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Abstract 
A brain-computer interface (BCI) is a form of assistive technology that facilitates communication between users and 

machines by interpreting brain signals. The P300 wave, an event-related potential (ERP) in oddball paradigms, is generated 

approximately 300 milliseconds after the presentation of the target stimulus selected by the user in the brain. Accurate 

recognition of these waves in a P300 spelling system enables the user to write letters. Classification of P300 waves in an 

EEG-based spelling system faces several challenges, including accurate detection of P300 waves and handling the high 

dimensionality of these signals. This study presents a Convolutional Deep Learning Framework (CDLF) for character 

recognition using EEG signals. The proposed model uses CNN with a one-dimensional kernel to extract features over time. 

The proposed model was applied to two public datasets: BCI Competition III dataset II and BCI Competition II dataset IIb. 

The proposed model showed an average character recognition rate of 95% at epoch 15 for BCI Competition III dataset II and 

100% at epoch 15 for BCI Competition II dataset IIb, without using any feature and channel selection methods before 

classification. The proposed model is promising for brain-computer interface classification applications in the spelling 

domain. 
 

Keywords: Brain-Compute Interface (BCI), Electroencephalogram (EEG), Spelling, Classification, Convolutional Neural Network 
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1. Introduction 

A brain-computer interface (BCI) serves as a 

communication and control link between the human 

brain and machines. These systems enable people to 

operate devices without relying on motor skills. BCI 

works by measuring brain activity [1-3]. These 

systems are used in both healthy and sick people and 

are proving to be particularly beneficial for people 

who are limited in their mobility, such as people 

with amyotrophic lateral sclerosis (ALS) [2,3]. For 

such patients who have difficulties with 

conventional communication methods, BCI offers an 

alternative means of interaction [1,3]. In this context, 

EEG signals are used for non-invasive and cost-

effective measurement of brain activity [2-4]. 

Recently, BCI systems based on EEG signals have 

been used in various fields of medicine and robotics 

[1]. 

 

The electroencephalogram can be used to record 

P300 ERP in brain-computer interface systems in 

various domains, e.g. motor imagery [1], drowsy 

driving [5] and especially in spelling tasks [2-4], [6-

9]. These P300 waves are positive spikes that 

manifest approximately 300 milliseconds after the 

presentation of an odd-ball paradigm, such as rows 

or columns of a character matrix displayed to 

individuals for character recognition [2,3]. Accurate 

estimation of P300 is critical for effective character 

recognition [3]. Repetition of signal recording for 

each stimulus is becoming increasingly important to 

aim for a low signal-to-noise ratio to produce 

reliable responses [2]. 

BCI systems operate through the steps of signal 

recording via the amplifier and storage in the 
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computer, signal processing, signal classification 

based on different stimuli, and transmission of the 

classification results to the output device. During the 

signal processing and classification phases, various 

operations such as feature or channel extraction and 

selection can be performed [3]. 

BCI systems function through the steps of signal 

recording via the amplifier and storage in the 

computer, signal processing, signal classification 

based on various stimuli, and transmission of the 

classification results to the output device. During the 

signal processing and classification phases, various 

operations, such as feature or channel extraction and 

selection, can be performed [3]. 

In the following, some work done by others in the 

field of character recognition with similar datasets is 

described. They were applied to the Competition III 

dataset II and the Competition II dataset IIb with the 

spelling task. Some of the studies were presented by 

focusing on the goal of EEG signal classification in 

BCI systems. Many of them were based on the 

traditional machine learning methods or used pre-

selected/hand-crafted features and channels [10]. A 

modified genetic algorithm known as Dual-Front 

Genetic Algorithm (DFGA), which focuses on 

selecting the optimal channel for each individual, 

was presented in the study [2]. Several experiments 

were conducted using different evolutionary and 

meta-heuristic algorithms in both single and multi-

objective forms. DFGA, applied to the Competition 

III dataset II, achieved an average accuracy of 94.5% 

in character recognition at epoch 15, even after using 

20 optimal channels determined by the algorithm.  

