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Abstract 

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such 
resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an 
interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent years, 
negotiation has been employed to allocate resources in multi-agent systems. Yet, in most of the conventional methods, negotiation is done 
without considering past experiments. In this paper, in order to use experiments of agents, a hybrid method is used which employed case-
based reasoning and learning automata in negotiation. In the proposed method, the buyer agent would determine its seller and its offered 
price based on the passed experiments and then an offer would be made. Afterwards, the seller would choose one of the allowed actions 
using learning automata. Results of the experiments indicated that the proposed algorithm has caused an improvement in some performance 
measures such as success rate. 
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1. Introduction 

   Today, use of artificial intelligence rather than traditional 
approaches has improved performance of systems in E-
commerce. In electronic commerce markets where agents 
are usually selfish, attempts are made to acquire multiple 
resources in order to accomplish a high-level task with the 
highest utility. Thus, agents would try to negotiate with 
others to obtain the demanded resources [1]. Additionally, 
the issue of learning in negotiations has become a hot spot 
within the related studies as a mean for achieving a well-
coordinated behaviour. Since, agents do not recognize the 
factor rewards that are associated with different actions in 
the environment, selection of the actions would be difficult 
task. Leaning through setting out selection of actions of the 
agents, based on the collected data over time, could meet 
such purpose. In multi-agent systems, utility of one agent is 
usually influenced by those of others. It will make the issue 
of learning in multi-agent systems more complicated, since 
the agents have to learn not only the effects of their actions 
butalso, coordination manner of their actions with others. 

Current works have proven that learning often ends up to a 
coordinated behavior. Learning automata is one of the 
learning algorithms[2]. 
In negotiations, agents employ a variety of strategies 
(negotiation strategy is act of guiding for decision making 
about different actions in a certain round) to allocate 
resources; but, in most of them, past experience does not 
play a role in resolving new problems[3]. For example 
Peyman Faratin et al. [4] proposed a service-oriented 
negotiation in 1998, in which a range of strategies and 
tactics such as time-dependent tactic was presented in 
bargaining stage for proposal and counter- proposal. Then, 
Jennings et al. [5] expanded the service-oriented 
negotiation model by using genetic algorithm and presented 
the relative success of different tactics against different 
opponents in different environments. Nyugen et al. [6] had 
presented a heuristic model for concurrent bi-lateral 
negotiations in incomplete information settings in which 
the agents had no a priori knowledge about the preferences 
of their opponents. It was later expanded in [7] so that the 
ability of decision making for commitment/decommitment of 
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penalty buyer a pays to other agents at t when it 
decommits, and t

out is the payment of penalty buyer a 
receives from other agents at t if they decommit[7]. 
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3.     Learning in Multi Agent System 

 3.1. Learning Automata 

Learning automata is a machine that can perform a finite 
set of actions. Each selected action will be evaluated by a 
random environment and a respond will be sent to learning 
automata. Learning automata uses such responses to select 
its action for the next round. 
 

 
Fig. 2. Relationship between learning automata and environment[11]. 

 

The relationship between learning automata and the 
environment is shown in Figure 2. The ultimate aim is that 
automata can learn how to choose the most optimal action 
from its set of actions. The optimal action is the one which 
maximizes probability of wining reward from the 
environment[11].  The environment can be illustrated by 
E=<a,b,c>, where },...,,{ 21 r   is set of inputs, 

},...,,{ 21 m  is set of outputs, and 

},...,,{ 21 rcccc  is set of penalty probabilities. When 

β is a two-member series, the environment would be of 
type p. In such an environment,β1=1 and β2=0 are 
considered as penalty and reward, respectively. In the Q-
type environment, β(n) can discretely take a value within 
finite values of [0.1]. In the S-type environment, β(n) is a 
random variable within [0.1].ci is the probability that act αi 
has an undesirable result. In static environments, ci values 
remain unchanged while in non-static environments, these 
values change over time. 
Learning automata can be classified into two main 
categories: 1. fixed structure learning automata and 2. 
Variable structure learning automata[12].In the first 
category, Markov chain theory is the main tool and, in the 
most of cases, an appropriate behavior is obtained by 
choosing state transaction probabilities in response to the 
output environment. Given that this paper used variable 
structure learning automata, below, are a few descriptions 
have given about variable structure learning automata. 
     Variable structure learning automata is a quintuple <α, 
β, p, T(α,β,p) >, where α is set of action , β is an 
environment response set( input automata) and p is the 
probability set containing r probabilities, each being the 
probability of performing every action in the current 

