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Abstract 

Despite the extensive deployment of multi-core architectures in the past few years, the design and optimization of each single processing 
core is still a fresh field in computing .On the other hand, having a design procedure (used to solve the problems related to the design of a 
single processing core )makes it possible to apply the proposed solutions to specific-purpose processing cores .The instruction fetch, which 
is one of the parts of the architectural design, is considered to have the greatest effect on the performance  .RISC processors, which have 
architecture with a high capability for parallelism, need a high instruction width in order to reach an appropriate performance  .Accurate 
branch prediction and low cache miss rate are two effective factors in the operation of the fetching unit .In this paper, we have designed and 

analyzed the fetching unit for a 4-way( 4-issue )superscalar processing core .We have applied the cost per performance design style and 
quantitative approach to propose this fetch unit  .Moreover, timing constrains are specially analyzed for instruction cache to enable the 
proposed fetch unit to be in a superpipeline system .In order to solve the timing problem, we have applied the division method to the branch 
prediction tables and the wave pipelining technique to the instruction cache. 
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1. Introduction 

In the past few years, the multi-core architecture has 

been proposed to ameliorate the performance of 

microprocessors and the users’ need for high speed [1, 2]. 

In this architecture we achieve a higher performance by 

using multiple microprocessors in a chip. The 

microprocessors are independent and physically separated 

from each other. They are connected to each other in a 

multiprocessor environment which is placed in a single 
chip. On the other hand, there are a lot of requests for the 

specific-purpose processing cores like DSP, encryption and 

games. The cell processor is an example of such cores that 

has been constructed via the collaboration of the IBM, 

Toshiba and Sony companies [3]. All of these architectures 

have one thing in common; that is an optimized design for 

each processing core in order to reach the best performance 

in the multi-core environments. 

Thus, the design and optimization of each processing 

core is still an important issue in the world of computer 

architecture. So the RISC architecture has been considered 

by the microprocessor designers due to its simple structure 
and great potential for performance improvement. The 

instruction level parallelism (ILP) can be used in this 

architecture in order to improve the performance of the 

processor. Thus the superscalar and superpipeline 

techniques, which can enable the instructions to be 

executed simultaneously, have the greatest effect on 

performance improvement. In superpipelined processors, 

the clock cycle is reduced by dividing the pipeline into 

smaller steps so that more instructions could run 

simultaneously [4]. A superscalar processor runs multiple 

operations simultaneously on separated pieces of hardware 
units. This is done by issuing multiple instructions for 

different execution units and executing them 

simultaneously in a single cycle.  

The examination of the instruction level parallelism has 

shown that 4 to 8 instructions can be executed by using 

limited hardware and a compiler. The main significant 

factors in reaching this potential are the components and 

the techniques used in the processor. The instruction fetch 

efficiency, branch prediction, data and instruction caches, 

resource allocation, decode width, issue width and 

hardware constrains are the factors which have a great 

effect on utilizing this potential [5]. Among these factors, 
the instruction fetch has the greatest effect on the way 

parallelism is utilized in programs [6]. For this reason, the 

instruction fetch step has to be designed according to the 
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existing problems and limitations. Considering the relating 

to the instruction fetch, we have designed and optimized 
this unit for a RISC core. We have applied the cost per 

performance design style and quantitative approach to 

propose this fetch unit. 

The next section will be an introduction to the 

benchmarks and the tools used in the simulation. In the 

third section, we will analyze the problems that exist in the 

instruction fetch and also the solutions that have been 

proposed to solve them. The instruction cache and its 

configuration that has great effect on the instruction fetch 

are discussed in section 4. The mechanism which is used 

for branch prediction is explained in section 5. The section 

6 of this paper is focused on the method used for the 
instruction prediction. In section 7, we will discuss about 

the timing, the delay and access time of each component in 

the instruction fetch that must be placed in a superpipelined 

system. Finally the conclusion and the references are stated 

at the end of the paper. 

2. The Simulation and Benchmarks 

2.1. The Simulator 

A cycle level simulator is used in the different sections 

of this paper. The simulator is called HydraScalar [7] and is 
the modified version of the sim-outorder simulator (from 

the SimpleScalar set) [8]. The main configuration is the 

same model as Alpha 21264 processor [9]. The simulation 

is an out-of-order execution. It uses an issue queue with a 

length of 64 instructions, an issue width of 4 for the integer 

instructions and of 2 for the floating-point ones. The 

memory has a two-level and non-blocking hierarchy. In the 

first level, we have a 2-way set-associative data cache with 

the size of 64 KB and an access time of two cycles. In the 

second level, we have an 8 KB direct mapped cache with 

an access time of 12 cycles. 

The cache miss rate is calculated by using the Single-
path method and the Sim-Cheetah simulator which is a part 

of the SimpleScalar set. The simulations are run by using 

the LRU replacement algorithm for both of the direct 

mapped and 2-way set-associative caches on a benchmark 

of 1500 million instructions in each program set, with a 32 

to 256 bytes block and an 8 to 512 KB cache. 

The CACTI 2.0 simulator is used to measure the 

memory access time [10]. An analytical model is used for 

the computation of the transistor level delay of cache [6]. 

The simulator is also capable of calculating the power 

consumption of the memory structure. The only thing that 
is taken into account in the calculation of the access time in 

the tables is the output data time of the simulations, while 

the comparison time of Tag is ignored. The CMOS 0.15um 

is the technology which is used over all the steps. 

2.2. Benchmarks 

The evaluations are performed using the SPEC2000 

benchmarks [11]. This set consists of SPECint 2000 (14 

integer programs) and SPECfp 2000 (12 floating-point 

programs) [12]. Among all these programs, we have chosen 
7 integer programs and 3 floating-point programs. All of 

them are compiled using the gcc 2.7.2.3 compiler on a 

PISA set of instructions [13]. Also 100 million instructions 

are used from each benchmark. 

