
 Journal of Computer & Robotics 7 (1), 2014 27-36

* Corresponding author. Email: setoodeh@iaushiraz.ac.ir

27

Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy
Flip-Flops

Gholamreza Sotudeh a*, Ali Movaghar b

a Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
b Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Received 1 January 2014; accepted 5 March 2014

Abstract

All practical digital circuits are usually a mixture of combinational and sequential logic. Flip–flops are essential to
sequential logic therefore fuzzy flip–flops are considered to be among the most essential topics of fuzzy digital circuit.
The concept of fuzzy digital circuit is among the most interesting applications of fuzzy sets and logic due to the fact that
if there has to be an ultimate fuzzy computer then fuzzy circuitry is inevitable. In this research field, hardware realization
of fuzzy negation, t–norms and t–conorms have been well studied in details meanwhile no formal model is introduced
for more complex fuzzy circuitry such as combinational circuits, sequential circuits or memory modules. The lack of a
formal model checker indicates flaws and design deficiencies are usually remain out of sight therefore validating fuzzy
logic circuits was impossible to this date. In this paper we are elaborating the application of Fuzzy Program Graph in
symbolic checking of fuzzy flip–flops; thus, the content is mainly focused on formal modelling of fuzzy flip–flops and
investigating their correctness. To this purpose we investigated design deficiencies of a multivalued D flip–flop and
found a dynamic hazard then we proposed a formal model toward fuzzy J–K flip–flops to further elaborate applications
of proposed formal model and model checking approach in detecting design phase deficiencies.

Keywords: Fuzzy Flip–Flop, Fuzzy Kripke Model, Fuzzy CTL, Fuzzy Program Graph.

1. Introduction

Model Checking is a technique proposed by Clarke
in order to perform formal verification of temporal
properties for reactive systems [3]. During the process
a mathematical model (usually in the form of a graph)
is extracted from a system profile then a set of
verification related propositions of the system called
“properties” are also conformed to a formal language
(denoted as temporal logic). Finally, in a mechanized
approach, an algorithm is defined and implemented in

order to exhaustively and automatically check
properties of the model.

Most of recent studies in digital circuit design
showed a vast amount of interest in model checking
and generally formal verification techniques to verify
synchronous and asynchronous logics. In particular,
model checking is used to find bugs such as lack of
stability, and hazard occurrence early in the design
phase of a digital circuit. Practical digital circuitry is a
combination of sequential and combinational circuits.

GH. Sotudeh et al. / Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

28

Burch et al. introduced a symbolic model checking
approach to verify sequential circuits by modelling
sequential behaviour of a circuit using Binary
Decision Diagram (BDD) and then used Computation
Tree Logic CTL for model verification [2].

There are more than a few efforts of making fuzzy
circuitry practical, none of which could provide a
formal verification approach for fuzzy digital circuits.
Fuzzy sequential logic is among the first steps toward
a fuzzy computer. Mori et al. [8] studied a high level
abstracted model of fuzzy sequential logic, yet no
formal verification approach is devised since then.
They have overlooked the preliminaries of devising a
fuzzy sequential circuit by ignoring the role of fuzzy
flip–flops in fuzzy circuitry. Flip–flops are building
blocks of sequential circuits, thus we cannot ignore
them in devising a fuzzy sequential circuit.

Hirota et al. introduced the concept of fuzzy flip–
flops in late 1980s [4]. They introduced fuzzy flip–
flop as an extended or “fuzzyfied” binary flip–flop.
Due to the fact that fuzzy connectives do not conform
to all Boolean axioms, Hirota and his students
proposed a unified formula for fuzzy J–K flip–flops
[9]. Yet again no formal verification approach is
devised since then. In this paper we demonstrate a
formal model of fuzzy J–K flip–flop and its properties
expressed by a fuzzy temporal logic then we address
an issue with the behaviour of proposed flip–flop.

The outline of this paper is as follows. Sections 2
to 4 are dedicated to review the premises and
preliminary definitions of formal methods used in this
paper, previously introduced in [13]. In section 5, first
we investigate the correctness of a multivalued D
flip–flop proposed by [1] then we present a formal
model of fuzzy J–K flip–flops using two variety of
fuzzy logic gates; in this section the main properties
of a fuzzy flip–flops are conformed to a formal
language and their validity are examined. Finally,
configurations of flip–flop’s model are also traced for
improper behaviour of D flip–flop and proposed J–K
flip–flops.

