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Abstract 

The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in 
various flight conditions. The current methods have some limitations and are based on studying the risks and measuring 
the effective parameters. These parameters do not remove the dependency of a flight process on the time and human 
decisions. In this paper, we used an HMM-based method which is among the main methods of situation assessment in data 
fusion. This method includes two clustering levels based on data and model. The experiments were conducted with B_777 
flight data and the variables considered in the next generation of ADS_B. According to the results of this study, our 
method has high speed and sensitivity in detection of abnormal changes which are effective in the flight parameters when 
landing. With the dynamic modelling, there is no dependency on time and conditions. The adaptation of this method to 
other air traffic control systems makes its extension possible to cover all flight conditions.  

Keywords: Automatic Dependent Surveillance – Broadcast (ADS–B), Baum-Welch Algorithm, Data Fusion,. Expectation Maximization (EM) algorithm, 

Forward algorithm, Hidden Markov Model (HMM). 

 

1. Introduction 

Throughout history, the improvement of air travels 
safety by airlines has been one of the hardest 
scientific and technological issues. Despite every 
progress in risk reduction strategies, air crashes still 
occur [1]. Today, the aircraft industry has turned to 
flight safety techniques, which predict the risks for 
taking necessary measures. The digital data obtained 
from Flight Data Recorder (FDR) is generally used by 
many airlines for risk detection process. All methods 
are capable of using part of many flight parameters in 
FDR.  

The Flight Operations Quality Assurance (FOQA) 
known as Flight Data Monitoring (FDM) in Europe is 
one of the most famous effort in this matter. ED is 

used in the current business programs which alarms 
for exceeding the allowed area for a certain number of 
flight parameters. This alarm only produces a correct 
result for the previously studied events, not all 
possible events [2]. Other measures include the 
following: 

The Morning Report Software Package is one of 
the last efforts for anomaly detection using FDR [3]. 
Subsequent measures in the methods of data analysis 
were taken for anomaly detection aerospace systems. 
While some use training-based methods, such as 
Inductive Monitoring System (IMS) which has 
limitations in application of time-dependent patterns 
[4], others have a non-observational approach and 
focus on application of sequence analysis algorithm 
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for FDR discrete data, such as cockpit switch flips [5]. 
Das et al. in NASA developed MKAD which uses 
single-class SVM algorithm [6]. Srivastava et al. have 
introduced a method based on data that detects 
anomaly using clustering [7]. Recently, the 
information on the above algorithms have been 
summarized in a paper [8].  

A system with the same function in all flight 
conditions for anomaly detection is absolutely 
essential, particularly because of ongoing 
development of public and private air transport, since 
experts in airport traffic control towers work with 
numerous parameters and there is possibility of error 

occurrence and the automatic systems for timely 
alarm are considered important challenges. This need 
doubles in airports and other high-traffic airways. One 
challenge is the fact that flight conditions are time-
variable, therefore, the system should be able to detect 
dynamic behavior. Also, its adaptation to ADS_B 
which has been predicted in the next generation of air 
transport system is essential. 

In this paper, the predicted variables in ADS_B 
were used for anomaly detection and the normal 
landing process is modeled using HMM and with its 
help, any abnormal change in the flight variables 
during the landing is detected very fast and can be 
used in alarm before the accident for better 
emergency assistance and help. This method is highly 
efficient in the modeling of random and dynamic 
processes. In fact, it is an attempt to create a 
framework for a system in order to detect flight 
anomaly based on HMM, because HMM has various 
structures and suitable algorithms to adapt to other 
processes.  

In section 2, a description of level of HMM 

application in data fusion is given, then, in section 3 
and 4, the theoretical examination of HMM and its 
application in anomaly detection of landing are 
described. Section 5 explains modeling and the results 
and in section 6, the potential future applications are 
discussed. 

2. HMM in Data Fusion 

Joint Director of Laboratories (JDL) is one of the 
most well-known models used in data fusion [9]. The 
following definition was presented by JDL for data 
fusion: “it is the process of data mixture for 
improvement of states estimation and prediction”. 
Data fusion is used in different levels. The application 
of HMM is related to the levels 2 and 3 for 
assessment of state and threat [9, 10]. The presented 
task in this paper is to assess the situation in landing. 

