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Abstract 

 This paper investigates on control and stabilization of a new hyperchaotic system. The hyperchaotic system is stabilized using a 
new technique which called Generalized Backstepping Method (GBM). Because of its similarity to Backstepping approach, this 
method is called GBM. But, this method is more applicable in comparison with conventional Backstepping.  Backstepping method is 
used only for systems with strictly feedback form, but GBM works for a wide range form of the nonlinear dynamical systems. In 
Design procedure, two cases is considered that their difference is in the number of control inputs. Numerical simulation results are 
presented to show the effectiveness of the proposed controller. 
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1. Introduction  

Chaos and its applications have been studied and 
developed by scientists in past decades, considerably. A 
regular chaotic system has one positive Lyapunov 
exponent, while the system with more than one positive 
Lyapunov exponent is called “hyperchaotic” which has 
more complicated dynamics than a chaotic system. In 
recent years, many of researchers have focused on study 
and analysis of  hyperchaotic systems dynamics, 
synchronization of hyperchaotic systems, and proposition 
and applying new control design techniques on them.  

Authors in [1-6] have proposed new hyperchaotic 
systems and investigate their chaotic nature. 
Synchronization between chaotic systems is one of major 
interesting problem in researches [7-10], while in [11] and 
[12] uncertainty in models parameters have been 
considered, too. Stabilization and control of hyperchaotic 
systems in order to achieve desire objective have been 
attracted attention of researchers [13-15]. 

One of the well-known nonlinear controller design 
technique is backstepping approach which works for 
nonlinear systems with strict-feedback form. It could not 
obtain good performance in non strict-feedback form and in 
some MIMO nonlinear systems. Hence, this method was 

improved by Ali Reza Sahab and Mohammad Haddad Zarif 
and introduced in [16]. This technique is called generalized 
backstepping method (GBM) because of its similarity to 
backstepping approach and applications in nonlinear 
dynamical systems. However backstepping method is 
applied only on systems with strict-feedback form but 
GBM expands this class. 

 In [17], generalized backstepping method has been used 
to control three chaotic systems Lorenz, Chen, and Lu. 
Newton-Leipink chaotic system has been stabilized using 
GBM in [18]. Hybrid generalized backstepping method 
with Genetic Algorithm has been utilized to control Chua 
Circuit in [19]. In [20], a novel fractional-order 
hyperchaotic system with a quadratic exponential nonlinear 
term has been proposed and its synchronization has been 
done using GBM. In [21-23], generalized backstepping 
method has been used to stabilize parameters perturbation 
in chaotic systems by hybrid of Adaptive Neuro-Fuzzy 
Inference System. Our contribution in this paper is 
applying GBM as a new and comprehensive controller 
design technique than regular backstepping approach to a 
new four-state hyperchaotic system, [1], and evaluation of 
its performance. 

The rest of the paper is organized as follows: In Section 
II, the hyperchaotic system is presented. The Generalized 
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Backstopping Method is described In Section III. In 
Section IV, the stability conditions in hyperchaotic systems 
are derived by generalized backstepping method. In Section 
V, designed controller for stability conditions in 
hyperchaotic systems is simulated. Finally, in Section VI, 
conclusions are drawn. 

2. A Novel Hyperchaotic System 

The state space model of the novel hyperchaotic system 
is described by [1]:  
 

 x a y x gyz hw

y cx dy xz
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Where , , , , , g, ra b c d f  and h are constant positive 
parameters. It exhibits extremely rich dynamical behaviors, 
including 3-tori (triple tori), 2-tori (quasi periodic), limit 
cycles (periodic), chaotic and hyperchaotic attractors [1]. 

 System (1) has three equilibrium points which are as 
following: 
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Where  m bdr cf r   and 2 2n adf cgfr afr gr     

Considering 71a  , 13b  , 52c  , 5.8d  , 30f  , 
25g  , 24r   and , 2h   as values of parameters in the 

novel hyperchaotic system (1), hyperchaotic behavior is 
occurred and shown in Fig. 1. 

3. Generalized Backstepping Method 

Generalized Backstepping Method will be applied to a 
certain class of autonomous nonlinear systems which are 
expressed as follow [16], [17], and [19]: 

   
   0 0, ,

X F X G X

f X g X u
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In which    and  1 2

T n

nX x x x   . In 

order to obtain an approach to control these systems, we 
may need to prove a new theorem as follows. 

Theorem: suppose equation (3) is available, then 
suppose the scalar function  i x   for the thi  state could 

be determined i  a manner which by inserting the ith  term 

for  , the function  v x   would be a positive definite 

equation (4) with negative definite derivative. 
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Therefore, the control signal and also the general control 
lyapunov function of this system can be obtained by 
following equations [16]: 
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Fig. 1. Phase portraits of the four-scroll hyperchaotic attractors (1), 
(a):xyw, (b):xyz, (c):yzw, (d):xzw 
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4. Control of Hyperchaotic System 

The generalized backstepping method is used to design 
two controllers. First controller is designed by two control 
inputs, then second controller is designed by three control 
inputs. 