3. Instructions Fetch Analysis 

Considering the importance of the instruction fetch, the 

factors that limit the instruction fetch have to be recognized 

and elevated. Branch instructions have two drawbacks on 

instruction fetch. Primarily since the right fetching path is 

not known at the time of conditional branch, we have an 

unknown state for the fetching instruction. Also the 

destination address of a taken branch instruction is not 

defined and should be predicted. After a branch operation, 
the order of the access to the instructions is destroyed. So 

we need to access another line of the cache memory. 

Moreover at least some cycles are needed to find out that 

the predicted path or the indirect branch address is 

incorrect. These few cycles are called the misprediction 

penalty. This penalty dramatically diminishes the 

performance due to the high number of cycles [11]. 

Besides the incorrect branch prediction, control transfer 

can also deteriorate the performance. By control transfer of 

a taken conditional branch, we mean the calls and 

unconditional branches. Figure 1 illustrates how a 
straightforward fetching mechanism would handle the 

control instructions. As we can see, the two instructions 

following the taken branch are discarded in the first 

instruction block. The branch transfers the control to the 

second block, but the starting point is not the beginning of 

the block. As a result, the first instruction of the block is 

also discarded. Another control transfer exists in the second 

block. That is why another instruction is also discarded 

from this block. Four instructions are remained, while we 

have a fetching potential of 8 instructions.  

 
Fig. 1. Simple instructions fetch [5]. 

 
This example demonstrates that transfer control 

instructions cause two problems for the straightforward 
fetching mechanism. The first one is the alignment branch, 

which is caused when the destination address of the branch 

is not found at the beginning of the destination block. This 

problem can be solved in hardware level. The second 

problem occurs when a sequential access to the instructions 

of a line in the cache is stopped by the control transfer 
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instruction. So a new line should be read. Unlike the 

alignment branch problem, this one greatly limits the 
instructions placed in each fetching block. 

3.1. Instruction Fetching Model 

Figure 2 illustrates the different steps of the fetching 

operation. The instruction cache reads the requested block 

of width q and delivers it to the instruction fetcher. The 

instruction decoder receives a block of width n. When we 

use prefetching, then q new instructions of the instruction 

fetcher enter the prefetching queue of length p and n 

instructions come out of it. The inequality q>n can be 

deduced from the diagram. If prefetching is not used, the 

fetching and the decoding widths will be equal, and the 

instruction fetcher will directly transfer the instructions to 

the decoder. The instruction fetcher has the responsibility 
of determining the new instruction counter and transferring 

it to the instruction cache in each cycle. If we have a 

dynamic branch prediction, it will be used here. The new 

instruction counter should be determined in the same cycle. 

Also, after the targeted block has been received from the 

instruction cache, a primary decoding is performed for the 

type recognition of the instructions. Instructions following 

the first transfer control instruction will be invalidated as 

well. 

4. Instruction Cache 

In this section we will discuss about the hardware 

techniques that have been designed and optimized for the 
instruction cache. 

4.1. Simple Cache 

A simple technique used for fetching the instructions 

from the instruction cache is to have equal line size and 

width for the fetching block. In this technique, if the 

starting address of the instruction counter is not located at 

the beginning of the cache line, all the instructions 

preceding this one are invalidated and the number of the 

returned instructions will be less than the fetching width. In 

all techniques a control transfer instruction would 

invalidate all the other instructions. Figure 2 illustrates an 

example of the fetching mechanism which is explained in 

the previous section. 

4.2. Self-aligned Cache 

Destination alignment can be solved by using a self-

aligned cache. In this method the instruction cache reads 

two lines in a single cycle and puts them together. Thus it 

can always return n instructions. This technique can be 

implemented in two ways [14]: 

 Using a cache with two ports and having two accesses in 

each cycle. 

 Designing a 2-way interleave cache. 

 

Fig. 2. Block fetch diagram. 

Figure 3 illustrates an example of this technique. Since 

the program counter starts from the third instruction in line 

zero, the first two instructions are not used. Since the next 

line can be executed in the same cycle, four instructions 

(which are composed of two instructions of the line zero 

and two instructions of line one) are returned. 

 

Fig. 3. Self-aligned fetch n = 4 [5]. 

4.3. Expected Instruction Fetch 

Following are the number of the expected instructions 

for different fetching mechanisms based on an analytical 

model. By using this method, we can find the performance 

of the mechanisms [14]. 

4.3.1. Simple Cache 

Assume that n is the width of a memory block and b is 

the probability of the control to be transferred. Let Li be the 

probability of a control transfer to occur at position i. Also 

let Ei be the probability of the starting address in the block 
to be at the position i. Upon a control transfer, if the target 

address is equally likely to enter any position in a block, 

then: 

 

𝐸1
𝑠𝑖𝑚𝑝𝑙𝑒  𝑛,𝑏 = 1 −

𝑛 − 1

𝑛
𝐶𝑠𝑖𝑚𝑝𝑙𝑒  𝑛, 𝑏  
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𝑠𝑖𝑚𝑝𝑙𝑒  𝑛,𝑏 =
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𝑛
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Where C(n, b) is the probability of a control transfer in a 

block. 
  

𝐶𝑠𝑖𝑚𝑝𝑙𝑒  𝑛,𝑏 =  𝐿𝑖
𝑠𝑖𝑚𝑝𝑙𝑒

𝑛

𝑖=1

 𝑛,𝑏 =
𝑛

1
𝑏 + 𝑛 − 1

 

 

 

(3) 

The total number of the expected instructions, fetched in 

each cycle for a simple fetch is as follows: 

 

𝐹𝑠𝑖𝑚𝑝𝑙𝑒  𝑛,𝑏 =  𝐸𝑖
𝑠𝑖𝑚𝑝𝑙𝑒

𝑛

𝑖=1

 𝑛, 𝑏 𝑟 𝑖, 𝑏  

=
𝐶𝑠𝑖𝑚𝑝𝑙𝑒 (𝑛,𝑏)

𝑏
=

𝑛

1 + 𝑏(𝑛 − 1)
        

 

 

 

(4) 

Equation (4) is the weighted sum of the expected 

number of instructions to be fetched for each possible 

starting position. 