2. Fuzzy Kripke Model

This model is similar to XKripke model, except for
its lattice; which is the continuous interval [0,1].

This model is defined as an ordered tuple, in the
form of M=(S,X,R,L,I) where X=(x1 ,..., xm) is a set

of attributes and S={s1,..., sn} is a set of states. Every

attribute has a possibility value and different possible
values for the whole attributes is expressible by

Val(X) as shown in (1).

 }1,0,...,{)(1  im vvvXVal (1)

For attribute evaluation, access to the value of an
attribute is defined by a dot operator as shown in (2).

iim xvvvXVal .,...,),(1  

(2)

A function called , assigns a label to each state as

the state’s specific valuation, see (3). Relation (4)

defines as a function that specifies the possibility of

transition from one state to another. Entrance
possibility for each state at start time can be

represented by a function that is defined in (5).

)(: XValSL  (3)

 1,0:  SSR (4)

 1,0: SI (5)

Fig. 1. FzKripke K2 in which X={x} and function I returns 1 for s0 and
0 for other states. The edges of K2 are demonstrating the R relation and
the L relation is represented by decimals depicted in each state.

 Journal of Computer & Robotics 7 (1), 2014 27-36

29

Following notation represents the transition
between two states with a specific possibility.

   Rrssss jij

r

i  ,,

A finite execution path starting from can be

defined as follows:

 1,0....0

...)(

1

2100

1210









ii

u

rrrr

fin

rui

sssssPathx
u



The infinite execution path can be defined
similarly:

 1,0.

...)(
210

2100





i

rrr

fin

rNi

ssssPathx 

A certain state on a path and a sub-path can be
defined by the following notation:

   
1

1



 

ii r

i

r

ii ssisiNi 

3. Fuzzy Computation Tree Language

Properties of Kripke Structures are often expressed
by temporal logics; similarly a suitable fuzzy
extended temporal logic is required to express
properties of certain FzKripke models. CTL is a
suitable temporal logic to demystify properties of
Kripke structures; hence, extending CTL to include
fuzzy logic is the preferable choice to this purpose. In
order to define Fuzzy Computation Tree Language
(FzCTL) introducing some fuzzy operators is
necessary. Fuzzy operators have a high variety of
implementations, See [12, 15], in this paper we use
their simplest implementations whose properties are
similar to the properties of quasi-Boolean algebra
related to XCTL. The fuzzy operations are defined as
follows:

true = 1
false = 0

ababba

baba

baba

aa










)1,max(

),max(

),min(

1

Using the saturation operator [7], shown in (6), we
have defined bounded-add operator. Although this
operator is not seen in XCTL, it is defined in this
logic.

))0,1min(,0max(a  (6)

FzCTL is a two–stage syntax logic in which
formulae are separated to state and path formulae.
State propositions are formulated by the following
grammar:

 EAxr  ::

where  1,0Qr and x is a state attribute. The

path propositions are formulated by the following
grammar:

ΦUΦXΦΦΦΦΦΦΦΦΦ  ::

Modal adverbs are also needed; the adverb
“Finally” is defined as shown in (7) and “Generally”
is defined in (8) as another modal adverb.

 trueF
def

 (7)

 FG
def

 (8)

A set of auxiliary operations may be defined in this
grammar. The operators can be implemented using
previously defined simple operators, each of which
can be used for defining state propositions as well as
path propositions.

 baba 

)()(),,(cabacbaif  

Symbols P and  are used to present the truth

possibility of a proposition, when being in a state or

GH. Sotudeh et al. / Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

30

on a path. In the following notations, the FzKripke
model is represented by M and s is representing a
certain state of the correspondent model. π is an
infinite path defined on the M.

),(),(sMPsMP
def

 

),(),( MPMP
def



The semantic of propositions on states is as
follows, where “op” can be a binary logical operator,
a comparison operator, or the bounded-add/subtract.

),(),(),(

),(),(

).(),(

),(













sMPopsMPopsMP

sMPsMP

xsLxsMP

rrsMP









Konikowska and Penczek articulated some

problematic issues on the symbol  in [6]. This

symbol is inefficient and ambiguous in expressing
semantic of XCTL formulas, therefore instead of

using  we use A and E in following

expressions.

 



)(

)(

inf

inf

),(),(

),(),(

sPath
E

sPath
A

MPEsMP

MPAsMP







 









Semantic of propositions on paths is as follows. In
which, "op" can be a binary logical operator, a
comparison operator, or the bounded-add/subtract.

