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Abstract 

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data 
clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex 
data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the 
task of optimization to an equivalent convex optimization problem, the proposed data clustering algorithm can be indeed 
considered as a global minimizer. In this paper, a splitting method for solving the convex clustering problem is used 
called as Alterneting Direction Method of Multipliers (ADMM), a simple but powerful algorithm that is well suited to 
convex optimization. We demonstrate the performance of the proposed algorithm on real data examples. The simulation 
result easily approve that the Modified Convex Data Clustering (MCDC) algorithm provides separation more than the 
Convex Data Clustering (CDC) algorithm. Furthermore, complexity of solving the second part of MCDC problem is 
reduced from O(n2) to O(n). 

Keywords: convex data clustering, initialization, global minimizer. 

 

1. Introduction 

Data Clustering is an important and noteworthy 
issue in Machine learning. Data Clustering is the task 
of grouping a set of points in such a way that points in 
the same group (called a cluster) are closer to each 
other than to those in other groups. Different kinds of 
data clustering algorithms have been proposed[1]; 

J. McQueen et al. proposed k-means [2]method as 
a  method using the squared error. Fuzzy versions of 
methods based on the squared error were defined, 
beginning with the Fuzzy C-Means by James C. 
Bezdek et al [3].Hierarchical clustering [4-6]aims to 

obtain a hierarchy of clusters, called dendrogram, that 
shows how the clusters are related to each other. 
These methods proceed either by iteratively merging 
small clusters into larger ones (agglomerative 
algorithms, by far the most common) or by splitting 
large clusters (divisive algorithms).  

Density-based methods including DBSCAN [7] 
which is proposed by Martin Ester et al, consider that 
clusters are dense sets of data items separated by less 
dense regions; clusters may have arbitrary shape and 
data items can be arbitrarily distributed. Many of the 
graph-theoretic clustering methods are also related to 
density-based clustering. The data items are 
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represented as nodes in a graph and the dissimilarity 
between two items is the “length” of the edge between 
the corresponding nodes. In several methods, a cluster 
is a sub graph that remains connected after the 
removal of the longest edges of the graph [8]. Based 
on graph-theoretic clustering, there has been 
significant interest recently in spectral clustering 
using kernel methods [9]. Mixture-resolving methods 
assume that the data items in a cluster are drawn from 
one of several distributions (usually Gaussian) and 
attempt to estimate the parameters of all these 
distributions. The introduction of the expectation 
maximization (EM) algorithm in [10] was an 
important step in solving the parameter estimation 
problem.  

To ensure optimization problems are globally 
converged, convexification of non-convex problems 
has recently attracted scientists’ attentions. Lindsten 
et al. [11] and Hocking et al. [12] formulate the 
clustering task as a convex optimization problem. 

This paper proposes Modified Convex Data 
Clustering (MCDC)algorithm in which there is no 
need to  be peculiar about how to select initial values. 
Due to properly converting the task of optimization to 
an equivalent convex optimization problem, the 
proposed data clustering algorithm can be indeed 
considered as a  global minimizer. 

The rest of the paper is organized as follows: 

In part 2 Convex Data Clustering (CDC) Algorithm 
is reviewed. In part 3 Modified Convex Data 
Clustering (MCDC) Algorithm is proposed and in part 
4 Alternating Direction Method of Multipliers 
(ADMM) Algorithm that is used to solve MCDC 
algorithm is reviewed. In part 5 Solving MCDC 
problem using ADMM is proposed. Finally, the 
results and conclusion are explained in the last two 
parts. 

2. Convex Data Clustering (CDC) Algorithm 

Kmeans data clustering is a common method for 
clustering data. Although implementation of Kmeans  
algorithm is very simple, due to it’s non-convex 
formulation, this algorithm has some weaknesses such 
as sensitivity to initialization, predefined number of 
clusters and having no guarantee to get global 
convergence. In [11], a convex formulation for data 
clustering was proposed in which there is no need to  
be curious about how to select initial values. In 
addition, the number of clusters is specified 
dynamically. Since, the number of clusters is not 
predefined, for each pattern (xj), it is considered μj 
that presents cluster’s center that xj belongs to. Two xj 
belong to one cluster if their corresponding μj are the 
same: 

min௫ ෍ฮݔ௝ − ௝ฮଶߤ
ே

௝ୀଵ

 s.t. {ߤଵ, … ,  ே} (1)ߤ

In order to adaptively tune the number of clusters, a 
tuning expression is proposed. So data clustering 
problem is defined as the following: 

min௫ ෍ฮݔ௝ − ௝ฮଶߤ
+ ߣ ෍ ෍ฮߤ௜ − ௝ฮߤ

௣
௜ழ௝

ே

௝ୀଶ

ே

௝ୀଵ

 (2) 

