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Abstract 
 

Epileptic seizure prediction has been one of the interesting topics among researchers in recent years. Recent evidence 

suggests that, in many seizures, changes in the preictal signal begin minutes before the ictal begins, raising hopes of 

predicting the seizure onset before it occurs. Convolutional neural network (ConvNet) is a powerful computational tool with 

deep learning capacity which is able to detect complex structures in data. In this study, we employed a ConvNet and a set of 

techniques to make optimal use of the existing data for an end-to-end learning. Multi-channel non-invasive raw EEGs from 

the CHB-MIT database were used for training of the proposed model. The proposed method resulted in sensitivity of 92.05% 

and false prediction rate of 0.073/h with the cross-validation approach in distinguishing preictal and ictal. We obtained a 10-

minute seizure prediction horizon that is relatively higher than the values obtained in other researches. This longer time 

period can give the patient more opportunity for preventive actions. Seizure occurrence period was computed nearly 20 

minutes which lets the patient wait less for the seizure to occur and this in turn makes him have less anxiety. Furthermore, a 

feature map visualizing method was employed in the present work to decode the employed deep network and to understand 

how it learns and what it learns when trying to solve the seizure prediction task. By investigating feature maps of the used 

ConvNet’s middle layer, we observed that the proposed network retains most of the beta and gamma band properties in 

layers. 
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1.Introduction 

 

Epileptic seizures are transient signs or symptoms of 

abnormal, intense, and synchronous activities of the 

nervous system caused by electrical discharge of 

neurons. The percent of the time spent with potential 

disease related behavioral symptoms is very small 

and, in some patients, seizures may occur every few 

months or every few years. Despite the low 

frequency of clinical symptoms, uncontrollable 

seizures have profound effects on the patient's life. 

The effects of seizures are due to their occasional 

behavioral occurrence and the unpredictability of 

more than 99.95% when the patients are not having 

seizures and should be able to live relatively normal, 

but the stress of seizure may affect their daily lives. 

It also deprives them of a number of activities, such 

as driving, swimming, etc., and reduces their quality 

of life [1]. 

Therefore, the ability to accurately predict seizures 

can make significant changes in the lives of people 

with epilepsy and give them more confidence and 
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freedom and, it can reduce sudden deaths in patients 

with epilepsy. These patients could also take the 

medicine when needed and not constantly. The 

electroencephalogram (EEG) signal has a higher 

time resolution than other brain imaging methods 

and it is mostly used to predict epileptic seizures. 

EEG signal is basically known as a multivariate time 

series of a nonlinear and multidimensional system. 

Noteworthy, the complex and uncertain relationship 

between timeseries can be realized only with 

nonlinear functions with a high degree of freedom. 

Nowadays, with the advances in machine learning, 

powerful algorithms such as Convolutional 

Networks have been proposed capable of performing 

well in natural language processing, object detection 

and classification. They are also a powerful tool for 

discovering complex structures in data [2]. 
 

One of the hypotheses for predicting epilepsy is that 

the changes in brainwave patterns occur as the ictal 

states are reached. There are two perspectives for 

identifying these changes during the preictal interval. 

In the first perspective, only the preictal interval is 

analyzed and it is compared to a predefined 

threshold level [3]. In the second perspective, the 

differentiating patterns between the preictal and the 

interictal intervals are identified and then a binary 

classification is employed [4]. The commonality 

between these two perspectives is the extraction of 

the best features from the EEG signal. 

Seizure prediction horizon (SPH) is the interval 

between the alarm and the onset of the seizure 

occurrence period (SOP). For the alarm to be true, 

seizures should begin after SPH and within the SOP. 

A schematic in Figure 1 shows the intervals of SPH 

and SOP. Two metrics that are often used to evaluate 

the predictive systems are false prediction rate (FPR) 

and sensitivity. FPR is the number of incorrect 

alarms per hour when they a seizure is predicted but 

no seizure occurs in the SOP [4]. Sensitivity is 

defined as the percentage of correctly predicted 

seizures on the total number of seizures. In clinical 

use, more SPH is considered to confront and to deal 

with vital actions and, less SOP is to reduce patient 

anxiety. 

 
Fig. 1. A schematic shows the seizure occurrence period and the 

seizure prediction horizon 

 

In the majority of work done to diagnose and predict 

epileptic seizures, a number of time domain features 

(such as median, mean, variance, standard deviation, 

maximum and minimum, etc.) and/or frequency 

domain features (such as power spectrum density, 

etc.) and/or time-frequency domain features (such as 

wavelet transform coefficients, Pseudo-Winger-Will, 

etc.) and/or  chaotic features (such as fractal 

dimension, the largest Lyapunov exponent, 

approximate entropy and spectral entropy and 

correlation dimension, etc.) are extracted. A 

combination of such features has also been 

considered by some researchers. In a work [3], 

researchers predicted epileptic seizures by 

introducing a similarity index based on symbolic 

dynamics techniques (statistical behavior of local 

extremes).  They reported sensitivity of 63.75% and 

FPR of 0.33/h for data of 21 patients from Freiburg 

database1 and sensitivity of 96.66% and FPR of 

0.33/h for a subset of eight patients. In the last few 

years, various methods have been proposed to select 

the most appropriate combination of features and 

classifiers, including extracting linear features from 

the EEG signal using autoregressive coefficients [5]. 

