
 Journal of Computer and Robotics 1 (2010) 13-25

13

Designing and Optimizing the Fetch Unit for a RISC Core

Mojtaba Shojaei, Bahman Javadi
*
, Mohammad Kazem Akbari, Farnaz Irannejad

Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

Received 18 December 2008; revised 15 September 2009; accepted 21 September 2009

Abstract

Despite the extensive deployment of multi-core architectures in the past few years, the design and optimization of each single processing
core is still a fresh field in computing .On the other hand, having a design procedure (used to solve the problems related to the design of a
single processing core)makes it possible to apply the proposed solutions to specific-purpose processing cores .The instruction fetch, which
is one of the parts of the architectural design, is considered to have the greatest effect on the performance .RISC processors, which have
architecture with a high capability for parallelism, need a high instruction width in order to reach an appropriate performance .Accurate
branch prediction and low cache miss rate are two effective factors in the operation of the fetching unit .In this paper, we have designed and

analyzed the fetching unit for a 4-way(4-issue)superscalar processing core .We have applied the cost per performance design style and
quantitative approach to propose this fetch unit .Moreover, timing constrains are specially analyzed for instruction cache to enable the
proposed fetch unit to be in a superpipeline system .In order to solve the timing problem, we have applied the division method to the branch
prediction tables and the wave pipelining technique to the instruction cache.

Keywords: Instruction fetch, Branch prediction, Instruction cache, Cost, Performance, Timing.

1. Introduction

In the past few years, the multi-core architecture has

been proposed to ameliorate the performance of

microprocessors and the users’ need for high speed [1, 2].

In this architecture we achieve a higher performance by

using multiple microprocessors in a chip. The

microprocessors are independent and physically separated

from each other. They are connected to each other in a

multiprocessor environment which is placed in a single
chip. On the other hand, there are a lot of requests for the

specific-purpose processing cores like DSP, encryption and

games. The cell processor is an example of such cores that

has been constructed via the collaboration of the IBM,

Toshiba and Sony companies [3]. All of these architectures

have one thing in common; that is an optimized design for

each processing core in order to reach the best performance

in the multi-core environments.

Thus, the design and optimization of each processing

core is still an important issue in the world of computer

architecture. So the RISC architecture has been considered

by the microprocessor designers due to its simple structure
and great potential for performance improvement. The

instruction level parallelism (ILP) can be used in this

architecture in order to improve the performance of the

processor. Thus the superscalar and superpipeline

techniques, which can enable the instructions to be

executed simultaneously, have the greatest effect on

performance improvement. In superpipelined processors,

the clock cycle is reduced by dividing the pipeline into

smaller steps so that more instructions could run

simultaneously [4]. A superscalar processor runs multiple

operations simultaneously on separated pieces of hardware
units. This is done by issuing multiple instructions for

different execution units and executing them

simultaneously in a single cycle.

The examination of the instruction level parallelism has

shown that 4 to 8 instructions can be executed by using

limited hardware and a compiler. The main significant

factors in reaching this potential are the components and

the techniques used in the processor. The instruction fetch

efficiency, branch prediction, data and instruction caches,

resource allocation, decode width, issue width and

hardware constrains are the factors which have a great

effect on utilizing this potential [5]. Among these factors,
the instruction fetch has the greatest effect on the way

parallelism is utilized in programs [6]. For this reason, the

instruction fetch step has to be designed according to the

*
Corresponding author. E-mail: javadi@aut.ac.ir

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

14

existing problems and limitations. Considering the relating

to the instruction fetch, we have designed and optimized
this unit for a RISC core. We have applied the cost per

performance design style and quantitative approach to

propose this fetch unit.

The next section will be an introduction to the

benchmarks and the tools used in the simulation. In the

third section, we will analyze the problems that exist in the

instruction fetch and also the solutions that have been

proposed to solve them. The instruction cache and its

configuration that has great effect on the instruction fetch

are discussed in section 4. The mechanism which is used

for branch prediction is explained in section 5. The section

6 of this paper is focused on the method used for the
instruction prediction. In section 7, we will discuss about

the timing, the delay and access time of each component in

the instruction fetch that must be placed in a superpipelined

system. Finally the conclusion and the references are stated

at the end of the paper.

2. The Simulation and Benchmarks

2.1. The Simulator

A cycle level simulator is used in the different sections

of this paper. The simulator is called HydraScalar [7] and is
the modified version of the sim-outorder simulator (from

the SimpleScalar set) [8]. The main configuration is the

same model as Alpha 21264 processor [9]. The simulation

is an out-of-order execution. It uses an issue queue with a

length of 64 instructions, an issue width of 4 for the integer

instructions and of 2 for the floating-point ones. The

memory has a two-level and non-blocking hierarchy. In the

first level, we have a 2-way set-associative data cache with

the size of 64 KB and an access time of two cycles. In the

second level, we have an 8 KB direct mapped cache with

an access time of 12 cycles.

The cache miss rate is calculated by using the Single-
path method and the Sim-Cheetah simulator which is a part

of the SimpleScalar set. The simulations are run by using

the LRU replacement algorithm for both of the direct

mapped and 2-way set-associative caches on a benchmark

of 1500 million instructions in each program set, with a 32

to 256 bytes block and an 8 to 512 KB cache.

The CACTI 2.0 simulator is used to measure the

memory access time [10]. An analytical model is used for

the computation of the transistor level delay of cache [6].

The simulator is also capable of calculating the power

consumption of the memory structure. The only thing that
is taken into account in the calculation of the access time in

the tables is the output data time of the simulations, while

the comparison time of Tag is ignored. The CMOS 0.15um

is the technology which is used over all the steps.

2.2. Benchmarks

The evaluations are performed using the SPEC2000

benchmarks [11]. This set consists of SPECint 2000 (14

integer programs) and SPECfp 2000 (12 floating-point

programs) [12]. Among all these programs, we have chosen
7 integer programs and 3 floating-point programs. All of

them are compiled using the gcc 2.7.2.3 compiler on a

PISA set of instructions [13]. Also 100 million instructions

are used from each benchmark.

3. Instructions Fetch Analysis

Considering the importance of the instruction fetch, the

factors that limit the instruction fetch have to be recognized

and elevated. Branch instructions have two drawbacks on

instruction fetch. Primarily since the right fetching path is

not known at the time of conditional branch, we have an

unknown state for the fetching instruction. Also the

destination address of a taken branch instruction is not

defined and should be predicted. After a branch operation,
the order of the access to the instructions is destroyed. So

we need to access another line of the cache memory.