ୀ૚࢏{࢏ࣆ}
ࡺ contains N vectors which k number of them 

are unique (k clusters). In the optimal point, for some 
i,j, ‖μi-μj‖p is equal to zero and corresponding patterns 
(xj,xi) belong to same cluster. Therefore the number of 
clusters reduces efficiently. It makes possible to 
control the number of clusters by properly tuning the 
parameter λ. The penalty expression in convex data 
clustering was multiplied by a weight vector [12] in a 
way that, as distances between points are increased, 
the weight vector is reduced. In other words, for the 
points which are far away from each other, there is a 
few needs to put pressure on corresponding centers of 
clusters to become close to each other.  
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In [5] the relation between this method of data 
clustering and hierarchical data clustering is 
explained. 

There are key features that make this data 
clustering method appropriate: 

 The aforementioned optimization problem is 
convex. Therefore there is no need to be curious about 
how to select initial values. Due to properly 
converting the task of optimization to an equivalent 
convex optimization problem, the CDC algorithm can 
be indeed considered as a global minimizer. Lots of 
common data clustering methods, including Kmeans 
should have an appropriate initialization to gain a 
good result. 

 In CDC algorithm, there is no need to predefine 
the number of clusters. In other words, the number of 
clusters is controlled by using the tuning parameter λ. 
This feature is useful when encountering “data 
stream” problem in which the number of clusters is 
changing by time [13]. 

In the following Modified Convex Data Clustering 
(MCDC) algorithm is proposed. 

3. Modified Convex Data Clustering (MCDC) 
Algorithm 

In this section the MCDC algorithm is proposed in 
which unnecessary terms are by passed. For example, 
if there are penalties for distances between μ1 and μ2 
and between μ2 and μ3, it is not really necessary to put 
a penalty for distances between μ1and μ3. Therefore, 
the modified form of (2) becomes: 

݉݅ ఓ݊ ෍ฮݔ௝ − ௝ߤ ฮଶ
+ ߣ  ෍ฮߤ௝ − ௝ାଵฮߤ

௣

ேିଵ

௝ୀଵ

ே

௝ୀଵ

 (3) 

It should be noticed that this index helps 
economizing storage space noticeably. It can be easily 
shown that complexity of solving the second part 
of(3)is reduced from O(n2)to O(n). Because two 

nested loops in second part of (2) is reduced to one 
loop. 

By adding weights (wjj+1) to (3), we will have: 

minఓ ෍ฮݔ௝ − ௝ฮଶߤ
+ ߣ ෍ ௝ߤ௝௝ାଵฮݓ − ௝ାଵฮߤ

௣

ேିଵ

௝ୀଵ

ே

௝ୀଵ

 (4) 

Furthermore, ifl1 Norm is used, the underlying 
computation can be remarkably reduced. wjj+1 could 
be presented by: 

௝௝ାଵݓ = ݁ି஦ฮ௫ೕି௫ೕశభฮ
మ
మ
 (5) 

The coefficient φ is a scalar value where 0<φ<1. 

It is important to note that, if the CDC algorithm is 
used instead of MCDC algorithm, the distances 
between “each” two points should be computed for 
measuring weights.  

In the following section, Alternating Direction 
Method of Multipliers (ADMM) Algorithm for 
solving (4)is explained. 

