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Abstract 

This paper undertakes the synthesis of a logic-based switching H2/H∞ state-feedback controller for continuous-time LTI singular 

perturbation systems. Our solution achieves a minimum bound on the H2 performance level, while also satisfying the H∞ performance 

requirements. The proposed hybrid control scheme is based on a fuzzy supervisor managing the combination of two controllers. A convex 

LMI-Based formulation of two fast and slow subsystem controllers leads to a structure which ensures a good performance in both transient 

and steady-state phases. The stability analysis leverages on the Lyapunov technique, inspired from the switching system theory, to prove 

that a system with the proposed controller remains globally stable in the face of changes in configuration (controller). 

Keywords: Continuous-time LTI singular perturbation system, Fuzzy supervisor, Switching H2/H∞ state-feedback control, Linear Matrix Inequality (LMI). 

 

1. Introduction 

The systems with both slow and fast dynamics, 

described mathematically by singular perturbations, have 

been studied extensively in numerous papers and books; the 

works reported in [3,4,8,12,13] are a few representatives of 

the relevant studies existing in the literature. For the robust 

control of singular perturbation systems, the controller is 

usually derived from indirect mathematical programming 

approaches (e.g. solving Riccati equations), which 

encounter serious numerical problems linked with the 

stiffness of the equations involved in the design. To avoid 

this difficulty, several approaches [6,9] have been 

developed to transform the original problem into ϵ-
independent sub-problems. For instance, the time-scale 

decomposition [6] is a commonly adopted technique in this 

context. As an alternative to the solution of the Riccati 

equation, LMI formulation has been attracting more and 

more attention within the robust control research 

community. However, solving mixed H2/H∞ control 

problems for singular perturbation systems through the 

LMI approach has, up to the present, remained an open 

research area. Garcia et al. [4] have extended the results 

reported in [14] and have proposed a solution to the 

infinite-time near-optimal regulator problem (H_2 control) 

for singular perturbation systems through an LMI 

formulation. Time-scale decomposition has been employed 

in the overall system as well. A different approach to this 

problem has been discussed in [15]; in particular, by 

proposing a new lemma, the problem is formulated into a 

set of inequalities independent of ϵ.  An algorithm is then 

given to solve this set of inequalities through LMI 

formulation. However, the extension of this method to a 

mixed H2/H∞ control is very difficult. In [16], a similar 

approach has been adopted for solving the problem with a 

static output rather than a state feedback. Today, it is a 

common practice to adopt a combination of different 

techniques to obtain different performance levels 

([7,10,11]). Within this perspective, hybrid dynamical 

systems have emerged featuring continuous and discrete 

dynamics together with a mechanism (supervisor) for 

managing the interaction among these dynamics [2]. 

Compared to the sole H∞ control, the mixed H2/H∞ 

control is more attractive in engineering practice, since the 

former is essentially a pessimistic design which tends to be 

overly conservative, whereas the latter optimizes the 

average performance with a guaranteed worse-case 

performance. In this paper, we deal with the switching 

mixed H2/H∞ state feedback control problems for 

continuous-time linear singular perturbation systems. The Corresponding Author. Email: ahmad.fakharian@qiau.ac.ir 
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simple design methods discussed in [5] have also been 

adopted here to derive the state-feedback gains, separately 

for the fast and slow sub-systems. A fuzzy supervisor is 

proposed for the hybrid combination of these controllers to 

harvest their advantages and to ensure the required 

performance and the stability of the closed-loop system. 

The major contribution of the presented work is coming up 

with a combination of the fast and slow sub-system 

controllers using a supervisor managing the gradual 

transition from one controller to another. This method is 

primarily intended to reap the benefits associated with each 

controller. The control signal is obtained via a weighted 

sum of the two signals produced by the slow and fast sub-

system controllers. This weighted sum is managed thanks 

to a fuzzy supervisor which is adapted to obtain the desired 

performance of the closed-loop system. More specifically, 

the fast sub-system controller acts mainly in the transient 

phase, providing a fast dynamic response and enlarging the 

stability limits of the system. The slow sub-system 

controller, on the other hand, is pivotal to the steady-state 

operation, reducing chattering and maintaining the tracking 

performance. Furthermore, the global stability of the 

system is guaranteed even if the system switches from one 

configuration to another (i.e. transient to steady-state and 

vice versa).  