Moreover at least some cycles are needed to find out that

the predicted path or the indirect branch address is

incorrect. These few cycles are called the misprediction

penalty. This penalty dramatically diminishes the

performance due to the high number of cycles [11].

Besides the incorrect branch prediction, control transfer

can also deteriorate the performance. By control transfer of

a taken conditional branch, we mean the calls and

unconditional branches. Figure 1 illustrates how a
straightforward fetching mechanism would handle the

control instructions. As we can see, the two instructions

following the taken branch are discarded in the first

instruction block. The branch transfers the control to the

second block, but the starting point is not the beginning of

the block. As a result, the first instruction of the block is

also discarded. Another control transfer exists in the second

block. That is why another instruction is also discarded

from this block. Four instructions are remained, while we

have a fetching potential of 8 instructions.

Fig. 1. Simple instructions fetch [5].

This example demonstrates that transfer control

instructions cause two problems for the straightforward
fetching mechanism. The first one is the alignment branch,

which is caused when the destination address of the branch

is not found at the beginning of the destination block. This

problem can be solved in hardware level. The second

problem occurs when a sequential access to the instructions

of a line in the cache is stopped by the control transfer

 Journal of Computer and Robotics 1 (2010) 13-25

15

instruction. So a new line should be read. Unlike the

alignment branch problem, this one greatly limits the
instructions placed in each fetching block.

3.1. Instruction Fetching Model

Figure 2 illustrates the different steps of the fetching

operation. The instruction cache reads the requested block

of width q and delivers it to the instruction fetcher. The

instruction decoder receives a block of width n. When we

use prefetching, then q new instructions of the instruction

fetcher enter the prefetching queue of length p and n

instructions come out of it. The inequality q>n can be

deduced from the diagram. If prefetching is not used, the

fetching and the decoding widths will be equal, and the

instruction fetcher will directly transfer the instructions to

the decoder. The instruction fetcher has the responsibility
of determining the new instruction counter and transferring

it to the instruction cache in each cycle. If we have a

dynamic branch prediction, it will be used here. The new

instruction counter should be determined in the same cycle.

Also, after the targeted block has been received from the

instruction cache, a primary decoding is performed for the

type recognition of the instructions. Instructions following

the first transfer control instruction will be invalidated as

well.

4. Instruction Cache

In this section we will discuss about the hardware

techniques that have been designed and optimized for the
instruction cache.

4.1. Simple Cache

A simple technique used for fetching the instructions

from the instruction cache is to have equal line size and

width for the fetching block. In this technique, if the

starting address of the instruction counter is not located at

the beginning of the cache line, all the instructions

preceding this one are invalidated and the number of the

returned instructions will be less than the fetching width. In

all techniques a control transfer instruction would

invalidate all the other instructions. Figure 2 illustrates an

example of the fetching mechanism which is explained in

the previous section.

4.2. Self-aligned Cache

Destination alignment can be solved by using a self-

aligned cache. In this method the instruction cache reads

two lines in a single cycle and puts them together. Thus it

can always return n instructions. This technique can be

implemented in two ways [14]:

 Using a cache with two ports and having two accesses in

each cycle.

 Designing a 2-way interleave cache.

Fig. 2. Block fetch diagram.

Figure 3 illustrates an example of this technique. Since

the program counter starts from the third instruction in line

zero, the first two instructions are not used. Since the next

line can be executed in the same cycle, four instructions

(which are composed of two instructions of the line zero

and two instructions of line one) are returned.

Fig. 3. Self-aligned fetch n = 4 [5].

4.3. Expected Instruction Fetch

Following are the number of the expected instructions

for different fetching mechanisms based on an analytical

model. By using this method, we can find the performance

of the mechanisms [14].

4.3.1. Simple Cache

Assume that n is the width of a memory block and b is

the probability of the control to be transferred. Let Li be the

probability of a control transfer to occur at position i. Also

let Ei be the probability of the starting address in the block
to be at the position i. Upon a control transfer, if the target

address is equally likely to enter any position in a block,

then:

𝐸1
𝑠𝑖𝑚𝑝𝑙𝑒 𝑛,𝑏 = 1 −

𝑛 − 1

𝑛
𝐶𝑠𝑖𝑚𝑝𝑙𝑒 𝑛, 𝑏

𝐸1
𝑠𝑖𝑚𝑝𝑙𝑒 𝑛,𝑏 =

𝑐𝑠𝑖𝑚𝑝𝑙𝑒 (𝑛, 𝑏)

𝑛
, 2 ≤ 𝑖,≤ 𝑛

(1)

 𝐿𝑖
𝑠𝑖𝑚𝑝𝑙𝑒 𝑛,𝑏 = 𝑏 1 − 𝑏 𝑖−𝑗𝐸𝑗

𝑠𝑖𝑚𝑝𝑙𝑒
(𝑛, 𝑏)𝑖

𝑗−1 (2)

Instruction

Cache

Prefetch Buffer

FIFO

Instruction

Fetcher

Instruction

Decoder

PC

q

q

n

n

p

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

16

Where C(n, b) is the probability of a control transfer in a

block.

𝐶𝑠𝑖𝑚𝑝𝑙𝑒 𝑛,𝑏 = 𝐿𝑖
𝑠𝑖𝑚𝑝𝑙𝑒

𝑛

𝑖=1

 𝑛,𝑏 =
𝑛

1
𝑏 + 𝑛 − 1

(3)

The total number of the expected instructions, fetched in

each cycle for a simple fetch is as follows:

𝐹𝑠𝑖𝑚𝑝𝑙𝑒 𝑛,𝑏 = 𝐸𝑖
𝑠𝑖𝑚𝑝𝑙𝑒

𝑛

𝑖=1

 𝑛, 𝑏 𝑟 𝑖, 𝑏

=
𝐶𝑠𝑖𝑚𝑝𝑙𝑒 (𝑛,𝑏)

𝑏
=

𝑛

1 + 𝑏(𝑛 − 1)

(4)

Equation (4) is the weighted sum of the expected

number of instructions to be fetched for each possible

starting position.