4. Alternating Direction Method of Multipliers 
Algorithm 

ADMM is an algorithm to solve problems given in 
(6): 

(ݔ)݂݁ݖ݅݉݅݊݅݉ +  (6) (ݖ)݃

ݔܣ ݋ݐ ݐ݆ܾܿ݁ݑݏ + ݖܤ = ܿ  

With variables x∈Rn and z∈Rm, where A∈Rp×n, 
B∈Rp×m and c∈Rp. This algorithm assumes that 
functions f and g to be closed, proper, and convex. 
The optimal value of the problem (6) will be denoted 
by: 

∗݌ = ݅݊ ௫݂,௭{݂(ݔ) + ݔܣ|(ݖ)݃ + ݖܤ = ܿ} (7) 

As in the method of multipliers[14], we form the 
augmented Lagrangian: 

,ݔ)ఘܮ ,ݕ (ݖ = (ݔ)݂ + (ݖ)݃ + ݔܣ)்ݕ + ݖܤ − ܿ)

+ ߩ)
2ൗ ݔܣ‖( + ݖܤ − ܿ‖ଶ

ଶ (8) 
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ADMM algorithm summarized as follows: 

௞ାଵݔ ≔ ,ݔ)௣ܮ௫݊݅݉݃ݎܽ ,௞ݖ  (௞ݕ

௞ାଵݖ (9) ≔ ,௞ାଵݔ)௣ܮ௭݊݅݉݃ݎܽ ,ݖ  (௞ݕ

௞ାଵݕ ≔ ௞ݕ + ௞ାଵݔܣ)ߩ + ௞ାଵݖܤ − ܿ) 

Many variations on the classic ADMM algorithm 
have been explored in the literature [15-18]. Below 
we present the convergence issue of ADMM 
algorithm. 

4.1 Convergence 

There are many convergence results for ADMM 
discussed in the literature [19, 20]; here, we limit 
ourselves to a basic but still very general result. We 
will make one assumption about the functions f and g, 
and one assumption about problem (6). 

Assumption 1: The (extended-real-valued) 
functions f:Rn→R∪{+∞} and g:Rn→R∪{+∞}are 
closed, proper, and convex. 

This assumption can be expressed compactly using 
the epigraphs of the functions: The function f satisfies 
assumption 1 if and only if its epigraph is a closed 
nonempty convex set. 

݂݅݌݁ = ,ݔ)} (ݐ ∈ ℝ௡ × ℝ|݂(ݔ) ≤  (10) {ݐ

Assumption 1. implies that the sub problems 
arising in the x-update and z-update are solvable, i.e., 
there exist x and z, not necessarily unique (without 
further assumptions on A and B), that minimize the 
augmented Lagrangian. It is important to note that 
assumption 1 allows f and g to be non-differentiable 
and to assume the value +∞. 

Assumption 2. The unaugmented Lagrangian L0 
has a saddle point. 

Explicitly, there exist (x*,z*,y*), not necessarily 
unique, for which 

,∗ݔ଴൫ܮ ,∗ݖ ݕ ൯  ≤ ,∗ݔ)଴ܮ ,∗ݖ ݔ)଴ܮ(∗ݕ , ݖ ,  (11) (∗ݕ

holds for all x, z, y. 

Byassumption1, it follows that L0 (x*,z*,y*)is finite 
for any saddle point (x*, z*,y*). This implies that 
(x*,z*)is a solution to (6), so Ax*+Bz*=c and f(x*)<∞, 
g(z* )<∞. It also implies that y*is dual optimal, and the 
optimal values of the primal and dual problems are 

equal, i.e., that strong duality holds. Note that we 
make no assumptions about A, B, or c, except 
implicitly through assumption 2; in particular, neither 
A nor B is required to be full rank. 

Under assumptions 1 and 2, the ADMM iterates 
satisfy the following: 

 Residual convergence:rk→0   as   k→∞i.e., the 
iterates approach feasibility. 

 Objective convergence: f(xk)+g(zk )→p*   as   
k→∞, i.e., the objective function of the iterates 
approaches the optimal value. 

 Dual variable convergence: yk→y*    as   k→∞, 
where y*is a dual optimal point. 

4.2 Optimality Conditions and Stopping Criterion 

The necessary and sufficient optimality conditions 
for the ADMM problem (6) are primal feasibility, 

∗ݔܣ + ∗ݖܤ − ܿ = 0 (12) 

and dual feasibility: 

0 ∈ (∗ݔ)݂߲ +  (13) ∗ݕ்ܣ

0 ∈ (∗ݖ)߲݃ +  (14) ∗ݕ்ܤ

Here, ∂ denotes the sub differential operator. 
(When f and g are differentiable, the sub differentials 
∂f and ∂g can 

be replaced by the gradients ∇f and ∇g, and ∈ can 
be replaced by =.) 