The emergence of dynamical systems theory 

introduced a number of discriminative nonlinear 

features including Lempel-Ziv, noise level, 

correlation entropy complexity, and correlation 

dimension. Usage of such measures on intracranial 

EEG resulted in sensitivity of 86.7% and 92.9% with 

FPR of 0.126/h and 0.096 /h for SOP=30.50 minute 

and 10-sec forecast horizon [6]. Tailored feature 

extraction was customized and performed 

independently for each patient of the CHB-MIT 

database resulting in a sensitivity of 98% and an 

FPR of less than 0.05/h [8]. Furthermore, sensitivity 

of 98.52% and FPR of 0.04/h was obtained with 

few-shot learning [9]. A research team achieved FPR 

= 0.11-0.02/h and sensitivity of 99% by using the  

                                                           
1 https://physionet.org/content/chbmit/1.0.0/ 

https://physionet.org/content/chbmit/1.0.0/
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features of statistical moments, zero crossings, 

Wavelet Transform Coefficients, PSD, graph theory, 

cross-correlation and using Long short-term memory 

(LSTM) for CHB-MIT data for 15-120 minutes SOP 

and zero SPH [13]. In another work, a patient-

specific method using the common spatial pattern 

(CSP) for feature extraction with linear discriminant 

analysis (LDA) classifier was reported which 

resulted in 89% sensitivity, FPR = 0.39/h, and 

120min SPH for 24 subjects of the CHB-MIT 

database [10]. In [11], authors presented a patient-

specific prediction algorithm using multiple features 

of spectral power EEG signal and a support vector 

machine (SVM) for classification. They reported 

sensitivity of 97.5% and FPR = 0.27/h for 18 

patients of the Freiburg dataset. Generally, patient-

specific feature-based platforms resulted in high 

sensitivity and low FPR. Since the best feature 

combination is extracted independently for each 

patient, patient-specific systems are more reliable. 

However, the need for a specialist and being time 

consuming, as well as the changes required for each 

new patient are some of the problems against 

generalizability. Furthermore, given the changing 

brain dynamics, the selected feature subset may not 

work well for a new patient in future.  

Manual extraction of features is not only time 

consuming but also imperfect. When faced with a 

wide range of data, it is challenging to engineer 

features and achieve high-level features. Generalized 

networks remove this constraint and allow data 

features to be extracted and learned without explicit 

structural information, and in fact create an 

automated feature extraction path. In [12], authors 

have used the Recurrent Neural Network (RNN) to 

learn temporal dependencies between successive 

samples. In [14], by using resting-state functional 

magnetic resonance imaging (rs-fMRI) and EEG 

data and LSTM computational tool, 96% sensitivity 

was achieved. In another study, authors used a 

convolution neural network (CNN) on Functional 

near-infrared spectroscopy (fNIRS) and EEG data of 

49 patients. They reached 95.24%-100% sensitivity 

in predicting seizures [15]. In [16], by using CNN 

and SVM tools on dataset of five dogs and two 

patients, researchers achieved 0.72% sensitivity in 

prediction. Another study trained a CNN based on 

the wavelet coefficients of the EEG signals and 

achieved a sensitivity of 87.8% and an FPR of 

0.147/h on epileptic patients of the CHB-MIT 

dataset [17]. However, a reliable predictive model to 

be tested over a larger dataset and be capable of 

considering variabilities between patients is still 

required. Such a reliable algorithm can be employed 

in an assistive alarm system in future. 

In this work, we present a ConvNet-based model for 

predicting epileptic seizures using various 

techniques in order to use the existing data to 

optimally. We focus on achieving proper SPH and 

SOP using multi-channel EEG signals without the 

need to access hand-crafted features or channel 

selection. 

Deep network architecture allows the reuse of 

features (mid-level features that are shared between 

all classes). It also has the potential to create high-

level features. Generally, lack of sufficient training 

samples to efficiently train a ConvNet in predicting 

epileptic seizures is an issue. In this paper, we intend 

to use an architecture that makes effective use of 

existing training instances. We also employ some 

techniques to achieve higher accuracy with a shallow 

architecture and fewer parameters. There are 

different perspectives on applying a convolutional 

network to EEG data. In some cases, a time-

frequency transform like wavelet transform or STFT 

[4] is applied on multichannel EEG and next the 

resulting matrix is fed into the network. Another 

view is to use raw EEGs without any feature 

extraction which as an end-to-end learning. One of 

the problems with the deep networks is that they act 

like a black box, and we have little knowledge of 

what they are learning. The concept ofvisualizing 

feature maps helps to figure out which input features 

are preserved and to recognize the patterns that the 

filters respond to. Feature maps in the ConvNet are 

the result of convolution of the filters with input. 