internal automaton state. Function T is the reinforcement 
algorithm, which modifies the action probability vector p 
with respect to the performed action and received response. 
In this type of automata, if action αi on step n is chosen, and 
this action has received favorable responses from the 
environment, probability pi (n) increases and other 
probabilities are decreased. The possibility of unfavorable 
responses Pi(n) decreases and other probabilities are 
increased. 
     Favorable responses from the environment: 
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     Unfavorable responses from the environment: 
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     Where a and b are reward and penalty parameters, 
respectively. Values for a and b can be considered in three 
modes :when a and b are equal, the algorithm is called LRP, 
when b is much less than a, the algorithm is LRεP and when 
b is 0, the algorithm is LRI[13]. 

3.2. Case-Based Reasoning 

     Case-based reasoning (CBR) that was proposed by Prof. 
Roger of the United States for the first time in 1982 is an 
important issue in the field of artificial intelligence. In 
CBR, there is a set of cases stored in the case base as 
primary source of knowledge. The very primary idea of this 
method is making an experience from past and choosing 
the most similar case to the current problem, simply 
because similar problems would have similar solutions[14]. 

 
Fig. 3. CBR cycle[15]. 

 
     The CBR cycle is illustrated in Fig. 3: 
1. Retrieve the most similar case or cases; 
2. Reuse the retrieved information and knowledge; 
3. Revise the proposed solution; 
4. Retain the revised solution to be useful for future 
problem solving[1 5]. 
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Re-using the results of the problems that have been solved 
in the past can lead to an increase in efficiency for 
resolving new problems rather than deriving them from the 
beginning. Moreover, CBR is a method for continuous 
incremental learning because each new experiment will be 
stored by resolving a problem and its results will be 
immediately accessible forsolving the upcoming problems. 
This feature of CBR leads to learning. In fact learning in 
CBR occurs after resolving a problem. Hence, as the 
problem is successfully solved, its experiment will be 
stored for re-using in future similar problems[16]. 

4.    Proposed method 

     In this section, a method is proposed for solving 
resource allocation problem using case-based reasoning and 
learning automata based on negotiation called IHBA. To 
illustrate the issue of resource allocation in multi-agent 
systems that utilize negotiation, it can be said that the set of 
agents Ag={buyer agents, seller agents} as well as 
negotiation protocol determine a set of allowable actions 
for each agent set including accepting the proposal, 
rejecting the proposal and making a counter- proposal. 
In the proposed algorithm, it was assumed that there were 
two types of case-bases: 1- case-base of the proposals that 
were accepted and 2- the case-base of the proposals that 
have been rejected while each case consisted of resource 
name, price and the resource provider's name. The buyer 
agent's goal is to examine accepted proposals of the case-
bases, find out the price of its required resources whose 
negotiations are successfully done in advance and finally to 
offer the lowest price of the selected price to the resource 
provider. If it does not find a similar case, it will use a 
time-dependent strategy (Equation 1) to make a proposal. 
Then, the Seller agent must choose one of the allowed 
actions. In this case, the agent's strategy for negotiation 
would be CBR algorithm and learning automata so that the 
seller agent could choose one of the allowed actions. Then, 
it will be checked whether the action is appropriate or not 
and, based on the given answer automata will give a reward 
or a penalty to the action. Considering that the environment 
is p model, if this proposal is accepted and the parties reach 
an agreement, the output will be considered as desirable; if 
the offer is rejected and no agreement is reached, the output 
will be known as undesirable. Afterwards, the agent 
updates probability of action selection based on learning 
automata algorithm until an agreement is reached among 
the agents or negotiation of the agents is finished. The 
automata that has been employed in this article used reward 
and penalty functions of (4) and (5). 
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Fig. 4. Proposed method 

 

 

 

5.    Experiment result 

     Various parameters were considered for evaluation such 
as performance measures that included[8]: 

 Success rate : 
 

RSUC  = Nsuccess / Ntotal                                                          (6)   
 
Where Ntotal is total number of runs and Nsuccess is number of 
runs reaching consensus. 
 

