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Abstract

In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson
splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball,
which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated parameters.
The random parameters are then iteratively fed into the PSO for optimization and converging to optimal path. Our proposed method makes
a balance between the path shortness and the safety which makes it more efficient for humanoid soccer playing robots and also for any
other crowded environment with various moving obstacles. Experimental results show that our proposed algorithm converges in at most 60
iterations with the average accuracy of 92% and the maximum path length overhead of 14% for planning the shortest and yet safest path.
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1. Introduction

Path planning is an important problem in the artificial
intelligence fields which are based on mobile agents.
Generally, the problem is finding the minimum length
obstacle-free path for moving from one point to another
autonomously. Other constraints such as execution time are
also considered for its application. This problem covers a
large variety of applications such as the moving robot arm
for grabbing doorknob, navigating an autonomous plane in
air, moving simulated agents in 2D or 3D, moving a
patrolling robot in a planar field and so on.

Evolutionary algorithms are widely used in this field
because path planning can be assumed as a constraint
optimization problem. Some of the evolutionary algorithms
such as ant colony or genetic algorithm achieved good
results [1] but could not satisfy low storage, low
computational complexity, and real-time constraints for
applications such as soccer. PSO is a bio-inspired
evolutionary algorithm which was proposed in 1995 by
Kennedy and Eberhart [2] and in comparison with the other
algorithms have benefits such as less candidate solutions
and parameters, global optimization capability, and fast
convergence. Many researchers have tried to use PSO for
path planning such as the work in [3]; however, these
algorithms cannot satisfy the output path smoothness which
is required for human-like motion. While in [4], a
stochastic PSO-based path planning with high-order
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polynomial is introduced for planning a smooth path, the
high complexity of particle for the large number of
parameters reduces the algorithm efficiency. In [5, 6], the
combination of cubic Ferguson Splines with PSO is
introduced, where traditional PSO algorithms with the
premature convergence problem [7] is used. In [8], the
introduced algorithm resolved the premature convergence
problem using Clerc’s PSO algorithm but there is no
balance between path length and safety. This aims to
planning a path through obstacles in cases that obstacles are
close to each other and this is a drawback especially in
applications like humanoid soccer play in which walking
stability is a challenge by itself. So our presented method
plans a curve path considering obstacles density and path
length with respect to their importance and produces a
normalized multi-objective fitness function.

2. Algorithm Components
In this section we introduce our proposed method.
2.1. Ferguson Splines

Ferguson spline is defined by the following equation [9]:

r(t) = Pofi(t) + Pifo(8) + Pof3(t) + Pifa(6)(1)
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Where P, and P; are the starting and end point
coordinates and P; and P; are their corresponding tangent
vector and t is the spline resolution vector parameter which
belongs to [0,1]. Also f;(t)to f,(t) are Ferguson cubic
multinomials described by:

i) = 2t3 -3t +1
f-(6) = —2t3 + 3t? @)
fs(t) = t(t —1)°
fa®) = t*(t - 1)

According to this definition, if in successive splines, start
and end points and their corresponding tangent vectors are
equal, the resulting path will be smooth because: r(0) = P,,
r(1) = P, and also r'(0) = P§, r'(1) = P{. Our problem
space is 2D so formula (1) and these steps must be applied
for the x and y dimensions separately. Then r,.(t) and
ry(t)forms a path in the 2D space. Finally the particle
format which will be sent to the next step is shown in table
1.

Table 4
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2.2. Particle Swarm Optimization (PSO)

PSO was introduced by Kennedy and Eberhart in 1995.
It is inspired from social behaviour of human beings and
can be used for finding global optima on some arbitrary
functions. In PSO each problem solution is called particle
and the collection of particles is called swarm. Each
particle has a position x,(t) = (x;1, %z, .., X;p) and a
velocity 7,(t) = (v;1, Vg, ., Vip) in  d-dimensional
problem space. Also every particle knows its best previous
position pBest,(t) = (p;1, Piz, ---»Pip) and swarm global
best positiongBest,(t) = (g1, Giz» > gip)- SO a velocity
function according to the best positions updates the
particles speed and position till the swarm converges to the
optimum position.

Here we used Clerc's PSO with velocity function:

p(t+1) = X(Fi(t) + cyryi (pBest, - %(1)

+ czrzi(gBestl - f{(t)))
Where:
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And ¢; and ¢, are random positive numbers which
control the relative attraction to global and local best found
positions. And r; and r, are vectors of random variables
drawn with uniform probability from[0,1]. So in each
iterationposition  updates  by: x(t+ 1) = X,(t) +
v,(t + 1). If any element v;, of velocity vector is less than
Vmin OF greater than V., it will be replaced with a
randomly generated value in the above distance. Finally the
most important part is the fitness function which evaluates

,Pp=CcL+Cy0 >4

the eligibilityof each path. Here we use a multi-objective
fitness function which consists of two fitness functions:

2.2.1. Length Fitness
This fitness function must penalize long paths. So the
function is:

fi=—

)
Lmin

Where L,,;,is the length of straight line which connects
starting and end points and L is the trajectory length.