Previously it was shown that [24] the change of 

power spectrum in feature map can differentiate 

interictal. An abnormal increase in the amplitude of 

gamma-band frequencies before seizures was 

reported for five epileptic patients in [24]. In this 

work, we also check to see which frequency band 

contains more information in ictal/preictal 

discrimination. For this reason, we take short-time 
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Fourier transform (STFT) from the middle layer 

feature maps for each EEG band and then identify 

the EEG frequency band(s) that have a greater 

amplitude in the feature maps by evaluating the 

time-frequency spectrum. This procedure. A 

statistical analysis is further conducted to show the 

significance of differences between interictal and 

ictal periods. 

The rest of this paper is as follows. In section 2, 

materials and methods have been presented. In 

section 3 results are reported. Then, remakes and 

concluding points are brought in discussion and 

conclusion sections respectively.  
 
 

2. Materials and Methods 
 

We employed Boston Children’s Hospital (CHB)-

MIT dataset [24] in this work. This data contains 

scalp EEGs from 23 pediatric patients with 844h of 

continuous EEG recording and 163 seizures. All 

signals were sampled at 256 samples per second 

with a 16-bit resolution. The EEG signals were 

captured with 22 electrodes by the 10-20 recording 

protocol. In this study, we considered only those 

patients whose signal was recorded at least 30 

minutes before the seizure onset. For this reason, the 

usable data has decreased to 18 ones. The employed 

channels included F7-T7, T7-P7, P7-O1, FP1-F3, 

F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-

C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8 covering 

the whole brain. Used the LOOCV perspective to 

assess the generalizability of the results. Table 1 

shows the sensitivity and FPR for SPH=10min and 

SOP=20min for each patient and their mean. 
 

2.1. Preprocessing 

 

Our method is based on two-class classification to 

distinguish the preictal from the interictal. Since we 

use 16 raw EEG channels simultaneously, we need 

to use a two-dimensional convolution neural 

network (2DConvNet). But it is important to know 

how far the preictal interval is from the onset of the 

seizure because the longer the prognosis horizon, the 

better for the patient since there is enough time to 

confront and to deal with vital actions and, the 

seizure occurrence period should not be long so that 

the patient have less anxiety. Based on the results 

obtained to select the most appropriate length of the 

prediction horizon, about 10 minutes before the 

onset of the seizure is the best prediction horizon 

[17].  
 

We considered the signal of 10 to 30 minutes before 

the onset of the seizure as the preictal interval. The 

signal was passed through a band-pass filter with a 

middle frequency of 0.5-100Hz. The 60Hz 

frequency power line noise was also eliminated via a 

notch filter. One of the important issues in a 

classification task is the balance of the dataset which 

means that we should have an equal number of data 

points in each class. Due to the fact that the signal 

length is often different for each patient in the 

recorded data, we need to use overlap to select data 

from signals with shorter length and use it for 

training. It is noteworthy that we should not use 

overlap to select the test data, and for balancing, we 

consider a signal with a shorter length as a basis.  

 

Therefore, after normalization, by passing a sliding 

window with a length of 5 seconds with variable 

overlap, we select segments with a length of 1280 

samples from the preictal and interictal intervals in 

equal proportions due to the balance of data of the 

both classes (Figure 2). As a result, each segment is 

a two-dimensional matrix with a size of 16×1280, 

which means that each channel with a length of five 

seconds (1280 samples) is located in a row. 
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Fig. 2. 5-second sliding window with variable overlap S that 0≤ S ≤0.5.h

 

2.2. ConvNet Architecture 
 

In this study, we used a ConvNet which is a subtype 

of feed-forward neural network, inspired from the 

animal's visual cortex. ConvNets are a powerful 

representation learning tool that can detect complex 

structures in data. They require little preprocessing, 

meaning that the model itself is responsible for 

learning the features that are extracted manually in 

traditional algorithms [16].  

When we face high-dimensional inputs, the 

connection of the neurons to all of the neurons of 

their previous layer is impractical. Therefore, each 

neuron is connected to only a small area of the 

neurons of the previous layer which is called the 

receptive field. It has been shown that in deep 

networks the low-level features are learned in the 

early layers and higher-level concepts are learned as 

they deepen. It is a logical view that by adding more 

layers, we will be able to learn more concepts [18]. 