 Message per resource 
 


 


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i i
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j

j
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aver
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M
M

1
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     Where Ntotal is total number of runs, ISi is number of 
resources in the i-th run and Mj

i is number of messages for 
resource j in the i-th run. Since the number of resources that 
each buyer obtains at anytime could be different, 
comparison between the number of messages that have 
been sent/accepted for each resource is essential. 

 Expected utility 

  total

N

i i NUU total 


1exp
                       (8) 

     Where Ntotal is total number of runs and Ui is utility of 
the i-th run. 

    To evaluate such measures a number of experiments was 
carried, in which agents were subjected to different market 
types, densities and deadlines. 

Table 1 
Experiment setting 
 

Unfavorable Balanced Favorable Market type 
66-95 36-65 6-35 No. of agents 
Long Moderate Short Deadline 

 
 

According to Table 1, when the number of agents ranges 
between 6 and 35, the market is sparse (similarly in the 
ranges of 36 to 65 and 66 to 95, in which market is 
moderate and dense, respectively).The lifespan of an agent 
in e-market (i.e. its deadline) is randomly selected from 
(10, 80). In the experiments, such deadlines ranges between 
10 and 30 that are considered short (similarly in the ranges 
between 35 and 55 and 60 and 80 which are considered 
moderate and long respectively). In the present 
experiments, HBA and IHBA had the same conditions (for 
instance, the number of resources they needed to obtain), 
except that they used different negotiation strategies. 
Moreover, in IHBA, reward and penalty parameters for 
learning automata were considered 0.004 and 0.0001, 
respectively. 
 
5.1. Observation 1 
 
    Table 2 shows results of the experiments for 1000 runs. 
As noted in the table, IHBA has a higher rate of success 
than HBA. Success rate increases by5.5% and the number 
of messages sent/received by the buyer for each resource is 
declined by 6.3%.While using learning automata and CBR, 
agent tries to make a proposal using past experiences that 
has been accepted. This process results in reaching a faster 
agreement among agents. 
 
 
Table 2  
Experimental results for 103 runs 
 

 Uexp Maver RsucStrategy
 0.206 83 0.54 HBA
 0.36 80 0.57IHBA

 

 
5.2. Observation 2 
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longer deadlines, since agents have more time for making 
the agreement and use their learning, therefore, they make 
more utility than the time they are faced with shorter 
deadlines. 
 

 
 

 

 
 

Fig . 7.  The number of resources and expected utility (a:short;   
b:moderate;  c:long) 

 
In Fig. 8, results of the experiments show that: (1) Results 
of the negotiation improved for two kinds of buyers by 
increasing deadline; (2) Considering equal deadline, IHBA 
agent gain a higher expected utility than HBA agents, 
especially when the market is unfavorable and the buyer 
agent has sufficient time for reaching an agreement. Also, 
in shorter deadlines, since IHBA used previous 
experiences, therefore, they obtained higher expected utility 

than HBA, because in short deadlines, they could make 
more agreements, which led to obtaining higher expected 
utility. Furthermore, this advantage is decreased when the 
market is favorable. 
 

 
 

 

 
Fig. 8. The deadline expected utility ( a:unfavorable  b:balanced   

c:favorable ) 

6.     Conclusion 
     In negotiation, for making use of agents’ experiments, a 
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agreement. Besides, it improves performance measures 
such as success rate, and the number of messages that have 
been sent/received by each buyer in the negotiation. 
Moreover, in future, the learning automata can be used for 
selecting appropriate tactics in order to present a 
recommendation and recommendation response. 
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