4.3.2. Self-aligned cache 

The probability of the control to be transferred in a 

block of cache is: 

     
𝐶𝑎𝑙𝑖𝑔𝑛  𝑛, 𝑏 = 1 − (1 − 𝑏)𝑛  

 

(5) 

The expected fetch for the self-aligned cache in each cycle 

is equal to the expected execution of the block instructions 

with the size of n. 

  

𝐹𝑎𝑙𝑖𝑔𝑛  𝑛, 𝑏 = 𝑟 𝑛, 𝑏 =
1 − (1 − 𝑏)𝑛

𝑏
 

(6) 

because n instructions will always be read from the 

instruction cache. 

4.4. Evaluation of the Instruction Fetch Mechanisms 

Figures 4 and 5 demonstrate an evaluation of the theory 

related to the instruction fetch mechanisms, where 1/8b  . 

No prefetching is used and it is considered for diverse 

values of the decoder width (n). The value of b and the 

probability of control transfer are chosen to conform to 

RISC architecture [4]. Figure 4 indicates the number of the 

expected instructions to be fetched and in Figure 5, C 
indicates the probability of a control transfer in a block. 

For n=64 the fetching rate is approximately equal to 

1/b . Even though having a large fetching width would 

ameliorate the fetching performance, it cannot be 

implemented in hardware [15].  Figure 4 illustrates the 
expected values to be fetched for three types of cache, 

when b = 1/8. The best case occurs for a block size of n 

and when the instruction rate is equal to n in each cycle. It 

is demonstrated that the difference between the best case 

and the real case increases as n increases. In this case, the 

curve approximates 1/8. The main drawback of the simple 

cache techniques is the slow rate they have to reach this 
value. This Figure demonstrates that we need to have a 

large value for n to achieve the expected performance. 

 

Fig. 4. Expected instruction fetch without prefetching. 

Figure 5 illustrates the expected values for the 

instructions to be fetched in a self-aligned cache, for 

different values of q and p, with prefetching capability, and 

where 1/8b  . At q=6 and p=8, the expected fetch is 

already over 3.95. 

 

Fig. 5. Self-Aligned expected instruction fetch with prefetching (n=4). 

It has been shown that for processors with high issue 

width (n≥8), prefetching is not sufficient and we need to 

fetch two blocks in each cycle. Considering the results 

extracted from the analysis of this mathematical model [5], 

and as we are designing a 4-path processor, we can say that 
it is better to have a fetching length of 8 cycles, a 

prefetching queue and a self-aligned cache to achieve 

higher performance. 
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4.5. Instruction Cache Configuration 

In the previous section we discussed about the 

techniques used in the fetching unit of the processors and 
the impact they have on the design of cache. In this section, 

we analyze and simulate the different configurations of the 

instruction cache. 

We should consider the length of the fetching 

instructions in each cycle prior to the analysis of the results. 

Since 32 bytes are fetched each time (using two 

simultaneous accesses and 4 instructions in each access), 

the smallest size of the cache block is 32 bytes. This size is 

used in the simulation. 

 Figure 6 illustrates the average miss rate for different 

block sizes for 16 programs versus instruction cache size. 

As we can see, the miss rate is very high for the blocks with 
size of 32 bytes. This rate is a result of the fact that all data 

in a block having this size are read in a single fetching 

cycle. This allows for exploiting the locality in an 

optimized fashion. 

 
Cache size 

M
iss rate

 (%
) 

 
Fig. 6. Average miss rate for instruction cache with different 

configurations. 

 

The design decisions applied to the instruction fetch unit 

of a RISC pipeline are based on the performance rather 

than the cost. The higher costs for the instruction cache 

would be acceptable to get the better performance as it is 

the first stage in the pipeline. This fact is more obvious for 

the superscalar processors. These processors fetch multiple 

instructions in each cycle and if a cache miss occurs in the 

instruction cache, a long interrupt happens and the 

performance is deteriorated. Figure 6 demonstrates that the 

cache miss rate in a direct mapped cache is much higher 
than the expected limit and we cannot get a suitable 

efficiency out of this type of memory. 

Obviously, this core needs an instructions cache with a 

very low miss rate. Two instructions are accessed 

simultaneously in each fetching cycle and in more than 

10% of these accesses (this value can reach 50% based on 

the block size) we need to read two blocks simultaneously. 

This can cause the miss probability in each cycle to 

increase. There is also the possibility of a miss to occur 

simultaneously for both of the blocks. This can cause a 

high penalty for the system. It is also predictable to have a 

very low miss rate for caches having a size of 256 bytes 

(especially for the large ones). But this will cause two 
problems that cannot be solved easily. 

First the cache miss penalty increases as the block size 

becomes lager. Also as the block size becomes larger, the 

L2 cache will need larger blocks, therefore its miss rate will 

be increased. Enlarging its block size causes the miss 

penalty to increase. Besides, the power consumption has 

become approximately twice and this cannot be ignored for 

a block having a size of 256 bytes [14]. 

5. Branch Prediction 

Branch prediction is the mechanism used for predicting 

the jumping path prior to the execution. As explained 

before, if branches are mispredicted, the performance of the 

processor is extremely deteriorated. So the first significant 
factor in the selection of a prediction method is the high 

precision. Also the technique that is applied must be fast 

enough to be used in a super pipelined system. 

Branch prediction could be performed statically and 

dynamically. When performed statically, each branch is 

predicted as a taken or not taken, and when performed 

dynamically the prediction takes place at the run time and 

is based on the behavior of the branches. Dynamic 

predictors are used in advanced processors due to  their 

high precision [11]. A Pattern History Table (PHT) is used 

in this method for maintaining each branch’s state. The 
content of each entry in this table is a 2-bit up-down 

saturating counter. The addressing method for the PHT is 

widely proposed in the literature. In the simplest method 

addressing can be done by using the program counter. This 

simple mapping causes a noticeable Interference. Branch 

correlation and two-level adaptive prediction mechanisms 

are used for the effective use of a PHT. Figure 7 illustrates 

the basic diagram for the two-level adaptive branch 

prediction method. 