The JDL model differentiates the types of data 
fusion functions into different fusion levels. The JDL 
Model has been used to develop an architecture 
paradigm for data fusion [11] and was originally 

created by the Data Fusion Group at the JDL Joint 
Directors of Laboratories in USA. 

The structure of the JDL Model is presented in 
Fig.1. 

 

Fig. 1. Structure of the JDL model 

3. Hidden Markov Model (HMM) [12] 

HMM is a kind of double random Markov process 
stochastic finite-state automata, which consists of two 
Markov processes (Markov chain). One process is 
defined with state transition matrix and the other is 
expressed in any state with a distribution of 
observations in the form of probabilities matrix. In 
fact, the system moves from one state to another with 
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the distribution of state transition probabilities and in 
each state, the system conditions are seen in the form 
of observations symbols using the distribution of 
observations probabilities in the output. This means 
that the system states are hidden, but the system’s status 
and conditions are seen with observations (Fig. 2). 

Three natural problems typically arise in 

applications that use HMM:  

1) Computing the likelihood of an observation 
sequence (the forward algorithm): Find the 
probability of a given sequence of observations to be 

generated by the model. 

2) Computing the most probable state sequence 
(the Viterbi algorithm): Find the most probable 
sequence of states that is likely to generate a given 

observation sequence. 

3) Estimating the parameters of a model (the 
Baum-Welch algorithm): Find the most probable 
parameter set of a model given its structure and one or 

more observation sequences.  

 

Fig. 2. HMM standard structure. qt is the hidden state and Ot is the observation 

3.1. HMM Components [9] 

A discrete HMM, λ, is expressed with N number of 
states and observations symbol M. The states space is 

S= {s1, s2, ..., sN} and observations space is V= {v1, 
v2, …, vM}. The λ model is described with the 
following parameters: 

M, N, B, A , (π=λ) (1) 

π = {πi } = { p (qi = si )}
 

(2) 

A = { aij } = { p (qt+1 = sj | qt = si )}
 

(3) 

B = { bj (k)} = { p (Ot = vk | qt = sj )}
 

1 < i,j < N , 1 < k < M 
(4) 

Where A represents the state transition 
probabilities, B represents the probability 
distributions of the discrete observation symbols for 
all states, and π indicates the initial probability 
distribution of the states. aij is the probability of the 
system to change from state i to state j and bj(k) 
denotes the probability distribution of the symbols for 
a certain state j. The current state is denoted qt and the 
current observation is denoted Ot.  

The parameters π, A, B are obtained via model 
training. In this research, training was conducted 
using Expectation Maximization (EM) algorithm, 
known as Baum Welch. When λ and its parameters 
are defined, we can use a sequence of observations for 
Likelihood (L) whose value is obtained from the 

equation (5). 

L = p (O |λ) (5) 

4. Baum-Welch Algorithm for Learning HMM 

Given an HMM M = (S, O, A, B, Π) and an 
observation sequence Y1 ... YT , we want to re-

estimate M as ࡹഥ = .ࡿ) .ࡻ .ഥ࡭ .ഥ࡮ ഥࡹ ഥ) so that࣊  is more 

likely than M in the sense that ࢅ)࢖૚ (ࡹ|ࢀࢅ … ૚ࢅ)࢖< … ഥࡹ|ࢀࢅ ) In other words, the new model is more 

likely to produce the given observation sequence. 
This is done via an iterative Baum-Welch or forward-
backward algorithm. The forward algorithm 
considered a forward variable αt (si) as defined below: 

αt (si) = p (Y1… Yt , Xt = si) (6) 

The forward variable represents the joint 
probability of the partial observation sequence Y1 
…YT and state si at time t. The forward algorithm 
computes the forward variable iteratively. In a similar 
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manner, we define a backward variable βt (si) as 
follows: 

   1 2, ,..., ,t t t T t ii p O O O q S M   
 (7) 

The backward variable represents the probability of 
the partial observation sequence from 1 t + to the end 
given the state at time point t is si . The variable is 

inductively computed as follows: 

Step 1: Initialization 

  1    1T i i L     (8) 

Step 2: Induction 
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Given the sequence Y1...YT of observations and 

any two states si and sj, the re-estimation aij of the 

parameter is simply the ratio of the expected number 

of transitions from state si to state sj and the expected 

number of transitions from state si as a whole. 