The organization of the remainder of the paper is as 

follows: Section 2 presents the system definition and 

elaborates on the specifics of the controllers used. In 

Section 3, the fuzzy supervisor and the proposed control 

law are described. Stability analysis is conducted in Section 

4. The design procedure is explained in Section 5 along 

with an example illustrating the efficiency of the proposed 

method. The paper concludes in Section 6. 

2. Problem Statement  

Consider the following linear singularly perturbed 

system  Σ with slow and fast dynamics described in the 

"singularly perturbed" form: 

Σ: 

 
 

 
x 1 = A1x1 + A2x2 + Bw1

w + B1u

ϵx 2 = A3x1 + A4x2 + Bw2
w + B2u

z = Cz1
x1 + Cz2

x2 + Dzu                

y = C1x1 + C2x2                                

  (1) 

where  xiϵ Rn i , i = 1, 2, are the states; uϵ Rm1  is the control 

input; wϵ Rm2  is the disturbance input; yϵ Rl1  is the 

measured output; zϵ Rl2  is the output to be regulated; and ϵ 
is a small positive parameter. By introducing the following 

notation: 

x =  
x1

x2
 , Aϵ =  

A1 A2

1

ϵ
A3

1

ϵ
A4

 ,  

Bϵ =  
B1

1

ϵ
B2
 ,

 
Bwϵ

=  
Bw1

1

ϵ
Bw2

 ,  

Cz =  Cz1
Cz2 ,   C =  C1 C2  

(2) 

The system Σ can be rewritten as the following compact 

form: 

Σ: 

x = Aεx + Bwε
w + Bεu

z = Czx + Dzu                 
y = Cx                               

  (3) 

Applying a static state feedback control: 

u = Kx   (4) 

leads to the following closed-loop system: 

Σcl :  
x = Acl x + Bcl w
z = Ccl x               

  (5) 

where: 
 
Acl = Aε + BεK
Bcl = Bwε

           

Ccl = Cz + DzK
 (6) 

We denote the transfer function of the closed-loop system 
𝛴𝑐𝑙  from 𝑤 to 𝑧 as: 

 𝑇 𝑠,𝐾 = 𝐶𝑐𝑙 (𝑠𝐼 − 𝐴𝑐𝑙 )
−1𝐵𝑐𝑙 . 

The generalized 𝐻2 norm of 𝑇(𝑠,𝐾) is defined by: 

   𝑇 𝑠,𝐾  2𝐾
𝑀𝑖𝑛 = 

𝑆𝑢𝑝   𝑧 𝑇  : 𝑥𝑐𝑙 = 0,𝑇 ≥ 0,  𝑤 𝑡  2𝑑𝑡 ≤ 1
𝑇

0

 𝐾
    𝑀𝑖𝑛  

=   𝑧 ∞
 𝑤 2𝐾

𝑀𝑖𝑛      

(7) 

with the 𝐻∞  norm of 𝑇(𝑠,𝐾) defined as:  

 T(s, K) ∞ =
 𝑧 2

 𝑤 2
 (8) 

the norm  𝐸  of a complex matrix 𝐸 is defined as the largest 
singular value of 𝐸.  

2.1. Slow and Fast Sub-systems  

Supposing that 𝐴4 is a nonsingular matrix, we can 

decompose the original singularly perturbed system (1) into 

two slow and fast subsystems. The slow subsystem is 

defined by letting 𝜀 = 0 in the second equation of set (1), 

computing 𝑥2 in terms of 𝑥1, 𝑤 and 𝑢, to be ultimately 

substituted in the first equation. Therefore, the slow 

subsystem can be obtained as follows: 

 

x s = Asxs + Bws
w + B1s

us

zs = Czs
xs + Dws

w + Dsus  

ys = Csxs + Dws1
w + Ds1us

  (9) 

where: 𝐴𝑠 = 𝐴1 − 𝐴2𝐴4
−1𝐴3 

Czs =Cz1
− Cz2

A4
−1A3 Dws

= −Cz2
A4
−1Bw2

 

𝐵𝑤𝑠
= 𝐵𝑤1

− 𝐴2𝐴4
−1𝐵𝑤2

𝐵1𝑠 = 𝐵1 − 𝐴2𝐴4
−1𝐵2       

𝐷𝑠 = 𝐷𝑧 − 𝐶𝑧2
𝐴4
−1𝐵2 𝐶𝑠 = 𝐶1 − 𝐶2𝐴4

−1𝐴3                            

Dws1
= −C2A4

−1Bw2
Ds1 = −C2A4

−1B2 

(10) 
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On the other hand, the fast subsystem associated with (1) 

is defined by: 
 