 
Fig. 7. 2-level adaptive branch prediction. 

 

In this method a k bits branch history register is used for 
addressing a PHT of the size 2k. As you can see, each entry 
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of the PHT contains a 2 bits counter. The prediction state is 

specified based on these two bits in the format of a finite 
state machine. The history register can be a global, single 

register or a Branch History Table (BHT) of registers that 

are addressed using the instruction counter. One of the 

solutions used to solve the problem of interference is to add 

a number of branch addressing bits to the history register 

for addressing the PHT. In this method, two independent 

branches which have the same history are mapped to 

different entries of the PHT. That is why they have 

different addresses [11, 16, 17]. 

5.1. Improvement of Branch Prediction Methods 

The first problem designers found in the existing branch 

prediction structures was the conflict in PHT. But the main 

problem in the two-level structures is the wrong-history 
misprediction [18]. This is due to the existing local and 

global correlation in this structure. The local correlation 

performs the branch prediction based on the past behavior 

of the same branch. In the local correlation the branch 

prediction is performed based on the past behavior of all 

the previous branches. This problem arises due to the fact 

that in most of the programs, some of the branches are 

predicted using the global history and some others are 

predicted using the local history. According to studies, 35 

to 50 percent of the total number of the mispredictions 

occurs in the global predictors related to the wrong-history 
misprediction, while the problem of interference occurs for 

15 to 20 percent of the cases. 

A hybrid predictor can be used as a solution for this 

problem[16]. In this method an appropriate structure is 

created by using the combination of one or multiple 

predictors and also a mechanism for selection of the 

component used for the branch prediction. If one of the 

components is a global predictor and the other one is a 

local predictor, the two types of predictors can be applied 

together [16]. The structure of this predictor is illustrated in 

Figure 8.  

  

Fig. 8. Hybrid branch prediction. 

If the selection mechanism between the components is 

well-done, this method alleviates the problem of wrong-

history misprediction. An instance of such a structure is 

used in the Alpha 21264 processor [9]. The main problem 

of the hybrid predictor is its high hardware cost. This 

problem is due to the fact that the hardware is divided into 

various components and these components can work well 

only if they are big enough. For example, in the Alpha 

21264 processor, more than 28Kbits has been expended for 

this section [9]. 

Other problem with hybrid method is how to design the 

appropriate selection mechanism. A method called the 
alloyed branch prediction has been proposed to solve this 

problem [19]. In this method, we concatenate the global 

and local histories to a number of branch address bits to 

perform the PHT addressing. These changes solve the two 

problems of the hybrid predictors. Moreover, in addition to 

the use of local and global history, there is no need for any 

selection mechanism. The structure of this mechanism is 

illustrated in Figure 9. 

 

Fig. 9. Alloyed branch prediction. 

5.2. Evaluation of the Branch Prediction Methods 

In the following, we compared the two mechanisms for 

branch prediction as hybrid and allotted branch predictions. 

The best possible configurations are used in each structure 

to compare these two methods [19]. These configurations 

are demonstrated in Table 1 and Table 2. Three 

configurations are described in these tables with the cost 

equal to 64 Kbits, 8Kbits and 2Kbits. Since when the cost 

is equal to 2Kbits, the hardware components existing in the 

hybrid method are very small, this cost is infeasible for this 

mechanism. 

 
Table 1 

Configuration of alloyed branch prediction (g: number of bits in the global 

history, p: number of bits in the local history, a: number of bits in the 
branch address) 

2 Kbits 8 Kbits 64 Kbits Alloyed Branch Prediction 
512 2K 16K PHT (entries) 

MAs 512 2K 8K BHT (entries) 
3g, 2p,4a 7g, 2p, 2a 9g, 4p,3a Index 

 

Table 2 

Configuration of hybrid branch prediction 

2 Kbit 8 Kbits 64 Kbits Hybrid Branch Prediction 
-- 2K 16K PHT (entries)  

Gas 
-- 4g , 7a 7g , 7a Index 

-- 512 4K PHT (entries)  

Pas -- 512 1K BHT (entries) 
-- 2p, 7a 8p, 6a Index 

-- 1K 8K PHT (entries) 
Selector 

-- 3g , 7a 6g , 7a Index 

 

The results of the simulation are specified in the form of 

branch prediction precision for the executed benchmarks in 

Table 3. Figure 10 illustrates the average accuracy of the 

branch prediction for various cases. As you can see, when 
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the cost is equal to 64Kbits, the precision of the hybrid 

method is slightly less than the alloyed method. In this 
structure, the hybrid method works well because of the high 

cost. We can observe the difference of these methods by 

studying the comparison of the cost equal to 8Kbits. The 

alloy method works better than the hybrid method, due to 

its decrease in cost. When cost is low, the alloyed method 

works as well as a hybrid predictor and when having low 

cost it works better than the hybrid prediction method. 

 
Table 3 

Branch prediction accuracy for hybrid and alloyed branch predictions 

2 Kbits 8 Kbits 64 Kbits  

Alloyed Alloyed Hybrid Alloyed Hybrid Benchmarks 

0.9891 0.9890 0.9890 0.9901 0.9897 Bzip2 
0.7891 0.8887 0.8690 0.9416 0.9446 Gcc 

0.9120 0.9117 0.9115 0.9113 0.9180 Gzip 

0.9708 0.9789 0.9784 0.9894 0.9922 Mcf 

0.8484 0.8602 0.8605 0.8691 0.8718 Vpr 

0.9140 0.9217 0.9242 0.9393 0.9465 Parser 

0.9198 0.9653 0.9569 0.9817 0.9838 Vortex 

0.9806 0.9850 0.9858 0.9884 0.9937 Ammp 

0.9531 0.9719 0.9698 0.9872 0.9939 Equake 

0.9662 0.9791 0.9784 0.9880 0.9930 Mesa 

 

 

 

Fig. 10. Average accuracy of branch predictions. 

6. Instruction Fetch Prediction 

As mentioned before, the branch prediction structure is 

only for the prediction of branch paths. Thus another 

mechanism is needed for the prediction of branch target. 