Therefore, we define the following variable 

representing the posterior probability of transition 

from state si to state sj given the observation 

sequence: 

   1, , | ,t t i t ji j p q S q S M    O  (10) 

Application of Bayes’ rule converts ξt (si, sj) as 
follows: 

(11) 

 
Define the following variable γt (si) as the expected 

number of transitions from the state si at time t: 

   | ,t t ii p q S M   O
 (12) 
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The re-estimated model parameters are the 
following: 

 1i i   (14) 
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(15) 

(16) 

5. Forward Algorithm [9] 

O is the sequence of observations at T points of 
time, i.e. O= (o1, o2,...,oT). In a recognition problem, 
the objective is to compare O to a specific model and 
find its similarity to that model (L). Forward 
algorithm is used to calculate L. 

αt (i) = p (O1 O2  ... Ot , qt = si  | λ) (17) 

In forward algorithm, αt(i) shows the value of a 
chain’s observation probability (O1, O2,..., Ot) at state 

i and time t 

   1 1      1i ii b O i L     (18) 

For other observations, α which is called forward 
variable, is calculated in the following form: 
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The equation (19) indicates how we reach the state 

sj at time t+1 from N possible states. The calculations 

for all states are done at time t and repeated for all 

times t=1, 2, ..., T. The final result is obtained by 
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summation of final forward variable for all states 

(equation 20). 

(20) 

During the calculation procedure there are several 
multiplications with probabilities well below 1 which 
brings the final result closer to zero. The problem gets 
more complex when the final result is less than the 
smallest number that the computer can demonstrate. 
The problem can however be solved by scale factor ct 

in equation (21). 

(21) 

A useful equation for calculations is: 

(22) 

6. Experiment and Results 

We used the database of 365 flights of B_777 
airplane which were also utilized in MKAD project 
by NASA. The data is applied in the flight control by 
control towers and navigation systems. The data 
includes situation, altitude, horizontal distance, 
horizontal speed and vertical speed. In using HMM 
for dynamic phenomenon modelling, model training 
is essential. Therefore, in discrete HMM, it is 
important how to create symbols from continuous 

data. Also, the number of these symbols is effective in 
the model sensitivity. We used the value of variables 
which were divided into 100 clusters using K_means 
algorithm. The symbols are as follows: 1, 2, 3, ..., 99, 
100. 

In Table 1 illustrated some symbols and their 
related coordinate values of cluster centers. 

Table. 1. Some of symbols and their related coordinate values of cluster 
centers 

symbol altitude (m)
horizontal 

distance (m)
Deviation from 

runway (m) 
horizontal 

speed (m/s)
Vertical  

speed (m)