4.3.2. Self-aligned cache

The probability of the control to be transferred in a

block of cache is:

𝐶𝑎𝑙𝑖𝑔𝑛 𝑛, 𝑏 = 1 − (1 − 𝑏)𝑛

(5)

The expected fetch for the self-aligned cache in each cycle

is equal to the expected execution of the block instructions

with the size of n.

𝐹𝑎𝑙𝑖𝑔𝑛 𝑛, 𝑏 = 𝑟 𝑛, 𝑏 =
1 − (1 − 𝑏)𝑛

𝑏

(6)

because n instructions will always be read from the

instruction cache.

4.4. Evaluation of the Instruction Fetch Mechanisms

Figures 4 and 5 demonstrate an evaluation of the theory

related to the instruction fetch mechanisms, where 1/8b  .

No prefetching is used and it is considered for diverse

values of the decoder width (n). The value of b and the

probability of control transfer are chosen to conform to

RISC architecture [4]. Figure 4 indicates the number of the

expected instructions to be fetched and in Figure 5, C
indicates the probability of a control transfer in a block.

For n=64 the fetching rate is approximately equal to

1/b . Even though having a large fetching width would

ameliorate the fetching performance, it cannot be

implemented in hardware [15]. Figure 4 illustrates the
expected values to be fetched for three types of cache,

when b = 1/8. The best case occurs for a block size of n

and when the instruction rate is equal to n in each cycle. It

is demonstrated that the difference between the best case

and the real case increases as n increases. In this case, the

curve approximates 1/8. The main drawback of the simple

cache techniques is the slow rate they have to reach this
value. This Figure demonstrates that we need to have a

large value for n to achieve the expected performance.

Fig. 4. Expected instruction fetch without prefetching.

Figure 5 illustrates the expected values for the

instructions to be fetched in a self-aligned cache, for

different values of q and p, with prefetching capability, and

where 1/8b  . At q=6 and p=8, the expected fetch is

already over 3.95.

Fig. 5. Self-Aligned expected instruction fetch with prefetching (n=4).

It has been shown that for processors with high issue

width (n≥8), prefetching is not sufficient and we need to

fetch two blocks in each cycle. Considering the results

extracted from the analysis of this mathematical model [5],

and as we are designing a 4-path processor, we can say that
it is better to have a fetching length of 8 cycles, a

prefetching queue and a self-aligned cache to achieve

higher performance.

 Journal of Computer and Robotics 1 (2010) 13-25

17

4.5. Instruction Cache Configuration

In the previous section we discussed about the

techniques used in the fetching unit of the processors and
the impact they have on the design of cache. In this section,

we analyze and simulate the different configurations of the

instruction cache.

We should consider the length of the fetching

instructions in each cycle prior to the analysis of the results.

Since 32 bytes are fetched each time (using two

simultaneous accesses and 4 instructions in each access),

the smallest size of the cache block is 32 bytes. This size is

used in the simulation.

 Figure 6 illustrates the average miss rate for different

block sizes for 16 programs versus instruction cache size.

As we can see, the miss rate is very high for the blocks with
size of 32 bytes. This rate is a result of the fact that all data

in a block having this size are read in a single fetching

cycle. This allows for exploiting the locality in an

optimized fashion.

Cache size

M
iss rate

 (%
)

Fig. 6. Average miss rate for instruction cache with different

configurations.

The design decisions applied to the instruction fetch unit

of a RISC pipeline are based on the performance rather

than the cost. The higher costs for the instruction cache

would be acceptable to get the better performance as it is

the first stage in the pipeline. This fact is more obvious for

the superscalar processors. These processors fetch multiple

instructions in each cycle and if a cache miss occurs in the

instruction cache, a long interrupt happens and the

performance is deteriorated. Figure 6 demonstrates that the

cache miss rate in a direct mapped cache is much higher
than the expected limit and we cannot get a suitable

efficiency out of this type of memory.

Obviously, this core needs an instructions cache with a

very low miss rate. Two instructions are accessed

simultaneously in each fetching cycle and in more than

10% of these accesses (this value can reach 50% based on

the block size) we need to read two blocks simultaneously.

This can cause the miss probability in each cycle to

increase. There is also the possibility of a miss to occur

simultaneously for both of the blocks. This can cause a

high penalty for the system. It is also predictable to have a

very low miss rate for caches having a size of 256 bytes

(especially for the large ones). But this will cause two
problems that cannot be solved easily.

First the cache miss penalty increases as the block size

becomes lager. Also as the block size becomes larger, the

L2 cache will need larger blocks, therefore its miss rate will

be increased. Enlarging its block size causes the miss

penalty to increase. Besides, the power consumption has

become approximately twice and this cannot be ignored for

a block having a size of 256 bytes [14].

5. Branch Prediction

Branch prediction is the mechanism used for predicting

the jumping path prior to the execution. As explained

before, if branches are mispredicted, the performance of the

processor is extremely deteriorated. So the first significant
factor in the selection of a prediction method is the high

precision. Also the technique that is applied must be fast

enough to be used in a super pipelined system.

Branch prediction could be performed statically and

dynamically. When performed statically, each branch is

predicted as a taken or not taken, and when performed

dynamically the prediction takes place at the run time and

is based on the behavior of the branches. Dynamic

predictors are used in advanced processors due to their

high precision [11]. A Pattern History Table (PHT) is used

in this method for maintaining each branch’s state. The
content of each entry in this table is a 2-bit up-down

saturating counter. The addressing method for the PHT is

widely proposed in the literature. In the simplest method

addressing can be done by using the program counter. This

simple mapping causes a noticeable Interference. Branch

correlation and two-level adaptive prediction mechanisms

are used for the effective use of a PHT. Figure 7 illustrates

the basic diagram for the two-level adaptive branch

prediction method.

Fig. 7. 2-level adaptive branch prediction.

In this method a k bits branch history register is used for
addressing a PHT of the size 2k. As you can see, each entry

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

18

of the PHT contains a 2 bits counter. The prediction state is

specified based on these two bits in the format of a finite
state machine. The history register can be a global, single

register or a Branch History Table (BHT) of registers that

are addressed using the instruction counter. One of the

solutions used to solve the problem of interference is to add

a number of branch addressing bits to the history register

for addressing the PHT. In this method, two independent

branches which have the same history are mapped to

different entries of the PHT. That is why they have

different addresses [11, 16, 17].