Research [11] presented an integrated probabilistic 

model for spelling ERP. In this study, the introduced 

probabilistic classifier inherently incorporates a 

Dynamic Stopping (DS) strategy. This method uses 

identical parameters for three individuals from two 

different datasets. The results of the classifier show 

an improvement in spelling speed and accuracy, 

especially when augmented with language models 

(LM) and dynamic stopping. However, it achieved 

an accuracy of about 96% for Competition III-

Dataset II and 92% at epoch 15 for Competition II-

Dataset IIb. 

In the study [12], another classification method for 

character recognition was presented, which includes 

discrete wavelet transform (DWT) preprocessing and 

a set of linear Fisher classifiers. The performance of 

the proposed method achieved 100% accuracy in 

BCI Competition II and 95% accuracy in BCI 

Competition III at epoch 15. The classifier achieved 

approximately 90% accuracy in Competition II at 

epoch 3 using selected channels determined by the 

model. The study [13] presented BN3, a 

convolutional neural network developed for P300 

signal detection. In BN3, batch normalization was 

applied to the input and convolutional layers to 

prevent overfitting. Although the model showed an 

impressive accuracy of about 96% for Competition 

III and 100% for Competition II at epoch 15, it 

achieved an accuracy of about 96% for Competition 

II at epoch 8. Additional CNN models, as presented 

in studies [3] and [14], achieved an average accuracy 

of approximately 94% and 91% at epoch 15 for 

Competition III. Table 1 provides a comparison of 

relevant studies conducted on similar datasets with 

spelling tasks. 
 

Table 1 
Summary Of The Related Works On BCI With Spelling Task 

On The Similar Databases (Percentage) 

Method Channel 

Selection 

Dataset/ 

Subject  

Number 

Mean 

Accuracy 

(≈ 15th 

Epoch) 

DFGA [2] Yes Comp. III / 2 94 

CNN [3] No Comp. III / 2 94 

BPSO [9] Yes Comp. III / 2 89.9 

LM + DS [11] No Comp. III + 

Comp. II 

/ 3 

95 

Ensemble Fisher’s LD 

(EFLD) [12] 

Yes Comp. III + 

Comp. II 

/ 3 

96 

CNN (BN3) [13] No Comp. III + 

Comp. II 

/ 3 

97 

CNN [14] No Comp. III + 

Comp. II 

/ 3 

94 

CNN-RG-MINMAX 

(CNN)/ 

CNN-RG-MINMAX 

(MDRM) [14] 

No Comp. III + 

Comp. II 

/ 3 

98/ 

96 

CNN-LSTM/CLSTM-

AE [15] 

Yes Comp III / 2 90/94 

SVM [16] Yes Comp. III /2 94 

Deep Neural Network 

[17] 

Yes Comp. III /2 93 

CDLF [This study] No Comp. III + 

Comp. II 

/ 3 

96 

CDLF [This study] No Comp. III / 2 95 

CDLF [This study] No Comp. II / 1 100 

 

Traditional machine learning methods have 

produced satisfactory results in EEG classification, 

but they often struggle to capture the nonlinearities 
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inherent in high-dimensional, multi-channel EEG 

data. Compared to the models based on 

convolutional neural networks introduced by others, 

the proposed model has a simpler structure and 

consists of simpler layers. However, it has shown 

better performance in character recognition. Unlike 

the works of others, such as model [3], in the 

proposed model, batch normalization layers are used 

to accelerate convergence, which leads to reducing 

the time complexity of model training. In addition, 

unlike some works based on optimization algorithms 

of others, such as models [2,9], by using the 

information from all the channels of each subject, 

the desired performance has been achieved, and no 

information from the proposed model has been 

added or removed in a tasteful or manual manner. 

The proposed model is less complicated than some 

other works, such as [2,9,14]. More complex models 

require more time and computing resources to train 

and run.  

The proposed model has high potential to improve 

its performance by combining the concept of 

convolution with other powerful concepts compared 

to previous works, such as [14,15], which did not 

achieve impressive performance even by combining 

many concepts. Extracting features from the data 

and developing an accurate brain-computer interface 

system remain challenging tasks that open up 

opportunities for further research in this area, 

particularly through the use of advanced deep 

learning techniques. 