2.2.2. Safety Fitness

This fitness function must penalize trajectories with
respect to their distance to obstacles considering obstacles’
density. The obstacle aggregation in some applications
(such as humanoid soccer) is important due to the
following reasons:

e  Motion stability is still not completely reliable. So
neighbour robots are more dangerous.

o Respects to different robots sizes, it is possible
that a small fast robot stick between multi big
slow ones.

e Being surrounded between some huge robots will
threat robot perception because robot localization
is performed by detecting important spots in the
field, therefore, no detection means losing the
position in the field.

Accordingly we propose this function:
1 ,Bi € 0:0 < dpyin, < Dsqge
f — DSafe"'l_1
s Z kie™minct 30 € 0:0 < dypiy, < Dsage

i€eo

Where the variable D, is the safety margin constant
which is 0.5™ according to the RoboCup rules. O is the set
of all obstacles. dpn,, is the minimum distance to the
ithobstacle. And k; is the obstacle crowd coefficient which
is defined by:

1,
ki = {n(on),

Where n(0,) is the number of obstacles which are
located near this obstacle (inside 2Dg,f. radius). This
means if an obstacle is far enough k; will be 1 otherwise a
crowd coefficient will be applied to the exponential
distance related function.

Finally fitness function is: f =

dmini > DSafe
0< dmini < DSafe

f1 Kaccfs
kacet 1 kacct1
Where kgcc = Yico, ki These coefficients insure that

the two fitness function to be normalized.
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3. Experimental Results Analysis

We have implemented this algorithm using MATLAB
with these parameters:V.x = 5, Vimin = —5, Maximum
iteration number = 60, Swarm size = 20.

We used two fixed locations for the starting and target
points (robot and ball) with 2 to 4 random obstacles located
in random positions inside al™ x 1™area between
endpoints. Then each of the random generated
configurations will be fed into both the algorithm
introduced in [8] and our new proposed method. It will be
noticed that in the first step random parameters will shape
trajectories which for a precise comparison, these random
parameters are the same in both algorithms. These steps are
repeated 10 times and the paths’ lengths for both methods
are recorded. Fig. 1 shows an output of our implemented

Repetition: 10/10
lteration: 60/60

Current Length: 208.169 cm
Average for 10 Repetition(s): 207.4167 cm
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algorithm. The workspace consists of 3 obstacles. The left
column shows the method described in [8] and the right one
is our proposed method. The figures at the top show
workspace and the bottom ones show convergence of
fitness function. Fig. 2 shows the difference between the
two methods clearly. Here path length in our method is
22% longer than [8]. However, our method’s path is safer.
Fig. 3 demonstrates a workspace with 4 obstacles.
Although the outcome of our proposed method (the right
side) is the safest path in the 10" repetition, comparing its
length with the average length indicates that different
repetitions plan different paths (upside or downside of
whole obstacles).The results for the first 25 workspaces
(discarding cases which obstacles are so far, or too close)
can be classified as the followings:
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Current Length: 204.4394 cm
Average for 10 Repetition(s): 208.4131 cm
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Fig. 1. An output of our algorithm with the same output as [8].

e In 60% of cases (such as Fig. 1) both methods are
similar in which there is no significant difference
in the planned path in the two methods. In these
cases obstacles are far enough to pass through or
very close as there is no way through. It is noticed

that the best solution’s fitness in our method is 1,
which indicates normalized and balanced effect of
length and safety in fitness function.

e In 32% of cases (see Fig. 2) the new method will
return a path which is in average about 14%
longer, but is safer. In these cases obstacles are
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near each other (in 2Dg, distance which is
allowed for passing through according to the
previous method)

e In the remaining 8% cases, different paths (with
different length) are planned in different
repetitions. In average minimum and maximum
lengths  overhead are about 11% and
25%,respectively which corresponds to planning
safer and safest path (see Fig. 3).

According to the aforementioned analysis in 92% of the
configurations, our new proposed method plans a path
considering both length and safety. This means we select
the shortest path if it is safe enough or the safest path with a
maximum of 14% overhead in the path length. And in the
remaining 8% of cases it is possible to plan safer or safest

Flepetition: 10/10
lteration: BO/ED
T T T

-3 -2 -1 [u] 1 2 3
Current Length: 2024517 cm
Average for 10 Repetitionis): 201.8367cm

path with average length overhead of 11% or 25%
respectively.

