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Abstract 

All practical digital circuits are usually a mixture of combinational and sequential logic. Flip–flops are essential to 
sequential logic therefore fuzzy flip–flops are considered to be among the most essential topics of fuzzy digital circuit. 
The concept of fuzzy digital circuit is among the most interesting applications of fuzzy sets and logic due to the fact that 
if there has to be an ultimate fuzzy computer then fuzzy circuitry is inevitable. In this research field, hardware realization 
of fuzzy negation, t–norms and t–conorms have been well studied in details meanwhile no formal model is introduced 
for more complex fuzzy circuitry such as combinational circuits, sequential circuits or memory modules. The lack of a 
formal model checker indicates flaws and design deficiencies are usually remain out of sight therefore validating fuzzy 
logic circuits was impossible to this date. In this paper we are elaborating the application of Fuzzy Program Graph in 
symbolic checking of fuzzy flip–flops; thus, the content is mainly focused on formal modelling of fuzzy flip–flops and 
investigating their correctness. To this purpose we investigated design deficiencies of a multivalued D flip–flop and 
found a dynamic hazard then we proposed a formal model toward fuzzy J–K flip–flops to further elaborate applications 
of proposed formal model and model checking approach in detecting design phase deficiencies.  

 

Keywords: Fuzzy Flip–Flop, Fuzzy Kripke Model, Fuzzy CTL, Fuzzy Program Graph. 

 

1. Introduction 

Model Checking is a technique proposed by Clarke 
in order to perform formal verification of temporal 
properties for reactive systems [3]. During the process 
a mathematical model (usually in the form of a graph) 
is extracted from a system profile then a set of 
verification related propositions of the system called 
“properties” are also conformed to a formal language 
(denoted as temporal logic). Finally, in a mechanized 
approach, an algorithm is defined and implemented in 

order to exhaustively and automatically check 
properties of the model. 

Most of recent studies in digital circuit design 
showed a vast amount of interest in model checking 
and generally formal verification techniques to verify 
synchronous and asynchronous logics. In particular, 
model checking is used to find bugs such as lack of 
stability, and hazard occurrence early in the design 
phase of a digital circuit. Practical digital circuitry is a 
combination of sequential and combinational circuits. 
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Burch et al. introduced a symbolic model checking 
approach to verify sequential circuits by modelling 
sequential behaviour of a circuit using Binary 
Decision Diagram (BDD) and then used Computation 
Tree Logic CTL for model verification [2]. 

There are more than a few efforts of making fuzzy 
circuitry practical, none of which could provide a 
formal verification approach for fuzzy digital circuits. 
Fuzzy sequential logic is among the first steps toward 
a fuzzy computer. Mori et al. [8] studied a high level 
abstracted model of fuzzy sequential logic, yet no 
formal verification approach is devised since then. 
They have overlooked the preliminaries of devising a 
fuzzy sequential circuit by ignoring the role of fuzzy 
flip–flops in fuzzy circuitry. Flip–flops are building 
blocks of sequential circuits, thus we cannot ignore 
them in devising a fuzzy sequential circuit. 

Hirota et al. introduced the concept of fuzzy flip–
flops in late 1980s [4]. They introduced fuzzy flip–
flop as an extended or “fuzzyfied” binary flip–flop. 
Due to the fact that fuzzy connectives do not conform 
to all Boolean axioms, Hirota and his students 
proposed a unified formula for fuzzy J–K flip–flops 
[9]. Yet again no formal verification approach is 
devised since then. In this paper we demonstrate a 
formal model of fuzzy J–K flip–flop and its properties 
expressed by a fuzzy temporal logic then we address 
an issue with the behaviour of proposed flip–flop. 

The outline of this paper is as follows. Sections 2 
to 4 are dedicated to review the premises and 
preliminary definitions of formal methods used in this 
paper, previously introduced in [13]. In section 5, first 
we investigate the correctness of a multivalued D 
flip–flop proposed by [1] then we present a formal 
model of fuzzy J–K flip–flops using two variety of 
fuzzy logic   gates; in this section the main properties 
of a fuzzy flip–flops are conformed to a formal 
language and their validity are examined. Finally, 
configurations of flip–flop’s model are also traced for 
improper behaviour of D flip–flop and proposed J–K 
flip–flops. 

2.  Fuzzy Kripke Model 

This model is similar to XKripke model, except for 
its lattice; which is the continuous interval [0,1]. 

This model is defined as an ordered tuple, in the 
form of M=(S,X,R,L,I) where X=(x1 ,..., xm)  is a set 

of attributes and S={s1,..., sn} is a set of states. Every 

attribute has a possibility value and different possible 
values for the whole attributes is expressible by 

Val(X) as shown in (1). 