However, as the network deepens, the number of 

learnable parameters of the network also increases, 

and it can be said that increasing capacity does not 

always improve performance. The second influential 

factor is the availability of sufficient data for the 

model. Otherwise, the model only specializes in 

training data and will not perform well in the test 

data and in fact “overfitting” will occur. Therefore, 

there must always be a reasonable proportion 

between the capacity of the model and the volume of 

the data. One of the challenges in EEG signal 

analysis to predict epileptic seizures is the lack of  

 

 

large datasets. Hence, one of our efforts in this work 

is to apply some strategies on the adopted  

architecture in order to use the existing data in an 

optimal way. 

The schematic of a two-layer convolutional network 

has been shown in figure 3. Input to this network is a 

row EEG signal with size (n ×16 × 1280) where n is 

the number of input datasets. There are two layers of 

convolution each containing a 3×3 kernel and single 

stride. Afterwards, the convolution output is first 

flattened and then it is followed by a fully connected 

layer with two hidden layers and one output layer is 

used. In every two hidden layers. In this network, the 

two neurons of the last layers which will determine 

the classes of “preictal” or “interictal” use the soft-

max activation function and the rest of the layers use 

the Leaky ReLU activation function. More details on 

layers and training strategies are as follows. 
 

2.2.1. Homogeneous and Symmetrical Filters 
 

Each ConvNet layers consist of a set of learnable 

filters, which have a small receptive field, but extend 

through the full depth of the input volume. During 

the forward pass, each filter is convolved with the 
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input matrix. By computing the dot product between 

the filter matrix and an input, a feature map is 

produced. The results have shown that the use of a 

large number of small filters yields better nonlinear 

outcomes and higher accuracy [19]. Using 

homogeneous and symmetric architecture has also 

been proposed by [20]. In the architecture of the 

proposed network in this paper, 3*3 filters are used 

in different layers. 
 

2.2.2. Pooling 
 

Pooling performs downsampling operations in the 

spatial dimension. The result is a reduction in the 

number of parameters and consequently a reduction 

in computational volume and prevention from 

overfitting. The Pooling layer helps to make the 

representations of the higher layer immutable in 

comparison to small displacements in the input and, 

it also uses inputs of different sizes to do some tasks 

[21]. However, improper use reduces its 

performance. It is believed that large feature maps, 

especially in the primary layers, provide more 

information on the network than the smaller ones 

[20]. Networks with the same depth and parameter 

that use large feature maps are more accurate [2], so 

the use of fast downsampling is not recommended, 

especially in the primary layers. 

2.2.3. Dropout 
 

Dropout is a new regularization strategy proposed by 

Hinton and Srivastava [22]. A number of nodes are 

usually dropped out in each stage and then they are 

returned in the next stage in order to prevent 

overfitting. It is also interpreted as a set of several 

networks that are trained with different subsets of 

training data. The effect that dropout in the 

convolution layer has on the robustness of the 

network is proportional to noise input. It was 

suggested that dropout is applied to all convolution 

layers instead of applying solely on the fully-

connected (FC) layer. This seems to increase 

accuracy and generalization of a deep network [20]. 

We apply this technique to all layers of the proposed 

network. 
 

2.2.4. Batch Normalization 
 

Batch normalization is a technique for faster training 

and improves the accuracy. It encompasses 

normalizing the input to neural networks. It also 

normalizes the activations in intermediate layers to 

have zero mean and unit variance [23]. This 

technique was used in all layers of the proposed 

network. 

  

Fig. 3. Two layers of the convolutional layer are applied to the input, which is an EEG signal with size (n * 16 * 1280), n is the number of 

input datasets. Each convolution layer contains a 3*3 kernel and single stride. Dropout and batch normalization is applied to all layers. A 

max-pooling layer of 2*2 size is then applied in with two strides. Afterwards, the convolution output is first flattened and then an FC (fully 

connected) with two hidden layers and one output layer is used. In every two hidden layers, the Dropout and Batch normalization is 

performed. The two neurons of the last layers use the soft-max activation function and the rest of the layers use the Leaky ReLU activation 

function. 
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2.3. Evaluation Method 
 

Cross-validation is a model evaluation technique that 

determines the extent to which the results of a used 

when constructing the model. These data are used to 

evaluate and measure the performance of the model 

to predict new data. Thus, we resort to estimating the 

statistical analysis on a data set can be generalized 

and be independent of the training data. This method 

relies on the data that are observed but not model 

error based on the data that have been set aside for 

cross-validation to measure the efficiency of the 

model and its optimality. The leave-one-out cross-

validation (LOOCV) technique uses all data, except 

one, for training and the residuaring data for the 

method testing. This garlic is repeated N times; N 

presents the number of data folders. With this work 

all data will be used to train and test the method. The 

error rate of the method is equal to the average error 

rate per iteration. 
 