 

𝜀𝑥 𝑓 = 𝐴22𝑥𝑓 + 𝐵𝑤2
𝑤 + 𝐵2𝑢𝑓

𝑧𝑓 = 𝐶𝑧2
𝑥𝑓 + 𝐷𝑧𝑢𝑓               

𝑦𝑓 = 𝐶2𝑥𝑓                              
                                                  (11) 

 

Therefore, according to (9) and (11) we can decompose 

the overall full order system (1) into two slow and fast 

subsystems. Later, we use these two subsystems in the 

context of slow and fast controller design. Also, their 

mixture, generated with the help of a fuzzy supervisor, is 

leveraged to produce the proposed controller for the overall 

system. In this paper, we focus on the suboptimal mixed 
𝐻2/𝐻∞  static state feedback control problem. Later, we 

express the suboptimal H2, H∞ and mixed 𝐻2/𝐻∞  problems 

in terms of linear matrix inequalities (LMI). 

●   Lemma 2.1. [1] (The suboptimal overall H2 static state 

feedback control problem):  

Consider the overall system described by (1). The static 

state feedback control law (4) stabilizes the closed-loop 

system (5) and achieves a prescribed H2-norm bound 

υ > 0 for the system (5) if and only if there exists Q = QT >

0,𝑇 and Z with appropriate dimensions such that: 

 
𝐴𝑄 + 𝑄𝐴𝑇 + 𝐵𝜖𝑇 + 𝑇𝑇𝐵𝜖

𝑇 𝑄𝐶𝑧
𝑇 + 𝑇𝑇𝐷𝑧

𝑇

𝐶𝑧𝑄 + 𝐷𝑧𝑇 −𝐼
 < 0  

 
𝑄 𝐵𝑤𝜀

𝐵𝑤𝜀

𝑇 𝑍
 > 0                                                           

 Trace Z < 𝜈 

(12) 

 

By solving the LMIs, Q, T and Z will be found, and 

control law (4) is calculated as: 

 

 K = TQ−1                                                                   (13) 
 

The application of (13) to the system characterized by 

(1) guarantees that the closed-loop system (5) is 

asymptotically stable and that the H2-norm (7) is less 

than υ > 0. 

●  Lemma 2.2. [1] (The suboptimal overall H∞ static state 

feedback control problem): 

Consider the overall system specified by (1). The static 

state feedback control law (4) stabilizes the closed-loop 

system (5), yielding a prescribed H∞-norm bound γ > 0  

for the closed-loop system (5) if and only if there exists 

𝑄 = 𝑄𝑇 > 0 and 𝑇 with appropriate dimension such that: 

 

 

AQ + QAT + BϵT + TTBϵ
T Bwε

QCz
T + TTDz

T

Bwε

T −I Dcl
T

CzQ + DzT Dcl −γ2I

 < 0 (14) 

 
By solving LMI (14), Q and T will be found, and the 

control law (4) is calculated from (13). 

The application of this controller to the system defined 

by (1) guarantees that the closed-loop system (5) is 

asymptotically stable and that the H∞-norm (8) is less than 

γ > 0 . 

●  Lemma 2.3. [1] (The suboptimal overall Mixed H2/H∞  

static state feedback control problem): 

Consider the overall system described by (1). The static 

state feedback control law (4) satisfies the mixed H2/H∞  

control problem if and only if the following LMIs for 

Q = QT , T, Z and a given positive scalar γ > 0 are satisfied: 
 

𝑀𝑖𝑛 𝜈    

Subject to: (12) and (14) 
(15) 

 

By solving (15), we can find Q, T, Z and ν, with the 

control law (4) computed from (13). 

3. Fuzzy Supervisor  

In this paper, we take on a different approach to solving 

the mixed H2/H∞ control problem for the linear singular 

perturbation system. We start with an overall linear 

singular perturbation system and decompose it into slow 

and fast subsystems. Next, we solve the mixed H2/H∞ 

control problem for both the slow and fast subsystems, and 

find Kfast  and Kslow  by solving out the corresponding 

LMIs. It is well known that the fast subsystem can be a 

good approximation for the transient time of the overall 

system response and that the slow subsystem can be a good 

model for the steady-state time of the overall system 

response. Therefore, the fast subsystem controller, Kfast  , 

can accordingly be used during the transient time and the 

slow subsystem controller, Kslow  , can be used during the 

steady-state. Their control actions are combined by means 

of a weighting factor, ∝∈ [0 1], representing the output of a 

fuzzy logic supervisor that takes the tracking error e and its 

time derivatives e , e ,… , en−1 as inputs.  