))(,(),((

),(),(

)))(,(),((

),(),(

)...]1[,(])1[],0[(),(

)...]1[,(])1[],0[(),(

),(),(

),(),(),(

),(),(),(

)]0[,(),(),(





















UX
E

MP
E

MP

E
MPU

E
MP

UX
A

MP
A

MP

AMPUAMP

AMPRXAMP

EMPRXEMP

EMPAMP

EMPopEMPopEMP

AMPopAMPopAMP

MPEMPAMP









































Consequently the truth possibility of a proposition
on the whole model should be defined as follows:

 



Ss

def

sMPsIMP),()()( 

Using the above-defined propositions along with
the semantic of FzCTL correctness of the following
equations can be investigated, where μ and v stands
for the greatest and smallest fixed-points [14],
respectively.

  EFAG

  EGAF

)))((.()(

)))((.()(

)()()(

ZEXvZUA

ZEXZUE

UEEGUA



















Fig. 2. Block diagram of multivalued D flip–flop which was proposed in [1]. AND gates represent min function; similarly OR gates represent max function.
We have labeled the output of each and every gate with y 1 to y 7 , N, and Q for further readability.

 Journal of Computer & Robotics 7 (1), 2014 27-36

31

For example the following proposition holds for k1
as shown in figure 1:

7.0))5.0((

9.0))((

5.0))((

1

1

1






xEGKP

xEFKP

xEFKP







4. Fuzzy Program Graph

Although FzKripke provides a comprehensive
modeling approach for discrete time fuzzy systems,
its state space is often too large to handle in memory.
In this section we will review a more compressed
modeling structure for fuzzy systems based on
Program Graph called Fuzzy Program Graph (FzPG).
FzPG is an extended Program Graph in the form of a

quintuple G=(S,s0,X,Init,Act). In this model, 0Ss is

the initial state, and Init is a function that defines
entrance possibility to initial state. Act is a relation
defining state transitions each of which has two parts;
(1) a function that defines transition possibility, and
(2) a function that maps possibility values from each
and every attribute of the source state to those of
destination state.

xfInit

XX GFSSAct 

Where])1,0[)(( XvalPowerSetFX and

X
XX FG  and all functions belonging to XF have

this constraint that they must be compatible with the
syntax of following grammar's syntax.





),...,(

::

::













r

x

Where  1,0, Qr  , Xx , 







a

a 

and

1

 is a natural number,  is an expression with

discrete values, and  stands for an arbitrary analytical

function with one or more arguments as follows:

 



Nk

R
k

)1,0(

meanwhile each logical operator as well as
comparison, or bounded-add/subtract, can be a
specific case of θ.

It is shown an arbitrary FzPG is convertible to a
fuzzy extended Kripke structure [13]. When the
equivalent FzKripke model accepts a proposition with
a certain possibility, we say that the FzPG also
accepts the proposition with the same possibility.
Equivalent to each FzKripke, an FzPG with the same
number of states can be defined; however, this
conversion is not valuable. The main goal of defining
of FzPG is to express FzKripke in a highly
compressed format.

5. Fuzzy Flip–Flops

The concept of fuzzy flip–flops is already proposed
by Hirota et al. [4, 5, 10, 11, 1]. They presented the
idea of designing fuzzy hardware systems using fuzzy
flip–flops. Fuzzy flip–flops are made of fuzzy logic
gates through having some extensions to binary flip–
flops, yet few of them are suitable for realizing
neurons in a multilayer perceptron for instability is
the issue with almost all of them; this means the
output of the circuit may fluctuate under certain
conditions. In this section we investigate the
correctness of a previously proposed multivalued D
flip–flop using our proposed formal method then we
introduce a formal model of fuzzy J–K flip–flop and
investigate the correctness of its behaviour.

5.1. Fuzzy D Flip–Flop

Ben Choi and Kankana Shulka proposed a
multivalued D flip–flop in [1]. Although they
investigated the validity of their proposed circuit via
computer simulations, under certain conditions gate
delays lead to dynamic hazards that can be

GH. Sotudeh et al. / Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

32

demonstrated by the proposed model checking
approach; this means there is a condition where
unpredictable sequence of outputs are generated
constantly which leads to an unstable fuzzy circuit.
For your information, we used a quite similar
approach to verify another multivalued D flip–flop in
[13] which led to discovery of static hazards in that
circuitry.