 }1,0,...,{ )( 1  im vvvXVal  (1) 

For attribute evaluation, access to the value of an 
attribute is defined by a dot operator as shown in (2). 

iim xvvvXVal .,...,),( 1  
 

(2) 

A function called , assigns a label to each state as 

the state’s specific valuation, see (3). Relation (4) 

defines  as a function that specifies the possibility of 

transition from one state to another. Entrance 
possibility for each state at start time can be 

represented by  a function that is defined in (5). 

)(: XValSL   (3) 

 1,0:  SSR  (4) 

 1,0: SI  (5) 

Fig. 1. FzKripke K2 in which X={x} and function I returns 1 for s0 and 
0 for other states. The edges of K2 are demonstrating the R relation and
the L relation is represented by decimals depicted in each state. 
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Following notation represents the transition 
between two states with a specific possibility. 

   Rrssss jij

r

i  ,,   

A finite execution path  starting from  can be 

defined as follows: 

 1,0....0

...)(

1

2100

1210









ii

u

rrrr

fin

rui

sssssPathx
u



 

 

The infinite execution path can be defined 
similarly: 

 1,0.

...)(
210

2100





i

rrr

fin

rNi

ssssPathx 

 

 

A certain state on a path and a sub-path can be 
defined by the following notation: 

    .......
1

1



 

ii r

i

r

ii ssisiNi    

3. Fuzzy Computation Tree Language 

Properties of Kripke Structures are often expressed 
by temporal logics; similarly a suitable fuzzy 
extended temporal logic is required to express 
properties of certain FzKripke models. CTL is a 
suitable temporal logic to demystify properties of 
Kripke structures; hence, extending CTL to include 
fuzzy logic is the preferable choice to this purpose. In 
order to define Fuzzy Computation Tree Language 
(FzCTL) introducing some fuzzy operators is 
necessary. Fuzzy operators have a high variety of 
implementations, See [12, 15], in this paper we use 
their simplest implementations whose properties are 
similar to the properties of quasi-Boolean algebra 
related to XCTL. The fuzzy operations are defined as 
follows: 

true = 1 
false = 0 
 

 

ababba

baba

baba

aa










)1,max(

),max(

),min(

1

  

Using the saturation operator [7], shown in (6), we 
have defined bounded-add operator. Although this 
operator is not seen in XCTL, it is defined in this 
logic. 

))0,1min(,0max( a   (6) 

FzCTL is a two–stage syntax logic in which 
formulae are separated to state and path formulae. 
State propositions are formulated by the following 
grammar: 

 EAxr  ::
 

 

where  1,0Qr  and x is a state attribute. The 

path propositions are formulated by the following 
grammar: 

ΦUΦXΦΦΦΦΦΦΦΦΦ  ::
 

 

Modal adverbs are also needed; the adverb 
“Finally” is defined as shown in (7) and “Generally” 
is defined in (8) as another modal adverb. 

 trueF
def

 (7) 

 FG
def

 (8) 

A set of auxiliary operations may be defined in this 
grammar. The operators can be implemented using 
previously defined simple operators, each of which 
can be used for defining state propositions as well as 
path propositions. 

 baba    

)()(),,( cabacbaif     

Symbols P and  are used to present the truth 

possibility of a proposition, when being in a state or 
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on a path. In the following notations, the FzKripke 
model is represented by M and s is representing a 
certain state of the correspondent model. π is an 
infinite path defined on the M. 

),(),( sMPsMP
def

    

),(),(  MPMP
def

   

The semantic of propositions on states is as 
follows, where “op” can be a binary logical operator, 
a comparison operator, or the bounded-add/subtract. 

),(),(),(

),(),(

).(),(

),(













sMPopsMPopsMP

sMPsMP

xsLxsMP

rrsMP









 

Konikowska and Penczek articulated some 

problematic issues on the symbol   in [6]. This 

symbol is inefficient and ambiguous in expressing 
semantic of XCTL formulas, therefore instead of 

using   we use A  and E  in following 

expressions. 

 



)(

)(

inf

inf

),(),(

),(),(

sPath
E

sPath
A

MPEsMP

MPAsMP







 









 

 

Semantic of propositions on paths is as follows. In 
which, "op" can be a binary logical operator, a 
comparison operator, or the bounded-add/subtract. 