The rest of the article unfolds as follows: Section 2 

outlines the proposed methodology. The 

experimental results and the corresponding 

discussions are detailed in Section 3 and the 

conclusions are presented in Section 4. 
 
 

2. Methodology 

2.1. Pre-Processing 

 

The EEG signals were subjected to an initial 

segmentation in which a 650-millisecond segment 

was extracted from the onset of each gain. Given the 

sampling rate of 240 Hz for the BCI Competition 

datasets, the extracted segment for each channel 

comprised 156 points for both datasets. The data 

were then downsampled to a sampling rate of 120 

Hz. The EEG samples were then band-pass filtered 

from 0.1 to 20 Hz using an eighth-order Butterworth 

band-pass filter. Finally, the signals were normalized 

by subtracting the time feature of each channel from 

the average time value across all channels for each 

sample. The mean was then divided by the standard 

deviation of the time value across all channels for 

each sample. The mean and standard deviation were 

calculated for each individual sample and electrode. 

Each signal segment consisted of 78 data points. 

2.2. Proposed Deep Learning Model 

 

The obtained EEG signal samples from the 

preprocessing section were used as input in the input 

layer of the proposed CDLF model. Figure 1 gives 

an overview of the block diagram of the proposed 

CDLF. 

This novel Convolutional Deep Learning Network 

uses three convolutional layers to extract the spatial 

features of the EEG signal data over time in the 

CDLF classifier. Two dense layers (100/2 dense 

nodes) were involved in the fusion part of the model. 

In this context, a standard convolutional layer, more 

precisely a two-dimensional convolution (2D), 

whose kernels are structured in a one-dimensional 

(1D) format was used. This means that the 

organization of the sensor data within the split input 

window had no influence on the extracted features in 

the final convolutional layer. This property resulted 

from the use of a [number of channels×1] kernel in 

the first layer of the convolution, in which the values 

of the EEG channels were merged using 10 filters 

and a linear activation function. Consequently, the 

spatial and temporal features were not combined in a 

single kernel. 

In the second convolutional layer, a 2D convolution 

with a linear activation function and a [1×26] kernel 

five times the size of the first layer was implemented 

for signal sampling. The third layer of convolution 

for sampling in the CNN used 2 filters with a [1×1] 

kernel. In addition, a batch normalization (BN) layer 

was applied after each convolution operation to 

accelerate the convergence of the CNN. 

Furthermore, steps of size [1×1], [26×1] and [1×1] 

were used in the first, second and third layers of the 

convolution, respectively. Then, the output of the 

last layer was flattened, resulting in a vector with six 

features, which was then passed to the fusion layer 

of the proposed model for classification. The 

classification architectures of the proposed CDLF 

are shown in Figure 2. 
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Fig. 1. Overview block diagram of the proposed CDLF 

 

3. Result and Discussion 
 

In this section, the BCI Competition datasets were 

subjected to the application of the proposed method, 

where feature extraction was performed 

automatically using convolutional layers and 

classification was performed using the CDLF 

classifier. The results of the proposed method were 

then compared with those of other studies for both 

competitions. 

3.1. BCI Competition Dataset 

The proposed method was applied to dataset II of 

BCI Competition III [18] and dataset IIb of BCI 

Competition II [19]. 

BCI Competition III dataset II: This dataset contains 

P300 evoked potentials from subjects A and B 

following a 6 × 6 matrix paradigm described in [20] 

and originally introduced by Farwell and Donchin 

[21]. During the five-session experiments, the 36-

character paradigm was presented, as shown in 

Figure 3, and participants were instructed to focus on 

the characters forming a given word. The six rows 

and columns of the matrix were randomly alternated 

at a frequency of 5.7 Hz, with each row or column 

being emphasized for 100 milliseconds, followed by 

a 75 millisecond blank period. Two out of 12 

reinforcements showed the target character (a 

specific row and a specific column). This set of 12 

flashes formed an epoch that took a total of (100 + 

75) × 12 = 2.1 seconds for each character 

recognition. The repetition of each epoch for 

individual characters occurred 15 times, resulting in 

a total of 180 intensifications per character. A 2.5-

second interval with an empty spelling matrix was 

inserted between successive spellings of two 

characters. For signal acquisition, a 64-channel data 

acquisition system was used, band-pass filtered in 

the range of 0.1 to 60 Hz and digitized at a 

frequency of 240 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The proposed CDLF model architecture 

 
 

For each A and B subjects of Competition III, the 

training and test databases comprise 85 and 100 

characters respectively. Consequently, for each 

character, there are 30 (2 × 15) samples for the P300 

response and 150 (10 × 15) samples for the non-

P300 response. In the offline step, where 85 

characters were used, there were 2550 samples 

representing the target and 12750 samples (85 × 

150) representing the non-target. 