Figure 2 illustrates the block diagram of Choi’s D
flip–flop. For the sake of simplicity we assume
propagation delay for all gates are the same and the

value is equal to h 2 where h is a positive
integer. We also assume input D is stable and the CLK
is a pulse in the following form:

where A and B are integers. Great values of A and
B do not cause any problems except slowing down the
circuit. On the other hand, if A and B would be
smaller than a limit there are no chance for the circuit
to stabilize its output therefore it acts incorrectly. It
can be proved by model checking that this design
requires the values of A and B to be at least 7. Let us

assume 1N be the maximum possible value for

A and B (obviously this is an assumption to simplify
the modeling problem, greater values would not affect
the circuit but slowing it down).

We have also labeled all the outputs for each
logical gate in this block diagram, please see figure 2.
We also use the prime symbol (/) to label the outputs

of logical gates after  time units; now it is easy to
compute the output of each and every gates
considering their inputs. From this point onward we
denote CLD as C for further readability.

Fig. 3. FzPG G which represents the multivalued D flip–flop depicted in
figure 2.

QN

yyQ

yyy

Nyy

Qyy

yyy

CDy

Qyy

Cy



















74

657

46

45

324

3

12

1







Now we consider an FzPG with two states s0, and
s1. Being in state s0 means CLK is 0 and being in s1
means the opposite, please see figure 3. The attribute
set X is as follows:

NQyyyyyyyCDuTX ,,7,6,5,4,3,2,1,,,,

Attribute T represents the passage of time in states

of FzPG with steps of  , therefore on the verge of
entering a new state the value for this attribute is 0.
Whilst on a state, as soon as T changes the output of
all gates will change accordingly. Attribute u
represents the raising edge of the clock pulse; it is set
to 1 while the clock is pulse raised. Once u is set it
will preserve its value.

Participating functions in graph G are defined as:

,,1,,,,,2211

)(21

)(22

)(12

)(11

)0()0()0(

CDQyCCDuTGG

BTF

BTF

ATF

ATF

uCTI















 Journal of Computer & Robotics 7 (1), 2014 27-36

33

QyyyyNyQyyy  ,74,65,4,4,32 

NQyyyyyyyDuG

NQyyyyyyyDG

,,,,,,,,,0,,,0

,,,,,,,,,1,,1,0

765432121

765432112





5.1.1. Properties of Multivalued D Flip–Flop

In order to verify Choi’s design of multivalued D flip–
flop, we defined its properties using FzCTL and then
investigated their correctness using model checking.

Property 1. 6 after the very first raising edge of
clock pulse, we will have Q=d for the rest of time.
This property is expressible in terms of FzCTL
propositions as follows:

))),((1(6 dQAGAXuAG 

Where AXn means applying AX operator n times
consecutively. This proposition evaluates to 0.

Property 2. 6 after the very first raising edge of

clock pulse, the possible values for Q are d, d , and 0.

This property is expressible in terms of FzCTL
propositions as follows:

)))0((
6

1(dQQdQAGAXuAG  

Finally, this proposition evaluates to 1.

Table 1 depicts a trace that nullifies the first
property. There is an issue caused by the propagation
delay of NOT gate while falling edge occurs.
According to table 1, a dynamic hazard with a period
of 3 emerged at time  5t . As can be observed if

d< d then on the verge of falling edge of the clock

pulse the next value for Q is among d, 0, or d

otherwise if d> d then Q is either d or 0. At the rising
edge of the clock pulse in a short time (i.e. less than
6) the sate of circuit will be reverted to column t and
as long as clock would be high the state is preserved.

 During the model checking process different

parameter values for  ranging from 32 to 62 and
a variety of parameter values for A and B ranging

from 7 to 1 were used; in all permutations the first

property was evaluated to 0 while the second property

was evaluated to 1. In case of parameter values less

than 7 for either A or B both properties were evaluated

to 0. Modifying  did not affect the results yet it

affected memory consumption and execution time of
the proposed model checker.

Table 1

Unstable condition of Fuzzy D flip–flop

Values
Time

t t  2t  3t  4t  5t  6t  7t  8t  9t 10t …

c 1 0 0 0 0 0 0 0 0 0 0 …

1y 0 1 1 1 1 1 1 1 1 1 1 …

2y 0 0 d d 0 d dd  0 d dd  0 …

3y d 0 0 0 0 0 0 0 0 0 0 …

4y d d 0 d d 0 d dd  0 d dd  …

5y d d d d d d dd  d d dd  d …

6y dd  dd  dd  d dd  1 d dd  1 d dd  …

7y d d d d dd  d d dd  d d dd  …

Q d d d 0 d dd  0 0 dd  0 d …

N d d d d 1 d dd  1 d dd  1 …

GH. Sotudeh et al. / Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

34

5.2. Fuzzy J–K Flip–Flop

In this subsection we are destined neither to
provide an on–chip fuzzy system nor their
applications but a formal model realizing a fuzzy
flip–flops.