3. Results 

Simulations were done on a core i7 pc with 16 GB 

RAM and 512 GB SSD. We trained the network in 

google collaboratory (Google Colab). The results of 

the implemented network with leave-one-out cross-

validation for SOP=20 min and SPH=10 min are 

tabulated to Table 1 for 18 patients of the introduced 

dataset. Information for the 18 processed recordings 

were presented in the first three columns of table 1. 

Notably, the LOOCV technique was used as 

described before to provide generalizability for the 

network. Table 1 shows the sensitivity and FPR for 

SPH=10min and SOP=20min for each patient 

separately and in average as well. 

 

  

Table 1 

CHB-MIT 18 cases (Multi-channel raw-EEG) Results of the proposed model 

Patient 

Name 

 Seizure Gender Age(years) Sensitivity (%) FPR (/h) 

Chb01  7 F 11 94.09 0.10 

Chb02  3 M 11 95.00 0.03 

Chb03  7 F 14 93.18 0.16 

Chb04  4 M 22 95.45 0.11 

Chb05  5 F 7 91.36 0.03 

Chb06  10 F 1.5 92.72 0.05 

Chb07  3 F 14.5 84.34 0.08 

Chb09  4 F 10 83.63 0.03 

Chb10  7 M 3 95.90 0.06 

Chb14  9 F 9 91.98 0.14 

Chb15  10 M 16 98.09 0.03 

Chb16  7 F 7 88.54 0.03 

Chb17  3 F 12 86.73 0.08 

Chb18  6 F 18 98.18 0.11 

Chb19  3 F 19 99.09 0.07 

Chb20  5 F 6 85.90 0.04 

Chb21  4 F 13 98.72 0.11 

Chb22  3 F 9 84.00 0.07 

Avg.     92.05 0.07 
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Fig. 4 (a). Average model sensitivity (%) for different number of layers and kernels of different sizes (b). Average model FPR(/h) for the 

number of different layers and kernels of different sizes . 

 

In order to assess the performance of the proposed 

method, we performed some evaluation tests. The 

first one evaluates the performance of the network 

versus its structure. Figure 4 shows the average 

model sensitivity and FPR vs the number of layers of 

the network for different kernel sizes. It shows that 

by increasing the number of layers and consequently 

by increasing the capacity of the network, results get 

worse. The reason is that the number of usable data 

is little and the network is probably overfitted. 

Therefore, we do not go beyond the two layers for 

such a network and the classification task. with the 

above model and two layers of convolution, the 

results are acceptable and comparable to existing 

systems in the field.  
 

In the next test of the proposed model, we calculated 

time-frequency transforms of the generated feature 

maps in the network to investigate the amplitude of 

the frequencies in the spectrum. This amplitude was 

employed as a distinguishing feature between 

preictal and interictal samples. A sample Short-time 

Fourier transform (STFT) from the middle layer 

feature-map was shown in figure 5. The dimension 

of the feature-map for an input with dimensions of 

16*1280, after passing through the convolution layer 

and max-pooling of 2*2, changed to 8*640, and then 

was flattened to dimensions of 1*5120. Next, the 

STFT transform was applied.  

An active frequency range is defined, such as the 

frequency range from A to B in Figure 5, to specify 

the frequency components that are employed in 

computation and classification. Figure 6 shows the 

mean and variance of the feature map transformation 

that were calculated for each EEG frequency bands 

including delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 

Hz), beta (14-34 Hz), the gamma (34-44 Hz), and for 

each class including interictal and ictal.  
 

The analysis of feature maps of the network in figure 

6 shows that the trained ConvNet model makes use 

of the beta and gamma spectra mostly. Also, it can 

be inferred that features were most prominent in the 

beta band for interictal and in the gamma band for 

preictal. 

Fig.5. Short-time Fourier transform (STFT) from the middle layer 

feature-map. 



Journal of Computer & Robotics 16 (2), Summer and Autumn 2023, 37-48 

 

45

 

 

 
Fig. 6. The average and variance of feature-maps for each of the Delta, Theta, Alpha, Beta and Gamma frequency bands. For interictal 

input (blue) and preictal (red). 

 

Finally, the proposed method was compared with 

some state-of-the-art. The results have been reported 

in Table 2 showing a relatively good sensitivity and 

FPR for the selected prediction horizon. 

However, we can see that the combination method 

presented in [25] has yielded a relatively high 

sensitivity of 99.72% and FPR=0.004. Also 

references [14] and [26] has higher sensitivity (96% 

and 98.6%, respectively) compared to our method. 

Noteworthy, the SPH has been set to zero in all of 

them while we have selected a 10min SPH in our 

implementation. Furthermore. References [8] and 

[11] had higher sensitivity (97.5% and 98% 

respectively) as well although using a patient-

specific method that needs to be performed 

independently for each patient and not generalizable. 