1 183.56 15273.49 0.39 48.31 -2.41 

2 40.74 19869.68 -2.97 31.79 -0.75 

6 192.73 15084.44 0.30 48.46 -2.44 

7 481.86 9769.49 0.22 49.47 -3.31 

10 656.26 7501.15 0.71 50.90 -4.02 

14 1129.78 1127.65 3.11 25.28 -2.44 

19 1023.22 1340.93 3.40 26.83 -2.25 

24 902.42 4474.63 1.54 50.90 -4.02 

28 61.71 18348.83 0.51 33.96 -1.05 

33 733.84 6391.11 0.89 50.96 -4.04 

37 280.67 12961.63 -0.70 49.07 -2.37 

42 603.72 12467.48 -0.60 49.01 -2.40 

46 1055.99 2813.58 2.04 50.60 -4.11 

51 769.53 11272.80 8.81 42.19 -2.23 

55 345.26 11693.82 -0.48 48.98 -2.50 

60 642.57 7789.30 0.78 50.81 -3.97 

64 685.47 3800.36 2.45 44.32 -4.56 

69 56.85 18773.86 1.41 32.41 -0.97 

73 988.30 2213.08 2.79 38.28 -3.22 

78 714.25 6663.24 0.82 50.88 -4.04 

82 1033.97 1607.86 3.15 26.77 -2.25 

87 951.70 3944.33 1.74 50.93 -4.02 

91 1005.36 1895.08 3.16 28.72 -2.40 

96 139.04 16202.09 1.55 45.80 -2.09 

97 373.82 11157.57 -0.41 49.21 -2.69 

The landing process data were used in this paper 
which includes 20 successful landings and 10 
unsuccessful landings. The model includes two states. 
S1: No change or small change in flight variables. S2: 
Significant change in flight variables. Since a logical 
and hidden relationship with the symbols is necessary, 
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these states were selected. When the observations’ 
symbols were constructed, the successful landing data 
were used by Baum Welch algorithm for model 
training. The model’s matrixes were presented in the 
equations 22, 23, and 24. 

π = ቂ0.550.45ቃ
 

ܣ (23) = ቂ0.45 0.550.61 0.39ቃ (24) ܤ = ቂ0.01 0.0110.01 0.011 … 0.125 ~00.124 ~0ቃ (25) 

 After the construction of a normal landing model, 
now we should detect abnormal behavior using 
successful and unsuccessful landings data. To do so, 
the forward algorithm was used and the symbols of 
each landing was given to the model as input and the, 
L, algorithm output was the rate of this landing’s 
similarity to the successful landing model. We found 
out that a suitable method for calculation and 
representation of L is by using a five-symbol window 
on the data which moves on the symbols one by one. 
Therefore, the forward algorithm was conducted for 5 
symbols that accelerated the processes. 

The results for 4 different successful landings have 
been shown in Fig. 2. After examining all successful 
landing data, we specified a threshold for log (L), i.e.  
L<-23.02 indicates an abnormal behavior, and L>-23.02 
is indicative of a normal behavior when landing. 

 

Fig. 3.  Logarithm L with time for 4 successful landings and the allowable 
threshold for L. 

The results for 2 different unsuccessful landings 

were obtained and shown in fig. 3. 

In the F5 landing, first, the vertical speed was 

abnormal in proportion to the horizontal speed, then it 

was adjusted, but again went out of control. This was 

correctly detected by the model. Although the F6 

landing had lower altitude, it had correspondence with 

the vertical and horizontal speeds. Then, its vertical 

speed exceeded the safe value and this was detected 

by the model. The calculations time for each landing 

in offline mode is as follows: F1: 0.2581 seconds, 

F5:0.2265 seconds, and F6: 0.2283 seconds. The 

calculation time of the forward algorithm for 5 

symbols is 0.000286 seconds in average. Considering 

the high speed in detection, online processing is 

practically possible.  

The main distinction between this method and 

MKAD, ED, and Srivastava et al.’s clustering method 

is using dynamic modeling along with data clustering. 

In addition to increasing speed and accuracy, online 

training and improvement of the model becomes 

possible. Also, the model’s accuracy is independent of 

the data being continuous or discrete.  

 

 

Fig. 4.  Logarithm L with time for one successful landing (F1) and two 

different unsuccessful landings (F5, F6). 
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7. Discussion and Conclusion 

The main subject of this paper is to use HMM for 
modeling of flight anomaly. As it was expected, this 
method has a high accuracy and sensitivity in this 
application such as speech and video processing and 
modeling of dynamic phenomena. Considering the 
main application of HMM in the modeling and 
detection of dynamic and random phenomena, the 
results indicate that this model is suitable for the flight 
process, because this process is dynamic and time-

dependent. Because of the nature of its application, 
clustering, it uses two clustering levels. At data level, 
in addition to converting abundant data to a chain of 
symbols, it specifies the flight parameters’ limit. At 
model level, HMM creates a dynamic probability 
model from a successful landing and has a high 
capability in applying time-dependent patterns. The 
algorithms’ high speed makes possible the 
implementation of the project. This model is 
extendable for different parts of a flight according to 
various weather conditions and type of the airplane. 
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