5.2.1. Fuzzy NAND Gate

Fuzzy operations are simple to realize
physically, except for more complex gates like
eXclusive–OR. Variations of fuzzy NAND gates
are implemented in [11], however they are ignored
in this study because of their complexity. The
NAND gate depicted in fig:JKflipflop is a fuzzy
logic gate simply defined by min-max norms as
follows:

)(),min(1),(
1

yxyxyxNAND 

This gate can also be defined using the Lukasiewicz
t–norm as follows:

 yxyxyxNAND ))1,min(,0max(1),(
2

Fig. 5. J–K flip–flop block diagram.

5.2.2. Properties of Fuzzy J–K Flip–Flop

Input and output values of fuzzy NAND gate are
decimals between [0, 1]. Suppose numbers smaller or
equal to 0.25 as low and numbers larger or equal to
0.75 as high and the numbers in–between these two
bounds as invalid values. According to figure 4 the
following properties holds for each fuzzy J–K flip–
flop.

Property 3. If J is high and K is low at the clock
edge then Q output is forced high and stays high

while Q is forced low and stays low for sure. Note

that at the beginning initial values of Q and Q are

random and even may be invalid values like 0.5.

Proof. Model checking is the formal method to
verify this property. Corresponding FzPG to the J–K

flip–flop shown in figure 4 is defined as follows:

  ActInitQQKJssG ,,,,,,
0

},
0

{

 1)(0 sInit

)),(,(

),,(,(

),,,,()
0

,
0

(],1[

KQNANDQNAND
next

Q

JQNANDQNAND
next

Q

new
Q

next
QKJssAct







Fig. 4. Surfaces of NAND1 and NAND2 .

 Journal of Computer & Robotics 7 (1), 2014 27-36

35

Fig. 6. FzPG of the J–K flip–flop shown in figure 4.

Following is FzCTL proposition of above property:

25.075.0
1

 KJP

))25.075.0(( QQAGAF

If we rewrite NAND functions (as shown bellow)
they can be used to construct corresponding FzPG.
Discrete saturation operator is used to quantize input
values in order to have a finite number of states
equivalent FzKripke.

 



)()(),(
2

))()((),(
1





yx

yx

yxNAND

yxNAND





where 2,2   dd .

Using vectors of Ordered Binary Decision
Diagram (OBDD) of BuDDy library [16] an
equivalent FzKripke for FzPG G is implemented. A
verification method for proposition P1 is implemented
whose details require a lot of preparation that does not
fit in this case study.

If we use gate NAND1 while constructing FzPG G
there is a condition in which flip–flop works
improperly (and that is when the initial state values

for the Q and Q are invalid) thus the property is

incorrect and proposition P1 evaluates to 0; see table 2
for traces and configuration of model. By substitution
of NAND1 with NAND2, proposition P1 (for all

25.0) evaluates to 1, and the property always

holds.

Table 2

Unstable condition of Fuzzy J–K flip–flop using NAND1 .

Values
Steps

0 1 2 3 4 5 6 …

J 0.75 0.75 0.75 0.75 0.75 0.75 0.75 …

K 0.25 0.25 0.25 0.25 0.25 0.25 0.25 …

Q 0.5 0.625 0.5 0.625 0.5 0.625 0.5 …

Q 0.625 0.5 0.375 0.375 0.375 0.375 0.375 …

If we want the property holds for both gates
NAND1 and NAND2 another criteria should be
imposed to proposition P1. The following proposition
corrects improper behaviour of the flip–flop.

))25.075.0((

)25.075.0(

)25.075.0(25.075.01







QQAGAF

QQ

QQKJP





6. Conclusion & Future Work

In this paper we showed the application of a non–
classical logic and its corresponding model in
verifying fuzzy systems such as fuzzy logic circuits.
We have formally modeled a multivalued D flip–flop
and also a Fuzzy J–K flip–flop and verified their
properties using provided formal methods.