5.1. Improvement of Branch Prediction Methods

The first problem designers found in the existing branch

prediction structures was the conflict in PHT. But the main

problem in the two-level structures is the wrong-history
misprediction [18]. This is due to the existing local and

global correlation in this structure. The local correlation

performs the branch prediction based on the past behavior

of the same branch. In the local correlation the branch

prediction is performed based on the past behavior of all

the previous branches. This problem arises due to the fact

that in most of the programs, some of the branches are

predicted using the global history and some others are

predicted using the local history. According to studies, 35

to 50 percent of the total number of the mispredictions

occurs in the global predictors related to the wrong-history
misprediction, while the problem of interference occurs for

15 to 20 percent of the cases.

A hybrid predictor can be used as a solution for this

problem[16]. In this method an appropriate structure is

created by using the combination of one or multiple

predictors and also a mechanism for selection of the

component used for the branch prediction. If one of the

components is a global predictor and the other one is a

local predictor, the two types of predictors can be applied

together [16]. The structure of this predictor is illustrated in

Figure 8.

Fig. 8. Hybrid branch prediction.

If the selection mechanism between the components is

well-done, this method alleviates the problem of wrong-

history misprediction. An instance of such a structure is

used in the Alpha 21264 processor [9]. The main problem

of the hybrid predictor is its high hardware cost. This

problem is due to the fact that the hardware is divided into

various components and these components can work well

only if they are big enough. For example, in the Alpha

21264 processor, more than 28Kbits has been expended for

this section [9].

Other problem with hybrid method is how to design the

appropriate selection mechanism. A method called the
alloyed branch prediction has been proposed to solve this

problem [19]. In this method, we concatenate the global

and local histories to a number of branch address bits to

perform the PHT addressing. These changes solve the two

problems of the hybrid predictors. Moreover, in addition to

the use of local and global history, there is no need for any

selection mechanism. The structure of this mechanism is

illustrated in Figure 9.

Fig. 9. Alloyed branch prediction.

5.2. Evaluation of the Branch Prediction Methods

In the following, we compared the two mechanisms for

branch prediction as hybrid and allotted branch predictions.

The best possible configurations are used in each structure

to compare these two methods [19]. These configurations

are demonstrated in Table 1 and Table 2. Three

configurations are described in these tables with the cost

equal to 64 Kbits, 8Kbits and 2Kbits. Since when the cost

is equal to 2Kbits, the hardware components existing in the

hybrid method are very small, this cost is infeasible for this

mechanism.

Table 1

Configuration of alloyed branch prediction (g: number of bits in the global

history, p: number of bits in the local history, a: number of bits in the
branch address)

2 Kbits 8 Kbits 64 Kbits Alloyed Branch Prediction
512 2K 16K PHT (entries)

MAs 512 2K 8K BHT (entries)
3g, 2p,4a 7g, 2p, 2a 9g, 4p,3a Index

Table 2

Configuration of hybrid branch prediction

2 Kbit 8 Kbits 64 Kbits Hybrid Branch Prediction
-- 2K 16K PHT (entries)

Gas
-- 4g , 7a 7g , 7a Index

-- 512 4K PHT (entries)

Pas -- 512 1K BHT (entries)
-- 2p, 7a 8p, 6a Index

-- 1K 8K PHT (entries)
Selector

-- 3g , 7a 6g , 7a Index

The results of the simulation are specified in the form of

branch prediction precision for the executed benchmarks in

Table 3. Figure 10 illustrates the average accuracy of the

branch prediction for various cases. As you can see, when

 Journal of Computer and Robotics 1 (2010) 13-25

19

the cost is equal to 64Kbits, the precision of the hybrid

method is slightly less than the alloyed method. In this
structure, the hybrid method works well because of the high

cost. We can observe the difference of these methods by

studying the comparison of the cost equal to 8Kbits. The

alloy method works better than the hybrid method, due to

its decrease in cost. When cost is low, the alloyed method

works as well as a hybrid predictor and when having low

cost it works better than the hybrid prediction method.

Table 3

Branch prediction accuracy for hybrid and alloyed branch predictions

2 Kbits 8 Kbits 64 Kbits

Alloyed Alloyed Hybrid Alloyed Hybrid Benchmarks

0.9891 0.9890 0.9890 0.9901 0.9897 Bzip2
0.7891 0.8887 0.8690 0.9416 0.9446 Gcc

0.9120 0.9117 0.9115 0.9113 0.9180 Gzip

0.9708 0.9789 0.9784 0.9894 0.9922 Mcf

0.8484 0.8602 0.8605 0.8691 0.8718 Vpr

0.9140 0.9217 0.9242 0.9393 0.9465 Parser

0.9198 0.9653 0.9569 0.9817 0.9838 Vortex

0.9806 0.9850 0.9858 0.9884 0.9937 Ammp

0.9531 0.9719 0.9698 0.9872 0.9939 Equake

0.9662 0.9791 0.9784 0.9880 0.9930 Mesa

Fig. 10. Average accuracy of branch predictions.

6. Instruction Fetch Prediction

As mentioned before, the branch prediction structure is

only for the prediction of branch paths. Thus another

mechanism is needed for the prediction of branch target.

This mechanism is called the instruction fetch prediction in

which the next instruction is predicted to be fetched. The

branch target buffer (BTB) is one of the mostly applied

mechanisms for this operation [16]. For the taken

conditional branches and the unconditional branches a BTB

is used for the target address prediction [4]. Another

technique applied for the instruction fetch prediction is
using an NLS table. In this technique the line address and

its set are kept in the instruction cache [11]. Indeed the

pointer to the instruction is maintained instead of the

instruction itself. The main idea of both methods is

alleviating the penalty due to the wrong fetching.

The difference between the NLS and the BTB methods

is found in the architecture of NLS which is a table without

any tag. This table contains a pointer to the instruction

cache which points to the location of the taken target

branch. Figure 11 illustrates diagram of this architecture.

As we can see in the figure, the next line is computed to be

fetched instead of the next address. There are three sources
for fetching the next instruction. These sources consist of

the NLS predictor, the fall-through line and the return

address stack. The NLS predictor consists of the following

fields:

 Type field: Table 4 demonstrates the possible

sources for prediction according to the Type field. This

field is used to find out the suitable prediction mechanism

which is specified in Figure 12. If the Type information is

extractable from the instruction fetched in the fetching

cycle or from the cache (if the information is predecoded),

there is no need for this field.