 
Table 2 

 Comparison of the results of the state-of-the-art. 
SPH(sec) SOP(min) FPR Sensitivity(%) Database      Classifier Feature      Authors 

0 45 0.33 63.75 FB Threshold symbolic dynamic Niknazar et al. 2016[3] 

0 5 - 82.44 23Chb SVM Phase locking value Cho et al. 2017[27]      

0 20±5 0.06 86.6 6FB Threshold Zero-crossing rate,  

astatistical index 

Miri et al. 2011[28] 

10 30 0.20 87.07 21FB RBD Bayesian inversion of  

power spectral density 

Aarabi et al. 2017[6]      

0 15-120 0.11 90 Chb LSTM WTC,PSD Tsiouris et al.2018[13]   

300 30 0.06 

0.16 

81.2 

81.4 

13FB 

13Chb 

CNN STFT Truong et al. 2018[4] 

0 120 0.39 89 24Chb LDA CSP Alotaiby et al.2017[10]     

0 50 0.05 98.68 17Chb  SVM Power spectral density Zisheng et al.2016[26] 

0 10 0.14 87.8 23Chb CNN Wavelet transform Khan et al.2018[17] 

0 60 0.004  

 

99.72 

 

22Chb DCAE+ Bi-

LSTM  

Raw EEG Hisham  2019 [25] 

 

- - 0.045 95.85 Chb CNN+ELM STFT Qin et al. 2020[29] 

600 20 0.073 92.02 18Chb ConvNet Raw EEG This work 

 

 

 

 
 

 

 

 



J.Nazari et al/ Epileptic Seizure Prediction using Multi-Channel Raw EEGs with Convolutional ….. 

46

 

 

4. Discussion 
 

Today generalized neural networks and especially 

ConvNet have shown to be powerful computational 

tools for predicting epileptic seizures. One of the 

main advantages of such methods is that 

they   eliminate hand-crafted feature extraction 

procedures and do not need a feature engineering 

step which has always been controversial. 

Furthermore, they have better generalization. 

However, the use of such networks is almost new 

and more work is still needed to be done to certify 

their extensive use.  

ConvNet networks can automatically select the best 

features and as they apply a hierarchical strategy on 

data in multiple layers, they can pick a range of 

features from low-level to high-level which well 

corresponds to a binary classification task. 

We used raw EEGs as input in this work and as it 

was mentioned there is no longer need for a hand-

crafted feature extraction step. Noteworthy this is 

very vital for a real-time task such as seizure 

prediction paradigm. Our results show that using 

Leaky ReLU as an activation function and prior 

batch normalization as well as homogeneous, small 

size and large number of filters, especially in the 

first layers, and the use of dropouts in all layers can 

enhance performance. On the other hand, besides of 

prioritizing metrics of performance such as 

sensitivity and FPR, we focused on setting a suitable 

alarm period in this work. It is obvious that in a 

predictive system, a patient should receive an alarm 

some time before seizure onset to have enough time 

for preventive actions. By setting reasonable SOP 

and SHP intervals and training the network based on 

this requirement, we can guarantee any patient using 

this system that he will not have seizures occur for 

the upcoming 10 minutes after receiving the alarm. 

This waiting time is almost enough for the patient to 

take preventive actions and, on the other hand, after 

this period of time the patient will wait for a seizure 

occurrence in a maximum of 20 minutes. In 

comparing ConvNet with other methods with the 

same SOP and SPH in Table 2, our results showed 

superiority. Furthermore, investigating the 

ConvNet’s middle layer feature map revealed some 

facts about the network performance such as 

knowing which input features are maintained in the 

layers and which EEG signal frequency band is more 

discriminative for preictal and interictal 

classification.  
 

5. Conclusion 
 

 Prognosis of the occurrence time of seizure onset 

can make a variety of treatments possible. For 

example, instead of continuous medication, causing 

neurological complications, treatment can be limited 

to times when seizure occurrence is probable. For 

example, patients who are taking persistent 

antiepileptic drugs can take seizure preventive drugs 

such as episodic ones. In this paper, a new 

perspective was proposed to predict epileptic 

seizures using “the raw multichannel EEG signals” 

based on generalized neural networks. In this 

proposed model there is no need for hand-crafted 

feature extraction. Even, unlike most of the previous 

works using the short-time Fourier transform (STFT) 

of the EEG signals as the network input (which is 

indeed a type of feature extraction) we employed the 

raw unprocessed EEG signals as input. We have 

presented a relatively high seizure prediction horizon 

-around 10 minutes- for our model which is a 

reasonable time for the patient to take preventive 

actions. Also, the seizure occurrence period has 

determined 20 minutes in this work. This makes the 

patient wait less for a seizure to occur and will have 

less anxiety. To have a better training procedure, we 

followed a leave-one-out cross-validation approach 

for each subject. The results in this task with the 

LOOCV method showed high sensitivity with a 

mean of 92.05% and a low FPR of 0.073/h for 18 

EEG recordings from the CHB-MIT database. 