BCI Competition II dataset IIb: This dataset is very 

similar to BCI Competition III dataset II, with the 

only difference being that 42 characters were used 

for training and 31 characters for testing. In the 

offline sessions (42-character spelling), a total of 

7560 trials (42 × 12 × 15) were performed. 

Similarly, during the online sessions (31 characters), 

a total of 5580 trials (31 × 12 × 15) were recorded 

for subject C [11-14]. 
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Fig. 3. The P300 speller paradigm 

 

3.2. Evaluation Criteria 

The proposed CDLF model utilized the area under 

the curve (AUC) and Equations (1)-(4) to evaluate 

performance. The performance evaluation results of 

the proposed CDLF classifier are shown in Tables 2 

and 3. The performance evaluation criteria are as 

follows [9,22,23]. 
 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (1) 

Recognition Rate =
𝑇𝑃+𝑇𝑁

𝑁𝑃
× 100                        (2) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                 (3) 

F_Measure = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                        (4) 

 

Where True Positive (TP) refers to the number of 

correctly identified P300 samples. True Negative 

(TN) indicates the number of non-P300 samples 

correctly identified as such. False Positive (FP) is the 

number of non-P300 samples incorrectly identified 

as P300. False Negative (FN) is the number of P300 

samples incorrectly identified as non-P300. The total 

number of samples that include both P300 and non-

P300 samples is referred to as NP. In addition, the 

recognition rate refers to the recognition of P300 

from non-P300 and the character recognition rate 

refers to the correct recognition of characters. 

3.3. Evaluation Results 

To better assess the performance of the proposed 

model, it was tested on two databases and 

compared with models used in previous studies 

for the same databases (see Section 1). The results 

showed that the novel CDLF model has 

significant potential for recognizing characters in 

various subjects (A, B and C). 

 

Table 2 

P300 Detection Results For Subjects A & B (Competition III) & C (Competition II) (Percentage) 
Method Subject TP TN FP FN Recognition rate Recall Precision F_Measure AUC 

CDLF 

[This Study] 

A 

B 

C 

Mean 

1995 

2141 

798 

- 

10766 

11197 

3861 

- 

4234 

3803 

789 

- 

1005 

859 

132 

- 

70.89 

74.10 

83.49 

. 

0.665 

0.713 

0.858 

0.745 

0.320 

0.360 

0.502 

0.394 

0.432 

0.478 

0.634 

0.515 

0.761 

0.802 

0.920 

0.828 

 

Table 3 

Character Recognition Rate (Percentage) For Different Proposed Classifiers (Competition III & Competition II & EEG Dataset) 
Method Subject Epochs 

1           2           3            4          5           6           7            8           9          10          11        12         13         14         15 

CDLF 

[This Study] 

A 

B 

C 

Mean 

21 

37 

70 

36 

54 

70 

51 

54 

90 

 

55 

67 

100 

57 

75 

100 

62 

78 

100 

77 

80 

100 

78 

84 

100 

85 

87 

100 

 

88 

93 

100 

 

88 

94 

100 

 

90 

95 

100 

 

92 

95 

100 

 

94 

96 

100 

96.6 

94 

96 

100 

96.6 

 

In this study, an innovative deep learning 

convolutional architecture was introduced to address 

uncertainties in character recognition by EEG 

signals. To address the prevalence of noise, a batch 

normalization layer was incorporated into the model 

after the convolutional layers. This layer makes the 

network less susceptible to significant variations in 

spatial features by adjusting the inputs. The 

proposed CDLF model has shown almost better 

performance. In particular, the proposed CDLF 

model achieved an average test value accuracy 

(character recognition rate) of 96.6% in all three 

subjects in epoch 15, outperforming most other 

models [2,3,9,11,12,14-17] in character recognition 

for these subjects. 