))(,(),((

),(),(

)))(,(),((

),(),(

)...]1[,(])1[],0[(),(

)...]1[,(])1[],0[(),(

),(),(

),(),(),(

),(),(),(

)]0[,(),(),(





















UX
E

MP
E

MP

E
MPU

E
MP

UX
A

MP
A

MP

AMPUAMP

AMPRXAMP

EMPRXEMP

EMPAMP

EMPopEMPopEMP

AMPopAMPopAMP

MPEMPAMP









































 

Consequently the truth possibility of a proposition 
on the whole model should be defined as follows: 

 



Ss

def

sMPsIMP ),()()(  
 

 

Using the above-defined propositions along with 
the semantic of FzCTL correctness of the following 
equations can be investigated, where μ and v stands 
for the greatest and smallest fixed-points [14], 
respectively. 

  EFAG  

  EGAF  

)))((.()(

)))((.()(

)()()(

ZEXvZUA

ZEXZUE

UEEGUA



















 

 

Fig. 2. Block diagram of multivalued D flip–flop which was proposed in [1]. AND gates represent min function; similarly OR gates represent max function.
We have labeled the output of each and every gate with y 1 to y 7 , N, and Q for further readability. 
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For example the following proposition holds for k1 
as shown in figure 1: 

7.0))5.0((

9.0))((

5.0))((

1

1

1






xEGKP

xEFKP

xEFKP







 
 

4. Fuzzy Program Graph 

Although FzKripke provides a comprehensive 
modeling approach for discrete time fuzzy systems, 
its state space is often too large to handle in memory. 
In this section we will review a more compressed 
modeling structure for fuzzy systems based on 
Program Graph called Fuzzy Program Graph (FzPG). 
FzPG is an extended Program Graph in the form of a 

quintuple G=(S,s0,X,Init,Act). In this model, 0Ss  is 

the initial state, and Init is a function that defines 
entrance possibility to initial state. Act is a relation 
defining state transitions each of which has two parts; 
(1) a function that defines transition possibility, and 
(2) a function that maps possibility values from each 
and every attribute of the source state to those of 
destination state.  

xfInit  

XX GFSSAct   

Where ])1,0[)((  XvalPowerSetFX  and 

X
XX FG   and all functions belonging to XF  have 

this constraint that they must be compatible with the 
syntax of following grammar's syntax. 





),...,(

::

::













r

x

 

Where  1,0, Qr  , Xx , 







a

a   

and 

1

 is a natural number,  is an expression with 

discrete values, and  stands for an arbitrary analytical 

function with one or more arguments as follows: 

 



Nk

R
k

)1,0(  

 

meanwhile each logical operator as well as 
comparison, or bounded-add/subtract, can be a 
specific case of θ. 

It is shown an arbitrary FzPG is convertible to a 
fuzzy extended Kripke structure [13]. When the 
equivalent FzKripke model accepts a proposition with 
a certain possibility, we say that the FzPG also 
accepts the proposition with the same possibility. 
Equivalent to each FzKripke, an FzPG with the same 
number of states can be defined; however, this 
conversion is not valuable. The main goal of defining 
of FzPG is to express FzKripke in a highly 
compressed format.  

5. Fuzzy Flip–Flops 

The concept of fuzzy flip–flops is already proposed 
by Hirota et al. [4, 5, 10, 11, 1]. They presented the 
idea of designing fuzzy hardware systems using fuzzy 
flip–flops. Fuzzy flip–flops are made of fuzzy logic 
gates through having some extensions to binary flip–
flops, yet few of them are suitable for realizing 
neurons in a multilayer perceptron for instability is 
the issue with almost all of them; this means the 
output of the circuit may fluctuate under certain 
conditions. In this section we investigate the 
correctness of a previously proposed multivalued D 
flip–flop using our proposed formal method then we 
introduce a formal model of fuzzy J–K flip–flop and 
investigate the correctness of its behaviour. 

5.1. Fuzzy D Flip–Flop 

Ben Choi and Kankana Shulka proposed a 
multivalued D flip–flop in [1]. Although they 
investigated the validity of their proposed circuit via 
computer simulations, under certain conditions gate 
delays lead to dynamic hazards that can be 
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demonstrated by the proposed model checking 
approach; this means there is a condition where 
unpredictable sequence of outputs are generated 
constantly which leads to an unstable fuzzy circuit. 
For your information, we used a quite similar 
approach to verify another multivalued D flip–flop in 
[13] which led to discovery of static hazards in that 
circuitry. 