 Although we used Zadeh and Lukasiewicz t–
norms to formally model fuzzy J–K flip–flop, more
sophisticated t–norms (e.g. algebraic product) can be
used to modify flip–flop’s behaviour. For future work
we intend to extend our research to devise formal
verification approach for such models. Verifying
more sophisticated fuzzy logic circuits which are built
on the concept of fuzzy J–K flip–flop such as fuzzy
neural networks is also interesting to us.

GH. Sotudeh et al. / Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

36

Acknowledgement

We thank Masoud Ebrahimi for being of high
assistance with this research, and his comments that
greatly improved the manuscript.

References

[1] B. Choi, K. Shukla, Multi-valued logic circuit design and
implementation, International Journal of Electronics and Electrical
Engineering 3 (4) (2015) 256–262. doi:10.12720/ijeee.3.4.256-262 .

[2] J. Burch, E. Clarke, D. Long, K. McMillan, D. Dill, Symbolic model
checking for sequential circuit verification, Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 13 (4) (1994)
401–424. doi:10.1109/43.275352 .

[3] E. M. Clarke Jr., O. Grumberg, D. A. Peled, Model Checking , MIT
Press Cambridge, MA, USA, 1999. URL
http://dl.acm.org/citation.cfm?id=332656

[4] K. Hirota, K. Ozawa, The concept of fuzzy flip–flop , IEEE
Transactions on Systems, Man, and Cybernetics 19 (5) (1989) 980–
997. doi:10.1109/21.44013. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=44013

[5] K. Hirota, W. Pedrycz, Design of fuzzy systems with fuzzy flip–flops
(1995). doi:10.1109/21.362956 .

[6] B. Konikowka, W. Penczek, On designated values in multi-valued ctl*
model checking , Fundam. Inf. 60 (1-4) (2003) 211–224. URL
http://dl.acm.org/citation.cfm?id=1226781.1226796

[7] W. Liang, W. Bing-wen, G. Yi-Ping, Cell mapping description for
digital control system with quantization effect , Tech. rep. (Dec. 2007).
arXiv:0712.2501. URL http://arxiv.org/abs/0712.2501

[8] Y. Mori, K. Otsuka, M. Mukaidono, Properties of fuzzy sequential
circuit using fuzzy transition matrix and their design method, in: Fuzzy
Systems, 1995. International Joint Conference of the Fourth IEEE

International Conference on Fuzzy Systems and The Second
International Fuzzy Engineering Symposium., Proceedings of 1995
IEEE Int, Vol. 4, 1995, pp. 2133–2138 vol.4.
doi:10.1109/FUZZY.1995.409975 .

[9] K. Ozawa, K. Hirota, L. Koczy, K. mori, Algebraic fuzzy flip-flop
circuits , Fuzzy Sets and Systems 39 (2) (1991) 215 – 226, applications
of fuzzy systems theory. doi:http://dx.doi.org/10.1016/0165-
0114(91)90214-B. URL
http://www.sciencedirect.com/science/article/pii/016501149190214B

[10] K. Ozawa, K. Hirota, L. T. Koczy, W. Pedrycz, N. Ikoma, Summary
of fuzzy flip-flop, in: Proceedings of 1995 IEEE International
Conference on Fuzzy Systems, Vol. 3, 1995.
doi:10.1109/FUZZY.1995.409897 .

[11] K. Ozawa, K. Hirota, L. Koczy, Fuzzy flip-flop, in: M. J. Patyra, D.
M. Mlynek, eds., Fuzzy Logic. Implementation and Applications,
Wiley, Chichester, 1996, pp. 197–236.

[12] N. Sladoje, On analysis of discrete spatial fuzzy sets in 2 and 3
dimensions , Ph.D. thesis, Swedish University of Agricultural Sciences
Uppsala (2005).

URL http://pub.epsilon.slu.se/963/1/ThesisNSladoje.pdf

[13] G. Sotudeh, A. Movaghar, Abstraction and approximation in fuzzy
temporal logics and models , Formal Aspects of Computing (2014) 1–
26 doi:10.1007/s00165-014-0318-7 .

URL http://dx.doi.org/10.1007/s00165-014-0318-7

[14] A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific journal of Mathematics 5 (1955) 285–309.

[15] M. Wierman, An Introduction to the Mathematics of Uncertainty ,
2010. URL http://aliana.dc.fi.udc.es/files2/MOU.pdf

[16] J. Lind-Nielsen, D. T. U. I. for Informationsteknologi, BuDDy - a
Binary Decision Diagram Package, IT-TR, Department of Information
Technology, Technical University of Denmark, 1996.