 The line field: This field consists of the line number

which should be fetched from the instruction cache. The

high bits illustrate the line in the instruction cache and the

low bits specify the real instruction in this line.

 The set field: It is possible to find n target lines in a

set-associative cache. This field is used to show the set

number in an instruction cache. When applying a direct-

mapped cache there is no need for this field.

Fig. 11. NLS fetch prediction.

The NLS architecture assumes that it can decide whether

an instruction is a branch or is not in the fetch step. Since

non-branch instructions fetch the fall-through address and

branch instructions use the NLS predictor, adding this

information to the instruction can ameliorate the fetching

precision of NLS. If the fetched instruction from cache is a
branch instruction, the NLS predictor is applied and the

Type field is tested for selection of the fetching address.

The return instruction also uses the return address stack.

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

20

The conditional and indirect branches also use the cache

which is specified by the NLS entry. If the Type field
specifies an instruction to be of the conditional branch type,

the architecture uses the PHT for the prediction of a branch

path.

Table 4

Type field in NLS method

Prediction source Branch type Bit 1 Bit 0

 Invalid entry 0 0

Return stack Return instruction 1 0

NLS entry, Conditional on PHT Conditional branch 0 1

Always use NLS entry Other type of branches 1 1

If the branch is predicted to be taken, the line and set

fields are applied for fetching the instruction cache line. On

the other hand, if the conditional branch is predicted not to

be taken the fall-through address is used for fetching the

next instruction.

The NLS entries are updated after decoding the

instruction, specifying the type of the branch and

determining the target. The instruction type specifies the

Type field, the branch target, the line and set fields. Only
the taken branches change the line and set fields. However

all the branches change the Type field.

If a conditional branch that is predicted to be not-taken,

changes the line and set fields, it will cause those fields to

be cleared. One of the methods used for maintaining the

NLS is storing the predictors in each line of the instruction

cache. This method is called NLS-Cache and is applied in

the Alpha 21264 processor [9]. It has been demonstrated

that using a table of NLS entries which has no tag is a

suitable structure for keeping the NLS predictors [16]. This

structure is used in this processor.

6.1. Using the Next Line Addresses with the Instruction

Cache

In the NLS architecture, there is no complete target

address to be transferred to the instruction cache. In this

method only the low bits of the target address (cache line

index) exist. This is not considered to be a significant issue

for the direct mapped cache, because testing the tag for the

target address can be performed at the decoding step of

pipeline. But if an associative cache is applied, it should

change so that it could use the next address properly.

Following are two different methods used for this reason.

In the standard implementation of an associative cache,

the appropriate line is selected from a set by comparing the

whole tag with various sets. The NLS predictor set field is
used for all branch instructions to predict the instruction

cache set. But a full comparison of the tag is performed

when using the fall-through line address.

The second method applied for using the address of the

next line with an associative cache is a little more accurate

than the previous method and can ameliorate the

performance of the cache. In this method, we assume that

each line of the cache has a set field. This field resembles
the NLS set field and predicts the set which is related to the

location of fall-through line in each cache line. Since the

set field is used in each access, only one set of cache can

work at a time and the tag comparison operation can be

performed at the time of decoding (like the direct mapped

method). If prediction of the set is wrong and the tag is not

identical to the target address computed in the decoding

step, we need to test other sets to find the right entry or to

find out a cache miss. This design is suitable for an

associative cache L2. If the first prediction is wrong, the

remaining set of the instruction is tested. We need to use

other methods for caches with an associative level higher
than two [14].

6.2. Comparison of BTB and NLS

Compared to BTB, NLS architecture has a better cost

per performance ratio. Another advantage of the NLS is

that its table should not have any tag, while a BTB must be

2-way or 4-way associative so that it could reach a higher

performance. We have approximated the NLS and BTB

access times with various sizes by applying the CACTI

simulator. As illustrated in Table 5 the access time to a 4-

way BTB is approximately two times greater than a NLS

table with the same size. So the NLS architecture has a
better access time than BTB.

Table 5

 Access times for NLS and BTB

NLS Table

Access Time (ns)

4-way BTB

Access Time (ns)
2-way BTB

Access Time (ns)
Entries

0.38 0.88 0.88 128

0.40 0.92 0.91 256

0.44 0.96 0.93 512

0.47 1.00 0.97 1024

0.51 1.08 1.12 2048

7. Fetch Timing

Pipelining a logical circuit is a low level task, for which
we need to design all the circuit in a transistor level. Then,

we can perform the pipelining operation based on the

obtained delays. Considering that the task of designing the

instruction fetch step is high level, our approach is only to

present an approximate model for the scheduling of the

circuits that have been designed. Since the majority of the

RISC processors have simple control circuits, the memory

and table components (containing branch prediction tables,

register file and instruction issue queues) are considered

as the critical path. In order to pipeline the fetch step, we

assume the access time for the register file to be the

processor clock cycle. The register file consists of 80
integer registers, 80 floating-point (64 bit) registers and an

 Journal of Computer and Robotics 1 (2010) 13-25

21

access time equal to 0.95ns [16]. Considering these

assumptions, we perform the instruction fetch timing.

7.1. Instruction Cache Timing

The AAT (Average Access Time) has an important role

in cache (especially instruction cache) design. In the

following section, various parameters corresponding to

AAT have been simulated and finally AAT has been

computed. Considering other effective parameters, the

appropriate options will be used for the final decision to be

made.

7.1.1 Evaluation of the Access Time

In this section, we will discuss about the timing model

for the instruction cache. The cache is the starting point of

execution in the instruction fetch unit of a processor. As

mentioned before, since the majority of the RISC

processors have simple control circuits, only the memory
and table components are presented as the critical path for

the timing model. The instruction cache is one of the

critical paths that can be effective for the performance of

the processor.

The instruction cache should be designed in a way that it

could obtain the appropriate access time and cycle for the

processor to be able to attain the maximum performance.

Table 6 shows various configurations of cache. As you

can see the access time of the cache is higher than 1ns,

except for the cases where its size is equal to 8KB or

16KB. This fact is very important since the processor cycle
(considering no overhead) is accomplished in 0.95ns and

all the caches which have an appropriate miss rate have

access time of more than two cycles. Of course it is

completely natural for the access time to increase for

caches with bigger size and higher degree of associativity.