Figure 2 illustrates the block diagram of Choi’s D 
flip–flop. For the sake of simplicity we assume 
propagation delay for all gates are the same and the 

value is equal to h 2  where h is a positive 
integer. We also assume input D is stable and the CLK 
is a pulse in the following form: 

 

where A and B are integers. Great values of A and 
B do not cause any problems except slowing down the 
circuit. On the other hand, if A and B would be 
smaller than a limit there are no chance for the circuit 
to stabilize its output therefore it acts incorrectly. It 
can be proved by model checking that this design 
requires the values of A and  B to be at least 7. Let us 

assume 1N be the maximum possible value for 

A and  B (obviously this is an assumption to simplify 
the modeling problem, greater values would not affect 
the circuit but slowing it down). 

We have also labeled all the outputs for each 
logical gate in this block diagram, please see figure 2. 
We also use the prime symbol (/) to label the outputs 

of logical gates after   time units; now it is easy to 
compute the output of each and every gates 
considering their inputs. From this point onward we 
denote CLD as C for further readability.  

 

Fig. 3.  FzPG G which represents the multivalued D flip–flop depicted in 
figure 2. 

QN

yyQ

yyy

Nyy

Qyy

yyy

CDy

Qyy

Cy



















74

657

46

45

324

3
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1







 

Now we consider an FzPG with two states s0, and 
s1. Being in state s0 means CLK is 0 and being in s1 
means the opposite, please see figure 3. The attribute 
set X is as follows: 

NQyyyyyyyCDuTX ,,7,6,5,4,3,2,1,,,,

 
 

Attribute T represents the passage of time in states 

of FzPG with steps of  , therefore on the verge of 
entering a new state the value for this attribute is 0. 
Whilst on a state, as soon as T changes the output of 
all gates will change accordingly. Attribute u 
represents the raising edge of the clock pulse; it is set 
to 1 while the clock is pulse raised. Once  u  is set it 
will preserve its value.  

Participating functions in graph G are defined as: 

,,1,,,,,2211

)(21

)(22

)(12

)(11

)0()0()0(

CDQyCCDuTGG

BTF

BTF

ATF

ATF

uCTI














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QyyyyNyQyyy  ,74,65,4,4,32 

NQyyyyyyyDuG

NQyyyyyyyDG

,,,,,,,,,0,,,0

,,,,,,,,,1,,1,0

765432121

765432112





 

5.1.1. Properties of Multivalued D Flip–Flop 

In order to verify Choi’s design of multivalued D flip–
flop, we defined its properties using FzCTL and then 
investigated their correctness using model checking. 

Property 1. 6  after the very first raising edge of 
clock pulse, we will have Q=d for the rest of time. 
This property is expressible in terms of FzCTL 
propositions as follows: 

))),((1( 6 dQAGAXuAG    

Where AXn means applying AX operator n times 
consecutively. This proposition evaluates to 0. 

Property 2. 6 after the very first raising edge of 

clock pulse, the possible values for Q are d, d , and 0. 

This property is expressible in terms of FzCTL 
propositions as follows: 

)))0((
6

1( dQQdQAGAXuAG  
 

 

Finally, this proposition evaluates to 1. 

Table 1 depicts a trace that nullifies the first 
property. There is an issue caused by the propagation 
delay of NOT gate while falling edge occurs. 
According to table 1, a dynamic hazard with a period 
of 3  emerged at time  5t . As can be observed if 

d< d then on the verge of falling edge of the clock 

pulse the next value for Q is among d, 0, or d  

otherwise if d> d  then Q is either d or 0. At the rising 
edge of the clock pulse in a short time (i.e. less than 
6 ) the sate of circuit will be reverted to column t and 
as long as clock would be high the state is preserved.  

 During the model checking process different 

parameter values for   ranging from 32  to 62 and 
a variety of parameter values for A and B ranging 

from 7 to 1  were used; in all permutations the first 

property was evaluated to 0 while the second property 

was evaluated to 1. In case of parameter values less 

than 7 for either A or B both properties were evaluated 

to 0. Modifying   did not affect the results yet it 

affected memory consumption and execution time of 
the proposed model checker.   

 

Table 1 

Unstable condition of Fuzzy D flip–flop 

Values 
Time 

t  t   2t   3t   4t   5t   6t   7t   8t   9t  10t  … 

c  1 0  0 0  0 0 0 0 0  0  0 … 

1y  0  1 1 1 1 1 1 1 1 1 1 … 

2y  0  0  d d  0 d dd  0 d  dd    0 … 

3y  d 0  0 0  0 0 0 0 0  0  0 … 

4y  d d 0 d d 0 d dd  0  d dd  … 

5y  d d d d d d dd  d d dd    d … 

6y  dd   dd   dd   d   dd   1 d dd   1 d dd   … 

7y  d d d d dd  d d dd  d d dd  … 

Q d d d 0  d dd  0 0 dd    0  d … 

N d   d   d   d   1 d dd   1 d   dd   1 … 
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5.2. Fuzzy J–K Flip–Flop 

In this subsection we are destined neither to 
provide an on–chip fuzzy system nor their 
applications but a formal model realizing a fuzzy 
flip–flops. 