This mechanism is called the instruction fetch prediction in 

which the next instruction is predicted to be fetched. The 

branch target buffer (BTB) is one of the mostly applied 

mechanisms for this operation [16]. For the taken 

conditional branches and the unconditional branches a BTB 

is used for the target address prediction [4]. Another 

technique applied for the instruction fetch prediction is 
using an NLS table. In this technique the line address and 

its set are kept in the instruction cache [11]. Indeed the 

pointer to the instruction is maintained instead of the 

instruction itself. The main idea of both methods is 

alleviating the penalty due to the wrong fetching.  

The difference between the NLS and the BTB methods 

is found in the architecture of NLS which is a table without 

any tag. This table contains a pointer to the instruction 

cache which points to the location of the taken target 

branch. Figure 11 illustrates diagram of this architecture. 

As we can see in the figure, the next line is computed to be 

fetched instead of the next address. There are three sources 
for fetching the next instruction. These sources consist of 

the NLS predictor, the fall-through line and the return 

address stack. The NLS predictor consists of the following 

fields: 

 Type field: Table 4 demonstrates the possible 

sources for prediction according to the Type field. This 

field is used to find out the suitable prediction mechanism 

which is specified in Figure 12. If the Type information is 

extractable from the instruction fetched in the fetching 

cycle or from the cache (if the information is predecoded), 

there is no need for this field. 

 The line field: This field consists of the line number 

which should be fetched from the instruction cache. The 

high bits illustrate the line in the instruction cache and the 

low bits specify the real instruction in this line. 

 The set field: It is possible to find n target lines in a 

set-associative cache. This field is used to show the set 

number in an instruction cache. When applying a direct-

mapped cache there is no need for this field. 

 

 

Fig. 11. NLS fetch prediction. 

The NLS architecture assumes that it can decide whether 

an instruction is a branch or is not in the fetch step. Since 

non-branch instructions fetch the fall-through address and 

branch instructions use the NLS predictor, adding this 

information to the instruction can ameliorate the fetching 

precision of NLS. If the fetched instruction from cache is a 
branch instruction, the NLS predictor is applied and the 

Type field is tested for selection of the fetching address. 

The return instruction also uses the return address stack. 
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The conditional and indirect branches also use the cache 

which is specified by the NLS entry. If the Type field 
specifies an instruction to be of the conditional branch type, 

the architecture uses the PHT for the prediction of a branch 

path. 

 
Table 4 

Type field in NLS method 

Prediction source Branch type Bit 1 Bit 0 

 Invalid entry 0 0 

Return stack Return instruction 1 0 

NLS entry, Conditional on PHT Conditional branch 0 1 

Always use NLS entry Other type of branches 1 1 

 

If the branch is predicted to be taken, the line and set 

fields are applied for fetching the instruction cache line. On 

the other hand, if the conditional branch is predicted not to 

be taken the fall-through address is used for fetching the 

next instruction. 

The NLS entries are updated after decoding the 

instruction, specifying the type of the branch and 

determining the target. The instruction type specifies the 

Type field, the branch target, the line and set fields. Only 
the taken branches change the line and set fields. However 

all the branches change the Type field. 

If a conditional branch that is predicted to be not-taken, 

changes the line and set fields, it will cause those fields to 

be cleared. One of the methods used for maintaining the 

NLS is storing the predictors in each line of the instruction 

cache. This method is called NLS-Cache and is applied in 

the Alpha 21264 processor [9]. It has been demonstrated 

that using a table of NLS entries which has no tag is a 

suitable structure for keeping the NLS predictors [16]. This 

structure is used in this processor. 

6.1. Using the Next Line Addresses with the Instruction 

Cache 

In the NLS architecture, there is no complete target 

address to be transferred to the instruction cache. In this 

method only the low bits of the target address (cache line 

index) exist. This is not considered to be a significant issue 

for the direct mapped cache, because testing the tag for the 

target address can be performed at the decoding step of 

pipeline. But if an associative cache is applied, it should 

change so that it could use the next address properly. 

Following are two different methods used for this reason. 

In the standard implementation of an associative cache, 

the appropriate line is selected from a set by comparing the 

whole tag with various sets. The NLS predictor set field is 
used for all branch instructions to predict the instruction 

cache set. But a full comparison of the tag is performed 

when using the fall-through line address. 

The second method applied for using the address of the 

next line with an associative cache is a little more accurate 

than the previous method and can ameliorate the 

performance of the cache. In this method, we assume that 

each line of the cache has a set field. This field resembles 
the NLS set field and predicts the set which is related to the 

location of fall-through line in each cache line. Since the 

set field is used in each access, only one set of cache can 

work at a time and the tag comparison operation can be 

performed at the time of decoding (like the direct mapped 

method). If prediction of the set is wrong and the tag is not 

identical to the target address computed in the decoding 

step, we need to test other sets to find the right entry or to 

find out a cache miss. This design is suitable for an 

associative cache L2. If the first prediction is wrong, the 

remaining set of the instruction is tested. We need to use 

other methods for caches with an associative level higher 
than two [14]. 

6.2. Comparison of BTB and NLS 

Compared to BTB, NLS architecture has a better cost 

per performance ratio. Another advantage of the NLS is 

that its table should not have any tag, while a BTB must be 

2-way or 4-way associative so that it could reach a higher 

performance. We have approximated the NLS and BTB 

access times with various sizes by applying the CACTI 

simulator. As illustrated in Table 5 the access time to a 4-

way BTB is approximately two times greater than a NLS 

table with the same size. So the NLS architecture has a 
better access time than BTB. 