Case I 

In order to control hyperchaotic system we add two 
control inputs 1u  to the second equation and 2u  to fourth 

equation of system (1). 
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In order to stabilize states of system, the theorem 1 is 
utilized, hence, it is sufficient to consider  
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Hence, we rewrite (7) as: 
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The terms 
1a

u  and 
2a

u  are produced in the procedure 

of proof, for more details see [16]. Now, establish 
following virtual control inputs equations. 
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According to the theorem, the control signals will be 
obtained from the equations (12) and (13). 
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And Lyapunov function is given by: 
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Case II 

In order to control the hyperchaotic system, we add 
three control inputs, 1u  to the second equation, 2u  to the 

third equation and 3u  to fourth equation of system (1). 
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For stabilization of the states, in order to use the theorem 
1, we use some changes in variables as following: 
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Hence, we rewrite (15) as following: 
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Now, it is sufficient to consider following equations: 
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 3 2, , ,x y z w k x   (20) 

According to the theorem, the control signals will be 
obtained by following relations: 
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And Lyapunov function is considered as: 
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It is necessary to mention that in these two cases system 
is considered as a MIMO system and GBM is designed for 
it. 

5. Numerical Simulations 

This section presents numerical simulations of 
controlled hyperchaotic system. The Generalized 
Backstepping Method (GBM) is used as an approach to 
control Chaos in hyperchaotic system. We select the Gain 

of first controllers 1 2 31, 7, 5k k k   , and 4 10k   and 

for second controllers 1 2 3 41, 1, 7, 10k k k k    , and 

5 8k  . In order to select values of parameters, it is 
important to note that the derivate of Lyapunov function 
should be negative to ensure stability of system. The initial 
values of the hyperchaotic system are considered 

 0 1x  
,  0 1y 

,  0 1z  
, and  0 1w 

. 
Responses of states x , y , z , and w  of hyperchaotic 
system in cases I and II which two and three control signal 
inputs are applied to system, respectively, are shown in Fig. 
2, 3, 4 ,and 5. It is clear that states of system converge to 
origin and system is stabilized using two and three control 

inputs. Figure 6 and 7 show the control law 1u  in (12) and 

2u  in (13), respectively, which are applied to system to 
stabilize it toward origin point. Figure 8 shows the control 

law 1u  in (21) and 2u  and 3u in (22) and (23) are shown in 

Fig. 9 and Fig. 10, respectively. 

 
Fig. 2. The time response of the state x  for the controlled hyperchaotic 
system (7) in cases I: two control signal inputs (12), (13), and case II: 
three control signal inputs (21), (22), (23)  

 

Fig. 3. The time response of the state y  for the controlled hyperchaotic 

system (7) in cases I: two control signal inputs (12), (13), and case II: 
three control signal inputs (21), (22), (23) 

 

Fig. 4. The time response of the state z  for the controlled hyperchaotic 
system (7) in cases I: two control signal inputs (12), (13), and case II: 
three control signal inputs (21), (22), (23)  
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Fig. 5. The time response of the state w  for the controlled hyperchaotic 
system (7) in cases I: two control signal inputs (12), (13), and case II: 
three control signal inputs (21), (22), (23) 
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Fig. 6. The time response of the control input 
1

u  (12) for controlled 

hyperchaotic system (7). 
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Fig. 7. The time response of the control input 
2

u  (13) for controlled 

hyperchaotic system (7). 
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Fig. 8. The time response of the control input 
1

u  (21) for controlled 

hyperchaotic system (15). 
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Fig. 9. The time response of the control input 
2

u  (22) for controlled 

hyperchaotic system (15). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time (sec)

C
on

tr
ol

 S
ig

na
l u

3

 

Fig. 10. The time response of the control input 
3

u  (23) for controlled 

hyperchaotic system (15). 

As it is obvious the designed controllers based on GBM 
for a MIMO system can stabilize it to the origin while 
backstepping method is not applicable for this hyperchaotic 
system because it does not have strict feedback form and is 
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a MIMO system. Based on simulations, In case II, which 
we consider three input signal control, the response is better 
than case I. The responses and convergence of states to 
origin are faster and do not have overshoot. The amplitude 
of control efforts in each of two cases makes 
implementation possible; hence practical test can be done.  

6. Conclusion 

The stability conditions in hyperchaotic systems have 
been studied. These conditions have been applied to the 
novel hyperchaotic system. The theoretical conditions for 
controlling hyperchaos in this system have been obtained 
using Generalized Backstepping Method. In the proposed 
method which is called Generalized Backstepping Method, 
by feedbacking the dynamics of system and without 
eliminating the nonlinear dynamics, a controller is 
designed. A theorem has been expressed for this method 
and the proof  has been given. Finally, numerical 
simulation have been done to verify the effectiveness of the 
proposed control scheme and Working on combination of 
intelligent and classic controllers or selecting optimal 
functions for i in theorem 1 could be interesting areas for 

future works. 
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