Since z(k+1), minimizes Lρ (xk+1,z,yk)by definition, 
we have that 

0 ∈ (௞ାଵݖ)߲݃ + ௞ݕ்ܤ + ௞ାଵݔܣ)்ܤߩ + ௞ାଵݖܤ − ܿ) 

(15) = (௞ାଵݖ)߲݃ + ௞ݕ்ܤ +  ௞ାଵݎ்ܤߩ

  = (௞ାଵݖ)߲݃ +  ௞ାଵݕ்ܤ

This means that z(k+1)and y(k+1)always satisfy (14), 
so attaining optimality comes down to satisfying (12) 
and (13). Since x(k+1)minimizes Lp (x,zk,yk) by 
definition, we have that 

0 ∈ (௞ାଵݔ)݂߲ + ்ܣ ௞ݕ + ௞ାଵݔܣ)்ܣߩ + ௞ݖܤ − ܿ) 
(16) 

= (௞ାଵݔ)݂߲ + ்ܣ ቀݕ௞ + ௞ାଵݎߩ + ௞ݖ)ܤߩ −  ௞ାଵ)ቁݖ
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= (௞ାଵݔ)݂߲ + ௞ାଵݕ்ܣ + ௞ݖ)ܤ்ܣߩ −  ,(௞ାଵݖ

or equivalently, 

௞ାଵݖ)ܤ்ܣߩ − (௞ݖ ∈ (௞ାଵݔ)݂߲ +  ௞ାଵ (17)ݕ்ܣ

This means that the quantity 

௞ାଵݏ = ௞ାଵݖ)ܤ்ܣߩ −  ௞) (18)ݖ

can be viewed as a residual for the dual feasibility 
condition (13).We will refer to s(k+1)as the dual 
residual at iteration k + 1, and tork+1=Axk+1+Bzk+1-cas 
the primal residual at iteration k + 1.In summary, the 
optimality conditions for the ADMM problem consist 
of three conditions, (12–14). The last condition (14) 
always holds for (xk+1,zk+1,yk+1). the residuals for the 
other two, (12) and (13), are the primal and dual 
residuals rk+1 and sk+1, respectively. These two 
residuals converge to zero as ADMM proceeds. 
Convergence proof and stopping criteria are shown in 
[14]. 

5. Solving Modified Convex Data Clustering 
Problem Using ADMM Algorithm 

At first, another form of problem (4) is presented: 

݁ݖ݅݉݅݊݅݉
1
2

෍‖ݔ௜ − ௜ݑ ‖ଶ
ଶ + ߛ ෍ ௟ݒ‖௟ݓ ‖

௟

௣

௜ୀଵ

 (19) 

s. t           u୪భ − u୪మ − v୪ = 0  

l2=l1+1 and p is representing the number of patterns 
(points). Augmented Lagrangian for problem (19) is: 

݈௩(ܷ, ܸ, (߉ =
1
2

෍‖ݔ௜ − ௜‖ଶݑ
ଶ + ߛ ෍ ‖௟ݒ‖௟ݓ

௟

௣

௜ୀଵ

+ ෍ < ௟ߣ , ௟ݒ ௟భݑ − + ௟మݑ
௟

> +
ߩ
2

෍ฮݒ௟ ௟భݑ − + ௟మฮݑ
ଶ

ଶ

௟

 

(20) 

Derivation of lvwith respect to ui is: 

߲
௜ݑ߲

݈௩(ܷ, ܸ, (߉

= ௜ݑ − ௜ݔ

− ෍ ௟ߣ
௟భୀ௜

+ ෍ ௟ߣ −
௟మୀ௜

ߩ ෍൫ݒ௟ ௜ݑ −
௟భୀ௜

+ (௟మݑ
+ ߩ ෍൫ݒ௟ − ௟భݑ  + ௜൯ݑ

௟మୀ௜

 

(21) 

For updating U, ∂/(∂ui ) lv (U,V,Λ) should be zero. 
Therefore equation (22) is attained: 

௜ݑ =
1

(1 + ݌)2 − (ߩ(1 ൫ݔ௜

+ ௜,௜ାଵݒ൫ߩ − ௜ିଵ,௜ݒ + ௜ାଵݑ
+ (௜ିଵݑ + ௜,௜ାଵߣ −  ௜ିଵ,௜൯ߣ

(22) 

Due to ui+1+ui-1≤xi+1+xi-1≅2x ̅, 2x ̅is replaced with 
ui+1+ui-1 in equation (22).  