 
Table 5 

 Access times for NLS and BTB 

NLS Table 

Access Time (ns) 

4-way BTB 

Access Time (ns) 
2-way BTB 

Access Time (ns) 
Entries 

0.38 0.88 0.88 128 

0.40 0.92 0.91 256 

0.44 0.96 0.93 512 

0.47 1.00 0.97 1024 

0.51 1.08 1.12 2048 

7. Fetch Timing 

Pipelining a logical circuit is a low level task, for which 
we need to design all the circuit in a transistor level. Then, 

we can perform the pipelining operation based on the 

obtained delays. Considering that the task of designing the 

instruction fetch step is high level, our approach is only to 

present an approximate model for the scheduling of the 

circuits that have been designed. Since the majority of the 

RISC processors have simple control circuits, the memory 

and table components (containing branch prediction tables, 

register file and instruction issue queues)  are considered  

as the critical path. In order to pipeline the fetch step, we 

assume the access time for the register file to be the 

processor clock cycle. The register file consists of 80 
integer registers, 80 floating-point (64 bit) registers and an 
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access time equal to 0.95ns [16]. Considering these 

assumptions, we perform the instruction fetch timing. 

7.1. Instruction Cache Timing 

The AAT (Average Access Time) has an important role 

in cache (especially instruction cache) design. In the 

following section, various parameters corresponding to 

AAT have been simulated and finally AAT has been 

computed. Considering other effective parameters, the 

appropriate options will be used for the final decision to be 

made. 

7.1.1 Evaluation of the Access Time 

In this section, we will discuss about the timing model 

for the instruction cache. The cache is the starting point of 

execution in the instruction fetch unit of a processor. As 

mentioned before, since the majority of the RISC 

processors have simple control circuits, only the memory 
and table components are presented as the critical path for 

the timing model. The instruction cache is one of the 

critical paths that can be effective for the performance of 

the processor. 

The instruction cache should be designed in a way that it 

could obtain the appropriate access time and cycle for the 

processor to be able to attain the maximum performance. 

Table 6 shows various configurations of cache. As you 

can see the access time of the cache is higher than 1ns, 

except for the cases where its size is equal to 8KB or 

16KB. This fact is very important since the processor cycle 
(considering no overhead) is accomplished in 0.95ns and 

all the caches which have an appropriate miss rate have 

access time of more than two cycles. Of course it is 

completely natural for the access time to increase for 

caches with bigger size and higher degree of associativity. 

Since a cache with a low miss rate is needed for the design 

of an instruction cache, we need to find an appropriate 

method for the optimization of the access time. 

 
Table 6 

Access time for instruction cache (the access times less than 0.95 ns are 

highlighted) 

  32 Byte 64 Byte 128 Byte 256 Byte 

Bit Rate  DM 2-Way DM 2-Way DM 2-Way DM 2-Way 

8 KB  0.681 0.956 0.685 0.936 0.708 0.956 0.752 1.075 

16 KB  0.762 1.018 0.762 0.998 0.784 1.002 0.828 1.127 

32 KB  0.933 1.167 0.933 1.114 0.966 1.128 0.962 1.224 

64 KB  1.136 1.310 1.136 1.294 1.119 1.343 1.171 1.462 

128 KB  1.567 1.585 1.365 1.519 1.347 1.577 1.430 1.799 

256 KB  1.767 1.919 1.786 1.886 1.789 1.991 1.927 2.230 

512 KB  2.241 2.530 2.255 2.474 2.255 2.580 2.397 2.823 

The wave pipelining technique is used as a solution to 

this problem. This technique is considered to be one of the 

most suitable methods for the optimization of cache access 

time. 

7.1.2. Wave Pipeline 

One of the widely used methods to decrease the 

execution cycle of a logical circuit is pipelining. Common 
pipelining methods used for optimization cause an 

overhead on the delay, cycle time, area and the power 

consumption. Also a low level design of the circuit has to 

be presented to obtain the timing parameters and it has to 

be implemented in transistor level to get useful information 

about the timing of the pipeline [14]. 

The extra overhead of the cycle time is due to the extra 

time needed for the propagation of the signals through the 

synchronizer, the time needed for the measurement of the 

components of the synchronizer before the storage of 

signals, and also the undesirable deviation of the clock 

pulse in the time of the synchronization signal arrival. 
In common pipelines, delay is defined as the time 

elapsed from readiness of input data (in the first step of the 

pipeline) till the time when the output data reaches the last 

step of it. The extra delay is caused by the overhead due to 

creation of the pipeline. In logical circuits with standard 

pipelines and common clock pulses for all the 

synchronizers, we have a partitioning overhead when 

combinational logical circuits cannot be divided into 

multiple steps with maximum and equal propagation 

delays. 

The area and the consumed power impose extra 
overhead which is due to additional transistors and wires, 

the increase in clock buffer area and power needed for the 

input of the synchronizer to operate. The additional 

transistors and wires are used for the implementation of 

registers and synchronizer latches. 

Compared to standard pipelining, wave pipelining is a 

technique that enables digital systems to attain higher clock 

pulse. This technique relies on the limited propagation 

delay of signals in a combinational logical circuit. This 

delay is used for data storage. Thus multiple waves of data 

can be propagated in various regions of a logical circuit. 

Indeed this method exploits the circuit propagation delay 
efficiently. 

Since each data wave is exploited after being sure that 

there is no interference, the performance yield from the 

wave pipeline of synchronizer systems is higher than the 

performance of standard pipelines. Wave pipeline can 

attain the performance of physical switching. 

This optimization is the result of decreasing the extra 

overhead existing in standard techniques. Since there is no 

synchronizer, the cycle overhead existing in the previous 

method is omitted. The circuit cycle is obtained from the 

changes in the signal propagation delay of the circuit and 
the delay of the input/output register. In the wave pipeline, 

since there is no need for dividing the circuit into 

independent units (by using synchronizer), the extra 

overhead of this operation is omitted. The area and the 

power consumed by the circuit are decreased by ignoring 
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the internal synchronizers and the corresponding circuits in 

the standard pipeline. Pipelining a memory by using this 
method causes some limitation that we consider them in the 

following. List of parameter used in the analysis are listed 

in Table 7. 