Also for investigating the criteria which causes planning
different paths (in 8% of aforementioned random
configurations) we studied two series of special workspaces
each consisting of two fixed end points with a distance of
2™ and a set of obstacles with the same distance from the
straight line connecting two end points. Initially obstacles
are located far enough, in which our algorithm plans the
straight line as output. Then obstacles are getting closer in
each step until the straight line becomes unsafe. These
space configurations and corresponding results are
explained as follows.

Flepetition: 10/10
lteration: 60/60
T T T

Current Length: 246.0652 cm
Average for 10 Repetition(s): 2468 6018 cm

Fig. 2. This is a configuration with 4 obstacles. This figure shows the difference between the two methods in which our proposed method (right side) plans
longer path with about 22% length overhead, while the previous method (left side) plans shorter unsafe path. Previous and proposed methods path lengths
are 202™ and 246°™ respectively.
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Fig. 3. This is a configuration with 4 obstacles. Although our proposed method’s outcome (right side) in the 10th repetition is the safest path, comparing its
length with the average length indicates that different repetitions plan different paths (upside or downside of whole obstacles) which means planning safer or
the safest path.
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Fig. 4. (a) to (e) illustrate the path lengths versus repetition number in which the thick dashed (mostly over x axis) and thin solid lines correspond to the [8]
and our new proposed method, respectively. (f) to (j) are one of their corresponding workspace at a specific repetition.

In the first series of special workspaces we have located
two obstacles in initial distance of 60™ (Fig. 4.a and 4.f)
then every obstacle is getting closer by1°™ in each step.
Experimental results shows that the straight line is planned
until obstacles are in a 52¢™ distance to each other. When
obstacles are in50<™at 2" repetitionand 5" repetitions (Fig.
4.b)the planned paths are outside of obstacles which are
about 30™ longer. The 2" repetition of the planned path is

presented in (Fig. 4.g). Straight line is planned in more than
80% of repetitions in this distance. When obstacles are
in48°™(Fig. 4.c) in 6 out of 10 repetitions, the planned path
is 30 longer. 10" repetition is illustrated in (Fig. 4.h).
Herestraight line is planned in about 50% of repetitions.
When obstacles are in46°™(Fig. 4.i) straight path is
planned in about 10% of repetitions.Fig. 4.d indicates its
occurrence just at the 6" repetition. Finally when obstacles
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are at a distance of44“™and closer (Fig. 4.e and 4.j), the
planned path is always a curve outside two obstacles. These
results indicate that48<™distance among two obstacles is
the point which there is a balance between length and
safety. A workspace with farther or closer obstacles leads
to straight or curve path planning, respectively. The
important point is that the previous method always planes
straight path during all steps.

The second series of special workspaces are as previous
ones except using three obstacles in two clusters of one and
two. The purpose of this space configuration is studying the
effects of the number of obstacles. Here the initial distance
which indicates the distance of the line connecting center of
two near obstacles from another single one should be set
to70™(Fig. 5.a and 5.c) and both of algorithms plan
straight paths with length of 200°™. In this case when
obstacles are farther than 62°™ the planned path is always
the straight path. But when obstacles are in 62°™(Fig. 5.b
and 5.d) or closer, the straight path through obstacles is
never planned; instead in more than 80% of the cases, the
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path passes near single obstacle and in the remaining 20%,
the path is planned near double obstacles. The remarkable
point is that the path passing near two-obstacle cluster is
about 4% longer. This partial drawback can be solved by
increasing the size of swarm which increases the diversity
of particles and provides paths with similar fitness. This
fact is confirmed by examining this special space
configuration with a swarm of 100 particles. In this
experiment planned path is near single obstacle from the
distance of62¢™ stably. When obstacles are at 56™(Fig.
6.a and 6.c) in two repetitions a longer path of 245°™ is
planned and the remaining planned paths are about236°™.
When obstacles are at 44°™(Fig. 6.b and 6.d) the path near
single obstacle is approximately as long as the path near
double obstacle (with a difference of7°™). Another notable
point is the insensitivity of the previous method in [8], to
the obstacles closeness during all steps of both of the above
special space configurations.
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Fig. 5. Second special series of workspaces with 3 close obstacles. (a) and (b) demonstrate path length versus repetition number while figures (c) and (d)
display their corresponding space configuration.
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Fig. 6. Continue of second special series of workspaces from Fig. 5. (a) and (b) demonstrate path length versus repetition number and figures (c) and (d)
display their corresponding space configuration.

4. Conclusion

In this paper we introduced an improved method for
planning a safeand, yet, short path for a humanoid soccer
robot. This method uses Ferguson cubic splines for
presenting paths and PSO for optimizing paths.
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