Finally, by investigating feature maps of the trained 

network and extracting a common frequency range 

in the middle layer feature maps using an STFT 

transformation, we were able to characterize which 

input properties are preserved in the network layers 

and which frequency band of the EEG signal 

spectrum contains more information for this 

classification with these networks. This information 

is helpful for future investigations since a 
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successfully learned-network, based on a dataset 

from interictal and preictal EEG time series, has 

been computationally decoded, and some undercover 

facts related to its learning and classification 

performance are available.  In future work, we 

intend to examine the EEG channels separately and 

find the connectivity between the brain regions. 

 

Reference 

 
Freestone DR, Karoly PJ, Cook MJ. “A forward-

looking review of seizure prediction”, Curr Opin 

Neurol;2017,30:167–173. 

DOI:10.1097/WCO.0000000000000429. 
 

[1] 

 
 

Brock A, De S, Simonyan K, Smith SL. “High-

Performance Large-Scale Image Recognition 

Without Normalization”, arXiv; 2021,2102.06171. 

DOI:arxiv.org/abs/2102.06171. 
 

[2] 

Niknazar H, Nasrabadi AM. “Epileptic Seizure 

Prediction Using a New Similarity Index for Chaotic 

Signals”, Int J Bifurcat Chaos; 2016, 26:165-186.  

DOI:10.1142/S0218127416501868. 
 

[3] 

Truong ND, Nguyen AD, Kuhlmann M, Bonyadi 

MR, Yang J, Ippolito S, Kavehei O. “Convolutional 

Neural Networks for Seizure Prediction Using 

Intracranial and Scalp Electroencephalogram”, 

Neural Networks; 2018,105:104-111. 

DOI:10.1016/j.neunet.2018.04.018. 
 

[4] 

 

Chisci L, Mavino A, Perferi G, Sciandrone M, Anile 

C, Colicchio G, Fuggetta F. “Real-Time Epileptic 

Seizure Prediction Using AR Models and Support 

Vector Machines”, IEEE Trans Biomed Eng; 2010, 

57: 1124-1132. DOI:10.1109/TBME.2009.2038990 

[5] 

Aarabi A, He B. “Seizure prediction in patients with 

focal hippocampal epilepsy”, Clin Neurophysiol; 

2017, 128:1299-1307.  

DOI:10.1016/j.clinph.2017.04.026. 

 

[6] 

 

Li S, Zhou W, Yuan Q, Liu Y. “Seizure Prediction 

Using Spike Rate of Intracranial EEG”, IEEE Trans 

Neural Syst Rehabil Eng; 2013, 21:880–886. 

DOI:10.1109/TNSRE.2013.2282153 

[7] 

 

Zhang Z, Parhi K. “Low-Complexity Seizure 

Prediction From iEEG/sEEG Using Spectral Power 

and Ratios of Spectral Power”, IEEE Trans Biomed 

Circuits Syst; 2016, 10:693-706. 

DOI:10.1109/TBCAS.2015.2477264 

[8] 

 

Nazari J, Motie Nasrabadi A, Menhaj MB, 

Raiesdana S. “Epilepsy Seizure Prediction with 

Few-Shot Learning Method”, Brain Informatics; 

2022, 9:21.  DOI:10.1186/s40708-022-00170-8 

[9] 

Alotaiby TN, Alshebili SA, Alrshoud SR. “Epileptic [10] 

Seizure Prediction Using CSP and LDA for Scalp 

EEG Signals”, Comput Intell Neurosci; 2017, 

2017:323-334.  DOI:10.1155/2017/1240323 

Park Y, Luo L, Parhi K, Netoff T. “Seizure 

prediction with spectral power of EEG using cost-

sensitive support vector machines”, Epilepsia; 2011, 

52:1761-1770. 

DOI:10.1111/j.1528-1167.2011.03138.x 

[11] 

Prasad SC, Prasad P. “Deep recurrent neural 

networks for time series prediction”, arXiv; 2014, 

2:1407.5949.  DOI:arxiv.org/abs/1407.5949 

[12] 

Tsiouris ΚM, Pezoulas VC, Zervakis M, Konitsiotis 

S, Koutsouris DD, Fotiadis DI. “A Long Short-Term 

Memory Deep Learning Network for the Prediction 

of Epileptic Seizures Using EEG Signals”, Comput 

Biol Med; 2018, 99:24-37. 

DOI:10.1016/j.compbiomed.2018.05.019 

[13] 

Hosseini MP, Tran TX, Pompili D, Elisevich K, 

Zadeh HS. “Multimodal Data Analysis of Epileptic 

EEG and rs-fMRI via Deep Learning and Edge 

Computing”, Artif Intell Med; 2020, 104:813-823. 