Since a cache with a low miss rate is needed for the design

of an instruction cache, we need to find an appropriate

method for the optimization of the access time.

Table 6

Access time for instruction cache (the access times less than 0.95 ns are

highlighted)

 32 Byte 64 Byte 128 Byte 256 Byte

Bit Rate DM 2-Way DM 2-Way DM 2-Way DM 2-Way

8 KB 0.681 0.956 0.685 0.936 0.708 0.956 0.752 1.075

16 KB 0.762 1.018 0.762 0.998 0.784 1.002 0.828 1.127

32 KB 0.933 1.167 0.933 1.114 0.966 1.128 0.962 1.224

64 KB 1.136 1.310 1.136 1.294 1.119 1.343 1.171 1.462

128 KB 1.567 1.585 1.365 1.519 1.347 1.577 1.430 1.799

256 KB 1.767 1.919 1.786 1.886 1.789 1.991 1.927 2.230

512 KB 2.241 2.530 2.255 2.474 2.255 2.580 2.397 2.823

The wave pipelining technique is used as a solution to

this problem. This technique is considered to be one of the

most suitable methods for the optimization of cache access

time.

7.1.2. Wave Pipeline

One of the widely used methods to decrease the

execution cycle of a logical circuit is pipelining. Common
pipelining methods used for optimization cause an

overhead on the delay, cycle time, area and the power

consumption. Also a low level design of the circuit has to

be presented to obtain the timing parameters and it has to

be implemented in transistor level to get useful information

about the timing of the pipeline [14].

The extra overhead of the cycle time is due to the extra

time needed for the propagation of the signals through the

synchronizer, the time needed for the measurement of the

components of the synchronizer before the storage of

signals, and also the undesirable deviation of the clock

pulse in the time of the synchronization signal arrival.
In common pipelines, delay is defined as the time

elapsed from readiness of input data (in the first step of the

pipeline) till the time when the output data reaches the last

step of it. The extra delay is caused by the overhead due to

creation of the pipeline. In logical circuits with standard

pipelines and common clock pulses for all the

synchronizers, we have a partitioning overhead when

combinational logical circuits cannot be divided into

multiple steps with maximum and equal propagation

delays.

The area and the consumed power impose extra
overhead which is due to additional transistors and wires,

the increase in clock buffer area and power needed for the

input of the synchronizer to operate. The additional

transistors and wires are used for the implementation of

registers and synchronizer latches.

Compared to standard pipelining, wave pipelining is a

technique that enables digital systems to attain higher clock

pulse. This technique relies on the limited propagation

delay of signals in a combinational logical circuit. This

delay is used for data storage. Thus multiple waves of data

can be propagated in various regions of a logical circuit.

Indeed this method exploits the circuit propagation delay
efficiently.

Since each data wave is exploited after being sure that

there is no interference, the performance yield from the

wave pipeline of synchronizer systems is higher than the

performance of standard pipelines. Wave pipeline can

attain the performance of physical switching.

This optimization is the result of decreasing the extra

overhead existing in standard techniques. Since there is no

synchronizer, the cycle overhead existing in the previous

method is omitted. The circuit cycle is obtained from the

changes in the signal propagation delay of the circuit and
the delay of the input/output register. In the wave pipeline,

since there is no need for dividing the circuit into

independent units (by using synchronizer), the extra

overhead of this operation is omitted. The area and the

power consumed by the circuit are decreased by ignoring

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

22

the internal synchronizers and the corresponding circuits in

the standard pipeline. Pipelining a memory by using this
method causes some limitation that we consider them in the

following. List of parameter used in the analysis are listed

in Table 7.

Conventional synchronizer circuits must consider the

timing limitations for longest path and the race in the

network. Race limitations necessitate the data to be able to

pass through a synchronizer operator, be propagated in the

network and then enter the next synchronizer operator in a

single clock cycle. Thus the lowest time needed for the

propagation of data from one synchronizer operator to the

next synchronizer operator, must be less than the starting

time elapsed from the output edge till the locking time in
the same cycle. Thus the result from actual input data will

not have any interference with the result from the previous

data. The limitations imposed by the longest path,

necessitate that the results of the inputs of this cycle, be

valid till the next cycle for the next synchronizer operator.

Thus the time needed for the propagation of data from a

synchronizer operator in the combinational network to the

next synchronizer operator must be less than the time

interval between the starting edge of the actual clock cycle

to the locking edge of the next clock cycle.

Table 7

List of parameters in the equations

Maximum propagation delay in a combination network Tmax

Minimum propagation delay in a combination network Tmin

Minimum rise time and fall time of shortest path in a

network
RFmin

Maximum rise time and fall time of longest path in a network RFmax

Maximum clock skew ΔC

Minimum setup time Ts

Minimum holding time Th

In addition to these two common limitations found in

pipelining systems, the different data waves need not to

conflict with each other in any point of the combinational

circuit in wave pipelining. The following equation

expresses these limitations.

𝑇𝑐𝑙𝑘 ≥ 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 + 2∆𝑐 + 𝑇5 + 𝑇𝑕

+
𝑅𝐹𝑚𝑖𝑛 + 𝑅𝐹𝑚𝑎𝑥

2

(8)

In addition to the output limitation, wave conflict will

not happen in the whole logical network. Here is the

equation representing that:

𝑇𝑐𝑙𝑘 ≥ 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 + ∆𝑐 + 𝑇𝑚𝑠 +
𝑅𝐹𝑚𝑖𝑛 + 𝑅𝐹𝑚𝑎𝑥

2

(9)

Where Tmax is the smallest time that a voltage must be

stable for the logical levels to be able to become stable

reliably and correctly. More details concerning the

limitations of wave pipelining can be found in [20]

Table 8 illustrates the memory access time after

simulation, by using the wave pipelining method and the

possible states being specified (the optimized values are

stated in bold).