For updating V, equation (23) is computed: 

௟ݒ = ௩݊݅݉݃ݎܽ
1
2

ฮݒ − ௟భݑ) − ௟మݑ − ௟)ฮߣଵିߩ
ଶ

ଶ
+

௟ݓߛ

ߩ
 (23) ‖ݒ‖

By considering σl=γwl and equations (24),(25) and 
(26) , vl is attained: 

(ݑ)ఙఆݔ݋ݎ݌ = ௩݊݅݉݃ݎܽ (ݒ)ߗߪ]  +
1
2

ݑ‖ − ଶ‖ݒ
ଶ (24) 

௟ݒ = ‖.‖഑೗ݔ݋ݎ݌
ഐ

௟భݑ)  − ௟మݑ −  ௟) (25)ߣଵିߩ

௟ݒ = ܵ ംೢ೗
ഐ

൫u୪భ − u୪మ − ρିଵλ୪൯ = (26) 

⎩
⎪
⎨

⎪
⎧ ௟భݑ − ௟మݑ − ௟ߣଵିߩ −

௟ݓߛ

ߩ
௟భݑ݂݅ − ௟మݑ − ௟ߣଵିߩ >

௟ݓߛ

ߩ

0                                           if   หݑ௟భ − ௟మݑ − ௟หߣଵିߩ ≤  
௟ݓߛ

ߩ

௟భݑ − ௟మݑ − ௟ߣଵିߩ +
௟ݓߛ

ߩ
 o. w   ݑ௟భ − ௟మݑ − ௟ߣଵିߩ <  −

௟ݓߛ

ߩ

� 

And finally, Lagrangian multiplier is computed by 
using equation (27): 

௟ߣ = ௟ߣ + ௟ݒ)ߩ  − ௟భݑ +  ௟మ) (20)ݑ
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5.1. A Modified Convexdata Clustering Algorithm 
Based on ADMM 

 

6. Datasets 

The main dataset, which is used in this paper, 
contained teeth features of different kinds of 
mammals. In this dataset, there are 27 patterns of 
mammals along with 8 features which present 
different kinds of teeth. The main reason of selecting 
this data set is comparing the results with CDC 
algorithm [12]. Iris dataset [21] is another one which 
is used that contains data about three types of iris 
plant. This dataset consists of 150 patterns and 5 
features represent appearance of flower. Another 
dataset that is used in this paper is mouse gene dataset 
[22]. It includes biological data from mouse genes and 
consists of 150 genius patterns along with 8 features 
provide cell data.  

7.  Results 

The following results are generated based on the R 
programming language implementation in Linux 
operating system with two core processor and four 
gigabyte RAM. 

For internal validation, we selected measures that 
reflect the compactness, connectedness, and 
separation of the cluster partitions. Connectedness 

relates to what extent observations are placed in the 
same cluster as their nearest neighbors in the data 
space, and is here measured by the connectivity. 
Compactness assesses cluster homogeneity, usually 
by looking at the intra-cluster variance, while 
separation quantise the degree of separation between 
clusters (usually by measuring the distance between 
cluster centroids). Since compactness and separation 
demonstrate opposing trends (compactness increases 
with the number of clusters but separation decreases), 
popular methods combine the two measures into a 
single score. The Dunn Index and Silhouette Width 
are both examples of non-linear combinations of the 
compactness and separation. For a good overview of 
internal measures in general see [22]. In Tables 1, 2, 
3, the yellow cells show the best values for parameter 
of data clustering validity. The best value for 
connectivity index is the minimum one and for 
indices Dunn and Silhaute, is maximum one. As it is 
shown in the tables, MCDC algorithm provides more 
compactness and separation than CDC algorithm. 