DOI:10.1016/j.artmed.2020.101813 

[14] 

Rosas RR, Guevara E, Peng K, Nguyen DK, Lesage   

F, Pouliot P, Lima WE. Prediction of epileptic 

seizures with convolutional neural networks and 

functional near-infrared spectroscopy signals. 

Comput Biol Med. 2019; 111:103355.  

DOI:10.1016/j.compbiomed.2019.103355 

[15] 

Liang J, Lu R, Zhang C, Wang F. “Predicting 

Seizures from Electroencephalography Recordings: 

A Knowledge Transfer Strategy”, IEEE 

International Conference on Healthcare Informatics, 

Chicago; 2016. DOI:10.1109/ICHI.2016.27 

[16] 

khan h, marcuse l, Fields M, Swann K, Yener B. 

“Focal onset seizure prediction using 

convolutional”, IEEE Trans Biomed Eng; 2018, 

65:2109-2118.  DOI:10.1109/TBME.2017.278540. 

[17] 

Krizhevesky A, Sutskever I, Honton GE. “Imagenet 

classification with deep convolutional neural 

networks”, NIPS; 2012, 60:1097-1105.  

DOI:10.1145/3065386. 
 

[18] 

Christian S, et al. “Going deeper with 

convolutions”, CVPR; 2014,1-9. 

DOI:arxiv.org/abs/1409.4842 

[19] 

Hasanpour SH, Rouhani M, Fayyaz M, Sabokrou 

M, Adeli E. “Towards Principled Design of Deep   

Convolutional Networks: Introducing SimpNet”, 

arXiv; 2018. DOI:arxiv.org/abs/1802.06205v1 

[20] 

Yann L, Yoshua B and  Geoffrey H. “Deep 

learning”, Nature; 2015, 436-

444.DOI:10.1038/nature14539 

[21] 

Srivastava N, Hinton G, Krizhevsky A. “Dropout: A 

Simple Way to Prevent Neural Networks from 

Overfitting”, Machin Learning Research; 2014, 

15:1929-1958. 

DOI:mendeley.com/catalogue/e8d99ee4-3f9a-3e60-

be30-02827562c697 

[22] 

Bjorck J, Gomes C, Selman B, Weinberger KQ. [23] 

https://doi.org/10.1109/TBME.2009.2038990


J.Nazari et al/ Epileptic Seizure Prediction using Multi-Channel Raw EEGs with Convolutional ….. 

48

 

 

“Understanding Batch Normalization”, arXiv; 2018, 

4:1806.02375. DOI:arxiv.org/abs/1806.02375v4 

Shoeb A. “Application of Machine Learning to 

Epileptic Seizure Onset Detection and 

Treatment”,"PhD Thesis, Massachusetts Institute of 

Technology; 2009.  DOI:10.13026/C2K01R 

[24] 

Hisham D, Magdy BA. “Efficient Epileptic Seizure 

Prediction Based on Deep Learning”, IEEE Trans 

Biomed Circuits Syst; 2019, 13: 804-813. 

DOI:10.1109/TBCAS.2019.2929053 

[25] 

Zisheng Z and Keshab P. “Low-Complexity Seizure 

Prediction From iEEG/sEEG Using Spectral Power 

and Ratios of Spectral Power”, IEEE Trans Biomed 

Circuits Syst; 2016, 693-706. 

DOI:10.1109/TBCAS.2015.2477264 

[26] 

Cho D, Min B, Kim J, Lee B. “EEG-Based 

Prediction of Epileptic Seizures Using Phase 

[27] 

SynchronizationElicited from Noise-Assisted 

Multivariate Empirical Mode Decomposition”, 

IEEE Trans Neural Syst Rehabil Eng; 2017, 

25:1309 – 1318. 

DOI:10.1109/TNSRE.2016.2618937 

Miri M and Nasrabadi AM. “A new seizure 

prediction method based on return map”, 

Proceedings of the Iranian Conference on 

BioMedical Engineering, tehran; 2011. 

DOI:10.1109/ICBME.2011.6168565 

[28] 

Qin Y, Zheng H, Chen W, Qin Q, Han C. “Patient-

specific Seizure Prediction with Scalp EEG Using 

Convolutional Neural Network and Extreme 

Learning Machine”, 39th Chinese Control 

Conference (CCC) Shenyang; 2020. 

DOI:10.23919/CCC50068.2020.9189578. 

 

[29] 

 
 

 

 

https://doi.org/10.13026/C2K01R
https://doi.org/10.1109/TBCAS.2019.2929053
https://ieeexplore.ieee.org/author/37085388353
https://doi.org/10.1109/TBCAS.2015.2477264
https://doi.org/10.1109/ICBME.2011.6168565
https://doi.org/10.23919/CCC50068.2020.9189578