Table 8

Access times for instruction cache with wave pipeline (optimized cases
with wave pipeline are highlighted)

 32 Byte 64 Byte 128 Byte 256 Byte

Bit Rate DM 2-Way DM 2-Way DM 2-Way DM 2-Way

8 KB 0.681 0.478 0.685 0.936 0.708 0.956 0.752 1.075

16 KB 0.762 0.509 0.762 0.998 0.784 1.002 0.828 1.127

32 KB 0.933 0.583 0.933 1.114 0.966 1.128 0.962 0.612

64 KB 1.136 1.310 1.136 1.294 1.119 0.672 1.171 0.731

128 KB 1.567 1.585 1.365 1.519 1.347 1.577 1.430 0.900

256 KB 1.767 1.919 1.786 1.886 1.789 1.991 1.927 2.230

512 KB 2.241 2.530 2.255 2.474 2.255 2.580 2.397 2.823

Using this method, various desirable states are generated

having an appropriate access time and low miss rate. Our

final choice will be one of these configurations.

7.1.3. Performance Evaluation of the Instruction Cache

We have calculated the miss rate and the access time to

the stated configurations in section 4. In the following

section, we will calculate and discuss about the average

access time to these configurations.

The penalty of the cache miss rate is the delay that a
processor suffers so that data transfer from the lower level

memory to the cache is needed. If we consider the lower

level of the memory to be ideal, the number of the penalty

cycles can be calculated by using the following equations

[14]:

𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 𝐴𝑑𝑑𝑟. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 ×

𝑙2𝐵𝑢𝑠 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐶𝑃𝑈 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
+ 𝐿2 𝐶𝑎𝑐𝑕𝑒 𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑦𝑐𝑙𝑒 +

𝑙1𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝐿2 𝐵𝑢𝑠 𝑊𝑖𝑑𝑡𝑕
×

𝑙2𝐵𝑢𝑠 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐶𝑃𝑈 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

(10)

This equation computes the miss penalty for the on-chip

and off-chip L2 cache. The delay due to the off-chip L2

cache can be calculated using the expression L2 Bus Cycle

Time / CPU Cycle Time. The off-chip bus has a much lower

frequency and data is transferred with the bus frequency.

The first expression shows the number of the cycles needed

for the transmission of data to the lower memory. The

second expression, illustrates the time needed for a
successful access to L2 cache. Finally the third expression

shows the number of cycles needed for the transmission of

data within a block. This last expression is expressed in the

 Journal of Computer and Robotics 1 (2010) 13-25

23

bus width and the ratio of its frequency to the processor

frequency.
Table 9 demonstrates the miss penalty for the two states

where we have an off-chip and on-chip caches. The values

are illustrated for four caches L1 which have the size of 32

bytes to 256 bytes. For the off-chip cache, the clock cycle

time of a bus is considered to be 4 times greater than the

clock cycle of the processor and the access time to the

cache L2 is also assumed to be equal to two cycles. In this

section we have considered the cache L2 to be an ideal on-

chip cache.

Table 9
Miss rate in the caches

Miss penalty

(L2 off-chip)
(cycle)

Miss penalty

(L2 on-chip)
(cycle)

L2 Access

Time
(cycle)

Bus width

(Byte)
A. T.

Cycle
Block size

(Byte)

10 4 2 32 1 32

14 5 2 32 1 64

22 7 2 32 1 128

38 11 2 32 1 256

Figure 12 illustrates the diagram of the average access

time for the states where we have an on-chip and an off-

chip cache. The configurations have an average access time

of less than two cycles. As you can see, even if we use the

wave pipelining technique, small caches (tough having a

small access time) do not have an appropriate performance.

The reason can be found in the high miss rate of these

configurations. The best situation occurs for the two cache

types of (64KB, 12KB, 2) and (128KB, 256K, 2). The

values for their AATs are respectively equal to 1.006552

and 1.003762. As you can see, the performances of these
two configurations are very close to each other.

Fig. 12. Performance of the caches.

Since the AAT values for these configurations are very

close to each other, we used the BIPS (Billion Instruction

Per Second) metric as a second parameter to select the most

appropriate configuration. AAT presents the average access

time for the various configurations in a processor with a

constant cycle time, where the effect of the access time is

not considered in the processor cycle. This parameter
reveals its effects properly, when computing BIPS. In other

words, BIPS specifies the best configuration for the cache.

The processor can only reach this performance when the

instructions are executed in the expressed clock cycle. But
AAT computes the performance of each configuration

based on a specified clock cycle.
We will evaluate these parameters using Table 10. In

this table, 4 best configurations are stated regarding their

performance. Besides the values for AAT and BIPS, the

consumed power and area are computed respectively by

using a CACTI 2.0 simulator and Cache Design Tools. As

specified in the table, the second option is more suitable

regarding the cost per performance ratio. Even though this

configuration does not have the best AAT, but it is a very

close approximation to the optimized state. It also has a

cost equivalent to the half cost of the first state regarding

the power and the needed area. There is also a big gap

between the value of its BIPS and the value of the first

configuration’s BIPS. The third and fourth options have

nothing superior regarding BIPS, AAT and other

parameters as the consumed power. Even though the fourth

option has a lower area cost, but since there is a big

difference between its AAT value and the value of the

optimized state, it cannot be considered an appropriate

option.

Table 10

Evaluation of selected configurations

Cache Config.

AAT

Off

Chip

AAT

On

Chip BIPS

Access

Time

(ns)

Miss

Rate

(%)

Power

(nj)

Area

(mm
2
)

128KB,256B,2 1.0130 1.0038 2.062 0.900 0.034 8.257 36.262

64KB,128B,2 1.0206 1.0066 2.662 0.672 0.074 4.091 18.499

64KB,256B,2 1.0227 1.0066 2.523 0.731 0.060 6.428 18.666

32KB,256B,2 1.0502 1.0145 2.646 0.612 0.132 5.269 9.865

7.2. Branch Prediction Timing

The second critical operation is the branch prediction

which is performed by using the alloyed method. Table 11

demonstrates the access time for various sizes of PHT and

BHT tables. This table shows that if we use a 64Kbits

predictor and consider that the tables are accessed

sequentially, the total time needed for a branch prediction is

approximately equal to (0.53 + 0.53)=1.06ns (refer to the

third row of Table 11). This amount of time is higher than

the time needed for one cycle. This problem does not occur
for the configurations where we use 2Kbits and 8Kbits

predictors. The solution is to partition the PHT into

multiple physical tables and access all of them in parallel.

In the modified method the local history bits are needed

for the selection of a multiplexer which has an input for the

output of each table. This method is specified in Figure 14.

According to [16] the largest multiplexer needed in this

state is a 16x1 multiplexer. The delay of this multiplexer is

computed by using the Horowitz approximation method

[10] (used in the CACTI simulation) and is approximately

equal to 0.24ns.