Conventional synchronizer circuits must consider the 

timing limitations for longest path and the race in the 

network. Race limitations necessitate the data to be able to 

pass through a synchronizer operator, be propagated in the 

network and then enter the next synchronizer operator in a 

single clock cycle. Thus the lowest time needed for the 

propagation of data from one synchronizer operator to the 

next synchronizer operator, must be less than the starting 

time elapsed from the output edge till the locking time in 
the same cycle. Thus the result from actual input data will 

not have any interference with the result from the previous 

data. The limitations imposed by the longest path, 

necessitate that the results of the inputs of this cycle, be 

valid till the next cycle for the next synchronizer operator. 

Thus the time needed for the propagation of data from a 

synchronizer operator in the combinational network to the 

next synchronizer operator must be less than the time 

interval between the starting edge of the actual clock cycle 

to the locking edge of the next clock cycle. 

 
Table 7 

List of parameters in the equations 

Maximum propagation delay in a combination network Tmax 

Minimum propagation delay in a combination network Tmin 

Minimum rise time and fall time of shortest path in a 

network 
RFmin 

Maximum rise time and fall time of longest path in a network RFmax 

Maximum clock skew ΔC 

Minimum setup time Ts 

Minimum holding time Th 

 

In addition to these two common limitations found in 

pipelining systems, the different data waves need not to 

conflict with each other in any point of the combinational 

circuit in wave pipelining. The following equation 

expresses these limitations. 

 

𝑇𝑐𝑙𝑘 ≥  𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛 + 2∆𝑐 + 𝑇5 + 𝑇𝑕

+
𝑅𝐹𝑚𝑖𝑛 + 𝑅𝐹𝑚𝑎𝑥

2
 

 

(8) 

In addition to the output limitation, wave conflict will 

not happen in the whole logical network.  Here is the 

equation representing that: 

 

𝑇𝑐𝑙𝑘 ≥  𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛 + ∆𝑐 + 𝑇𝑚𝑠 +
𝑅𝐹𝑚𝑖𝑛 + 𝑅𝐹𝑚𝑎𝑥

2
 

(9) 

Where Tmax is the smallest time that a voltage must be 

stable for the logical levels to be able to become stable 

reliably and correctly. More details concerning the 

limitations of wave pipelining can be found in [20]  

Table 8 illustrates the memory access time after 

simulation, by using the wave pipelining method and the 

possible states being specified (the optimized values are 

stated in bold). 

 
Table 8 

Access times for instruction cache with wave pipeline (optimized cases 
with wave pipeline are highlighted) 

 32 Byte 64 Byte 128 Byte 256 Byte 

Bit Rate DM 2-Way DM 2-Way DM 2-Way DM 2-Way 

8 KB 0.681 0.478 0.685 0.936 0.708 0.956 0.752 1.075 

16 KB 0.762 0.509 0.762 0.998 0.784 1.002 0.828 1.127 

32 KB 0.933 0.583 0.933 1.114 0.966 1.128 0.962 0.612 

64 KB 1.136 1.310 1.136 1.294 1.119 0.672 1.171 0.731 

128 KB 1.567 1.585 1.365 1.519 1.347 1.577 1.430 0.900 

256 KB 1.767 1.919 1.786 1.886 1.789 1.991 1.927 2.230 

512 KB 2.241 2.530 2.255 2.474 2.255 2.580 2.397 2.823 

Using this method, various desirable states are generated 

having an appropriate access time and low miss rate. Our 

final choice will be one of these configurations. 

7.1.3. Performance Evaluation of the Instruction Cache 

We have calculated the miss rate and the access time to 

the stated configurations in section 4. In the following 

section, we will calculate and discuss about the average 

access time to these configurations. 

The penalty of the cache miss rate is the delay that a 
processor suffers so that data transfer from the lower level 

memory to the cache is needed. If we consider the lower 

level of the memory to be ideal, the number of the penalty 

cycles can be calculated by using the following equations 

[14]: 

 
𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =  𝐴𝑑𝑑𝑟. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 × 

𝑙2𝐵𝑢𝑠 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐶𝑃𝑈 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
+  𝐿2  𝐶𝑎𝑐𝑕𝑒 𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑦𝑐𝑙𝑒 + 

 
𝑙1𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝐿2  𝐵𝑢𝑠 𝑊𝑖𝑑𝑡𝑕
×

𝑙2𝐵𝑢𝑠 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐶𝑃𝑈 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
 

 

 

(10) 

 
This equation computes the miss penalty for the on-chip 

and off-chip L2 cache. The delay due to the off-chip L2 

cache can be calculated using the expression L2 Bus Cycle 

Time / CPU Cycle Time. The off-chip bus has a much lower 

frequency and data is transferred with the bus frequency. 

The first expression shows the number of the cycles needed 

for the transmission of data to the lower memory. The 

second expression, illustrates the time needed for a 
successful access to L2 cache. Finally the third expression 

shows the number of cycles needed for the transmission of 

data within a block. This last expression is expressed in the 
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bus width and the ratio of its frequency to the processor 

frequency. 
Table 9 demonstrates the miss penalty for the two states 

where we have an off-chip and on-chip caches. The values 

are illustrated for four caches L1 which have the size of 32 

bytes to 256 bytes. For the off-chip cache, the clock cycle 

time of a bus is considered to be 4 times greater than the 

clock cycle of the processor and the access time to the 

cache L2 is also assumed to be equal to two cycles. In this 

section we have considered the cache L2 to be an ideal on-

chip cache. 

 
Table 9 
Miss rate in the caches 

Miss penalty 

(L2 off-chip) 
(cycle) 

Miss penalty 

(L2 on-chip) 
(cycle) 

L2 Access 

Time  
(cycle) 

Bus width 

(Byte) 
A. T. 

Cycle 
Block size 

(Byte) 

10 4 2 32 1 32 

14 5 2 32 1 64 

22 7 2 32 1 128 

38 11 2 32 1 256 

Figure 12 illustrates the diagram of the average access 

time for the states where we have an on-chip and an off-

chip cache. The configurations have an average access time 

of less than two cycles. As you can see, even if we use the 

wave pipelining technique, small caches (tough having a 

small access time) do not have an appropriate performance. 

The reason can be found in the high miss rate of these 

configurations. The best situation occurs for the two cache 

types of (64KB, 12KB, 2) and (128KB, 256K, 2). The 

values for their AATs are respectively equal to 1.006552 

and 1.003762. As you can see, the performances of these 
two configurations are very close to each other. 

