the discrete wavelet transform for 

decomposing the speech into four sub-bands with dyadic 

bandwidths:  0-1 kHz, 1-2 kHz, 2-4 kHz, and 4-8 kHz. This 

selection has been justified by our observations from 

previous work [16]. We have used the 20-th order 

Daubechies wavelet as the wavelet decomposition filter.  

Over the course of the feature extraction phase, we have 

divided the 24 Mel filter into four sub-bands. We extracted 

four features (PG-MFCC or PAC-MFCC or MFCC) and 

four delta features (delta-PG-MFCC or delta-PAC-MFCC 

or delta-MFCC) from each of the first three sub-bands. In 

the full-band system, the feature vector contains 12 features 

(PG-MFCC or PAC-MFCC or MFCC) and 12 delta 

features (delta-PG-MFCC or delta-PAC-MFCC or delta-

MFCC), making it of a total length of 24. 

In Figure 2, the results associated with the full-band 

speech recognition system have been marked as “Full”, 

while  “LC” identifies the results of the sub-band speech 

recognition with likelihood combination. “CMN”, on the 

other hand, denotes the cepstral mean subtraction method 

as applied to the MFCCs extracted from the full-band 
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speech signal. The four abbreviations "Equal", "SNR", 

"HMM-E" and "WTR" represent four different likelihood 

weighting methods based on: equal weights, sub-band 

signal to noise ratio, HMM entropy and our proposed 

technique based on wavelet thresholding, respectively.  

 

 
(a) 

 
(b)  

 

 
 

(c) 

 

Fig. 2. Average word error rate (AWER) for three noise types (white, factory and pink); (a) SNR= 10 dB, (b) SNR= 5 dB, (c) SNR= 0 dB. 
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Our weighting initiative based on wavelet thresholding 

is marked with “WTRM” when threshold estimation is done 

with reference to the minimax method, and with “WTRD” 

to denote our alternative use of the Donoho method [4] 

instead. As can be seen in the figure 2, for all feature types, 

the LC system as a feature compensation method  has better 

recognition results compared to the full-band system and 

the full-band CMN method. In addition, the LC system 

with PG_MFCC and PAC-MFCC in sub-bands 

outperforms the same system with the use of MFCC 

instead, indicating that using robust features in sub-bands 

pays off with a superior performance for the LC system.  It 

is also worth noting that PAC-MFCC happened to be more 

effective in this case for increasing the performance of the 

LC system, as compared to PG-MFCC. 

As for the weighting methods, it can be seen that in most 

cases, the minimax estimated threshold outperforms its 

counterparts.  This is while weighting based on the notion 

of Donoho’s estimated threshold leads to a lower 

recognition rate in comparison with both the SNR 

weighting method as well as weighting based on minimax 

threshold. This can be attributed to the fact that the 

Donoho’s threshold has been primarily proposed for the 

white noise [4]. We may, thus, conclude that our proposed 

weighting method relies on the appropriate choice of noise 

and threshold estimation techniques. Still, our results 

suggest that the minimax method is promising to give a 

better threshold compared to the Donoho’s technique for all 

noise types. 

6. Conclusion 

 In this paper, we have shown that using robust features 

in sub-bands, such as PAC-MFCC or PG-MFCC, results in 

a higher recognition rate for the likelihood combination 

system in the presence of noise. We have also demonstrated 

that the LC system, by using robust features in sub-bands, 

outperforms CMN as a conventional full-band feature 

compensation method.  In addition, we have proposed a 

new likelihood and sub-band weighting method based on 

the notion of wavelet thresholding.  Experimental results 

reveal that should a suitable threshold estimation technique 

be used, a higher sub-band noisy speech recognition rate 

can be obtained using the proposed weighting method in 

comparison to the other weighting approaches. Also 

suggested by the outcome of the experiments is that 

minimax thresholding estimates a better threshold in 

comparison to the Donoho’s threshold estimation approach. 
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