M. Shojaei et al. / Designing and Optimizing The Fetch Unit for a RISC Core.

24

Table 11
 Access times for PHT and BHT

 PHT BHT

Cost of Predictor

Entreis
Access Time

(ns)

Entry width

(bit)
 Entreis

Access Time

(ns)

Entry width

(bit)

2K 512 0.33 2 512 0.33 2
8K 2 K 0.40 2 2 K 0.40 2
64K 16 K 0.53 2 8 K 0.53 4

Since PHT table is divided into 16 segments, its access

time is equivalent to the access time of a table with 1024

entries, and equals 0.37ns. Using this technique, the time

needed for a branch prediction operation (used in a 64Kbits

predictor) approximately equal (0.24 + 0.53) = 0.77ns. This

value is considered to be an appropriate amount of time for

the branch prediction. The maximum time needed for the

operation of finding the next address to be fetched (which

is performed by the NLS table) is 0.51ns, which does not

cause any trouble for our cycle. According to Figure 14, the

timing of the instruction fetch related to a 64 Kbytes 2-way

set-associative cache, a 64Kbits predictor and an NLS table

with 1024 entries are specified.

Fig. 13. Modified alloyed branch prediction to simultaneous access to

BHT and PHT.

8. Conclusion

According to the widespread use of many core
architectures, there has been an increased need for an

optimized design and higher performance for each

processing core. Instruction fetch is the most important

factor having an effect on the performance of a RISC

processing core. These processors need a high instruction

width to use of parallelism available in their architectures.

The first step for the execution of multiple simultaneous

instructions is fetching them from the memory. In order to

reach the maximum level of parallelism, we must have a

maximum number of simultaneous instructions.

Fig. 14. Timing of instruction fetch stage.

In order to have a high performance fetch mechanism

for a processing core with four issues, we need to fetch

simultaneously eight instructions in each cycle and also use

a prefetching queue and a self-aligned cache which has two

ports for two simultaneous accesses.

Given the limitations due to the branch instructions in

each fetching step, the alloyed branch prediction method

has been proposed, which has an appropriate accuracy and

the ability to be implemented with low costs. Because of

the superiority of the NLS method (concerning the cost per

performance ratio and also the lower delay compared to the
BTB method) this method has been used for the instruction

fetch prediction. Pipelining the unit of instruction fetch is

performed by obtaining the delay of each component

(assuming the clock cycle to be equal to 0.95ns) and by

using the wave pipelining for the instruction cache and also

dividing the PHT table into smaller tables.

The results show that in order to have a high

performance processing core we need to make a lot of

considerations and that the instruction fetch step is one of

the most complicated units in the modern processors.

 Journal of Computer and Robotics 1 (2010) 13-25

25

References

[1] D. Geer, Chip makers turn to multicore processors, Industry Trends,

IEEE Computer Society, pp. 11-13, 2005.

[2] J. Held, J. Bautista and S. Koehl, From a few cores to many:a tera-

scale computing research overview, Intel White Paper, 2006.

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer and

D. Shippy, Introduction to the cell multiprocessors, IBM Journal of

Reserch and Developments, Vol.49, No.4/5, July/Sept. 2005.

[4] J. L. Hennessy and D. A. Patterson, Computer architecture: a

quantitative approach, Morgan-Kaufmann, 4th edition, 2006.

[5] S.D. Wallace, Scalable Hardware Mechanism for superscalar

processors, Ph.D. dissertation, University of California, Irvine, 1997.

[6] M.K. Akbari, M. Shojaei, O. Aghalatifi and B. Javadi, Design and

simulation of cache controller unit for a risc processor, 7th Annual

CSI Conf. (CSICC 2001), ITRC, Tehran, Iran, 2001.

 [7] K. Skadron and P. S. Ahuja, HydraScalar: A multipath-capable

simulator, Newsletter of the IEEE Technical Committee on Computer

Architecture, Jan. 2001.

[8] D. Burger and T. M. Austin, The simplescalar tool set, Version 2.0,

Technical Report #1342, University of Wisconsin-Madison Computer

Sciences Department, June 1997.

[9] R. E. Kessler, The Alpha 21264 microprocessor, IEEE Micro, pp. 24-

36, Apr.1999.

[10] G. Reinman and N. Jouppi, An integrated cache timing and power

model, Compaq Corp., Western Research Lab., 1999.

[11] M.K. Akbari, B. Javadi, M. Shojaei and O. Aghalatifi, Design and

simulation of fetch unit for a RISC processor, 7th Annual CSI Conf.

(CSICC 2001), ITRC, Tehran, Iran, 2001.

 [12] Standard Performance Evaluation Corp. SPEC CPU 2000

Benchmarks. http://www.specbench.org, 2000.

[13] Charles Price, MIPS IV instruction Set, revision 3.1. MIPS

Technologies, Inc., M ountain View, CA, Jan. 1995.

[14] M. Shojaei, Design and Simulation of cashe system for a RISC

processor with multi-processor capability, MS Thesis, Computre

Engineering and Information Technology Department, Amirkabir

University of Technology, 2001.

 [15] S. Wallace and N. Bagherzadeh, Instruction fetching mechanism for

superscalar microprocessors, Euro-Par'96, Aug. 1996.

[16] B. Javadi, Design and simulation of super-pipelined and super-scalar

system for a RISC processor, MS Thesis, Computre Engineering and

Information Technology Department, Amirkabir University of

Technology, 2001.

 [17] A. N. Eden and T. Mudge, The YAGS branch prediction scheme,

Proc. of Micro-31, pp. 69-77, Dec. 1998.

[18] K. Skadron, M. Martonosi and D. W. Clark, Alloyed global and local

branch history: a robust solution to wrong-history mispredictions,

Technical Report TR-606-99, Princeton Dept. of Computer Science,

1999.

[19] K. Skadron, M. Martonosi and D. W. Clark, Alloying global and local

branch history: taxonomy, performance, and analysis, Technical

Report, Princeton Dept. of Computer Science, 1999.

[20] W. Burleson, M. Ciesielski, F. Klass and W. Liu, Wave-Pipelining: A

tutorial and research survey, IEEE Trans. on VLSI vol.6, no. 3, pp.

464-474, September, 1998.

http://diku.dk/undervisning/2005f/303/MultiCore.pdf
http://www.specbench.org/