5.2.1. Fuzzy NAND Gate 

Fuzzy operations are simple to realize 
physically, except for more complex gates like 
eXclusive–OR. Variations of fuzzy NAND gates 
are implemented in [11], however they are ignored 
in this study because of their complexity. The 
NAND gate depicted in fig:JKflipflop is a fuzzy 
logic gate simply defined by min-max norms as 
follows: 

)(),min(1),(
1

yxyxyxNAND    

This gate can also be defined using the Lukasiewicz 
t–norm as follows: 

 yxyxyxNAND  ))1,min(,0max(1),(
2

 

 

 

Fig. 5. J–K flip–flop block diagram. 

5.2.2. Properties of Fuzzy J–K Flip–Flop 

Input and output values of fuzzy NAND gate are 
decimals between [0, 1]. Suppose numbers smaller or 
equal to 0.25 as low and numbers larger or equal to 
0.75 as high and the numbers in–between these two 
bounds as invalid values. According to figure 4 the 
following properties holds for each fuzzy J–K flip–
flop. 

Property 3. If J is high and K is low at the clock 
edge then Q output is forced high and stays high 

while Q  is forced low and stays low for sure. Note 

that at the beginning initial values of Q and Q are 

random and even may be invalid values like 0.5.  

Proof. Model checking is the formal method to 
verify this property. Corresponding FzPG to the J–K 

flip–flop shown in figure 4 is defined as follows: 

  ActInitQQKJssG ,,,,,,
0
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0
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

 

 

Fig. 4. Surfaces of NAND1 and NAND2 . 
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Fig. 6. FzPG of the J–K flip–flop shown in figure 4. 

Following is FzCTL proposition of above property: 

25.075.0
1

 KJP   

 ))25.075.0((  QQAGAF  

If we rewrite NAND functions (as shown bellow) 
they can be used to construct corresponding FzPG. 
Discrete saturation operator is used to quantize input 
values in order to have a finite number of states 
equivalent FzKripke.  

 



)()(),(
2

))()((),(
1





yx

yx

yxNAND

yxNAND





 

 

where 2,2   dd . 

Using vectors of Ordered Binary Decision 
Diagram (OBDD) of BuDDy library [16] an 
equivalent FzKripke for FzPG G is implemented. A 
verification method for proposition P1 is implemented 
whose details require a lot of preparation that does not 
fit in this case study. 

If we use gate NAND1 while constructing FzPG G 
there is a condition in which flip–flop works 
improperly (and that is when the initial state values 

for the Q and Q are invalid) thus the property is 

incorrect and proposition P1 evaluates to 0; see table 2 
for traces and configuration of model. By substitution 
of NAND1 with NAND2, proposition P1 (for all 

25.0 ) evaluates to 1, and the property always 

holds. 

 

Table 2 

Unstable condition of Fuzzy J–K flip–flop using NAND1 . 

Values
Steps 

0 1 2 3  4  5 6 …

J 0.75 0.75 0.75 0.75  0.75  0.75 0.75 …

K 0.25 0.25 0.25 0.25  0.25  0.25 0.25 …

Q 0.5 0.625 0.5 0.625  0.5  0.625 0.5 …

Q 0.625 0.5 0.375  0.375  0.375  0.375 0.375 …

If we want the property holds for both gates 
NAND1 and NAND2 another criteria should be 
imposed to proposition P1. The following proposition 
corrects improper behaviour of the flip–flop. 

))25.075.0((

)25.075.0(

)25.075.0(25.075.01







QQAGAF

QQ

QQKJP





 

 

6. Conclusion & Future Work 

In this paper we showed the application of a non–
classical logic and its corresponding model in 
verifying fuzzy systems such as fuzzy logic circuits. 
We have formally modeled a multivalued D flip–flop 
and also a Fuzzy J–K flip–flop and verified their 
properties using provided formal methods. 

 Although we used Zadeh and Lukasiewicz t–
norms to formally model fuzzy J–K flip–flop, more 
sophisticated t–norms (e.g. algebraic product) can be 
used to modify flip–flop’s behaviour. For future work 
we intend to extend our research to devise formal 
verification approach for such models. Verifying 
more sophisticated fuzzy logic circuits which are built 
on the concept of fuzzy J–K flip–flop such as fuzzy 
neural networks is also interesting to us. 
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