The data presented in Tables 2 and 3 show that 

subject C achieved more favourable evaluation 

results in Competition II compared to all other 
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subjects in both data sets. In addition, this subject 

achieved an accuracy of 100% after the third epoch 

and showed an accuracy of approximately 90% after 

the third epoch, outperforming other work [11-14]. 

In addition, subject B showed better results 

compared to subject A, with an accuracy of over 

93% after the tenth epoch. Figure 4(a) shows the 

average character recognition rate (accuracy) of the 

proposed CDLF classifier compared to other studies 

for Subject C. Figure 4(b) also shows the average 

accuracy of the proposed novel CDLF classifier for 

all subjects during epochs 1 through 15. Table 4 

shows the average accuracy values in percentages 

for epochs 3, 4, 5, 10, and 15 in Competition II.  
 

Table 4 

The Character Predicted And Accuracy (In %) Of The Proposed 

T2TFCRNN (GRU) On BCI Competition II 
Ref.  

3 

 

4 

Epochs 

5 

 

10 

 

15 

E-DCDNN   [24] 90. 100 100 100 100 

Kaper et al.  [25] 83. 96. 100 100 100 

EFLD           [12] 90. 100 100 100 100 

BN3              [13] 87. 90. 93. 100 100 

CNN-RG- 

MINMAX MDRM 

[14] 

93. 96. 93. 100 100 

CNN-RG- 

MINMAX CNN  

[14] 

96. 96. 100 100 100 

CNN [14] 90. 90. 90. 100 100 

CDLF  

[This study] 

90. 100 100 100 100 

 

Furthermore, it is important to note that all channels 

and features are used without selecting the most 

appropriate ones. This approach aims to provide a 

fair basis for comparing classifiers. The accuracy 

figures in both datasets show that the novel classifier 

performs commendably in character classification, 

especially after 15 epochs for all datasets and 

especially after 3 epochs for Competition II. The 

results show that the proposed CDLF classifier 

effectively classifies the majority of the 100/31 

characters in each subject's test dataset (subject A: 

94%, subject B: 96%, subject C: 100%, and mean: 

96.6%). 

These results are significant in that the proposed 

approach uses all data in an unrefined manner and 

outperforms other studies with multiple subjects. 

Some studies, such as [2, 9, 12-17], either selectively 

manipulated the training dataset or excluded the last 

three sign-related EEG signals of subject C in 

Competition II by not including them in the training 

of the model. Despite these challenges, the proposed 

CDLF model achieved comparable results. 

 

(a)

 

(b) 

Fig. 4. The 3th, 4th, 5th, 10th and 15th epochs accuracy of the 

proposed classifiers (CDLF) are shown in (a) for Competition II. 

The average accuracy of the proposed novel CDLF classifier for 

all subjects during the 1st to 15th epochs are shown in (b). 

 

4. Conclusion 

In this study, a novel convolutional deep learning 

framework called CDLF is presented. CDLF was 

developed for the effective classification of 

characters based on EEG signals. Its accuracy is 

comparable to and in some cases exceeds that of 

previous studies in Competition III. In addition, 

CDLF outperforms the results of previous studies in 

Competition II. The results of the proposed classifier 

show superiority over other studies, especially in 

epoch 3 of Competition II and in many studies in 
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epoch 15 in both contests with three subjects. The 

convolutional layers in the CDLF model 

automatically extract features without the need for 

channel selection. In addition, a BN layer was 

applied after each convolutional operation to 

accelerate the convergence of the CNN. 

Future research efforts could explore the use of 

deeper models by integrating uncertainty 

management methods, such as type 2 fuzzy set 

theory, with deep neural networks. The reason for 

this is the robustness of these models in solving real-

world problems, as demonstrated by recent 

applications of deep learning models [26,27], 

especially when dealing with high levels of 

uncertainty associated with unstable and time-

dependent data [26]. Consequently, the proposed 

framework provides ample opportunities for 

improvement and fine-tuning. The identified 

limitations can be considered as challenges for future 

research initiatives 
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