 

Fig. 12. Performance of the caches. 

Since the AAT values for these configurations are very 

close to each other, we used the BIPS (Billion Instruction 

Per Second) metric as a second parameter to select the most 

appropriate configuration. AAT presents the average access 

time for the various configurations in a processor with a 

constant cycle time, where the effect of the access time is 

not considered in the processor cycle. This parameter 
reveals its effects properly, when computing BIPS. In other 

words, BIPS specifies the best configuration for the cache. 

The processor can only reach this performance when the 

instructions are executed in the expressed clock cycle. But 
AAT computes the performance of each configuration 

based on a specified clock cycle. 
We will evaluate these parameters using Table 10. In 

this table, 4 best configurations are stated regarding their 

performance. Besides the values for AAT and BIPS, the 

consumed power and area are computed respectively by 

using a CACTI 2.0 simulator and Cache Design Tools. As 

specified in the table, the second option is more suitable 

regarding the cost per performance ratio. Even though this 

configuration does not have the best AAT, but it is a very 

close approximation to the optimized state. It also has a 

cost equivalent to the half cost of the first state regarding 

the power and the needed area. There is also a big gap 

between the value of its BIPS and the value of the first 

configuration’s BIPS. The third and fourth options have 

nothing superior regarding BIPS, AAT and other 

parameters as the consumed power. Even though the fourth 

option has a lower area cost, but since there is a big 

difference between its AAT value and the value of the 

optimized state, it cannot be considered an appropriate 

option. 

 
Table 10  

Evaluation of selected configurations 

Cache Config. 

AAT 

Off 

Chip 

AAT 

On 

Chip BIPS 

Access 

Time  

(ns) 

Miss 

Rate 

(%) 

Power 

(nj) 

Area  

 

(mm
2
) 

128KB,256B,2 1.0130 1.0038 2.062 0.900 0.034 8.257 36.262 

64KB,128B,2 1.0206 1.0066 2.662 0.672 0.074 4.091 18.499 

64KB,256B,2 1.0227 1.0066 2.523 0.731 0.060 6.428 18.666 

32KB,256B,2 1.0502 1.0145 2.646 0.612 0.132 5.269 9.865 

7.2. Branch Prediction Timing 

The second critical operation is the branch prediction 

which is performed by using the alloyed method. Table 11 

demonstrates the access time for various sizes of PHT and 

BHT tables. This table shows that if we use a 64Kbits 

predictor and consider that the tables are accessed 

sequentially, the total time needed for a branch prediction is 

approximately equal to (0.53 + 0.53)=1.06ns (refer to the 

third row of Table 11 ). This amount of time is higher than 

the time needed for one cycle. This problem does not occur 
for the configurations where we use 2Kbits and 8Kbits 

predictors. The solution is to partition the PHT into 

multiple physical tables and access all of them in parallel. 

In the modified method the local history bits are needed 

for the selection of a multiplexer which has an input for the 

output of each table. This method is specified in Figure 14. 

According to [16] the largest multiplexer needed in this 

state is a 16x1 multiplexer. The delay of this multiplexer is 

computed by using the Horowitz approximation method 

[10] (used in the CACTI simulation) and is approximately 

equal to 0.24ns. 
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Table 11 
 Access times for PHT and BHT 

 

  PHT  BHT 

Cost of Predictor 
 

Entreis 
Access Time 

(ns) 

Entry width 

(bit) 
 Entreis 

Access Time 

(ns) 

Entry width 

(bit) 

2K  512 0.33 2  512 0.33 2 
8K  2 K 0.40 2  2 K 0.40 2 
64K  16 K 0.53 2  8 K 0.53 4 

 

 

 

Since PHT table is divided into 16 segments, its access 

time is equivalent to the access time of a table with 1024 

entries, and equals 0.37ns. Using this technique, the time 

needed for a branch prediction operation (used in a 64Kbits 

predictor) approximately equal (0.24 + 0.53) = 0.77ns. This 

value is considered to be an appropriate amount of time for 

the branch prediction. The maximum time needed for the 

operation of finding the next address to be fetched (which 

is performed by the NLS table) is 0.51ns, which does not 

cause any trouble for our cycle. According to Figure 14, the 

timing of the instruction fetch related to a 64 Kbytes 2-way 

set-associative cache, a 64Kbits predictor and an NLS table 

with 1024 entries are specified. 

 

 

Fig. 13. Modified alloyed branch prediction to simultaneous access to 

BHT and PHT. 

 

8. Conclusion 

According to the widespread use of many core 
architectures, there has been an increased need for an 

optimized design and higher performance for each 

processing core. Instruction fetch is the most important 

factor having an effect on the performance of a RISC 

processing core. These processors need a high instruction 

width to use of parallelism available in their architectures. 

The first step for the execution of multiple simultaneous 

instructions is fetching them from the memory. In order to 

reach the maximum level of parallelism, we must have a 

maximum number of simultaneous instructions. 

 

 

Fig. 14. Timing of instruction fetch stage. 

In order to have a high performance fetch mechanism 

for a processing core with four issues, we need to fetch 

simultaneously eight instructions in each cycle and also use 

a prefetching queue and a self-aligned cache which has two 

ports for two simultaneous accesses. 

Given the limitations due to the branch instructions in 

each fetching step, the alloyed branch prediction method 

has been proposed, which has an appropriate accuracy and 

the ability to be implemented with low costs. Because of 

the superiority of the NLS method (concerning the cost per 

performance ratio and also the lower delay compared to the 
BTB method) this method has been used for the instruction 

fetch prediction. Pipelining the unit of instruction fetch is 

performed by obtaining the delay of each component 

(assuming the clock cycle to be equal to 0.95ns) and by 

using the wave pipelining for the instruction cache and also 

dividing the PHT table into smaller tables. 

The results show that in order to have a high 

performance processing core we need to make a lot of 

considerations and that the instruction fetch step is one of 

the most complicated units in the modern processors. 
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