In Fig. 1 and Fig. 2, 27 patterns of mammals based 
on two principal components are shown. For each 
pattern there is a line between it’s corresponding first 
cluster and it’s final cluster. At first, the first data 
cluster for each pattern is itself and finally it 
converges to red points. The Fig. 1, Fig. 4 (left), Fig. 
6 (left) show data clustering after modification and 
the results of the CDC algorithm are shown in Fig. 2, 
Fig. 4 (right) and Fig. 6 (right). The red points 
represent data cluster centers. (It is an important point 
that if the run of algorithm iterates more, the red 
points in both sides of Fig. 1, Fig. 6 converge to two 
points. The reason of stopping the algorithm early is, 
showing becoming the data clusters close together). 
As it is shown clearly, MCDC algorithm provides 
clustering with better separation than CDC algorithm. 
The Fig. 8, Fig. 9 show first and second error of 
MCDC Algorithm and CDC algorithm. The charts are 
representing the lower error of MCDC algorithm than 
CDC algorithm. For more information about 
measuring the first and second error refer to [14]. 

௜ݕ = ௜ݔ + ௜,௜ାଵݒ൫ߩ − ௜ିଵ,௜ݒ + ൯ݔ2̅ + ௜,௜ାଵߣ −  ௜ିଵ,௜ߣ

ܷ௠ =
1

(1 + ݌)ߩ2 − 1)) ܻ  

௜,௜ାଵݒ
௠ = ‖.‖ംೢ೔,೔శభ ݔ݋ݎ݌

ഐ
௜ݑ) 

௠ − ௜ାଵݑ
௠ − ௜,௜ାଵߣଵିߩ

௠ିଵ) 

ߣ = ߣ + ݒ൫ߩ  − ݑ + ݑ ൯

Initialize λ଴and v଴ 

For  m = 1,2, … do 

For i = 1,2, … , p do 

end For 

For݅ = 1,2, … , ݌ − 1 do 
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8. Conclusion 

In this paper the Modified Convex Data Clustering 
algorithm is proposed and it is shown that the 
algorithm provides separation more than Convex Data 
Clustering algorithm. The charts are representing the 
lower error of MCDC algorithm than CDC algorithm. 
Furthermore, the Modified Convex Data Clustering 
problem is solved using Alternating Direction Method 
of Multipliers. Since the ADMM algorithm is well 
suited to distributed convex optimization, and in 
particular to large-scale problems arising in statistics, 
machine learning and related areas, we are going to 
propose distributed Convex Data Clustering in near 
future. 

 

 
Fig. 1. Modified Convex Data clustering (mammals dataset) 

 

Fig. 2. Convex Data Clustering (mammals dataset) 

 

Fig. 3. Data Clustering using Kmeans (left) and hierarchical data 
clustering (right) (mammals dataset and the number of clusters=2) 

 

Fig. 4. Convex Data Clustering (right-two clusters) and Modified Convex 
Data Clustering (left-three clusters) (iris dataset) 

 

 
Fig. 5. Data Clustering using Kmeans (left) and hierarchical data 
clustering (right) (iris dataset and the number of clusters=3) 

 
Fig. 6. Convex Data Clustering (right-one cluster) and Modified Convex 
Data Clustering (left-two clusters) (mousegene dataset) 

 
Fig. 7. Data Clustering using Kmeans (left) and hierarchical data 
clustering (right) (mousegene dataset and the number of clusters=2) 
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Fig. 8. Comparing primal error of Convex Data Clustering (orange) and 
Modified Convex Data Clustering (blue)- mammals dataset. 

 
Fig. 9. Comparing second error of Modified Convex Data Clustering 
(orange) and Convex Data Clustering (blue)- mammals dataset. 
 
Table 1 
Cluster validity with runtime and number of clusters for mammals dataset 

Iris Dataset 

 Number 
of clusters Time Connectivity Dunn Sillhautte 

Hierarchical 
(ward) 3 0.052 4.4770 0.1378 0.5542 

Kmeans 3 0.024 10.0917 0.0988 0.5528 
Convex Data 

Clustering 2 1.77 0  
0.3458 

 
0.6808 

Modified 
Convex Data 

Clustering 
3 0.56 4.4002  

0.1869 
 

0.5511 

 
Table 2 
Cluster validity with runtime and number of clusters for iris dataset 

Mousegenes Dataset 

 Number 
of clusters Time Connectivity Dunn Sillhautte 

Hierarchical 
(ward) 2 0.048 5.3270 0.1291 0.3962 

Kmeans 2 0.060 13.2548 0.0464 0.3911 
Convex Data 

Clustering 1 1.3 0 0 -1 

Modified 
Convex Data 

Clustering 
2 0.69 5.3002 0.1314 0.5004 
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