The fuzzy system is constructed from a collection of 

fuzzy rules whose jth component can be given in the form: 

 
1

1If is And …And is Thenj n j

n je H e H   
 

(16) 

where  Hj
i  is a fuzzy set and ∝j  is a singleton. 

It is easy to note that the above rule can be considered as 

a fuzzy rule of a Takagi–Sugeno fuzzy system. The fuzzy 

implication uses the product operation rule. The connective 

AND is implemented by means of the minimum operation, 

whereas fuzzy rules are combined by algebraic addition. 

Defuzzification, on the other hand, is performed using the 

centroid method which generates the gravity center of the 

membership function of the output set. Since the 

membership functions that define the linguistic terms of the 

output variable are singletons, the output of the fuzzy 

system is given by:  
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1 1

1 1

nm
j

i i

i j

nm
j

i

i j

 





 

 



 


 

(17) 

where μj
i  is the degree of membership for Hj

i and m is the 

number of used fuzzy rules. The objective of this fuzzy 

supervisor is to determine the weighting factor, ∝, which 

specifies the participation rate of each control signal. 

Indeed, when the norm of the tracking error e and its time 

derivatives e , e ,… , en−1 are small, the plant is governed by 

the slow subsystem controller Kslow  (∝= 1( . Conversely, 

if the error and its derivatives are large, the plant is 

governed by the fast subsystem controller Kfast  (∝= 0). 

The control action, u, is determined by:  

 

u =  1 − α ufast + αuslow                                            (18) 

 

where 

 

 uslow = Kslow x1, ufast = Kfast x2 (19) 

 

 

Figure 1 shows the structure of the proposed controller 

with a fuzzy supervisor.   

 

 

Fig. 1. Structure of the proposed controller. 

 

4. Stability Analysis  

We resort to the theorem proposed by Essounbouli et al. 

[7] to prove the global stability of the system governed by 

the control law (18). We rewrite the theorem in [7] as 

follows: 

Theorem 4.1. Consider a combined fuzzy logic control 

system as described in the previous section. If:  

1. There exists a positive definite, continuously 

differentiable and radially unbounded scalar function V for 

each subsystem, 

2. Every fuzzy subsystem gives a negative definite V  in 

its active region, 

3. The weighted sum defuzzification method is used 

such that for any control input u , 

min⁡(uslow , ufast ) ≤ u ≤ max⁡(uslow , ufast ) 

then, the resulting control u, given by (18), guarantees the 

global stability of the closed-loop system. 

Proof: The two first conditions guarantee the existence 

of a Lyapunov function in the active region, which, in turn, 

gives a sufficient condition for ensuring the asymptotic 

stability of the system during transition from the fast to the 

slow subsystem controller. Consider the Lyapunov function 

Vfast = ξTPfast ξ , where Pfast  is a positive definite matrix 

corresponding to the solution of (15) for fast subsystem 

(11) and we have λmin (Pfast )ξTξ ≤ ξTPfast ξ , where 

λmin (Pfast ) is the minimal eigenvalue of Pfast . Also, 

consider the Lyapunov function Vslow = ξTPslo wξ , where 

Pslow  is a positive definite matrix corresponding to  the 

solution of (15) for slow subsystem (9). We have 

ξTPslow ξ ≤ λmax (Pslow )ξTξ , where λmax (Pslow ) is the 

maximal eigenvalue of Pslow . To satisfy the second 

condition of the theorem, it is enough to choose P2, P∞such 

that: 

λmax (Pslow ) ≤ λmin (Pfast )                                          (20)  

 

This condition guarantees that within the neighborhood 

of the steady-state (slow subsystem controller), the value of 

the Lyapunov function Vfast  is greater than that of Vslow . To 

guarantee the third condition, the balancing term ∝ takes its 

values from the interval [0 1]. Consequently, the three 

conditions of the aforementioned theorem are satisfied and 

the global stability of the system is guaranteed. Hence, the 

Problem formulation (switching H2/H∞ control) will be as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑇 𝑠,𝐾  2 𝑠𝑙𝑜𝑤  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑇 𝑠,𝐾  ∞ 𝑠𝑙𝑜𝑤 < 𝛾𝑠𝑙𝑜𝑤  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑇 𝑠,𝐾  2 𝑓𝑎𝑠𝑡  

𝑎𝑛𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑇 𝑠,𝐾  ∞ 𝑓𝑎𝑠𝑡 < 𝛾𝑓𝑎𝑠𝑡  

while:  𝜆𝑚𝑎𝑥 (𝑃𝑠𝑙𝑜𝑤 ) ≤ 𝜆𝑚𝑖𝑛 (𝑃𝑓𝑎𝑠𝑡 ) 

(21) 

5. Design Procedure   

We can summarize the design procedure as follows: 

Compute the slow and fast subsystems of the overall 

system (1) with reference to (9) and (11). Solve the control 

problem (21) for the slow and fast subsystems (9) and (11) 

with the given positive scalars  γslow  and γfast  to find Kslow  

and Kfast  from (13). Compute uslow  and ufast  from (19). 

Calculate the overall control signal u from u =
 1 − α ufast + αuslow  that α ∈ [0,1] is governed by the 

fuzzy supervisor according to error and its derivatives. 

Apply this control signal to (1) and construct the closed-

loop system (5). To construct the fuzzy supervisor, the 

fuzzy sets are initially defined for each input (the error and 

its derivatives) and output; then, the rule base is elaborated. 

The error vector is computed and is then injected into the 

supervisor to determine the value of ∝ for applying to the 

global control signal. 
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Example. 5.1. [8] To demonstrate the solvability of 

various LMIs, as well as the simplicity and low 

conservatives of the proposed method, a fourth-order, four-

output, two-input example is considered, seeking for a 

switching static state feedback controllers: 

Consider a singularly perturbed system described by (1) 

with: 

 

   

   

  0.0835,11D

10

0.161179-0.921022
C,

00

10
C

100

010

1.61179-9.21022

00

C,

00

00

100

010

C

'101.596845100.279448-B,'0100.223371-B

'3.810954-0.048184-B,'16.945030-0.023109-B

0.21464-2.102596-

0.4380410.367954-
A,

00.013579

00.051601-
A

00

0.1090330.91716-
A,

01.478265

0.676469-0.195378-
A

z2z

21

2-2-

w

2-

w

21

43

21

1

21








































































































Z

 

Tracing the proposed design method in section 5, the 

following results are obtained: 

 

 
 
        2.86590.1668-= K

9.07722.5759= K

              3.17513.59763.01640.3680= K

slow

fast

overal

      
 𝑲𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈 =  (𝟏 − 𝜶)𝑲𝒇𝒂𝒔𝒕 𝜶𝑲𝒔𝒍𝒐𝒘  

 

The fuzzy supervisor is constructed by using the three 

fuzzy sets zero, medium and large for the tracking error and 

its time derivative. The corresponding membership 

functions are triangular. As for the output, five singletons 

are selected; very large (VL), large (L), medium (M), small 

(S) and zero (Z), corresponding to 1, 0.75, 0.5, 0.25 and 0, 

respectively. 

Rules are defined within a table; for example, a given 

rule in the table can be stated as follows: “IF the norm of 

the error is medium AND the norm of the error’s derivative 

is large, then α is zero”. From the obtained simulation 

results in Table 1, it is clear that the proposed method 

yields a better response compared to its conventional 

overall design counterparts. In our proposed switching 

method, with a smaller γ for the H∞constraint, we have a 

smaller H2 norm; whereas, both H2 and H∞norms are 

increased in the conventional overall method. As can be 

easily inferred from Figure 2, the state regulation 

associated with our proposed controller is superior 

compared to the conventional overall controller. 

6. Conclusion 

In this paper, we have taken on a convex optimization 

approach to designing a logic-based switching  H2/H∞  

controller for a linear singular perturbation system. The 

proposed controller guarantees stability for a closed-loop 

system, and satisfies the prescribed level of performance 

indexes for both H2 and H∞  norms. Our reliance on two 

reduced-order fast and slow mode controllers in lieu of one 

full-order overall controller is the main contribution of this 

paper. A fuzzy supervisor efficiently manages the 

performance of both fast and slow controllers. In reality, 

the fast mode controller exhibit a satisfactory performance 

(i.e. fast dynamic response and low energy impulse 

response) in transient interval, while the slow mode 

controller plays a key role in the steady-state operation via 

attenuating the interaction of low frequency disturbances. 

Simulation results show that the proposed controller 

achieves a considerable improvement over the performance 

of a closed-loop system. 
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